
2.7 Régions Critiques.

 Le concept de régions critiques (Bri, Hoa), identique dans sa sémantique à celui des sections

critiques (Dij), a été émis dans le souci de fournir au programmeur un outil capable de lui

apporter une aide lors de la spécification de la synchronisation. Cette aide réside dans la

garantie que toute variable déclarée explicitement partageable sera utilisée en exclusion

mutuelle. Autrement dit, le mécanisme d'exécution des régions critiques veillerait à ce que ces

variables soient manipulées correctement. Ce mécanisme, intégrable au compilateur, avertirait

donc le programmeur de toute utilisation d’un objet déclaré partageable en dehors d’une

région critique.

Une région critique est donc une structure linguistique qui définit une séquence d'instructions

à exécuter comme section critique dans laquelle sont manipulées des variables déclarées

explicitement partageables.

Les variables partagées sont explicitement placées dans des groupes appelés ressources.

Chaque variable partagée peut être au plus dans une ressource. Par exemple, une ressource R

contenant les variables V1, V2,, Vn est déclarée par: Ressource R: V1,V2, ..., Vn. Les

variables de R peuvent être accessibles seulement à partir des formes structurales de regions

critiques désignant ces variables.

Structure des régions critiques (syntaxe et sémantique):

 Pour déclarer une variable partagée V du type T on utilise la notation suivante:

Var V : shared T qui définit une variable V du type T;

par exemple: var compte : shared real.

 Il est possible de considérer T comme une structure regroupant un ensemble de variables

partagées distinctes (identiques relativement au partage) comme l'illustre la notation suivante:

Type direction = record % Cf. exercice passage de véhicules sur un pont %

 attente, passant, en_tete: integer

 end

Var pont : shared record

 gauchedroit, droitgauche : direction;

 end

 On définit une région critique à l'aide des syntaxes suivantes:

2.7.1 Région critique inconditionnelle

Region V do Sc

dont la sémantique exprime que la séquence d'instructions Sc dans laquelle est (ou sont)

manipulée(s) la (ou les) variable(s) partagée(s) V, constitue une section critique (cf. § 2.4).

La séquence d’instructions Sc contient des variables déclarées partageables et éventuellement

des variables locales au processus exécutant Sc.

Plusieurs régions critiques peuvent se rapporter à une même variable partagée; leurs

exécutions s'excluent mutuellement. Autrement dit, si plusieurs processus tentent de les

exécuter simultanément, un seul d'entre eux est autorisé à le faire (évolue normalement); les

autres processus seront automatiquement bloqués. Lorsque le processus actif termine

l'exécution de la séquence critique sc, un des processus en attente est systématiquement

réactivé.

2.7.2 Région critique conditionnelle

a) Region V when cond do sc

signifie: l'exécution de la région critique sc est conditionnée par la valeur de la condition

cond. Cond représente une expression booléenne composée d'éléments de V et éventuellement

de variables locales et constantes. Le scénario d'exécution de cette primitive par un processus

appelant P est comme suit:

P accède à la région critique sc puis évalue cond, si cond est vraie, alors P exécute sc puis

quitte sc.

sinon (cond est fausse) P sort de la région critique et se bloque jusqu'à ce qu'il soit réveillé

lorsqu'un autre processus Q sort de sa propre région critique associée à V. P reprend alors

l'évaluation de cond à son début.

b) Region V do sc await cond ...

Cette instruction combine les deux formes précédentes (2.7.1 et 2.7.2).

Le processus appelant exécute donc sc de façon inconditionnelle puis, pour poursuivre, se met

en attente (se bloque) jusqu'à ce que la condition cond devienne vraie. Il est possible que sc

soit une opération nulle auquel cas, l’évolution du processus appelant dépendra de la valeur de

cond (attente si cond est fausse, poursuite en séquence sinon).

