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1 Databases Physical design

1.1 History
In 1974, a pivotal debate unfolded at the annual ACM SIGFIDET (now
SIGMOD) conference in Ann Arbor, Michigan, between two giants of the
database world: Ted Codd, the visionary behind the relational database
model, and Charlie Bachman, the driving force behind the network database
model and the CODASYL report. Their discussion centered on which database
model was superior, sparking a debate that spilled over into academic jour-
nals and industry publications for nearly 30 years, only concluding with
Codd’s passing in 2003. Over the years, countless database systems were
developed to support both models. While the relational model ultimately
became the industry standard, the underlying physical structures of both
models continued to evolve side by side. Early on, physical design decisions
revolved around indexing methods, with B+tree indexing emerging as the
go-to standard. As time went on, concepts like clustering and partitioning
gained traction, becoming increasingly distinct from the logical structures
that dominated the debates of the 1970s.

Logical database design, which focuses on defining how data relates
within a specific database system, is typically the domain of application
designers and programmers. These professionals might use specialized tools
like ERwin Data Modeler or Rational Rose with UML, or they might opt
for more manual approaches. On the other hand, physical database design
is all about creating efficient systems for storing and retrieving data.

The inner workings of your computing platform are usually overseen by
the database administrator (DBA), who has access to a variety of tools
provided by vendors to fine-tune database performance. This book zeroes
in on the methods and tools that are widely used today for the physical
design of relational databases. To illustrate key concepts, well draw on
examples from well-known systems like Oracle, IBM’s DB2, Microsoft SQL
Server, and Postgres.

The database life cycle outlines the essential steps needed to design a
logical database. It starts with conceptual modeling based on user needs,
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followed by defining tables specific to the DBMS and creating a physical
database optimized for performance through techniques like indexing, par-
titioning, clustering, and materialization. In distributed databases, physical
design also involves spreading data across a network. Once the design phase
is complete, the life cycle moves on to implementation and ongoing main-
tenance, as shown in Figure 1.2. Physical database design (step 3 below) is
presented within the context of the full life cycle to highlight its connection
to earlier design stages.

1.1.1 Requirements Analysis

The first step is to gather database requirements by interviewing both data
producers and users. A formal requirements specification is then created,
detailing the data needed for processing, the relationships within the data,
and the software platform to be used for the database.

1.1.2 Logical Database Design:

This stage involves creating a conceptual model from user requirements and
refining it into normalized SQL tables. The goal is to accurately capture
users’ data needs and relationships, making it easier to query and update
the database. Using methods like Entity-Relationship (ER) modeling or
the Unified Modeling Language (UML), a global scheme (a comprehensive
conceptual data model diagram) is created to depict all data and their inter-
relationships. This schema is then transformed into normalized SQL tables,
often in third normal form (3NF), to ensure data integrity. Some database
tools refer to this conceptual model as a "logical model" and the physical
data model as a "physical model." The implementation model specific to a
DBMS, such as SQL tables, often comes from reverse engineering an exist-
ing schema rather than being built from the ground up [Silberschatz 2006].
Heres a breakdown of what the physical model definition entails:

1.1.3 Physical Database Design:

This phase involves making critical decisions about indexing, partitioning,
clustering, and selectively materializing data. Physical design, as discussed
in this book, begins once SQL tables are defined and normalized. The focus
shifts to optimizing storage and access methods to ensure maximum disk
efficiency. The ultimate goal of physical design is to enhance the perfor-
mance of the database across all applications that rely on it. Key resources
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that impact performance include CPU usage, I/O operations (such as disk
access), and network latency. Performance is evaluated based on two main
metrics: response time for individual queries and updates, and overall sys-
tem throughput (measured in transactions per second).

1.1.4 Database Implementation, Monitoring, and Modification:

Once the logical and physical designs are finalized, the database is con-
structed using the DBMSs data definition language (DDL). The data ma-
nipulation language (DML) is then used for tasks like querying, updating,
indexing, and enforcing constraints such as referential integrity. SQL com-
bines both DDL and DML constructsfor example, "CREATE TABLE" is a
DDL command, while "SELECT" falls under DML.

During the operational phase, the database is continuously monitored
to ensure it meets performance standards. If issues arise, adjustments are
made to fine-tune performance. As user needs evolve or grow, further modi-
fications may be required, creating an ongoing cycle of monitoring, redesign,
and updates.

1.2 Indexes
An index is a data structure designed to organize data in a way that speeds
up data retrieval from database tables. Programmers can create indexes
using SQL commands like:

1 CREATE UNIQUE INDEX supplierNum ON supplier(snum);
2 /* Creates a unique index on a key */

A unique index pairs attribute values with pointers, where each pointer
directs to a specific record containing that attribute value. This is known
as an ordered index because the attribute values (keys) are sorted in ASCII
order. For example, if the values are alphabetic, they are arranged alphabet-
ically. These ordered indexes are typically stored as B+ trees which allow
for fast searches of key values. Once the key and its corresponding pointer
are located, an additional step retrieves the actual record from memory.

When data is accessed using a non-key attribute (one that may repeat
across records) a secondary index is used. This structure allows multiple
pointers for the same attribute value, each pointing to a record containing
that value. For example:

11
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1 CREATE INDEX shippingDate ON shipment (shipdate);
2 /* Creates a secondary index on a non-key */

For queries involving multiple attributes, a concatenated index can be
created. This type of index stores a combination of attribute values with
pointers to records that match all values in the set:

1 CREATE INDEX shipPart ON shipment (pnum, shipdate);
2 /* Creates a secondary concatenated index */

Concatenated indexes are highly efficient for queries that require both
attributes (e.g., part number and shipping date). However, they are less
efficient for queries using only one of the attributes due to their larger size,
which increases search time.

To further optimize query performance, a clustered index can be used.
This organizes the database so that records with similar values are stored
close together on disk. For example, if a table is frequently accessed using a
non-unique index on shipping dates, the database can be arranged to group
similar ship dates together. Each table can have only one clustered index
because it requires a fixed physical organization. Indexes that dont enforce
this physical grouping are called nonclustered indexes.

For unordered tables, a hash index can improve access speed. This type
of index uses a hash function to map unique key values to specific starting
blocks, known as bucket addresses. Once records are inserted using the hash
function, the same function can be applied for efficient retrieval.

Another type of index, the bitmap index, is often used in data warehouses
and for secondary indexes with multiple values. A bitmap index consists
of bit vectors, where each bit represents whether a record has a specific
attribute value (1 for yes, 0 for no). Bitmap indexes are particularly effective
for attributes with few distinct values, such as gender or grade, and are
efficient to store and access, especially if they fit in memory. However, they
are less suitable for attributes with many possible values, like last names
or ages.

1.3 Materialized Views
When querying one or more tables, the results can be saved in a structure
called a materialized view. Unlike standard SQL views, which are stored

12
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only as query definitions, materialized views are stored as physical tables
in the database. In data warehouses, materialized views are often used to
store aggregated data from base tables. They are particularly useful for
speeding up frequently executed queries or those involving data aggregates,
as they allow results to be retrieved directly from the materialized view
without repeatedly querying the original tables.

While materialized views can significantly reduce query times, its imprac-
tical to store all possible views due to storage limitations. Therefore, only
the most useful views are typically materialized. A key challenge with mate-
rialized views is keeping them updated. When the base tables are modified,
the dependent materialized views must also be updated, which can reduce
efficiency. This cascading update process must be carefully managed.

1.4 Partitioning
Partitioning is a technique used in physical database design to distribute
data across multiple disks, balancing the workload and reducing bottlenecks
on individual hardware components. In range partitioning, data values are
sorted into ranges, with each range assigned to a specific disk. This allows
independent processing of different ranges. More details on partitioning can
be found in Chapter 4.

1.5 Additional Physical Database Design Techniques
Other techniques can improve data access efficiency:

1.5.1 Data Compression

Reduces storage space by compressing data, which can speed up access
times for frequently scanned data. Compression algorithms store data in a
compact format and convert it back for display.

1.5.2 Data Striping

Spreads related data across multiple disks to enhance parallel processing
and system throughput, reducing query times. This technique works well
with disk array systems like RAID, which allow parallel data access.

13
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1.5.3 Data Redundancy

Methods like mirroring improve reliability by duplicating data across multi-
ple disks. However, redundancy increases storage requirements and requires
updates to all copies when data changes. While storage costs are decreas-
ing, update time remains a consideration. Redundancy is most beneficial
for data that is rarely updated.

In some cases, the global schema may be adjusted to improve process-
ing efficiency. This process, called textbfdenormalization, involves making
minor changes to tables to enhance query performance. It requires identi-
fying high-priority processes, evaluating the costs of queries, updates, and
storage, and weighing potential drawbacks, such as risks to data integrity.

1.6 Challenges of Physical Design
Physical database design is complex due to the numerous variables involved,
often numbering in the hundreds. The interdependencies between these
variables make it challenging to evaluate different design choices. Manu-
ally calculating performance for individual indexing or partitioning options
can take hours, and performance analysis often involves testing multiple
configurations under varying loads, leading to thousands of calculations.

To simplify this process, automated tools like IBMs DB2 Design Advisor,
Oracles SQL Access Advisor, Oracles SQL Tuning Advisor, and Microsoft’s
Database Tuning Advisor (formerly the Index Tuning Wizard) have been
developed. These tools handle complex computations, allowing analysts to
focus on evaluating trade-offs. This book covers both manual and auto-
mated approaches to physical database design.

1.7 Lab: Using a benchmark TPC-C

1.7.1 Preliminaries

The TPC-C (Transaction Processing Performance Council - C) database is
a benchmark model designed to evaluate the performance of OLTP (Online
Transaction Processing) systems. It simulates a wholesale supplier manag-
ing multiple warehouses, focusing on the efficiency and scalability of trans-
action processing. The database schema includes tables representing ware-
houses, districts, customers, orders, stock, and items.

14
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The objective of TPC-C is to assess a system’s capability to handle a
complex mix of five types of transactions New Order, Payment, Order
Status, Delivery, and Stock-Level that involve different levels of data access
and modification. This benchmark measures throughput (transactions per
minute) and response time, aiming to provide an industry-standard metric
for comparing transactional performance across database systems.

Create the role and the DB

1. CREATE ROLE tpcc WITH LOGIN PASSWORD ’Test2024++’

2. ALTER ROLE tpcc CREATEDB;

3. CREATE DATABASE tpcc_db OWNER tpcc;

1.7.2 In linux terminal do: Download and compile TPC-C gnerator

1. Download the TPC-C gnerator source code from Moodle

2. Unzip the tpcc-generator-master.zip

3. Compile the CPP source code inside tpcc-generator-master and gen-
erate the executable file ./tpcc-generator

4. Create the folder results inside the source folder

5. Run the command to generate CSV datasources files:
./tpcc-generator 205 results

6. nine (9) csv files are generated : warehouse.csv, district.csv, customer.csv,
history.csv, stock.csv,orders.csv,new_order.csv,order_line.csv, item.csv

1.7.3 TPC-C Schema

Create the TPC-C script bellow called tpcc-scheme.sql

• In the linux terminal run the script ans insure that you have in the
folder where tpcc-scheme.sql is stored : tpcc-scheme.sql to create the
tables:

1 psql -U tpcc -d tpcc\_db -f tpcc-scheme.sql

15
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1 -- WAREHOUSE table
2 CREATE TABLE WAREHOUSE (
3 W_ID INTEGER PRIMARY KEY,
4 W_NAME VARCHAR(10),
5 W_STREET_1 VARCHAR(20),
6 W_STREET_2 VARCHAR(20),
7 W_CITY VARCHAR(20),
8 W_STATE CHAR(2),
9 W_ZIP CHAR(9),
10 W_TAX NUMERIC(4, 4),
11 W_YTD NUMERIC(12, 2)
12 );
13

14 -- DISTRICT table
15 CREATE TABLE DISTRICT (
16 D_ID INTEGER,
17 D_W_ID INTEGER REFERENCES WAREHOUSE(W_ID),
18 D_NAME VARCHAR(10),
19 D_STREET_1 VARCHAR(20),
20 D_STREET_2 VARCHAR(20),
21 D_CITY VARCHAR(20),
22 D_STATE CHAR(2),
23 D_ZIP CHAR(9),
24 D_TAX NUMERIC(4, 4),
25 D_YTD NUMERIC(12, 2),
26 D_NEXT_O_ID INTEGER,
27 PRIMARY KEY (D_ID, D_W_ID)
28 );
29

30 -- CUSTOMER table
31 CREATE TABLE CUSTOMER (
32 C_ID INTEGER,
33 C_D_ID INTEGER,
34 C_W_ID INTEGER,
35 C_FIRST VARCHAR(16),
36 C_MIDDLE CHAR(2),
37 C_LAST VARCHAR(16),
38 C_STREET_1 VARCHAR(20),
39 C_STREET_2 VARCHAR(20),
40 C_CITY VARCHAR(20),
41 C_STATE CHAR(2),
42 C_ZIP CHAR(9),

16
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43 C_PHONE CHAR(16),
44 C_SINCE_2 INTEGER,
45 C_CREDIT CHAR(2),
46 C_CREDIT_LIM NUMERIC(12, 2),
47 C_DISCOUNT NUMERIC(4, 4),
48 C_BALANCE NUMERIC(12, 2),
49 C_YTD_PAYMENT NUMERIC(12, 2),
50 C_PAYMENT_CNT INTEGER,
51 C_DELIVERY_CNT INTEGER,
52 C_DATA VARCHAR(500),
53 PRIMARY KEY (C_W_ID, C_D_ID, C_ID),
54 FOREIGN KEY (C_D_ID, C_W_ID) REFERENCES DISTRICT(D_ID, D_W_ID)
55 );
56

57 -- HISTORY table
58 CREATE TABLE HISTORY (
59 H_C_ID INTEGER,
60 H_C_D_ID INTEGER,
61 H_C_W_ID INTEGER,
62 H_D_ID INTEGER,
63 H_W_ID INTEGER,
64 H_DATE_2 INTEGER,
65 H_AMOUNT NUMERIC(6, 2),
66 H_DATA VARCHAR(24),
67 FOREIGN KEY (H_C_W_ID, H_C_D_ID, H_C_ID) REFERENCES

CUSTOMER(C_W_ID, C_D_ID, C_ID),↪
68 FOREIGN KEY (H_W_ID, H_D_ID) REFERENCES DISTRICT(D_W_ID, D_ID)
69 );
70

71 -- ORDERS table
72 CREATE TABLE ORDERS (
73 O_ID INTEGER,
74 O_D_ID INTEGER,
75 O_W_ID INTEGER,
76 O_C_ID INTEGER,
77 O_ENTRY_D_2 INTEGER,
78 O_CARRIER_ID INTEGER,
79 O_OL_CNT INTEGER,
80 O_ALL_LOCAL INTEGER,
81 PRIMARY KEY (O_W_ID, O_D_ID, O_ID),
82 FOREIGN KEY (O_W_ID, O_D_ID, O_C_ID) REFERENCES CUSTOMER(C_W_ID,

C_D_ID, C_ID)↪
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83 );
84

85 -- NEW_ORDER table
86 CREATE TABLE NEW_ORDER (
87 NO_O_ID INTEGER,
88 NO_D_ID INTEGER,
89 NO_W_ID INTEGER,
90 PRIMARY KEY (NO_W_ID, NO_D_ID, NO_O_ID),
91 FOREIGN KEY (NO_W_ID, NO_D_ID, NO_O_ID) REFERENCES ORDERS(O_W_ID,

