Les Moniteurs
Le reproche que 1’on peut adresser aux régions critiques concerne d’une part, le colit excessif
relatif aux réveils systématiques des processus bloqués, en particulier dans des systémes
monoprocesseur, et d’autre part la dissémination des différentes instructions (au niveau des
points de synchronisation) dans le code d’un processus. Ainsi, pour localiser tous les points de
synchronisation afin d’examiner toutes les formes d’utilisation des ressources, il est impératif
d’étudier la totalit¢ des processus concurrents. Cette facon de faire est quelque peu
contraignante et influe grandement sur le rendement du programmeur.
Les moniteurs apportent une solution appréciable a ces problémes en soulageant le
programmeur de ces contraintes.
Ainsi, les moniteurs constituent la premiére approche qui tente une "séparation" entre la partie
traitement et la partie contrdle correspondante d'un module fonctionnel dans un
environnement concurrentiel. Autrement dit, un processus concurrent exécute normalement
son algorithme ou sa partie traitement, et a la rencontre d’un point de synchronisation, il fait
appel au moniteur pour obtenir I’accord du franchissement de ce point. le franchissement d’un
point de synchronisation sera donc contrdlé au niveau du moniteur associé qui décidera de la
poursuite ou du blocage de ce processus.

Fonctions

L'exclusion mutuelle des procédures est assurée par le mécanisme d'exécution du moniteur. A
chaque procédure peut étre attachée une condition a laquelle est associée une file d'attente.
Fonctionnellement, le moniteur encapsule dans une méme entité les données et les procédures
qui les utilisent. L'accés au moniteur est restreint a des appels de procédures externes (des
procédures internes au moniteur peuvent exister et leur utilité peut étre limitée a faire passer le
moniteur dans un état bien déterminé). Tout moniteur doit comporter une section
d'initialisation exécutée avant tout acces. Cette section initialisera les variables globales du
moniteur.

Les procédures du moniteur ordonnent leurs actions au moyen de primitives de haut niveau:
wait et signal.

Primitives du moniteur

Wait : primitive de blocage.

La primitive Wait(cond), ou cond représente la condition d'attente, met le processus appelant
dans la file d'attente associée a cond, et libere I'exclusion mutuelle du moniteur pour permettre
l'acces aux processus demandeurs externes.

Signal : Primitive de réveil.
La primitive signal(cond) opére comme suit:



S’il n’existe aucun processus bloqué dans la file associ¢ée a la condition cond, alors le
processus invocateur, soit P, continue en séquence. Dans le cas contraire, le processus P est
temporairement bloqué et un processus en attente dans la file associée a cond est
réactivé. Le processus invocateur du signal sera réveillé lorsque le moniteur devient libre;
céest-é—dire: le processus réveillé par signal vient de quitter le moniteur ou se bloque une
nouvelle fois. De plus, le processus bloqué par signal devient prioritaire sur les processus
externes qui tentent d’appeler le moniteur.

A remarquer qu'un événement signal n'est pas mémorisé contrairement aux sémaphores,
autrement dit, un signal non attendu est purement perdu.
Forme syntaxique du moniteur

nom_du_moniteur.Monitor
% déclaration des variables %
Var x: Integer
y: Boolean;

Condition c;

% déclaration des procédures du moniteur %

procedure xx(yy);
begin

end,
procedure zz(tt),
begin

end,
% 1nitialisation % la séquence d’instructions de la partie initialisation du moniteur %

begrin % est exécutée avant tout appel de I’extérieur aux procédures du %
% moniteur. Elle a pour but de mettre ce dernier dans un état %
% initial adéquat. %

end,

endmonitor



Variante de Kessels [Kes77]

La critique que 1'on peut faire au mécanisme des moniteurs de Hoare concerne la primitive
signal; en effet, le role de cette primitive consiste a réveiller, lorsque la condition de
franchissement d'un point de synchronisation devient vraie, un processus bloqué en ce point.

Kessels proposa la variante suivante dans laquelle certains problémes engendrés par la
primitive signal sont évités par I'¢limination de la primitive elle-méme. On ne dispose donc
que de l'unique primitive de blocage wait, et le réveil est a la charge du mécanisme
d'exécution du moniteur qui le réalise de manicre automatique. On aura donc:

Wait(cond): ou cond est maintenant une expression booléenne représentant de maniére
explicite la condition d'attente. Cond peut étre composée de variables d'état du moniteur et
éventuellement de constantes, elle peut étre déclarée au début du moniteur. Cette primitive
(wait(cond)) provoque le blocage du processus appelant P tantque la condition d’attente est
vraie. Quand un processus quitte le moniteur ou se met en attente, les conditions associées aux
primitives wait sont réévaluées. Si une des conditions examinées par le réévaluateur devient
fausse, alors un des processus bloqué par cette condition est réveillé. Le réévaluateur est un
processus du mécanisme d’exécution du moniteur qui se charge de la réévaluation des
conditions de blocage.