Remarque: Des régions critiques peuvent s’imbriquer à la manière des boucles DO des

langages de programmation de haut niveau, toutefois une attention particulière peut leur être

accordée afin d’éviter les interblocages éventuels. Par exemple, soient deux processus

concurrents P et Q se partageant deux variables v1 et v2 tels que leurs codes soient:

 P: Region v1 do Region v2 do sc1;

 Q: Region v2 do Region v1 do sc2;

Dans pareil cas, il est évident de constater que si P et Q entrent simultanément dans leur

propre region critique, un interblocage est inévitable. Il est possible de charger le compilateur

qui gère les régions critiques de détecter des situations d’interblocage et d’en informer le

programmeur pour agir en conséquence. Une action possible, et à titre indicatif, serait

d’imposer un ordre d’utilisation des variables partagées (cf. exercice 14 a1)

 Les programmes contenant des éléments de synchronisation spécifiés en termes de régions

critiques sont plus lisibles. En effet, il est possible d’utiliser une approche axiomatique, basée

sur la notion d’invariants, pour prouver la validité de l’exécution de la séquence d’instructions

Sc. Ainsi, on peut associer un invariant Iv à l’état de chaque ressource V, et un prédicat P. Le

prédicat P ayant la valeur vraie à l’initialisation de V doit également avoir la valeur vraie à la

fin de l’exécution de Sc.

 Les régions critiques ont été implantées dans le langage Edison [Brin 1981] conçu

spécialement pour des systèmes multiprocesseurs. Des variantes ont été également adaptées

pour des environnements distribués [Bri, 1978; Lis 1982]

Exercice: Simuler un sémaphore à l'aide de régions critiques.

 var sem: shared integer (sem  0);

 P(sem): region sem do sem := sem - 1 await sem  0 ... (1) % incorrect %

Bien que la forme (1) précédente, traduisant textuellement la primitive P originelle, semblerait

« correcte » indépendamment de V(sem), elle est à rejeter puisqu’elle ne répond pas à une

association correcte avec la primitive de réveil V ci-après:

 V(sem): region sem do sem := sem + 1;

En effet, l’exécution de V simulée précédemment a pour objectif de libérer un processus Q

éventuellement en attente. D’après le principe des régions critiques, Q réveillé, doit évaluer sa

condition d’entrer en section critique. Si celle-ci est vraie, il exécute effectivement sa section

et poursuit en séquence; dans le cas contraire (condition fausse), il entre de nouveau dans la

file d’attente.

Quand plusieurs processus se trouvent bloqués par P, impliquant sem < -1, l’exécution de V, à

la suite de laquelle sem est incrémenté (sem := sem + 1) provoquerait des réévaluations des

conditions de franchissement des points de synchronisation ineffectives, bien que

logiquement, un franchissement au moins, devrait avoir lieu.

Par exemple, soient trois processus concurrents, P1, P2, P3, désireux d’entrer dans leur

section critique respective (sem initialisé à 1), admettant que P1 soit le premier à exécuter la

forme (1) précédente, sem devient = 0 et P1 accède à sa section critique (condition vraie). Si

P2 exécute la forme (1) pendant que P1 est encore en section critique, sem devient = -1 et P2

se bloque (condition fausse). Si P3 exécute également (1), il se bloque car sem = -2. Lorsque

P1 quitte sa section critique, il doit exécuter V(sem) qui incrémente sem (sem devient égal à -

1). Le mécanisme d’exécution des régions critiques va réveiller P2 qui évalue sa condition de

franchissement (sem 0) et trouve sem = -1 (condition fausse), P2 libère sa section critique et

se bloque une nouvelle fois. P3 fait la même chose que P2, trouve sem = -1, et se bloque

également. On voit bien que la section critique est libre et aucun des processus ne peut y

accéder. P1, lui-même, ou tout autre nouveau processus concurrent ne peut accéder à sa

section critique, il se produit donc un blocage. Ce problème est dû au fait que la

décrémentation de sem s’est faite avant le test de la condition de franchissement. La solution

correcte est donc la suivante:

 Region sem when sem > 0 do sem := sem - 1 ...