O_D_ID, O_ID)↪
92 );
93

94 -- ORDER_LINE table
95 CREATE TABLE ORDER_LINE (
96 OL_O_ID INTEGER,
97 OL_D_ID INTEGER,
98 OL_W_ID INTEGER,
99 OL_NUMBER INTEGER,
100 OL_I_ID INTEGER,
101 OL_SUPPLY_W_ID INTEGER,
102 OL_DELIVERY_D_2 INTEGER,
103 OL_QUANTITY NUMERIC(2),
104 OL_AMOUNT NUMERIC(6, 2),
105 OL_DIST_INFO CHAR(24),
106 PRIMARY KEY (OL_W_ID, OL_D_ID, OL_O_ID, OL_NUMBER),
107 FOREIGN KEY (OL_W_ID, OL_D_ID, OL_O_ID) REFERENCES ORDERS(O_W_ID,

O_D_ID, O_ID),↪
108 FOREIGN KEY (OL_SUPPLY_W_ID, OL_I_ID) REFERENCES STOCK(S_W_ID,

S_I_ID)↪
109 );
110 -- ITEM table
111 CREATE TABLE ITEM (
112 I_ID SERIAL PRIMARY KEY,
113 I_IM_ID INTEGER,
114 I_NAME VARCHAR(24) NOT NULL,
115 I_PRICE NUMERIC(5, 2) NOT NULL,
116 I_DATA VARCHAR(50)
117 );
118

119 - STOCK table
120 CREATE TABLE STOCK (
121 S_I_ID INTEGER,
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122 S_W_ID INTEGER,
123 S_QUANTITY NUMERIC(4),
124 S_DIST_01 CHAR(24),
125 S_DIST_02 CHAR(24),
126 S_DIST_03 CHAR(24),
127 S_DIST_04 CHAR(24),
128 S_DIST_05 CHAR(24),
129 S_DIST_06 CHAR(24),
130 S_DIST_07 CHAR(24),
131 S_DIST_08 CHAR(24),
132 S_DIST_09 CHAR(24),
133 S_DIST_10 CHAR(24),
134 S_YTD NUMERIC(8),
135 S_ORDER_CNT INTEGER,
136 S_REMOTE_CNT INTEGER,
137 S_DATA VARCHAR(50),
138 PRIMARY KEY (S_W_ID, S_I_ID),
139 FOREIGN KEY (S_W_ID) REFERENCES WAREHOUSE(W_ID)
140 FOREIGN KEY (S_I_ID) REFERENCES ITEM(I_ID)
141 );

1.7.4 In the postgres terminal: Load TPC-C in tpcc_db

• Connect t the tpcc_db with tpcc user :
psql -U tpcc -d tpcc_db

1 tpcc_db=> \COPY WAREHOUSE FROM './results/warehouse.csv' DELIMITER
','↪

2 tpcc_db=> \COPY DISTRICT FROM './results/district.csv' DELIMITER ','
3 tpcc_db=> \COPY CUSTOMER FROM './results/customer.csv' DELIMITER ','
4 tpcc_db=> \COPY HISTORY FROM './results/history.csv' DELIMITER ','
5 tpcc_db=> \COPY STOCK FROM './results/stock.csv' DELIMITER ','
6 tpcc_db=> \COPY ORDERS FROM './results/order.csv' DELIMITER ',' CSV

NULL 'null';↪
7 tpcc_db=> \COPY NEW_ORDER FROM './results/new_order.csv' DELIMITER

',' CSV NULL 'null';↪
8 tpcc_db=> \COPY ORDER_LINE FROM './results/order_line.csv' DELIMITER

',' CSV NULL 'null';↪
9 tpcc_db=> \COPY ITEM FROM './results/item.csv' DELIMITER ',' CSV

NULL 'null';↪
10
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1.7.5 Database tables size information after loading csv files

• WAREHOUSE : 250 rows

• DISTRICT : 2050 rows

• CUSTOMER : 6150000 rows

• HISTORY : 6150000 rows

• STOCK : 20500000 rows

• ORDERS : 6150000 rows

• NEW_ORDER : 1845000 rows

• ORDER_LINE : 61502422 rows

• ITEM_LINE : 100000 rows
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“If you don’t find it in the index, look very carefully through the entire
catalogue.”

-Sears, Roebuck, and Co., Consumer’s Guide, 1897

2.1 Introduction
The concept of indexing has long been employed in dictionaries, encyclope-
dias, manuscripts, catalogs, and books. In computing, searching for data in
a file is analogous to looking up information in a dictionary. Typically, this
process requires examining the entire dataset sequentially. However, the use
of an index set eliminates the need for sequential examination of all data.
By employing appropriate indexing techniques, database transactions can
be significantly accelerated, enabling faster data access.

Since the late 1970s, various methods have been developed for indexing
storage structures in relational and hierarchical databases. These include
sequential, sequential indexed, hash-based, binary search trees, and B-trees.
While these techniques provide database designers with a wide range of op-
tions, selecting the most suitable indexing method remains a complex task.
For other database types, such as object-oriented, spatial, and temporal
databases, specialized indexing methods have also been developed. Despite
this diversity, the B-tree index remains the most widely used method in
commercial relational database management systems (DBMSs).

This overview explores indexing techniques utilized in both traditional
database systems and data warehouse environments. Special attention is
given to the primary indexing methods in data warehouses, with a detailed
discussion on Bitmap Join indexes.



2 Indexation

2.2 Indexation techniques

2.2.1 B-tree index

The B-tree index is one of the most widely supported indexing methods in
commercial DBMSs. Structurally, it resembles an inverted tree, with the
lowest level containing actual data values and pointers to the correspond-
ing rows. B-tree indexes maintain a nearly uniform complexity for both
search and update operations, making them particularly suitable for OLTP
environments, where search and update operations occur with similar fre-
quency.

However, this indexing method is less effective in OLAP environments,
which are characterized by a high frequency of search operations and a low
frequency of updates. In a data warehouse context, B-tree indexes are best
applied to unique columns or columns with very high cardinality. For in-
stance, using a B-tree index on a Gender column, which has low cardinality,
offers little benefit for OLAP queries, as it provides minimal reduction in
Input/Output operations.

B-tree indexes can be created on single or multiple columns. Figure ??
illustrates an example of a B-tree index applied to the CATEGORY column
in the PRODUCT table.

 

Figure 2.1: Example of B-Tree index.

2.2.2 Projection index

A projection index created on an attribute AA in a table RR stores all
the values of AA in a sorted sequence, maintaining the same order as they
appear in RR. Figure ?? illustrates a projection index built on the CATE-
GORY column in the PRODUCT table.

In a data warehouse (DW) environment, OLAP queries typically access
a limited set of columns from a relation. By creating a projection index
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on these frequently queried columns, query costs can be significantly re-
duced. For instance, SAP Sybase DBMS supports the creation of projec-
tion indexes, referred to as FastProjection Indexes, which optimize query
performance in such scenarios.

 

 

Projection index 
created on Category 

Book 
Book 

Journal 
Journal 

Encyclopedia 

Products Table 

PID Name Category 
101 JAVA Book 

1O2 C++ Book 
103 VLDB Journal 

104 DOLAP Journal 
106 DATA WAREHOUSE Encyclopedia 

Figure 2.2: Example of projection index.

2.2.3 Hash index

A hash index is generated using a hash function provided by the DBMS,
which maps primary key values to the physical locations of corresponding
records. Figure ?? demonstrates an example of a hash index built on the
PID column in the PRODUCT table.

The primary limitation of a hash index lies in the selection of the hash
function. An improperly chosen hash function can significantly impact
search efficiency, particularly if it produces identical hash values for a large
number of keys, leading to increased collisions and reduced performance.

 

                

 

                      Hash function              storage location 

Products table 

PID Name Category 

101 JAVA Book 
192 C++ Book 

113 VLDB Journal 
104 DOLAP Journal 

154 DW & DM Book 
126 KDD Book 

117 ICDM Journal 

192,126,117 

154 

101,113,104 Modulos 3 PID 

Figure 2.3: Example of hash index.
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2.2.4 Bitmap Index

The Pure Bitmap Index was initially introduced in the Model 204 DBMS.
A bitmap index is constructed using a table of bitmap vectors, where each
bit in the vector represents a distinct value from the indexed column. For
a given record ii in the indexed table, the bit corresponding to the value
vv is set to 1 if the record contains that value. Figure ?? illustrates an
example of a Pure Bitmap Index applied to the CATEGORY column in
the PRODUCT table.

Bitmap indexes offer a simple and efficient way to represent row IDs. They
are particularly advantageous in terms of storage and CPU usage, especially
when the indexed column has a low number of distinct values. By leverag-
ing Boolean operations like OR, AND, and NOT on restriction predicates,
bitmap indexes optimize complex query performance. In data warehouse
environments, bitmap indexes are most effective for non-unique columns,
while B-tree indexes are more suitable for high-cardinality columns, such
as Name or PhoneNumber.

When answering a query with a bitmap index, the relevant bitmap vec-
tors are first loaded into memory, and Boolean operations are then per-
formed on them. However, the primary limitation of bitmap indexes is their
performance on high-cardinality columns. These columns require more stor-
age space and result in longer query processing times. Many DBMSs, includ-
ing Oracle, Sybase, Informix, and Red Brick, support the implementation
of bitmap indexes.

 

Products Table 

PID Name Category 

101 JAVA Book 

1O2 C++ Book 

103 VLDB Journal 

104 J. Supercomp Journal 

106 DATA WAREHOUSE Encyclopedia 

Bitmap index created on Category 

Book Journal Encyclopedia 

1 0 0 

1 0 0 

0 1 0 

0 1 0 

0 0 1 

Figure 2.4: Example of bitmap index.

2.2.5 Join index

In a data warehouse (DW) environment, join operations are often compu-
tationally expensive. To address this, Valduriez introduced the Join Index,
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which significantly enhances the processing speed of OLAP queries (see Fig.
??). The Join Index works by precomputing join operations in advance, re-
ducing the overhead during query execution.

When executing a query using the Join Index, the DBMS typically follows
these steps:

1. Read the Join Index 𝐽 𝐼
2. Perform 𝑅 × 𝐽 𝐼 .
3. Internally sort the join index 𝐽 𝐼𝑘 on s

4. Perform 𝑆 × 𝐽 𝐼 .

 

  

 

 

 

 

  

Customers table 

RIDC CID Name Genre Ville 

1 223 Lyazid M Setif 
2 152 Ahmet M Michigan 

3 063 Abdel M Setif 
4 051 Moncef M Michigan 
5 121 Maria F Alger 

Products table 

RIDp PID Name Category 
1 101 JAVA Book 

2 1O2 C++ Book 
3 103 VLDB Journal 
4 104 DOLAP Journal 

Join index 

RIDA RIDp RIDC 

1 1 1 

2 1 2 
3 1 4 
4 3 1 

Actvars table 

RIDA AID CID PID Cost 
1 1 223 101 1000 

2 2 223 102 123 
3 3 223 104 1233 
4 4 063 101 2334 

Figure 2.5: Example of join index.

The size of the Join Index depends on the selectivity factor of the join
operation. A lower selectivity factor (close to 0) results in a smaller Join
Index, while a higher selectivity factor (close to 1, which implies the join
approaches a Cartesian product) leads to a larger Join Index.

2.2.6 Star join index

The Join Index is beneficial in OLTP environments for efficiently joining
two relations. In data warehouse environments, where OLAP queries often
involve multiple joins between dimension tables and a fact table (at least
one join), Redbrick et al. Stohr00multi-dimensionaldatabase proposed an
adaptation of the Join Index for star schema designs, known as the Star
Join Index (SJI).
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The SJI facilitates joining all dimension tables with the fact table, creat-
ing a Complete SJI. While a Complete SJI is advantageous for supporting
all queries, it comes with significant drawbacks, including a large storage
footprint and high maintenance costs. Additionally, the SJI is not suitable
for other data warehouse designs, such as the Snowflake schema.

2.2.7 Bitmap join index

O’Neil introduced the Bitmap Join Index (BJI) by combining the concepts
of the Join Index (JI) and the Bitmap Index (BI), providing a powerful tool
for optimizing OLAP query performance. The BJI precomputes join oper-
ations between two or more tables, significantly enhancing query efficiency.

The BJI can be constructed using one or multiple attributes. For each
value of an attribute, the BJI stores the row IDs of the corresponding rows
in one or more related tables. In data warehouse environments, the join
condition for a BJI is typically an equi-inner join between the primary
key of dimension tables and the foreign key in the fact table. Figure ??

1 CREATE BITMAP INDEX cust_sales_bji
2 ON sales(customers.city)
3 FROM sales, customers
4 WHERE sales.cid = customers.cid;

Figure 2.6: Statement used to build BJI

illustrates a Bitmap Join Index (BJI) created on the CITY attribute in the
CUSTOMER table and its association with the SALES table. Additionally,
Figure ?? shows an example of an ORACLE statement used to define a
BJI on the CITY attribute. Since the CUSTOMERS.CITY attribute is
specified in the ON clause of the index, queries involving a join between
the SALES table and the CUSTOMERS table using the CITY attribute
can directly utilize the BJI, eliminating the need for performing the join
operation at runtime.
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Customers Table 

CID Name Gender City 
223 Lyazid M Setif 
152 Ahmet M Michigan 

063 Moncef M Michigan 

051 Abel M Setif 

121 Maria F Alger 

Actvars Table 

AID CID TID PID Cost 
1 223 106 101 1000 

2 223 103 102 123 
3 223 102 104 1233 
4 063 106 101 2334 

5 051 102 102 3433 

6 152 102 101 4454 
7 152 103 103 533 

8 152 106 101 2332 
9 121 106 101 332 

10 121 103 102 2232 

Bitmap join index created on 
City 

RID Setif Michigan Alger 
1 1 0 0 

2 1 0 0 
3 1 0 0 

4 0 1 0 

5 1 0 0 
6 1 0 0 

7 1 0 0 
8 1 0 0 
9 0 0 1 

10 0 0 1 

Figure 2.7: Example of bitmap join index.

1 SELECT SUM(dollarAmount)
2 FROM sales, customer
3 WHERE sales.cid = customer.cid
4 AND customer.city = 'Setif';

Figure 2.8: Example of OLAP query

2.3 Lab

2.3.1 Objective

The objective of this lab is to explore all indexing techniques available in
PostgreSQL, such as B-tree, Hash and GIN, and evaluate their performance
and suitability for the TPC-C benchmark.

2.3.2 Prerequisites

• PostgreSQL installed on your system.

• TPC-C schema and data loaded into PostgreSQL.

• Basic understanding of PostgreSQL indexing mechanisms (Assistance
in the courses).

2.3.3 Explore Existing Indexes

List all existing indexes using the following query:
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1 SELECT tablename, indexname, indexdef
2 FROM pg_indexes
3 WHERE schemaname = 'public';

2.3.4 Create Category Indexes

Create various types of indexes on a sample table (e.g., customer):

• B-tree Index (default):

1 CREATE INDEX index_btree_customer_c_id ON customer USING btree
(c_id);↪

• Hash Index:

1 CREATE INDEX hash_customer_id ON customer USING HASH (c_id);

• GIN Index (for full-text or JSON):

1 CREATE INDEX gin_customer_name ON customer USING
2 GIN (to_tsvector('english', c_last));

2.3.5 Drop and Recreate Indexes

Drop and recreate indexes to analyze their impact:

1 DROP INDEX btree_customer_id;
2

3 CREATE INDEX hash_customer_id ON customer USING HASH (c_id);

2.3.6 Benchmark Query Performance

Run typical TPC-C queries and measure performance using EXPLAIN ANA-
LYZE:

• Without indexes (Drop all index, that you have created previously ):
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1 EXPLAIN ANALYZE SELECT * FROM customer WHERE c_id = 12345;

• With indexes:

1 EXPLAIN ANALYZE SELECT * FROM customer WHERE c_id = 12345;

Compare execution times, costs, and row retrieval efficiency.

2.3.7 Monitor Index Usage

Use the pg_stat_user_indexes view to monitor index usage:

1 SELECT relname AS table_name,
2 indexrelname AS index_name,
3 idx_scan AS index_scans,
4 idx_tup_read AS tuples_read,
5 idx_tup_fetch AS tuples_fetched
6 FROM pg_stat_user_indexes;

2.3.8 Evaluate Disk Usage

Check the size of different indexes:

1 SELECT relname AS index_name,
2 pg_size_pretty(pg_relation_size(indexrelid)) AS size
3 FROM pg_stat_user_indexes
4 WHERE schemaname = 'public';

2.3.9 Analyze Results

• Compare execution times for each index type.

