2.7 Régions Critiques.

Le concept de régions critiques (Bri, Hoa), identique dans sa sémantique a celui des sections
critiques (Dij), a été¢ émis dans le souci de fournir au programmeur un outil capable de lui
apporter une aide lors de la spécification de la synchronisation. Cette aide réside dans la
garantie que toute variable déclarée explicitement partageable sera utilisée en exclusion
mutuelle. Autrement dit, le mécanisme d'exécution des régions critiques veillerait a ce que ces
variables soient manipulées correctement. Ce mécanisme, intégrable au compilateur, avertirait
donc le programmeur de toute utilisation d’un objet déclaré partageable en dehors d’une
région critique.

Une région critique est donc une structure linguistique qui définit une séquence d'instructions
a exécuter comme section critique dans laquelle sont manipulées des variables déclarées
explicitement partageables.

Les variables partagées sont explicitement placées dans des groupes appelés ressources.
Chaque variable partagée peut étre au plus dans une ressource. Par exemple, une ressource R
contenant les variables V1, V2, ..., Vn est déclarée par: Ressource R: V1,V2, ..., Vn. Les
variables de R peuvent étre accessibles seulement a partir des formes structurales de regions
critiques désignant ces variables.

Structure des régions critiques (syntaxe et sémantique):
Pour déclarer une variable partagée V du type T on utilise la notation suivante:

Var V : shared T qui définit une variable V du type T;
par exemple: var compte : shared real.
Il est possible de considérer T comme une structure regroupant un ensemble de variables
partagées distinctes (identiques relativement au partage) comme 1'illustre la notation suivante:
Type direction = record % Cf. exercice passage de véhicules sur un pont %

attente, passant, en_tete: integer

end
Var pont : shared record
gauchedroit, droitgauche : direction;

end

On définit une région critique a l'aide des syntaxes suivantes:

2.7.1 Région critique inconditionnelle

Region V do Sc

dont la sémantique exprime que la séquence d'instructions Sc dans laquelle est (ou sont)
manipulée(s) la (ou les) variable(s) partagée(s) V, constitue une section critique (cf. § 2.4).

La séquence d’instructions Sc contient des variables déclarées partageables et éventuellement
des variables locales au processus exécutant Sc.



Plusieurs régions critiques peuvent se rapporter a une méme variable partagée; leurs
exécutions s'excluent mutuellement. Autrement dit, si plusieurs processus tentent de les
exécuter simultanément, un seul d'entre eux est autorisé a le faire (évolue normalement); les
autres processus seront automatiquement bloqués. Lorsque le processus actif termine
I'exécution de la séquence critique sc, un des processus en attente est systématiquement
réactive.

2.7.2 Région critique conditionnelle

a) Region V when cond do sc

signifie: 1'exécution de la région critique sc est conditionnée par la valeur de la condition
cond. Cond représente une expression booléenne composée d'¢léments de V et éventuellement
de variables locales et constantes. Le scénario d'exécution de cette primitive par un processus
appelant P est comme suit:

P acceéde a la région critique sc puis évalue cond, si cond est vraie, alors P exécute sc puis
quitte sc.

sinon (cond est fausse) P sort de la région critique et se bloque jusqu'a ce qu'il soit réveillé
lorsqu'un autre processus Q sort de sa propre région critique associée a V. P reprend alors
I'évaluation de cond a son début.

b) Region V do sc await cond ...

Cette instruction combine les deux formes précédentes (2.7.1 et 2.7.2).

Le processus appelant exécute donc sc de fagon inconditionnelle puis, pour poursuivre, se met
en attente (se bloque) jusqu'a ce que la condition cond devienne vraie. Il est possible que sc
soit une opération nulle auquel cas, I’évolution du processus appelant dépendra de la valeur de
cond (attente si cond est fausse, poursuite en s€quence sinon).