• Evaluate disk space usage.

• Discuss trade-offs for each type of index based on the query patterns.
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“Nothing is particularly hard if you divide it into small jobs.”
-Henry Ford (1863-1947)

3.1 Introduction
Horizontal partitioning (HP) is a crucial optimization technique in the phys-
ical design of databases, significantly influencing DBMS performance. It
enables the division of tables, views, and indexes into smaller, manageable
partitions. This chapter provides a comprehensive review of the partition-
ing methods employed in commercial DBMS. Additionally, it introduces a
proposed approach for selecting the optimal partitioning schema, applicable
to both database and data warehouse environments.

3.2 Horizontal partitioning
Horizontal partitioning of a relation 𝑅 is performed based on the domains
of its attributes, with each partition comprising a subset of 𝑅 that shares
a specific property. This approach provides database administrators and
designers with greater flexibility to manage smaller, more manageable data
units Inmon. Horizontal partitioning is generally classified into two main
types: primary horizontal partitioning and referential horizontal partition-
ing.

• Primary Horizontal Partitioning (PHP): This type of horizontal par-
titioning is applied to a relation 𝑅 using a set of restriction predi-
cates defined on 𝑅. PHP minimizes query costs on 𝑅 by reducing ac-
cess to irrelevant data and supports parallel query execution, thereby
achieving a high degree of parallelism. For instance, when a query
𝑄 contains a restriction predicate in its WHERE clause, the DBMS
optimizer eliminates unnecessary partitions and loads only the rele-
vant ones to process 𝑄. Formally, given a database 𝐷 with a set of
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relations 𝑅 = {𝑅1, … , 𝑅𝑛}, each relation 𝑅𝑖(𝐴1, … , 𝐴𝑚) has a set of at-
tributes 𝐴. Each attribute 𝐴𝑗 , 1 ≤ 𝑗 ≤ 𝑀 , is associated with a domain
𝐷𝑜𝑚(𝐴𝑗) = {𝑑𝑗1, … , 𝑑𝑗𝑁𝑗 }. The partitions {𝑅𝑖1, … , 𝑅𝑖𝑘} are the horizontal
partitions of 𝑅𝑖, generated by the PHP process using a set of restric-
tion predicates. To reconstruct the original relation, a union operation
is performed: 𝑅 = ⋃𝑛

𝑖=1 𝑅𝑖.
• Referential Horizontal Partitioning (RHP): This form of partitioning

is based on restriction predicates defined on another relation. RHP is
generally more complex than PHP. Formally, consider two relations
𝑅 and 𝑆, where 𝑅 has a foreign key referencing 𝑆. First, 𝑅 is parti-
tioned horizontally into a set of partitions {𝑅1, … , 𝑅𝑘}, (1 ≤ 𝑘 ≤ 𝑀),
using a set of restriction predicates. The relation 𝑆 is then parti-
tioned using referential horizontal partitioning, resulting in a set of
partitions {𝑆1, … , 𝑆𝑘}, (1 ≤ 𝑘 ≤ 𝑀). Each partition 𝑆𝑘 is constructed as
𝑆𝑘 = 𝑆 ⋉ 𝑅𝑘 , (1 ≤ 𝑘 ≤ 𝑀). The primary goal of RHP is to reduce the
cost of join operations.

3.3 Horizontal partitioning example
Consider two relations, Customer and Sale, connected by the attribute
Custlevel. The tuples of these relations are illustrated in Fig. ??. Initially,
the Customer relation is divided into three horizontal partitions using Pri-
mary Horizontal Partitioning (PHP). These partitions are created based on
the following restriction predicates:

• Customer𝑠1 = 𝜎𝐶𝑖𝑡𝑦=′𝑆𝑒𝑡𝑖𝑓 ′(Customer)

• Customer𝑠2 = 𝜎𝐶𝑖𝑡𝑦=′𝐵𝑒𝑗𝑎𝑖𝑎′(Customer)

• Customer𝑠3 = 𝜎𝐶𝑖𝑡𝑦=′𝐴𝑙𝑔𝑖𝑒𝑟𝑠′(Customer)
Fig. ??.c illustrates the referential horizontal partitioning of the SALE rela-
tion, which is derived from the partitions created during the PHP process
on the Customer relation. Each Sale partition is generated through a semi-
join operation between the SALE relation and the corresponding Customer
partition, as described below:

• Sale1= Sales ⋉ Customer1
• Sale2 = Sales ⋉ Customer2
• Sale3= Sales ⋉ Customer3
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(a) Relations: Customer and Sale before partitioning  

 

 

  

 

 

 

 

 

  

 

 

Customer 

CID Name Gender City 

223 Guessoum M Sétif 

152 Semchedine M Sétif 

063 Imlouli M Bejaia 

051 Zebar M Sétif 

121 Maîza F Algiers 

Sale 

AID CID TID PID Amount 

1 223 106 101 1000 

2 223 103 102 123 

3 223 102 104 1233 

4 063 106 101 2334 

5 051 102 102 3433 

6 152 102 101 4454 

7 152 103 103 533 

8 152 106 101 2332 

9 121 106 101 332 

10 121 103 102 2232 

Customer1 = σ(Ville=’Sétif’) (Customer) 

CID Nom Gender City 

223 Guessoum M Sétif 

152 Semchedine M Sétif 

051 Zebar M Sétif 

Sale1=Sale ⋉ Customer1 

AID CID TID PID Amount 

1 223 106 101 1000 

2 223 103 102 123 

3 223 102 104 1233 

5 051 102 102 3433 

6 152 102 101 4454 

7 152 103 103 533 

8 152 106 101 2332 

Sale2=Sale ⋉ Customer2 

AID CID TID PID Amount 

4 063 106 101 2334 

Customer2 = σ(Ville=’Béjaia’) (Customer) 

CID Name Gender City 

063 Imlouli M Bejaia 

Customer3 = σ(Ville=’Alger’) (Customer) 

CID Name Gender City 

121 Maîza F Alger 

Sale3=Sale ⋉ Customer3 

AID CID TID PID Amount 

9 121 106 101 332 

10 121 103 102 2232 

(b) Horizontal partitioning of Customer (c) Referential partitioning of Sale 

Figure 3.1: Horizontal partitioning example.

3.4 Complexity
Bellatreche et al. investigated the complexity of the Horizontal Partitioning
Problem in Data Warehouses (HPPDW) and demonstrated that it is NP-
complete. Their approach involved reducing the HPPDW to the 3-Partition
problem, which determines whether a multiset of integers can be divided
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into triples, each with the same sum. The 3-Partition problem is proven to
be strongly NP-complete.

3.5 Horizontal partitioning advantages
Horizontal partitioning is a fundamental feature in database applications,
designed to enhance administrative efficiency, system performance, and
data availability.

3.5.1 Horizontal Partitioning for databases administration

Horizontal partitioning enables the division of a relation into smaller, more
manageable units, simplifying data manipulation. This approach allows
database administrators to adopt a "divide and rule" strategy for efficient
data management. With horizontal partitioning, certain partitions can re-
main offline while others stay online. For instance, when a DBA is loading
daily sales data, they can apply horizontal partitioning to the Sales table,
ensuring that each partition corresponds to a single day’s sales.

3.5.2 Partitioning for performance optimization

A significant challenge in managing very large databases is the growing
volume of data, which negatively impacts DBMS performance due to the
increasing amount of data processed during each new upload. Horizontal
partitioning addresses this issue by reducing the volume of data examined.

This technique offers several advantages for optimizing DBMS perfor-
mance. One key benefit is partition pruning, which allows the system to
access only the relevant partition(s) required to answer a query. For exam-
ple, if the Sales relation is divided into 48 partitions, each corresponding
to sales data for a specific department (Wilaya), a query related to sales
involving citizens of Setif would only require access to the partition con-
taining data for Setif. The DBMS can thus ignore irrelevant partitions and
focus solely on the pertinent ones, improving query efficiency.

Additionally, horizontal partitioning enhances the performance of join op-
erations by enabling the pre-calculation of joins and breaking down large
joins into smaller, more manageable operations. This reduces the computa-
tional complexity and improves overall system performance.
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3.5.3 Partitioning for the availability

Partitioned relations ensure independence among partitions, particularly
when each partition is stored in a separate Tablespace. If a Tablespace fails,
only the partitions stored within that Tablespace are affected, while the
remaining partitions continue to operate and remain accessible online.

3.6 Horizontal partitioning modes

3.6.1 Range partitioning mode

The range mode is the first partitioning mode integrated in ORACLE 8.
This mode uses the domain 𝐷𝑘 of the attribute 𝐴𝑘 used as partitioning key
of 𝑅. Each range has lower and upper bounds (see the example in Fig. 4.2
below)
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Example The Fig. 3.2 illustrates a range partitioning of the Customers

 

 

 

 

         

  Customer 

     

     

     

       

     

     

     

Customer 1 

     

     

Customer 2 

     

     0         18 19     45 46    100 

Customer 3 

     

     

Attribut F 

Attribut F 

Customer  3 

 Age <18  

Age 

  Age ≥45 

18≤ Age <45 

Figure 3.2: Range Mode.

on Age as partitioning key. The following ORACLE statement allows rang
partitioning of Customers:

1 CREATE TABLE Customers
2 (CID number(9), Name varchar(25), City varchar(25),
3 Gender char(1), Age number(3)
4 PARTITION BY RANGE(Gender)
5 (PARTITION C-Childs VALUES LESS THAN (18) TABLESPACE TBS-Childs,
6 PARTITION C-Adults VALUES LESS THAN (45) TABLESPACE TBS-Adults,
7 PARTITION C-Olds VALUES LESS THAN (MAXVALUE) TABLESPACE TBS-Olds) ;

• The PARTITION BY RANGE clause specifies that range-based par-
titioning is being used. Each partition is assigned a name, such as
𝐶_𝐼 𝑛𝑓 𝑎𝑛𝑡𝑠, which represents the partition containing tuples where
𝐴𝑔𝑒 < 18.

• The TABLESPACE clause allows each partition to be stored in a
predefined physical space.

When a tuple is inserted into the relation 𝑅, it is automatically placed
into the appropriate partition based on the value of the ‘Age‘ column. For
instance, if a tuple with 𝐴𝑔𝑒 = 40 is inserted, the DBMS first compares the
‘Age‘ value with the upper bound of the smallest partition. Finding that
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40 > 18, the system proceeds to the next partition. It then checks 40 < 45
and inserts the tuple into the corresponding partition.

This partitioning mode is particularly effective for queries with range-
based restriction predicates. For example:

1 SELECT Name FROM Customers
2 WHERE Age > 45;

In this case, the DBMS only loads the partition stored in the 𝑇𝐵𝑆_𝑂𝑙𝑑𝑠
Tablespace to answer the query, optimizing performance.

3.6.2 Hash partitioning mode

This mode utilizes a hashing algorithm provided by the DBMS. The user is
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Figure 3.3: Hach Mode.

required to specify the partitioning key and the desired number of partitions.
The hashing algorithm ensures an even distribution of tuples across the
partitions, resulting in partitions of approximately equal size (see Fig. 3.4).

• Example: The following statement demonstrates the partitioning of
the ‘Customers‘ table into four partitions using the ‘CID‘ attribute
as the partitioning key. Each partition is stored in a separate TA-
BLESPACE (TBS1, TBS2, TBS3, and TBS4).
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1 CREATE TABLE CUSTOMER (CID number(9), Name varchar(25),
2 City varchar(25),Gender char(1), Age number(3))
3 PARTITION BY HASH (CID)
4 PARTITION 4 STORE IN (TBS1, TBS2, TBS4, TBS4) ;

The partitions names are automatically assigned by DBMS during
the partitioning process.

3.6.3 List partitioning mode
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List partitioning allows partitions to be defined based on a list of discrete
values for the partitioning key. This method enables the grouping and orga-
nization of unordered and unrelated sets of data in an intuitive and logical
manner.

• Example The following statement demonstrates the partitioning of
the ‘Customer‘ relation into four partitions using the list mode, with
the ‘City‘ attribute as the partitioning key. The four partitions contain
customers from Setif, Bejaia, Algiers, and other cities, respectively
(see Fig. 3.4).

1 CREATE TABLE CUSTOMER (CID number(9), Name varchar(25), City
varchar(25),↪

2 Gender char(1), Age number(3))
3 PARTITION BY LIST (City)
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4 (PARTITION C-Setif VALUES ('Setif'),
5 PARTITION C-Bejaia VALUES ('Bejaia'),
6 PARTITION C-Algiers VALUES ('Algiers'),
7 PARTITION C-Otherwise VALUES (DEFAULT)) ;

3.6.4 Composite partitioning mode
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Composite partitioning mode (CPO) combines two single partitioning
modes, SPM1 and SPM2 (see Fig. ??). In this approach, the relation is first
partitioned using SPM1, and then each resulting partition is further sub-
divided into sub-partitions using SPM2 whiteoracle. Several composite
partitioning modes are obtained by combining single partitioning modes.

The ‘Customer‘ relation is first partitioned using ‘Gender‘ as the par-
titioning key. Each resulting partition is then further subdivided into sub-
partitions using ‘Age‘ as the partitioning key (see Fig. 3.6). This is achieved
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using the following statement:

1 CREATE TABLE CUSTOMER
2 (CID number(9), Name varchar(25), City varchar(25),
3 Gender char(1), Age number(3)
4 PARTITION BY LIST (Gender)
5 SUBPARTITION BY RANGE (Age)
6 SUBPARTITION TEMPLATE
7 (SUBPARTITION C-Childs VALUES LESS THAN (16) TABLESPACE TBS-Childs,
8 SUBPARTITION C-Adults VALUES LESS THAN (MAXVALUE) TABLESPACE

TBS-Adults))↪
9 (PARTITION C-Setif VALUES ('Setif'),
10 PARTITION C-Bejaia VALUES ('Bejaia'),
11 PARTITION C-Algiers VALUES ('Algiers')
12 PARTITION C-Otherwise VALUES (DEFAULT));
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3.6.5 Multicolumn partitioning mode

The multicolumn partitioning mode combines range and hash partitioning
methods, allowing up to 16 partitioning key columns. In this mode, the par-
titioning key, composed of multiple columns, provides finer granularity com-
pared to single-column partitioning. A common example is a decomposed
‘DATE‘ column, split into separate ‘year‘, ‘month‘, and ‘day‘ columns. In
DBMS, the 𝑛𝑡ℎ partitioning key is evaluated only when the values of the
preceding 𝑛 − 1 keys exactly match the bounds of the corresponding 𝑛 − 1
partitions.

The following example illustrates the range partitioning of the relation
Sales using two key partitioning Year and Month:

1 CREATE TABLE sales (
2 Year NUMBER,
3 Month NUMBER,
4 Day NUMBER,
5 Amount NUMBER)
6 PARTITION BY RANGE (Year,Month)
7 (PARTITION before2014 VALUES LESS THAN (2014,1),
8 PARTITION q1_2014 VALUES LESS THAN (2014,4),
9 PARTITION q2_2014 VALUES LESS THAN (2014,7),
10 PARTITION q3_2014 VALUES LESS THAN (2014,10),
11 PARTITION q4_2014 VALUES LESS THAN (2014,1),
12 PARTITION future VALUES LESS THAN (MAXVALUE,0));

3.6.6 Reference partitioning mode

Previously, we discussed single and composite partitioning methods used for
partitioning individual relations. In this section, we introduce the reference
partitioning mode, as implemented in the Oracle 11g environment. Refer-
ence partitioning enables the partitioning of two related relations, 𝑅 and 𝑆,
which are connected through referential constraints. The partitioning key
is determined based on the existing parent-child relationship, enforced by
active and enabled primary key and foreign key constraints whiteoracle.

First, the relation 𝑅 is partitioned using either a single or composite
partitioning mode. If a single partitioning mode is applied to 𝑅, the number
of partitions in 𝑅 will be the same as the number of partitions in 𝑆. In
contrast, if a composite partitioning mode is used for 𝑅, the number of
partitions in 𝑅 will correspond to the number of sub-partitions in 𝑆.
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Figure 3.7: Example of reference partitioning mode.

• Example
The ‘Customer‘ relation is divided into three partitions: Customer1,
Customer2, and Customer3 (see Fig. 3.7) using the List partitioning
mode. Subsequently, three ‘Sales‘ partitions are created, with each
partition corresponding to a specific ‘Customer‘ partition. The fol-
lowing statement demonstrates the partitioning of the ‘Sales‘ relation
into three partitions using the reference partitioning mode:
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1 CREATE TABLE SALES
2 (CID number(9), Date DATE , Amount Number(10,2)
3 CONSTRAINT Customer_Cs FOREIGN KEY (CID) REFERENCES Customer(CID))
4 PARTITION BY REFERENCE(Customer_Cs);

3.6.7 Virtual column partitioning

This partitioning mode utilizes a virtual column in the same way as a reg-
ular column. All partitioning modes are supported with virtual columns,
including range partitioning and various combinations of composite parti-
tioning modes.
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1 CREATE TABLE sales(
2 Pid NUMBER(6) NOT NULL
3 , Cid NUMBER NOT NULL
4 , Tid DATE NOT NULL
5 , CHid CHAR(1) NOT NULL
6 , PROMOid NUMBER(6) NOT NULL
7 , quantitySold NUMBER(3) NOT NULL
8 , amountSold NUMBER(10,2) NOT NULL
9 , totalAmount AS (quantitySold * amountSold)
10 )
11 PARTITION BY RANGE (Tid) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
12 SUBPARTITION BY RANGE(totalAmount)
13 SUBPARTITION TEMPLATE
14 ( SUBPARTITION Psmall VALUES LESS THAN (1000)
15 , SUBPARTITION Pmedium VALUES LESS THAN (5000)
16 , SUBPARTITION Plarge VALUES LESS THAN (10000)
17 , SUBPARTITION Pextreme VALUES LESS THAN (MAXVALUE)
18 )
19 (PARTITION sales_before_2007 VALUES LESS THAN
20 (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
21 )

3.7 Lab

3.7.1 Objective

This lab will guide you through:
• Managing and updating DATE columns.

• Implementing all PostgreSQL partitioning modes:
– Range Partitioning
– List Partitioning
– Hash Partitioning

• Migrating data to a new partitioned schema.

3.7.2 Managing DATE Columns

3.7.2.1 Create New Columns with DATE Data Type

Add DATE columns to existing tables:
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1 ALTER TABLE CUSTOMER ADD COLUMN C_SINCE DATE;
2 ALTER TABLE HISTORY ADD COLUMN H_DATE DATE;
3 ALTER TABLE ORDERS ADD COLUMN O_ENTRY_D DATE;
4 ALTER TABLE ORDER_LINE ADD COLUMN OL_DELIVERY_D DATE;

3.7.2.2 Convert Unix Timestamps to DATE

Update the DATE columns using to_timestamp:

1 UPDATE CUSTOMER SET C_SINCE = to_timestamp(C_SINCE_2)::DATE;
2 UPDATE HISTORY SET H_DATE = to_timestamp(H_DATE_2)::DATE;
3 UPDATE ORDERS SET O_ENTRY_D = to_timestamp(O_ENTRY_D_2)::DATE;
4 UPDATE ORDER_LINE SET OL_DELIVERY_D =

to_timestamp(OL_DELIVERY_D_2)::DATE;↪

3.7.2.3 Remove Temporary Columns

Delete the old columns after verification:

1 ALTER TABLE CUSTOMER DROP COLUMN C_SINCE_2;
2 ALTER TABLE HISTORY DROP COLUMN H_DATE_2;
3 ALTER TABLE ORDERS DROP COLUMN O_ENTRY_D_2;
4 ALTER TABLE ORDER_LINE DROP COLUMN OL_DELIVERY_D_2;

3.7.3 Backup and Save Existing TPC-C Tables

To facilitate migration, save data from the existing TPC-C tables to CSV
files.

3.7.3.1 1. Export TPC-C Tables to CSV

Run the following commands:

1 \COPY CUSTOMER TO './backup/customer.csv' DELIMITER ',' CSV HEADER;
2 \COPY ORDERS TO './backup/orders.csv' DELIMITER ',' CSV HEADER;
3 \COPY ORDER_LINE TO './backup/order_line.csv' DELIMITER ',' CSV

HEADER;↪
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3.7.3.2 Verify Backup Files

Confirm the data using the head command or an equivalent file viewer.

1 !head ./backup/customer.csv
2 !head ./backup/orders.csv
3 !head ./backup/order_line.csv
4

3.7.4 PostgreSQL Partitioning Modes

3.7.4.1 Range Partitioning

Partition rows based on a range of values:

1 CREATE TABLE ORDER_LINE_2 (
2 OL_O_ID INTEGER,
3 OL_D_ID INTEGER,
4 OL_W_ID INTEGER,
5 OL_NUMBER INTEGER,
6 OL_I_ID INTEGER,
7 OL_SUPPLY_W_ID INTEGER,
8 OL_QUANTITY NUMERIC(2),
9 OL_AMOUNT NUMERIC(6, 2),
10 OL_DIST_INFO CHAR(24),
11 OL_DELIVERY_D DATE,
12 PRIMARY KEY (OL_W_ID, OL_D_ID, OL_O_ID, OL_NUMBER,

OL_DELIVERY_D),↪
13 FOREIGN KEY (OL_W_ID, OL_D_ID, OL_O_ID) REFERENCES ORDERS(O_W_ID,

O_D_ID, O_ID),↪
14 FOREIGN KEY (OL_SUPPLY_W_ID, OL_I_ID) REFERENCES STOCK(S_W_ID,

S_I_ID)↪
15 )PARTITION BY RANGE (OL_DELIVERY_D);
16

17 CREATE TABLE orders_2_1 PARTITION OF ORDER_LINE_2
18 FOR VALUES FROM ('1973-01-28') TO ('1973-01-29');
19

20 CREATE TABLE orders_2_2 PARTITION OF ORDER_LINE_2
21 FOR VALUES FROM ('1973-01-30') TO ('1973-01-31');
22

23 CREATE TABLE orders_2_others PARTITION OF ORDER_LINE_2 DEFAULT;
24
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3.7.4.2 List Partitioning

Partition rows based on discrete values:

1 CREATE TABLE CUSTOMER_2 (
2 C_ID INTEGER,
3 C_D_ID INTEGER,
4 C_W_ID INTEGER,
5 C_FIRST VARCHAR(16),
6 C_MIDDLE CHAR(2),
7 C_LAST VARCHAR(16),
8 C_STREET_1 VARCHAR(20),
9 C_STREET_2 VARCHAR(20),
10 C_CITY VARCHAR(20),
11 C_STATE CHAR(2),
12 C_ZIP CHAR(9),
13 C_PHONE CHAR(16),
14 C_CREDIT CHAR(2),
15 C_CREDIT_LIM NUMERIC(12, 2),
16 C_DISCOUNT NUMERIC(4, 4),
17 C_BALANCE NUMERIC(12, 2),
18 C_YTD_PAYMENT NUMERIC(12, 2),
19 C_PAYMENT_CNT INTEGER,
20 C_DELIVERY_CNT INTEGER,
21 C_DATA VARCHAR(500),
22 C_SINCE DATE,
23 PRIMARY KEY (C_W_ID, C_D_ID, C_ID,C_STATE),
24 FOREIGN KEY (C_D_ID, C_W_ID) REFERENCES DISTRICT(D_ID, D_W_ID)
25 ) PARTITION BY LIST (C_STATE);
26

27 CREATE TABLE CUSTOMER_2_1 PARTITION OF CUSTOMER_2 FOR VALUES IN
('bD','UE');↪

28 CREATE TABLE CUSTOMER_2_2 PARTITION OF CUSTOMER_2 FOR VALUES IN
('kJ','W0');↪

29 CREATE TABLE CUSTOMER_2_3 PARTITION OF CUSTOMER_2 FOR VALUES IN
('pd','W3');↪

30 CREATE TABLE CUSTOMER_2_others PARTITION OF CUSTOMER_2 DEFAULT;
31
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3.7.4.3 Hash Partitioning

Partition rows using a hash function:

1 CREATE TABLE ORDERS_2 (
2 O_ID INTEGER,
3 O_D_ID INTEGER,
4 O_W_ID INTEGER,
5 O_C_ID INTEGER,
6 O_CARRIER_ID INTEGER,
7 O_OL_CNT INTEGER,
8 O_ALL_LOCAL INTEGER,
9 O_ENTRY_D DATE,
10 PRIMARY KEY (O_W_ID, O_D_ID, O_ID),
11 FOREIGN KEY (O_W_ID, O_D_ID, O_C_ID) REFERENCES CUSTOMER(C_W_ID,

C_D_ID, C_ID)↪
12 ) PARTITION BY HASH (O_ID);
13

14 CREATE TABLE ORDERS_2_1 PARTITION OF ORDERS_2 FOR VALUES WITH
(MODULUS 4, REMAINDER 0);↪

15 CREATE TABLE ORDERS_2_2 PARTITION OF ORDERS_2 FOR VALUES WITH
(MODULUS 4, REMAINDER 1);↪

16 CREATE TABLE ORDERS_2_3 PARTITION OF ORDERS_2 FOR VALUES WITH
(MODULUS 4, REMAINDER 2);↪

17 CREATE TABLE ORDERS_2_4 PARTITION OF ORDERS_2 FOR VALUES WITH
(MODULUS 4, REMAINDER 3);↪

18
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4 Materialized Views and the Selection
Problem

“The more you know, the less you need to show.”
- Australian Aboriginal Proverb

4.1 Introduction
In the relentless pursuit of performance within database management sys-
tems (DBMS) and data warehouses, the reduction of data access time
stands as a paramount objective. While horizontal partitioning, as discussed
in the previous chapter, addresses this by segmenting data into manageable
physical units, another powerful technique exists at a higher level of abstrac-
tion: materialized views. A materialized view is a pre-computed result set
stored as a physical table, based on a query against one or more base rela-
tions. This chapter provides a comprehensive examination of materialized
views, their lifecycle, and the critical challenge of their selection. It delves
into the formal problem of choosing an optimal set of views to materialize
under resource constraints, a problem known to be NP-hard, and surveys
the landscape of automated selection strategies that have emerged to tackle
this complexity.

4.2 Materialized Views
A materialized view (MV), unlike a standard virtual view which is merely
a saved query definition, physically stores the result of its defining query
at the time of its creation or refresh. Formally, given a set of base relations
𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛} and a query 𝑄 defined over 𝑅, a materialized view 𝑉 is a
relation such that 𝑉 = 𝑄(𝑅), and the contents of 𝑉 are persisted in storage.

The primary purpose of materialized views is to trade off storage space
and maintenance overhead for potentially significant gains in query perfor-
mance. When a user query can be answered entirely or partially from a
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materialized view, the system can avoid the expensive operations of read-
ing large volumes of base data, performing complex joins, and calculating
aggregates on-the-fly.

Materialized views are broadly classified based on their completeness and
the complexity of their defining query.

• Complete vs. Partial Materialization: In a complete materialization
strategy, the entire result set of the defining query is stored. This
is the most common approach. In contrast, a partial materialization
strategy stores only a subset of the result, for instance, only the most
frequently accessed rows or those meeting certain conditions.

• SPJ vs. Aggregation Views: The defining query of a materialized view
often falls into one of two categories:

– SPJ (Select-Project-Join) Views: These views involve selections
(), projections (), and joins () but do not include aggregation.
They are typically used to pre-compute common joins and fil-
ter conditions. Formally, an SPJ view 𝑉𝑆𝑃𝐽 on base relations
𝑅1, … , 𝑅𝑛 is defined as 𝑉𝑆𝑃𝐽 = 𝜋𝐴(𝜎𝑃 (𝑅1 ⋈ 𝑅2 ⋈ ⋯ ⋈ 𝑅𝑛)), where 𝐴
is a set of attributes and 𝑃 is a predicate.

– Aggregation Views: These views include group-by and aggregate
functions (e.g., SUM, COUNT, AVG). They are indispensable
in data warehousing for pre-computing summaries. Formally, an
aggregation view 𝑉𝐴𝐺𝐺 is defined as 𝑉𝐴𝐺𝐺 = 𝛾𝐺,𝐴𝐹 (𝑅′), where 𝛾 is
the aggregation operator, 𝐺 is a set of grouping attributes, 𝐴𝐹
is a set of aggregate functions, and 𝑅′ is a relation (which could
itself be the result of an SPJ query).

4.3 The Lifecycle of a Materialized View
The utility of a materialized view is governed by its lifecycle, which consists
of three key phases: creation, maintenance, and exploitation.

4.3.1 Creation

The initial creation of a materialized view involves the execution of its defin-
ing query and the storage of the result. This can be a resource-intensive
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operation, especially for views defined over large fact tables in a data ware-
house. The SQL syntax for creating a materialized view, as seen in systems
like Oracle, is an extension of the ‘CREATE VIEW‘ statement.

1 CREATE MATERIALIZED VIEW mv_sales_summary
2 BUILD IMMEDIATE
3 REFRESH COMPLETE ON DEMAND
4 ENABLE QUERY REWRITE
5 AS
6 SELECT s.cust_id,
7 c.cust_name,
8 t.fiscal_quarter,
9 p.prod_category,
10 SUM(s.amount_sold) AS total_sales,
11 COUNT(*) AS num_transactions
12 FROM sales s, customers c, times t, products p
13 WHERE s.cust_id = c.cust_id
14 AND s.time_id = t.time_id
15 AND s.prod_id = p.prod_id
16 GROUP BY s.cust_id, c.cust_name, t.fiscal_quarter, p.prod_category;

The ‘BUILD IMMEDIATE‘ clause instructs the system to populate the
view immediately. The ‘REFRESH‘ clause defines the maintenance strategy,
and ‘ENABLE QUERY REWRITE‘ is crucial, as it allows the optimizer
to transparently use the materialized view to answer queries that do not
directly reference it.

4.3.2 Maintenance

A materialized view becomes stale when modifications (INSERT, UPDATE,
DELETE) are applied to its underlying base relations. The process of up-
dating the materialized view to reflect these changes is known as view main-
tenance. The choice of maintenance strategy is a critical trade-off between
the currency of the data and the performance overhead.
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• Refresh Modes:
– On Commit: The view is updated automatically as part of the

transaction that modifies the base data. This ensures strong con-
sistency but can severely impact transaction throughput.

– On Demand (Scheduled): The view is refreshed periodically (e.g.,
nightly, weekly). This is common in data warehousing where data
is loaded in batches. It decouples maintenance from transaction
processing but means the view data is temporarily stale.

• Refresh Methods:
– Complete Refresh: The defining query is re-executed from scratch.

This is simple but can be very expensive for large views.
– Incremental (Fast) Refresh: Only the changes (deltas) since the

last refresh are applied. This is far more efficient but is not always
possible. It often requires the creation of materialized view logs
on the base tables to track changes.

4.3.3 Exploitation: Query Rewriting

The true power of materialized views is realized through query rewriting.
This is an optimization technique where the DBMS query optimizer trans-
parently rewrites an incoming user query to use one or more materialized
views instead of the base tables, provided the result is equivalent and cor-
rect.