Remarque: Des régions critiques peuvent s’imbriquer a la maniére des boucles DO des
langages de programmation de haut niveau, toutefois une attention particuliere peut leur étre
accordée afin d’éviter les interblocages éventuels. Par exemple, soient deux processus
concurrents P et Q se partageant deux variables v1 et v2 tels que leurs codes soient:

P: Region v1 do Region v2 do scl;

Q: Region v2 do Region vl do sc2;

Dans pareil cas, il est évident de constater que si P et Q entrent simultanément dans leur
propre region critique, un interblocage est inévitable. Il est possible de charger le compilateur
qui gere les régions critiques de détecter des situations d’interblocage et d’en informer le
programmeur pour agir en conséquence. Une action possible, et a titre indicatif, serait
d’imposer un ordre d’utilisation des variables partagées (cf. exercice 14 al)

Les programmes contenant des éléments de synchronisation spécifiés en termes de régions
critiques sont plus lisibles. En effet, il est possible d’utiliser une approche axiomatique, basée
sur la notion d’invariants, pour prouver la validité¢ de I’exécution de la séquence d’instructions



Sc. Ainsi, on peut associer un invariant /v a I’état de chaque ressource V, et un prédicat P. Le
prédicat P ayant la valeur vraie a I’initialisation de V doit également avoir la valeur vraie a la
fin de I’exécution de Sc.

Les régions critiques ont ét¢ implantées dans le langage Edison [Brin 1981] congu
spécialement pour des systémes multiprocesseurs. Des variantes ont été également adaptées
pour des environnements distribués [Bri, 1978; Lis 1982]

Exercice: Simuler un sémaphore a l'aide de régions critiques.

var sem: shared integer (sem > 0);

P(sem): region sem do sem :=sem - 1 await sem >0 ... (1) % incorrect %
Bien que la forme (1) précédente, traduisant textuellement la primitive P originelle, semblerait
« correcte » indépendamment de V(sem), elle est a rejeter puisqu’elle ne répond pas a une
association correcte avec la primitive de réveil V ci-apres:

V(sem): region sem do sem :=sem + 1;
En effet, ’exécution de V simulée précédemment a pour objectif de libérer un processus Q
éventuellement en attente. D’aprés le principe des régions critiques, Q réveillé, doit évaluer sa
condition d’entrer en section critique. Si celle-ci est vraie, il exécute effectivement sa section
et poursuit en séquence; dans le cas contraire (condition fausse), il entre de nouveau dans la
file d’attente.
Quand plusieurs processus se trouvent bloqués par P, impliquant sem < -1, ’exécution de V, a
la suite de laquelle sem est incrémenté (sem := sem + 1) provoquerait des réévaluations des
conditions de franchissement des points de synchronisation ineffectives, bien que
logiquement, un franchissement au moins, devrait avoir lieu.
Par exemple, soient trois processus concurrents, P1, P2, P3, désireux d’entrer dans leur
section critique respective (sem initialisé a 1), admettant que P1 soit le premier a exécuter la
forme (1) précédente, sem devient = 0 et P1 accede a sa section critique (condition vraie). Si
P2 exécute la forme (1) pendant que P1 est encore en section critique, sem devient = -1 et P2
se bloque (condition fausse). Si P3 exécute également (1), il se bloque car sem = -2. Lorsque
P1 quitte sa section critique, il doit exécuter V(sem) qui incrémente sem (sem devient égal a -
1). Le mécanisme d’exécution des régions critiques va réveiller P2 qui évalue sa condition de
franchissement (sem >0) et trouve sem = -1 (condition fausse), P2 libére sa section critique et
se bloque une nouvelle fois. P3 fait la méme chose que P2, trouve sem = -1, et se bloque
¢galement. On voit bien que la section critique est libre et aucun des processus ne peut y
accéder. P1, lui-méme, ou tout autre nouveau processus concurrent ne peut accéder a sa
section critique, il se produit donc un blocage. Ce probléme est di au fait que la
décrémentation de sem s’est faite avant le test de la condition de franchissement. La solution
correcte est donc la suivante:

Region sem when sem > 0 do sem = sem - 1