For example, consider the materialized view ‘mv_sales_summary‘ de-
fined above. A user might issue the following query to find the total sales
for a specific customer in the first fiscal quarter:

1 SELECT cust_name, SUM(amount_sold)
2 FROM sales s, customers c, times t
3 WHERE s.cust_id = c.cust_id
4 AND s.time_id = t.time_id
5 AND t.fiscal_quarter = 'Q1-2024'
6 AND c.cust_name = 'John Doe'
7 GROUP BY cust_name;

A sophisticated optimizer can recognize that this query can be answered
entirely by scanning ‘mv_sales_summary‘ with the predicates ‘fiscal_quar-
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ter = ’Q1-2024’‘ and ‘cust_name = ’John Doe’‘, and then summing the ‘to-
tal_sales‘ for that group. This avoids the multi-table join and aggregation
at query time, leading to a dramatic performance improvement.

4.4 The Materialized View Selection Problem (MVSP)
While a single, well-chosen materialized view can be highly beneficial, the
real challenge arises in a complex environment with thousands of potential
views and a mixed workload of queries. The Materialized View Selection
Problem (MVSP) is the task of selecting an optimal set of views to mate-
rialize, given finite resources.

4.4.1 Problem Formulation

The problem can be formally stated as follows:
Given:

• A database schema 𝑆.

• A set of queries (workload) 𝑄 = {𝑄1, 𝑄2, … , 𝑄𝑚}, where each query 𝑄𝑖
has an associated frequency or weight 𝑓𝑖.

• A set of candidate materialized views 𝑉𝑐𝑎𝑛𝑑 = {𝑉1, 𝑉2, … , 𝑉𝑘} derived
from the queries in 𝑄 and the database schema 𝑆.

• A storage space constraint 𝐵 (the total available space for storing
materialized views).

• A maintenance cost constraint 𝑀 (the maximum allowable time or
resource cost for maintaining all selected views).

Find a set of views 𝑉𝑠𝑒𝑙 ⊆ 𝑉𝑐𝑎𝑛𝑑 to materialize such that:

1. The total cost of evaluating the workload 𝑄 using 𝑉𝑠𝑒𝑙 is minimized.
The cost is typically a weighted sum: 𝑇 𝑜𝑡𝑎𝑙_𝐶𝑜𝑠𝑡 = ∑𝑚

𝑖=1 𝑓𝑖×𝐶𝑜𝑠𝑡(𝑄𝑖, 𝑉𝑠𝑒𝑙).
2. The total storage space required by 𝑉𝑠𝑒𝑙 does not exceed 𝐵: ∑𝑉𝑗∈𝑉𝑠𝑒𝑙 𝑆𝑖𝑧𝑒(𝑉𝑗) ≤𝐵.

3. The total maintenance cost of 𝑉𝑠𝑒𝑙 (e.g., the time for a complete re-
fresh) does not exceed 𝑀 .
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4.5 Complexity of the Materialized View Selection
Problem

The MVSP has been proven to be NP-hard. This can be shown by a reduc-
tion from the well-known 0/1 Knapsack Problem.

In the Knapsack Problem, we have a set of items, each with a weight and
a value, and we must select a subset that maximizes the total value without
exceeding a given weight capacity. The MVSP can be seen as a Knapsack
problem where:

• Each candidate view is an "item".

• The "weight" of a view is its storage cost (or maintenance cost).

• The "value" of a view is the reduction in query processing cost it
provides for the entire workload.

The key complication that makes MVSP even harder than the basic
Knapsack is that the "value" (benefit) of a view is not independent. The
benefit of materializing a view 𝑉𝑎 may be reduced if another view 𝑉𝑏, which
can also be used to answer the same queries, is already selected. This in-
terdependence introduces a complex combinatorial optimization problem.
Consequently, finding an optimal solution for large problems is computa-
tionally infeasible, and research has focused on developing efficient heuristic
and approximation algorithms.

4.6 Advantages of Materialized Views
The strategic use of materialized views offers profound advantages across
different aspects of a data-intensive system.

4.6.1 Performance Acceleration

This is the most significant advantage. By pre-computing expensive oper-
ations, materialized views can reduce query response times by orders of
magnitude. This is especially critical for:

• Complex Aggregation Queries: Calculations of sums, counts, and av-
erages over millions of rows become simple lookups.
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• Multi-Table Joins: Pre-joined tables eliminate the need for costly join
operations during query execution.

• OLAP and Reporting Systems: Dashboards and reports that require
consistent, fast response times heavily rely on materialized views (of-
ten called "aggregate tables" or "summary tables" in this context).

4.6.2 Reduced System Load

By serving queries from a materialized view, the system avoids placing a
read load on the base tables. This is beneficial for:

• Base Table Contention: It frees up the base tables for transaction
processing (OLTP), reducing lock contention.

• Resource Conservation: CPU and I/O resources that would have been
used for joins and aggregations are conserved, allowing the system to
support a higher number of concurrent users.

4.6.3 Simplified Application Logic

Complex queries can be encapsulated within a materialized view. Applica-
tion developers can then write simpler queries against these views, making
the code easier to write, understand, and maintain.

4.7 Materialized View Selection Strategies
Given the NP-hard nature of the MVSP, a variety of selection strategies
have been proposed. These can be categorized as follows:

4.7.1 Manual Selection by Database Administrators (DBAs)

This is the traditional approach, where a DBA, based on experience and
knowledge of the workload, manually identifies and creates a set of materi-
alized views. While this can be effective for small systems, it does not scale
to complex environments with hundreds of tables and queries. It is prone to
human error and cannot systematically evaluate the vast space of possible
view configurations.
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4.7.2 Rule-Based Heuristics

These are simple, intuitive rules that guide the selection process. While not
optimal, they provide a good starting point.

• Materialize Views from Expensive Queries: Focus on views that ben-
efit queries with high execution cost or high frequency.

• Materialize Views Used by Multiple Queries: Prefer views that can
be used to rewrite a larger number of queries in the workload.

• Prioritize Small, Aggregated Views: A small view that summarizes a
large fact table often provides the highest benefit per unit of storage.

4.7.3 Cost-Based Greedy Algorithms

This is the most prevalent approach in automated selection tools. The al-
gorithm starts with an empty set of selected views and iteratively adds the
view that provides the highest benefit per unit cost (e.g., per megabyte of
storage) until the storage or maintenance budget is exhausted.

Algorithm 1 Greedy Algorithm for Materialized View Selection
1: 𝑉𝑠𝑒𝑙 ← ∅ ▷ Set of selected views to materialize
2: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑝𝑎𝑐𝑒 ← 𝐵 ▷ Initialize remaining storage budget
3: 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← Set of candidate views
4: while 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑝𝑎𝑐𝑒 > 0 and 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 is not empty do
5: for each view 𝑣 in 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do
6: 𝐵𝑒𝑛𝑒𝑓 𝑖𝑡𝑃𝑒𝑟𝑀𝐵[𝑣] ← Total Query Cost Reduction using {𝑉𝑠𝑒𝑙∪𝑣}

Size(𝑣)
7: end for
8: 𝑣𝑏𝑒𝑠𝑡 ← the view in 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 with the highest 𝐵𝑒𝑛𝑒𝑓 𝑖𝑡𝑃𝑒𝑟𝑀𝐵
9: if Size(𝑣𝑏𝑒𝑠𝑡 ) ≤ 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑝𝑎𝑐𝑒 then

10: 𝑉𝑠𝑒𝑙 ← 𝑉𝑠𝑒𝑙 ∪ {𝑣𝑏𝑒𝑠𝑡 }
11: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑝𝑎𝑐𝑒 ← 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑝𝑎𝑐𝑒 − Size(𝑣𝑏𝑒𝑠𝑡 )
12: 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∖ {𝑣𝑏𝑒𝑠𝑡 }
13: else
14: 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑉𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∖ {𝑣𝑏𝑒𝑠𝑡 } ▷ Remove view that doesn’t fit
15: end if
16: end while
17: return 𝑉𝑠𝑒𝑙
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The major advantage of the greedy algorithm is its efficiency. Its draw-
back is that it can get stuck in a local optimum, as a myopic choice early
on may preclude a globally better combination of views later.

4.7.4 Evolutionary and Randomized Algorithms

For very large and complex problems, algorithms inspired by natural evo-
lution, such as Genetic Algorithms (GAs), can be effective. In a GA, a
population of potential solutions (each solution is a set of views to materi-
alize) is evolved over multiple generations. Solutions are evaluated using a
fitness function (e.g., total query cost + penalty for constraint violation).
Through operations like crossover (combining two solutions) and mutation
(randomly altering a solution), the population converges towards a near-
optimal solution. Simulated Annealing is another randomized technique
that can escape local optima.

4.7.5 Integer Linear Programming (ILP)

For problems of moderate size, the MVSP can be formulated as an Integer
Linear Program. Binary decision variables 𝑥𝑗 are defined for each candidate
view 𝑉𝑗 , where 𝑥𝑗 = 1 means the view is selected. The objective is to minimize
total query cost, subject to linear constraints on storage and maintenance.
While ILP solvers can guarantee an optimal solution, the approach becomes
computationally prohibitive as the number of candidate views grows into
the thousands.

4.8 Materialized View Selection in Data Warehouses
The MVSP is particularly salient in the context of data warehouses. The
workload is typically read-intensive, consisting of complex analytical queries,
and the data is updated in controlled batch windows. This environment is
ideally suited for materialized views.

4.8.1 Integration with Data Cube Lattices

In a data warehouse, a common set of candidate views corresponds to the
aggregates in a data cube. The cube lattice is a hierarchical structure where
each node represents a possible group-by view. For example, from a base
sales fact table (with dimensions time, product, customer, location), we can
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generate views grouped by (time, product), (product), (customer, location),
etc.

The selection problem then becomes: given a storage budget, which nodes
of the cube lattice should be materialized to minimize the average query
time for any aggregate query? The greedy algorithm has been shown to
perform very well in this specific, structured context, often providing a
solution that is guaranteed to be within a constant factor of the optimal.

4.9 A Unified Physical Design Tool
In modern DBMSs like Microsoft SQL Server, Oracle, and IBM DB2, the
materialized view selection problem is not tackled in isolation. It is inte-
grated into a larger Physical Design Advisor or Automatic Database Diag-
nostic Monitor. These tools take a workload as input (a SQL trace) and
recommend a unified configuration that may include a combination of:

• A set of materialized views (or indexes) to create.

• A set of existing indexes to drop.

• A horizontal partitioning schema for key tables.

The advisor evaluates the trade-offs between these structures. For in-
stance, creating a new index might speed up a query, but it also adds main-
tenance overhead. The tool’s goal is to find the configuration that provides
the maximum net benefit for the entire workload.

4.10 Example of Materialized View Selection
Consider a simplified data warehouse for a retail chain with a central ‘sales‘
fact table and ‘products‘, ‘customers‘, and ‘times‘ dimension tables. A typ-
ical workload might consist of the following queries:

• 𝑄1: Daily total sales per product category.

• 𝑄2: Monthly total sales per customer region.

• 𝑄3: Quarterly total sales and number of transactions.

The DBA runs the Physical Design Advisor, providing the trace of these
queries. The advisor generates a set of candidate views, including:
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• 𝑉1: ‘sales‘ joined with ‘products‘, grouped by ‘prod_category‘ and
‘day‘.

• 𝑉2: ‘sales‘ joined with ‘customers‘, grouped by ‘cust_region‘ and ‘month‘.

• 𝑉3: ‘sales‘ grouped by ‘quarter‘.

• 𝑉4: ‘sales‘ joined with all dimensions, grouped by ‘prod_category‘,
‘cust_region‘, and ‘month‘.

The advisor then executes a selection algorithm (e.g., a greedy algorithm).
It calculates that 𝑉1 is perfect for 𝑄1 and is relatively small. 𝑉2 is excellent
for 𝑄2. 𝑉3 is very small and good for 𝑄3. 𝑉4, while useful for all queries, is
very large. Under a tight storage constraint, the advisor might recommend
𝑉1, 𝑉2, and 𝑉3, as this set fits the budget and covers all queries effectively,
leaving out the large 𝑉4. The final recommendation would be a SQL script
to create these three materialized views.

4.11 Conclusion
Materialized views represent a powerful denormalization technique that can
dramatically accelerate query performance by pre-computing and storing
expensive results. However, their effectiveness is contingent upon a careful
and strategic selection process. The Materialized View Selection Problem
is a complex, constrained optimization challenge that lies at the heart of
physical database design automation. While NP-hard, the development of
pragmatic greedy heuristics, evolutionary algorithms, and their integration
into unified physical design advisors has made it feasible to automate this
process, delivering significant performance benefits for large-scale database
and data warehouse systems. The choice of which views to materialize re-
mains a critical decision, balancing the tantalizing promise of instant query
results against the very real costs of storage and maintenance.

4.12 Lab

4.12.1 Objective

This lab will guide you through:

• Creating and managing materialized views using the TPC-C schema
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• Implementing different types of materialized views:
– SPJ (Select-Project-Join) Views
– Aggregation Views
– Nested Materialized Views

• Managing materialized view refresh strategies

• Using materialized views for query optimization on TPC-C data

• Comparing performance with and without materialized views

4.12.2 Part 1: Understanding the TPC-C Schema

4.12.2.1 TPC-C Table Structure

The TPC-C benchmark consists of the following main tables:
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1 -- Warehouse table
2 WAREHOUSE (
3 W_ID INTEGER PRIMARY KEY,
4 W_NAME VARCHAR(10),
5 W_STREET_1 VARCHAR(20),
6 W_STREET_2 VARCHAR(20),
7 W_CITY VARCHAR(20),
8 W_STATE CHAR(2),
9 W_ZIP CHAR(9),
10 W_TAX NUMERIC(4,4),
11 W_YTD NUMERIC(12,2)
12 )
13

14 -- District table
15 DISTRICT (
16 D_ID INTEGER,
17 D_W_ID INTEGER,
18 D_NAME VARCHAR(10),
19 D_STREET_1 VARCHAR(20),
20 D_STREET_2 VARCHAR(20),
21 D_CITY VARCHAR(20),
22 D_STATE CHAR(2),
23 D_ZIP CHAR(9),
24 D_TAX NUMERIC(4,4),
25 D_YTD NUMERIC(12,2),
26 D_NEXT_O_ID INTEGER,
27 PRIMARY KEY (D_W_ID, D_ID),
28 FOREIGN KEY (D_W_ID) REFERENCES WAREHOUSE(W_ID)
29 )
30

31 -- Customer table
32 CUSTOMER (
33 C_ID INTEGER,
34 C_D_ID INTEGER,
35 C_W_ID INTEGER,
36 C_FIRST VARCHAR(16),
37 C_MIDDLE CHAR(2),
38 C_LAST VARCHAR(16),
39 C_STREET_1 VARCHAR(20),
40 C_STREET_2 VARCHAR(20),
41 C_CITY VARCHAR(20),
42 C_STATE CHAR(2),
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43 C_ZIP CHAR(9),
44 C_PHONE CHAR(16),
45 C_SINCE TIMESTAMP,
46 C_CREDIT CHAR(2),
47 C_CREDIT_LIM NUMERIC(12,2),
48 C_DISCOUNT NUMERIC(4,4),
49 C_BALANCE NUMERIC(12,2),
50 C_YTD_PAYMENT NUMERIC(12,2),
51 C_PAYMENT_CNT INTEGER,
52 C_DELIVERY_CNT INTEGER,
53 C_DATA VARCHAR(500),
54 PRIMARY KEY (C_W_ID, C_D_ID, C_ID),
55 FOREIGN KEY (C_W_ID, C_D_ID) REFERENCES DISTRICT(D_W_ID, D_ID)
56 )
57

58 -- Orders table
59 ORDERS (
60 O_ID INTEGER,
61 O_D_ID INTEGER,
62 O_W_ID INTEGER,
63 O_C_ID INTEGER,
64 O_ENTRY_D TIMESTAMP,
65 O_CARRIER_ID INTEGER,
66 O_OL_CNT INTEGER,
67 O_ALL_LOCAL INTEGER,
68 PRIMARY KEY (O_W_ID, O_D_ID, O_ID),
69 FOREIGN KEY (O_W_ID, O_D_ID, O_C_ID) REFERENCES CUSTOMER(C_W_ID,

C_D_ID, C_ID)↪
70 )
71

72 -- Order Line table
73 ORDER_LINE (
74 OL_O_ID INTEGER,
75 OL_D_ID INTEGER,
76 OL_W_ID INTEGER,
77 OL_NUMBER INTEGER,
78 OL_I_ID INTEGER,
79 OL_SUPPLY_W_ID INTEGER,
80 OL_QUANTITY INTEGER,
81 OL_AMOUNT NUMERIC(6,2),
82 OL_DELIVERY_D TIMESTAMP,
83 OL_DIST_INFO CHAR(24),
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84 PRIMARY KEY (OL_W_ID, OL_D_ID, OL_O_ID, OL_NUMBER),
85 FOREIGN KEY (OL_W_ID, OL_D_ID, OL_O_ID) REFERENCES ORDERS(O_W_ID,

O_D_ID, O_ID),↪
86 FOREIGN KEY (OL_SUPPLY_W_ID, OL_I_ID) REFERENCES STOCK(S_W_ID,

S_I_ID)↪
87 )
88

89 -- Item table
90 ITEM (
91 I_ID INTEGER PRIMARY KEY,
92 I_NAME VARCHAR(24),
93 I_PRICE NUMERIC(5,2),
94 I_IM_ID INTEGER,
95 I_DATA VARCHAR(50)
96 )
97

98 -- Stock table
99 STOCK (
100 S_I_ID INTEGER,
101 S_W_ID INTEGER,
102 S_QUANTITY INTEGER,
103 S_DIST_01 CHAR(24),
104 S_DIST_02 CHAR(24),
105 S_DIST_03 CHAR(24),
106 S_DIST_04 CHAR(24),
107 S_DIST_05 CHAR(24),
108 S_DIST_06 CHAR(24),
109 S_DIST_07 CHAR(24),
110 S_DIST_08 CHAR(24),
111 S_DIST_09 CHAR(24),
112 S_DIST_10 CHAR(24),
113 S_YTD INTEGER,
114 S_ORDER_CNT INTEGER,
115 S_REMOTE_CNT INTEGER,
116 S_DATA VARCHAR(50),
117 PRIMARY KEY (S_W_ID, S_I_ID),
118 FOREIGN KEY (S_I_ID) REFERENCES ITEM(I_ID),
119 FOREIGN KEY (S_W_ID) REFERENCES WAREHOUSE(W_ID)
120 )
121

122 -- New Orders table
123 NEW_ORDER (
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124 NO_O_ID INTEGER,
125 NO_D_ID INTEGER,
126 NO_W_ID INTEGER,
127 PRIMARY KEY (NO_W_ID, NO_D_ID, NO_O_ID),
128 FOREIGN KEY (NO_W_ID, NO_D_ID, NO_O_ID) REFERENCES ORDERS(O_W_ID,

O_D_ID, O_ID)↪
129 )
130

131 -- History table
132 HISTORY (
133 H_C_ID INTEGER,
134 H_C_D_ID INTEGER,
135 H_C_W_ID INTEGER,
136 H_D_ID INTEGER,
137 H_W_ID INTEGER,
138 H_DATE TIMESTAMP,
139 H_AMOUNT NUMERIC(6,2),
140 H_DATA VARCHAR(24),
141 FOREIGN KEY (H_C_W_ID, H_C_D_ID, H_C_ID) REFERENCES

CUSTOMER(C_W_ID, C_D_ID, C_ID),↪
142 FOREIGN KEY (H_W_ID, H_D_ID) REFERENCES DISTRICT(D_W_ID, D_ID)
143 )

64



4.12 Lab

4.12.3 Part 2: Creating Materialized Views on TPC-C Schema

SPJ Materialized View - Customer Orders

Create a materialized view that pre-joins customers with their orders:

1 CREATE MATERIALIZED VIEW mv_customer_orders AS
2 SELECT
3 c.C_W_ID as warehouse_id,
4 c.C_D_ID as district_id,
5 c.C_ID as customer_id,
6 c.C_FIRST as first_name,
7 c.C_LAST as last_name,
8 c.C_BALANCE as balance,
9 c.C_CREDIT as credit,
10 o.O_ID as order_id,
11 o.O_ENTRY_D as order_date,
12 o.O_CARRIER_ID as carrier_id,
13 o.O_OL_CNT as order_line_count
14 FROM CUSTOMER c
15 JOIN ORDERS o ON c.C_W_ID = o.O_W_ID
16 AND c.C_D_ID = o.O_D_ID
17 AND c.C_ID = o.O_C_ID
18 WHERE o.O_ID > 0; -- Exclude special orders
19

20 -- Create indexes for common query patterns
21 CREATE INDEX idx_mv_cust_orders_warehouse ON

mv_customer_orders(warehouse_id);↪
22 CREATE INDEX idx_mv_cust_orders_customer ON

mv_customer_orders(customer_id, district_id, warehouse_id);↪
23 CREATE INDEX idx_mv_cust_orders_date ON

mv_customer_orders(order_date);↪

Aggregation Materialized View - Sales Summary

Create a materialized view for sales aggregations by warehouse and district:

1 CREATE MATERIALIZED VIEW mv_sales_summary AS
2 SELECT
3 ol.OL_W_ID as warehouse_id,
4 ol.OL_D_ID as district_id,
5 DATE_TRUNC('month', o.O_ENTRY_D) as sales_month,
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6 COUNT(DISTINCT o.O_ID) as order_count,
7 COUNT(ol.OL_NUMBER) as order_line_count,
8 SUM(ol.OL_QUANTITY) as total_quantity,
9 SUM(ol.OL_AMOUNT) as total_sales,
10 AVG(ol.OL_AMOUNT) as avg_order_line_amount,
11 MAX(ol.OL_QUANTITY) as max_quantity,
12 MIN(ol.OL_QUANTITY) as min_quantity
13 FROM ORDERS o
14 JOIN ORDER_LINE ol ON o.O_W_ID = ol.OL_W_ID
15 AND o.O_D_ID = ol.OL_D_ID
16 AND o.O_ID = ol.OL_O_ID
17 WHERE ol.OL_AMOUNT > 0
18 GROUP BY
19 ol.OL_W_ID,
20 ol.OL_D_ID,
21 DATE_TRUNC('month', o.O_ENTRY_D);
22

23 -- Create indexes for analytical queries
24 CREATE INDEX idx_mv_sales_warehouse_month ON

mv_sales_summary(warehouse_id, sales_month);↪
25 CREATE INDEX idx_mv_sales_district ON mv_sales_summary(district_id,

warehouse_id);↪
26 CREATE INDEX idx_mv_sales_month ON mv_sales_summary(sales_month);

Complex Join Materialized View - Order Analysis

Create a comprehensive materialized view with multiple joins:

1 CREATE MATERIALIZED VIEW mv_order_analysis AS
2 SELECT
3 o.O_W_ID as warehouse_id,
4 o.O_D_ID as district_id,
5 o.O_ID as order_id,
6 o.O_C_ID as customer_id,
7 c.C_FIRST as customer_first_name,
8 c.C_LAST as customer_last_name,
9 c.C_CREDIT as customer_credit,
10 o.O_ENTRY_D as order_date,
11 o.O_CARRIER_ID as carrier_id,
12 o.O_OL_CNT as order_line_count,
13 COUNT(ol.OL_NUMBER) as actual_line_count,
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14 SUM(ol.OL_QUANTITY) as total_items,
15 SUM(ol.OL_AMOUNT) as order_total,
16 AVG(ol.OL_QUANTITY) as avg_quantity_per_line,
17 MAX(ol.OL_QUANTITY) as max_quantity,
18 BOOL_AND(ol.OL_DELIVERY_D IS NOT NULL) as fully_delivered,
19 COUNT(ol.OL_NUMBER) FILTER (WHERE ol.OL_DELIVERY_D IS NULL) as

pending_deliveries↪
20 FROM ORDERS o
21 JOIN CUSTOMER c ON o.O_W_ID = c.C_W_ID
22 AND o.O_D_ID = c.C_D_ID
23 AND o.O_C_ID = c.C_ID
24 JOIN ORDER_LINE ol ON o.O_W_ID = ol.OL_W_ID
25 AND o.O_D_ID = ol.OL_D_ID
26 AND o.O_ID = ol.OL_O_ID
27 GROUP BY
28 o.O_W_ID, o.O_D_ID, o.O_ID, o.O_C_ID,
29 c.C_FIRST, c.C_LAST, c.C_CREDIT,
30 o.O_ENTRY_D, o.O_CARRIER_ID, o.O_OL_CNT;
31

32 -- Create composite indexes for performance
33 CREATE INDEX idx_mv_order_analysis_warehouse ON

mv_order_analysis(warehouse_id, order_date);↪
34 CREATE INDEX idx_mv_order_analysis_customer ON

mv_order_analysis(customer_id, warehouse_id, district_id);↪
35 CREATE INDEX idx_mv_order_analysis_date ON

mv_order_analysis(order_date);↪
36 CREATE INDEX idx_mv_order_analysis_carrier ON

mv_order_analysis(carrier_id) WHERE carrier_id IS NOT NULL;↪

Stock Level Materialized View

Create a materialized view for inventory analysis:

1 CREATE MATERIALIZED VIEW mv_stock_level AS
2 SELECT
3 s.S_W_ID as warehouse_id,
4 s.S_I_ID as item_id,
5 i.I_NAME as item_name,
6 i.I_PRICE as item_price,
7 s.S_QUANTITY as current_quantity,
8 s.S_YTD as year_to_date_sold,
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9 s.S_ORDER_CNT as order_count,
10 s.S_REMOTE_CNT as remote_order_count,
11 CASE
12 WHEN s.S_QUANTITY < 10 THEN 'LOW'
13 WHEN s.S_QUANTITY < 50 THEN 'MEDIUM'
14 ELSE 'HIGH'
15 END as stock_level,
16 w.W_NAME as warehouse_name,
17 w.W_CITY as warehouse_city
18 FROM STOCK s
19 JOIN ITEM i ON s.S_I_ID = i.I_ID
20 JOIN WAREHOUSE w ON s.S_W_ID = w.W_ID
21 WHERE s.S_QUANTITY >= 0;
22

23 -- Create indexes for inventory queries
24 CREATE INDEX idx_mv_stock_warehouse ON mv_stock_level(warehouse_id);
25 CREATE INDEX idx_mv_stock_level ON mv_stock_level(stock_level);
26 CREATE INDEX idx_mv_stock_quantity ON

mv_stock_level(current_quantity);↪
27 CREATE INDEX idx_mv_stock_item ON mv_stock_level(item_id);
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4.12.4 Part 3: Materialized View Management and Refresh

Manual Refresh Operations

Practice different refresh strategies on TPC-C materialized views:

1 -- Refresh a single materialized view
2 REFRESH MATERIALIZED VIEW mv_customer_orders;
3

4 -- Refresh with concurrent access (allows reads during refresh)
5 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_sales_summary;
6

7 -- Refresh all materialized views
8 REFRESH MATERIALIZED VIEW mv_customer_orders, mv_sales_summary,

mv_order_analysis, mv_stock_level;↪
9

10 -- Check materialized view metadata
11 SELECT
12 schemaname,
13 matviewname,
14 matviewowner,
15 ispopulated,
16 definition
17 FROM pg_matviews
18 WHERE matviewname LIKE 'mv_%'
19 ORDER BY matviewname;
20

21 -- Check storage usage
22 SELECT
23 schemaname,
24 matviewname,
25 pg_size_pretty(pg_total_relation_size(schemaname||'.'||matviewn ⌋

ame)) as total_size,↪
26 pg_size_pretty(pg_relation_size(schemaname||'.'||matviewname))

as table_size,↪
27 pg_size_pretty(pg_total_relation_size(schemaname||'.'||matviewn ⌋

ame) -↪
28 pg_relation_size(schemaname||'.'||matviewname)) as

index_size↪
29 FROM pg_matviews
30 WHERE schemaname = 'public'
31 ORDER BY pg_total_relation_size(schemaname||'.'||matviewname) DESC;
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Automated Refresh with TPC-C Specific Functions

Create functions to automate refresh processes for TPC-C workload:

1 -- Create function to refresh TPC-C materialized views
2 CREATE OR REPLACE FUNCTION refresh_tpcc_materialized_views()
3 RETURNS VOID AS \$\$
4 DECLARE
5 refresh_start TIMESTAMP;
6 BEGIN
7 refresh_start := clock_timestamp();
8 RAISE NOTICE 'Starting TPC-C materialized view refresh at %',

refresh_start;↪
9

10 -- Refresh in order of dependency and importance
11 RAISE NOTICE 'Refreshing mv_customer_orders...';
12 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_customer_orders;
13

14 RAISE NOTICE 'Refreshing mv_sales_summary...';
15 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_sales_summary;
16

17 RAISE NOTICE 'Refreshing mv_order_analysis...';
18 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_order_analysis;
19

20 RAISE NOTICE 'Refreshing mv_stock_level...';
21 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_stock_level;
22

23 RAISE NOTICE 'TPC-C materialized view refresh completed in %',
24 clock_timestamp() - refresh_start;
25 END;
26 \$\$ LANGUAGE plpgsql;
27

28 -- Create log table for TPC-C refresh operations
29 CREATE TABLE tpcc_mv_refresh_log (
30 log_id SERIAL PRIMARY KEY,
31 refresh_start TIMESTAMP,
32 refresh_end TIMESTAMP,
33 duration INTERVAL,
34 views_refreshed TEXT[],
35 success BOOLEAN DEFAULT TRUE,
36 error_message TEXT,
37 log_timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
38 );
39
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40 -- Enhanced refresh function with logging
41 CREATE OR REPLACE FUNCTION refresh_tpcc_mv_with_logging()
42 RETURNS INTEGER AS \$\$
43 DECLARE
44 log_id INTEGER;
45 start_time TIMESTAMP;
46 end_time TIMESTAMP;
47 BEGIN
48 start_time := clock_timestamp();
49

50 INSERT INTO tpcc_mv_refresh_log (refresh_start, views_refreshed)
51 VALUES (start_time, ARRAY['mv_customer_orders',

'mv_sales_summary', 'mv_order_analysis', 'mv_stock_level'])↪
52 RETURNING log_id INTO log_id;
53

54 BEGIN
55 PERFORM refresh_tpcc_materialized_views();
56

57 end_time := clock_timestamp();
58

59 UPDATE tpcc_mv_refresh_log
60 SET refresh_end = end_time,
61 duration = end_time - start_time,
62 success = TRUE
63 WHERE log_id = log_id;
64

65 RETURN log_id;
66 EXCEPTION
67 WHEN OTHERS THEN
68 UPDATE tpcc_mv_refresh_log
69 SET refresh_end = clock_timestamp(),
70 duration = clock_timestamp() - start_time,
71 success = FALSE,
72 error_message = SQLERRM
73 WHERE log_id = log_id;
74 RAISE;
75 END;
76 END;
77 \$\$ LANGUAGE plpgsql;
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4.12.5 Part 4: Query Performance Comparison with TPC-C Data

TPC-C Query Performance Testing

Compare performance of typical TPC-C analytical queries:

1 -- Enable timing for performance measurement
2 \timing on
3

4 -- Query 1: Stock Level Query (TPC-C Standard) - Using base tables
5 EXPLAIN (ANALYZE, BUFFERS)
6 SELECT COUNT(DISTINCT s.S_I_ID)
7 FROM ORDER_LINE ol
8 JOIN STOCK s ON ol.OL_SUPPLY_W_ID = s.S_W_ID AND ol.OL_I_ID =

s.S_I_ID↪
9 JOIN ORDERS o ON ol.OL_W_ID = o.O_W_ID AND ol.OL_D_ID = o.O_D_ID AND

ol.OL_O_ID = o.O_ID↪
10 WHERE ol.OL_W_ID = 1
11 AND ol.OL_D_ID = 1
12 AND o.O_ID < 2100
13 AND o.O_ID >= 2000
14 AND s.S_QUANTITY < 15;
15

16 -- Same query using materialized view
17 EXPLAIN (ANALYZE, BUFFERS)
18 SELECT COUNT(DISTINCT item_id)
19 FROM mv_stock_level sl
20 JOIN mv_order_analysis oa ON sl.warehouse_id = oa.warehouse_id
21 WHERE sl.warehouse_id = 1
22 AND oa.district_id = 1
23 AND oa.order_id < 2100
24 AND oa.order_id >= 2000
25 AND sl.current_quantity < 15;
26

27 -- Query 2: Customer Balance Query - Using base tables
28 EXPLAIN (ANALYZE, BUFFERS)
29 SELECT c.C_FIRST, c.C_LAST, c.C_BALANCE, w.W_NAME, d.D_NAME
30 FROM CUSTOMER c
31 JOIN WAREHOUSE w ON c.C_W_ID = w.W_ID
32 JOIN DISTRICT d ON c.C_W_ID = d.D_W_ID AND c.C_D_ID = d.D_ID
33 WHERE c.C_W_ID = 1
34 AND c.C_D_ID = 1
35 AND c.C_BALANCE < -1000
36 ORDER BY c.C_BALANCE ASC
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37 LIMIT 10;
38

39 -- Same query using materialized view
40 EXPLAIN (ANALYZE, BUFFERS)
41 SELECT co.first_name, co.last_name, co.balance, w.W_NAME, d.D_NAME
42 FROM mv_customer_orders co
43 JOIN WAREHOUSE w ON co.warehouse_id = w.W_ID
44 JOIN DISTRICT d ON co.warehouse_id = d.D_W_ID AND co.district_id =

d.D_ID↪
45 WHERE co.warehouse_id = 1
46 AND co.district_id = 1
47 AND co.balance < -1000
48 ORDER BY co.balance ASC
49 LIMIT 10;
50

51 -- Query 3: Sales Summary by Warehouse - Using base tables
52 EXPLAIN (ANALYZE, BUFFERS)
53 SELECT
54 o.O_W_ID,
55 DATE_TRUNC('month', o.O_ENTRY_D) as month,
56 COUNT(DISTINCT o.O_ID) as order_count,
57 SUM(ol.OL_AMOUNT) as total_sales
58 FROM ORDERS o
59 JOIN ORDER_LINE ol ON o.O_W_ID = ol.OL_W_ID AND o.O_D_ID =

ol.OL_D_ID AND o.O_ID = ol.OL_O_ID↪
60 WHERE o.O_ENTRY_D >= CURRENT_DATE - INTERVAL '6 months'
61 GROUP BY o.O_W_ID, DATE_TRUNC('month', o.O_ENTRY_D)
62 ORDER BY o.O_W_ID, month;
63

64 -- Same query using materialized view
65 EXPLAIN (ANALYZE, BUFFERS)
66 SELECT
67 warehouse_id,
68 sales_month,
69 order_count,
70 total_sales
71 FROM mv_sales_summary
72 WHERE sales_month >= DATE_TRUNC('month', CURRENT_DATE - INTERVAL '6

months')↪
73 ORDER BY warehouse_id, sales_month;
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Advanced TPC-C Performance Analysis

Create specialized functions for TPC-C performance analysis:

1 -- Function to compare TPC-C query performance
2 CREATE OR REPLACE FUNCTION compare_tpcc_query_performance(
3 base_query TEXT,
4 mv_query TEXT,
5 description TEXT DEFAULT 'TPC-C Query',
6 iterations INTEGER DEFAULT 3
7 )
8 RETURNS TABLE(
9 test_description TEXT,
10 iteration INTEGER,
11 base_execution_time_ms DOUBLE PRECISION,
12 mv_execution_time_ms DOUBLE PRECISION,
13 improvement_percent DOUBLE PRECISION,
14 improvement_factor DOUBLE PRECISION
15 ) AS \$\$
16 DECLARE
17 i INTEGER;
18 start_time TIMESTAMP;
19 end_time TIMESTAMP;
20 base_duration INTERVAL;
21 mv_duration INTERVAL;
22 BEGIN
23 FOR i IN 1..iterations LOOP
24 -- Clear cache between runs (requires superuser or

appropriate permissions)↪
25 -- DROP TABLE IF EXISTS temp_clear_cache;
26 -- CREATE TEMP TABLE temp_clear_cache AS SELECT 1;
27

28 -- Test base query
29 start_time := clock_timestamp();
30 EXECUTE base_query;
31 end_time := clock_timestamp();
32 base_duration := end_time - start_time;
33

34 -- Clear cache between runs
35 -- DROP TABLE IF EXISTS temp_clear_cache2;
36 -- CREATE TEMP TABLE temp_clear_cache2 AS SELECT 1;
37

38 -- Test materialized view query
39 start_time := clock_timestamp();
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40 EXECUTE mv_query;
41 end_time := clock_timestamp();
42 mv_duration := end_time - start_time;
43

44 -- Return results
45 test_description := description;
46 iteration := i;
47 base_execution_time_ms := EXTRACT(EPOCH FROM base_duration) *

1000;↪
48 mv_execution_time_ms := EXTRACT(EPOCH FROM mv_duration) *

1000;↪
49 improvement_percent := ((base_execution_time_ms -

mv_execution_time_ms) / base_execution_time_ms) * 100;↪
50 improvement_factor := base_execution_time_ms /

NULLIF(mv_execution_time_ms, 0);↪
51

52 RETURN NEXT;
53 END LOOP;
54 END;
55 \$\$ LANGUAGE plpgsql;
56

57 -- Example usage for TPC-C queries
58 SELECT * FROM compare_tpcc_query_performance(
59 'SELECT COUNT(*) FROM ORDER_LINE ol JOIN STOCK s ON

ol.OL_SUPPLY_W_ID = s.S_W_ID AND ol.OL_I_ID = s.S_I_ID WHERE
ol.OL_W_ID = 1',

↪
↪

60 'SELECT COUNT(*) FROM mv_stock_level WHERE warehouse_id = 1',
61 'Stock Level Count Query',
62 3
63 );

4.12.6 Part 5: Nested Materialized Views for TPC-C

Creating Nested TPC-C Materialized Views

Build materialized views on top of existing TPC-C materialized views:

1 -- Create a high-level business intelligence view
2 CREATE MATERIALIZED VIEW mv_tpcc_business_intelligence AS
3 SELECT
4 ss.warehouse_id,
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5 ss.district_id,
6 ss.sales_month,
7 w.W_NAME as warehouse_name,
8 d.D_NAME as district_name,
9 ss.order_count,
10 ss.total_sales,
11 ss.avg_order_line_amount,
12 COUNT(DISTINCT co.customer_id) as active_customers,
13 AVG(co.balance) as avg_customer_balance,
14 COUNT(sl.item_id) FILTER (WHERE sl.stock_level = 'LOW') as

low_stock_items,↪
15 COUNT(sl.item_id) FILTER (WHERE sl.stock_level = 'HIGH') as

high_stock_items↪
16 FROM mv_sales_summary ss
17 JOIN WAREHOUSE w ON ss.warehouse_id = w.W_ID
18 JOIN DISTRICT d ON ss.warehouse_id = d.D_W_ID AND ss.district_id =

d.D_ID↪
19 LEFT JOIN mv_customer_orders co ON ss.warehouse_id = co.warehouse_id
20 AND ss.district_id = co.district_id
21 AND DATE_TRUNC('month', co.order_date)

= ss.sales_month↪
22 LEFT JOIN mv_stock_level sl ON ss.warehouse_id = sl.warehouse_id
23 GROUP BY
24 ss.warehouse_id, ss.district_id, ss.sales_month,
25 w.W_NAME, d.D_NAME, ss.order_count, ss.total_sales,

ss.avg_order_line_amount;↪
26

27 -- Create indexes for the business intelligence view
28 CREATE INDEX idx_mv_tpcc_bi_warehouse ON

mv_tpcc_business_intelligence(warehouse_id, sales_month);↪
29 CREATE INDEX idx_mv_tpcc_bi_month ON

mv_tpcc_business_intelligence(sales_month);↪
30 CREATE INDEX idx_mv_tpcc_bi_composite ON

mv_tpcc_business_intelligence(warehouse_id, district_id,
sales_month);

↪
↪

31

32 -- Create customer segmentation view
33 CREATE MATERIALIZED VIEW mv_customer_segments AS
34 SELECT
35 warehouse_id,
36 district_id,
37 customer_credit as credit_type,

76



4.12 Lab

38 COUNT(DISTINCT customer_id) as customer_count,
39 AVG(balance) as avg_balance,
40 SUM(balance) as total_balance,
41 COUNT(DISTINCT order_id) as total_orders,
42 SUM(order_total) as total_revenue,
43 MAX(order_date) as last_order_date
44 FROM mv_order_analysis
45 GROUP BY warehouse_id, district_id, customer_credit;
46

47 -- Refresh nested materialized views
48 REFRESH MATERIALIZED VIEW mv_tpcc_business_intelligence;
49 REFRESH MATERIALIZED VIEW mv_customer_segments;

Managing TPC-C Dependencies

1 -- Function to refresh TPC-C materialized views in dependency order
2 CREATE OR REPLACE FUNCTION refresh_tpcc_views_cascading()
3 RETURNS VOID AS \$\$
4 BEGIN
5 RAISE NOTICE 'Starting cascading refresh of TPC-C materialized

views...';↪
6

7 -- Step 1: Refresh base materialized views
8 RAISE NOTICE 'Refreshing base materialized views...';
9 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_customer_orders;
10 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_sales_summary;
11 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_order_analysis;
12 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_stock_level;
13

14 -- Step 2: Refresh nested materialized views
15 RAISE NOTICE 'Refreshing nested materialized views...';
16 REFRESH MATERIALIZED VIEW CONCURRENTLY

mv_tpcc_business_intelligence;↪
17 REFRESH MATERIALIZED VIEW CONCURRENTLY mv_customer_segments;
18

19 RAISE NOTICE 'Cascading refresh completed successfully.';
20 END;
21 \$\$ LANGUAGE plpgsql;
22

23 -- View dependency analysis
24 SELECT
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25 mv.matviewname as view_name,
26 pg_size_pretty(pg_total_relation_size('public.' ||

mv.matviewname)) as size,↪
27 (SELECT COUNT(*) FROM pg_depend
28 WHERE objid = (SELECT oid FROM pg_class WHERE relname =

mv.matviewname)↪
29 AND refobjid IN (SELECT oid FROM pg_class WHERE relname LIKE

'mv_%')) as dependency_count↪
30 FROM pg_matviews mv
31 WHERE mv.schemaname = 'public'
32 ORDER BY pg_total_relation_size('public.' || mv.matviewname) DESC;

4.12.7 Part 6: TPC-C Specific Maintenance and Optimization

TPC-C Monitoring and Maintenance

1 -- Comprehensive TPC-C materialized view monitoring
2 SELECT
3 m.matviewname,
4 pg_size_pretty(pg_relation_size('public.' || m.matviewname)) as

table_size,↪
5 pg_size_pretty(pg_total_relation_size('public.' ||

m.matviewname) -↪
6 pg_relation_size('public.' || m.matviewname)) as

index_size,↪
7 pg_size_pretty(pg_total_relation_size('public.' ||

m.matviewname)) as total_size,↪
8 m.ispopulated,
9 (SELECT COUNT(*) FROM pg_indexes WHERE tablename = m.matviewname)

as index_count,↪
10 s.n_live_tup as row_count,
11 s.last_analyze,
12 s.last_autoanalyze
13 FROM pg_matviews m
14 LEFT JOIN pg_stat_all_tables s ON m.matviewname = s.relname
15 WHERE m.schemaname = 'public'
16 ORDER BY pg_total_relation_size('public.' || m.matviewname) DESC;
17

18 -- Analyze TPC-C materialized views for query optimization
19 ANALYZE mv_customer_orders;
20 ANALYZE mv_sales_summary;
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21 ANALYZE mv_order_analysis;
22 ANALYZE mv_stock_level;
23 ANALYZE mv_tpcc_business_intelligence;
24 ANALYZE mv_customer_segments;
25

26 -- Check refresh history and patterns
27 SELECT
28 view_name,
29 COUNT(*) as refresh_count,
30 AVG(EXTRACT(EPOCH FROM duration)) as avg_duration_seconds,
31 MAX(refresh_start) as last_refresh,
32 NOW() - MAX(refresh_start) as time_since_last_refresh
33 FROM tpcc_mv_refresh_log
34 WHERE success = true
35 GROUP BY view_name
36 ORDER BY last_refresh DESC;

TPC-C Cleanup and Best Practices

1 -- Safely drop materialized views if needed (in reverse dependency
order)↪

2 /*
3 DROP MATERIALIZED VIEW IF EXISTS mv_customer_segments;
4 DROP MATERIALIZED VIEW IF EXISTS mv_tpcc_business_intelligence;
5 DROP MATERIALIZED VIEW IF EXISTS mv_stock_level;
6 DROP MATERIALIZED VIEW IF EXISTS mv_order_analysis;
7 DROP MATERIALIZED VIEW IF EXISTS mv_sales_summary;
8 DROP MATERIALIZED VIEW IF EXISTS mv_customer_orders;
9 */
10

11 -- Backup TPC-C materialized view definitions
12 SELECT
13 'CREATE MATERIALIZED VIEW ' || matviewname || ' AS ' ||
14 definition || E';\n\n-- Indexes:\n' ||
15 (SELECT string_agg('CREATE INDEX ' || indexname || ' ON ' ||

tablename ||↪
16 ' USING ' || indexdef, E';\n')
17 FROM pg_indexes
18 WHERE tablename = matviewname) || ';' as backup_script
19 FROM pg_matviews
20 WHERE schemaname = 'public' AND matviewname LIKE 'mv_%';
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21

22 -- Document TPC-C specific refresh strategies
23 COMMENT ON MATERIALIZED VIEW mv_customer_orders IS
24 'TPC-C Customer Orders - Pre-joins CUSTOMER and ORDERS tables.

Refresh: Hourly (high frequency due to new orders)';↪
25 COMMENT ON MATERIALIZED VIEW mv_sales_summary IS
26 'TPC-C Sales Summary - Aggregates ORDER_LINE data. Refresh: Daily

(batch processing)';↪
27 COMMENT ON MATERIALIZED VIEW mv_order_analysis IS
28 'TPC-C Order Analysis - Comprehensive order analytics. Refresh:

Every 4 hours';↪
29 COMMENT ON MATERIALIZED VIEW mv_stock_level IS
30 'TPC-C Stock Level - Inventory monitoring. Refresh: Real-time

(critical for stock checks)';↪
31 COMMENT ON MATERIALIZED VIEW mv_tpcc_business_intelligence IS
32 'TPC-C Business Intelligence - High-level aggregated view. Refresh:

Weekly (summary data)';↪

4.12.8 Exercises

Exercise 1: Create TPC-C Payment Analysis View

Create a materialized view that analyzes payment patterns by combining
HISTORY and CUSTOMER tables.

Exercise 2: Implement TPC-C Specific Refresh Strategy

Design a refresh strategy that considers TPC-C workload patterns (peak
order times, stock updates).

Exercise 3: TPC-C Query Performance Benchmarking

Compare the performance of 3 standard TPC-C queries with and without
materialized views.

Exercise 4: Storage Optimization for TPC-C Views

Analyze storage usage and propose partitioning strategies for the largest
TPC-C materialized views.
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Exercise 5: TPC-C Business Intelligence Dashboard

Create a nested materialized view that provides executive-level summary
data for all warehouses.
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5 Query Optimization in Database
Systems

5.1 Introduction to Query Optimization

5.1.1 The Multifaceted Nature of Problem Solving

The process of learning to play a piano serves as an excellent analogy for
understanding query optimization in database systems. Just as there are
numerous approaches to mastering a musical piecefrom traditional one-on-
one lessons to self-instruction methods using books, videos, or sheet music-
database queries can also be executed through multiple paths to achieve
the same correct result.

Each approach to piano playing may produce variations in quality and
efficiency, yet all can eventually lead to the desired outcome. Similarly,
in database systems, various execution plans can process the same query
correctly, but with significantly different performance characteristics. The
essence of query optimization lies in analyzing these alternative paths and
selecting the one that delivers results with optimal efficiency.

Sir Arthur Conan Doyle’s wisdom"It is a capital mistake to theorize be-
fore one has data"resonates profoundly in this context. Query optimizers
must gather and analyze statistical information about the data before de-
termining the most efficient execution strategy, rather than forcing prede-
termined theories onto the data.

5.1.2 The Importance of Query Optimization

In modern database systems, query optimization represents one of the
most critical components affecting overall system performance. While early
database systems relied on programmers to specify exactly how queries
should be executed, contemporary systems employ sophisticated optimizers
that automatically determine efficient execution strategies. This automa-
tion relieves application developers from the burden of manual performance
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tuning while ensuring that queries execute efficiently regardless of changes
in data distribution or volume.

The significance of query optimization becomes particularly evident in:

• Online Transaction Processing (OLTP) systems where rapid response
times are crucial for user satisfaction

• Data Warehousing and Business Intelligence applications involving
complex queries over large datasets

• Web applications serving numerous concurrent users with strict per-
formance requirements

• Scientific databases processing massive volumes of experimental or
observational data

This course explores the fundamental principles, techniques, and practi-
cal considerations that underpin effective query optimization in relational
database management systems.

5.2 Query Processing Fundamentals

5.2.1 Architecture of Query Processing

Database systems process SQL queries through a series of well-defined
stages that transform high-level declarative statements into executable op-
erations. Understanding this pipeline is essential for comprehending how
optimization fits into the broader context of query execution.

5.2.1.1 Three-Stage Query Processing Model

1. Scanning, Parsing, and Decomposition: This initial phase validates
the syntactic correctness of SQL queries and generates appropriate
error messages when necessary. The output is an intermediate repre-
sentation of the query, typically in the form of a query tree or initial
execution plan. This stage ensures that the query follows proper SQL
syntax and identifies all referenced database objects.

2. Query Optimization: This crucial phase encompasses both local and
global optimization techniques. Global optimization determines the
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order of join operations and the sequencing of selections and projec-
tions relative to joins. It also involves transforming nested queries
into equivalent flat queries. Local optimization focuses on selecting
appropriate index methods for selections and joins. Both optimiza-
tion types rely on cost estimates based on database statistics and
schema information.

3. Query Code Generation and Execution: The final stage employs clas-
sical compiler techniques to generate executable code from the op-
timized query plan. This code interfaces with the storage engine to
retrieve and process data, ultimately delivering the query results to
the user or application.

5.2.2 Modern Optimization Features

Contemporary database management systems incorporate numerous ad-
vanced features that enhance query optimization capabilities beyond the
basic three-stage model.

5.2.2.1 Query Transformation and Rewriting

Modern database systems (such as Oracle, DB2, and SQL Server) automat-
ically transform queries into more efficient forms before the optimization
phase begins. Common query rewriting techniques include:

• Subquery to Join Transformation: Converting correlated subqueries
into equivalent join operations, which often execute more efficiently

• Group By Pushdown: Moving group by operations below joins when
possible to reduce the volume of data being joined

• Join Elimination: Removing unnecessary joins on foreign keys when
the joined tables don’t contribute to the final result

• Outer to Inner Join Conversion: Transforming outer joins to inner
joins when they produce equivalent results, taking advantage of more
efficient inner join algorithms

• View Merging: Replacing view references with their actual definitions
to enable more comprehensive optimization
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• Materialized View Rewrite: Substituting parts of queries with pre-
computed materialized views when available

These transformations are particularly beneficial in data warehouse en-
vironments using star schemas, where joins between fact and dimension
tables can be optimized using specialized indexing techniques.

5.2.2.2 Query Execution Plan Visualization

Understanding how a database plans to execute a query is essential for
performance tuning. Modern database systems provide tools like EXPLAIN
or EXPLAIN PLAN (with graphical versions such as Visual Explain in DB2)
that reveal:

• The sequence of operations in the execution plan

• The order in which tables are accessed

• Index usage information

• Join methods employed

• Estimated costs for each operation

These tools enable database administrators and developers to identify
potential performance bottlenecks and verify that the optimizer is making
appropriate choices.

5.2.2.3 Histograms for Selectivity Estimation

Accurate selectivity estimation is crucial for effective query optimization.
Histograms provide detailed statistical information about the distribution
of attribute values within tables. Unlike simple average-based estimates,
histograms capture:

• Value distributions across different ranges

• Skewed data patterns

• Outlier concentrations

• Actual frequency counts for specific value ranges

This detailed distribution information enables optimizers to make more
accurate cardinality estimates, leading to better plan selection.
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5.2.2.4 Query Execution Plan Hints

Most major database systems support plan hintsdirectives embedded in
SQL queries that influence the optimizer’s plan selection. While hints should
be used judiciously, they serve important purposes:

• Overriding suboptimal optimizer choices in complex scenarios

• Enabling performance comparisons between different execution strate-
gies

• Locking in known efficient plans for critical queries

• Working around optimizer limitations in special cases

Common types of hints include those specifying join orders, join methods,
index usage, and parallel execution degrees.

5.2.2.5 Optimization Depth Configuration

Database optimizers employ various search strategies to explore the space
of possible execution plans, ranging from simple greedy algorithms to com-
prehensive dynamic programming approaches. Many systems allow admin-
istrators to configure optimization depth through parameters that control:

• The thoroughness of the search for optimal plans

• Timeouts for optimization processes

• Memory limits for plan enumeration

• Trade-offs between optimization time and execution time

5.3 Query Cost Evaluation: A Comprehensive Example

5.3.1 Foundational Concepts

To illustrate the principles of query optimization, we examine a practical
scenario involving a simple three-table database containing part, supplier,
and shipment information. This example demonstrates how different exe-
cution strategies for the same query can yield dramatically different perfor-
mance characteristics.
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5.3.1.1 Database Schema and Characteristics

Consider the following database tables:

Part (P) Supplier (S) Shipment (SH)
pnum: Primary Key snum: Primary Key snum: Foreign Key to Supplier
pname: Part Name sname: Supplier Name pnum: Foreign Key to Part
wt: Weight city: Supplier City qty: Quantity

status: Status Code shipdate: Shipping Date

Table characteristics:

• supplier: 200 records, 37 bytes per record

• part: 100 records, 23 bytes per record

• shipment: 100,000 records, 26 bytes per record

• Block size: 15,000 bytes

5.3.1.2 Example Query

The query we’ll optimize is: "What are the names of parts supplied by
suppliers in New York City?"

Translated to SQL:

1 SELECT p.pname
2 FROM P, SH, S
3 WHERE P.pnum = SH.pnum
4 AND SH.snum = S.snum
5 AND S.city = 'NY';

5.3.2 Join Order Analysis

Given the two join conditions in the query, there are 3! = 6 possible join
orders:

1. S join SH join P

2. SH join S join P
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3. P join SH join S

4. SH join P join S

5. S × P join SH (Cartesian product)

6. P × S join SH (Cartesian product)

Due to the commutativity of joins (Rule 1), orders 1 and 2 are equivalent,
as are orders 3 and 4. Orders 5 and 6 involve Cartesian products and should
generally be avoided as they generate prohibitively large intermediate re-
sults.

This leaves us with two reasonable join order families to consider: Orders
1 and 3. For each, we can evaluate strategies that execute joins before
selections versus selections before joins.

5.3.3 Cost Estimation Methodology

We use Sequential Block Accesses (SBA) as our primary cost metric, based
on the linear relationship between SBA and I/O time. This approach pro-
vides a practical foundation for comparing alternative execution plans.

Key formulas used in cost estimation:

• Blocking Factor: 𝐵𝐹 = ⌊Block Size/Row Size⌋
• Blocks to Scan Table: ⌈Number of Records/𝐵𝐹⌉
• Sort Cost: 2×𝑛𝑏× log𝑀 𝑛𝑏 where 𝑛𝑏 is number of blocks and 𝑀 is merge

factor

5.3.4 Option 1A: Joins First, Selections Last

This approach represents a naive strategy that executes all joins before
applying selective operations.

5.3.4.1 Execution Plan

1. Join Supplier and Shipment over snum TEMPA (100,000 records)

2. Join TEMPA and Part over pnum TEMPB (100,000 records)

3. Select TEMPB where city = ’NY’ TEMPC (10,000 records)

4. Project TEMPC over pname RESULT (10,000 records)
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5.3.4.2 Cost Calculation

• Step 1: Join S and SH = 1 (read S) + 174 (read SH) + 388 (write
TEMPA) = 563 SBA

• Step 2: Join TEMPA and P = 1 (read P) + 4,214 (sort TEMPA) +
388 (read TEMPA) + 488 (write TEMPB) = 5,091 SBA

• Step 3: Select city = ’NY’ = 488 (read TEMPB) + 49 (write TEMPC)
= 537 SBA

• Step 4: Project pname = 49 (read TEMPC) = 49 SBA

• Total Cost: 6,240 SBA

This approach demonstrates the inefficiency of processing large interme-
diate results, particularly evident in the expensive sort operation required
for the merge join.

5.3.5 Option 1B: Selections First, Joins Last

This optimized strategy applies selective operations early to reduce the
volume of data processed in join operations.

5.3.5.1 Execution Plan

1. Select S where city = ’NY’ TEMP1 (20 records)

2. Project SH over snum, pnum TEMP2 (100,000 records)

3. Project P over pnum, pname TEMP3 (100 records)

4. Semi-join TEMP1 and TEMP2 over snum TEMP4 (10,000 records)

5. Semi-join TEMP4 and TEMP3 over pnum TEMP5 (10,000 records)

6. Project TEMP5 over pname RESULT (10,000 records)
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5.3.5.2 Cost Calculation

• Step 1: Select city = ’NY’ = 1 (read S) + 1 (write TEMP1) = 2 SBA

• Step 2: Project SH = 174 (read SH) + 87 (write TEMP2) = 261 SBA

• Step 3: Project P = 1 (read P) + 1 (write TEMP3) = 2 SBA

• Step 4: Semi-join TEMP1 and TEMP2 = 1 (read TEMP1) + 87 (read
TEMP2) + 9 (write TEMP4) = 97 SBA

• Step 5: Semi-join TEMP4 and TEMP3 = 9 (read TEMP4) + 1 (read
TEMP3) + 13 (write TEMP5) = 23 SBA

• Step 6: Project pname = 13 (read TEMP5) = 13 SBA

• Total Cost: 398 SBA

5.3.6 Performance Comparison

The dramatic difference in cost between the two approaches (6,240 SBA vs.
398 SBA) highlights the critical importance of applying selective operations
before joins. This represents a 94% reduction in I/O cost through intelligent
plan selection.

5.4 Query Execution Plan Development

5.4.1 Query Execution Plan Representation

A Query Execution Plan (QEP) is a tree-structured representation of the
sequence of operations required to process a query. Each node in the tree
corresponds to a database operation (selection, projection, join), with edges
representing data flow between operations.

QEPs can be represented using either top-down or bottom-up approaches.
The bottom-up approach, as illustrated in our examples, starts with base
table access and builds toward the final result, making it particularly intu-
itive for understanding how intermediate results are constructed.
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5.4.2 Transformation Rules for Query Execution Plans

The flexibility to reorganize operations without changing the semantic mean-
ing of queries enables optimizers to explore alternative execution strategies.
The following transformation rules form the mathematical foundation for
query optimization:

1. Commutativity of Joins: 𝑅1 ⋈ 𝑅2 = 𝑅2 ⋈ 𝑅1
2. Associativity of Joins: 𝑅1 ⋈ (𝑅2 ⋈ 𝑅3) = (𝑅1 ⋈ 𝑅2) ⋈ 𝑅3
3. Order Independence of Selections: The sequence of selection opera-

tions on the same table does not affect the result

4. Commutation of Selections and Projections: Selections and projec-
tions on the same table can be reordered, provided the projection
doesn’t eliminate attributes needed for selection

5. Commutation of Selections and Joins: Selections on a table before a
join produce equivalent results to selections after a join

6. Commutation of Projections and Joins: Projections and joins can be
reordered if the projection doesn’t remove join attributes

7. Commutation of Selections/Projections with Unions: These opera-
tions can be pushed down through union operations

These rules enable the systematic restructuring of query execution plans
to achieve more efficient forms while guaranteeing equivalent results.

5.4.3 Query Execution Plan Restructuring Algorithm

A practical heuristic algorithm for optimizing query execution plans incor-
porates the following steps:

1. Decompose Complex Selections: Separate selection operations with
multiple AND conditions into sequences of individual selections

2. Push Selections Down: Move selection operations as early as possible
in the execution sequence

3. Consolidate Selections: Group multiple selection operations on the
same table
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4. Push Projections Down: Move projection operations to eliminate un-
necessary attributes early in processing

5. Consolidate Projections: Combine multiple projection operations on
the same table and remove redundant projections

This algorithm systematically applies the transformation rules to create
plans that minimize intermediate result sizes, particularly before expensive
join operations.

5.5 Selectivity Factors and Cost Estimation

5.5.1 Foundations of Selectivity Estimation

Selectivity (S) quantifies the proportion of records in a table that satisfy
a given condition, with values ranging from 0 to 1. Accurate selectivity
estimation is crucial for predicting intermediate result sizes and comparing
alternative execution plans.

Key statistical measures for selectivity estimation:

• card(𝑅): Cardinality (number of rows) in table R

• card𝐴(𝑅): Number of distinct values of attribute A in table R

• max𝐴(𝑅): Maximum value of attribute A in table R

• min𝐴(𝑅): Minimum value of attribute A in table R

5.5.2 Selectivity Estimation Formulas

5.5.2.1 Equality Selection

For an attribute A having a specific value 𝑎:

𝑆(𝐴 = 𝑎) = 1
card𝐴(𝑅)

This formula assumes uniform data distribution, which provides reasonable
estimates for many practical scenarios despite potential inaccuracies with
skewed data.
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5.5.2.2 Range Selections

For inequality conditions:

𝑆(𝐴 > 𝑎) = max𝐴(𝑅) − 𝑎
max𝐴(𝑅) −min𝐴(𝑅)

𝑆(𝐴 < 𝑎) = 𝑎 −min𝐴(𝑅)
max𝐴(𝑅) −min𝐴(𝑅)

These formulas also rely on the uniform distribution assumption and work
best when data values are evenly distributed across the range.

5.5.2.3 Compound Selections

For conjunctions (AND conditions):

𝑆(𝑃 ∧ 𝑄) = 𝑆(𝑃) × 𝑆(𝑄)

For disjunctions (OR conditions):

𝑆(𝑃 ∨ 𝑄) = 𝑆(𝑃) + 𝑆(𝑄) − 𝑆(𝑃) × 𝑆(𝑄)

These formulas assume predicate independence, which generally holds for
unrelated conditions but may introduce errors for correlated predicates.

5.5.3 Histograms for Enhanced Estimation

Histograms address the limitations of uniform distribution assumptions
by capturing actual data distribution patterns. Modern database systems
maintain histograms that:

• Divide attribute value ranges into buckets

• Count the number of rows in each bucket

• Track frequent values and their exact frequencies

• Identify outliers and skewed distributions

The superiority of histogram-based estimation becomes evident in sce-
narios with skewed data distributions, where uniform assumptions can lead
to significant estimation errors and consequently poor plan selection.
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5.5.4 Join Selectivity Estimation

Estimating join result sizes presents unique challenges, particularly for non-
key joins. For the common case of primary key-foreign key joins:

card(𝑅1 ⋈ 𝑅2) = 𝑆 × card(𝑅1) × card(𝑅2)
where 𝑆 represents the selectivity of the join attribute when used as a
primary key.

A useful rule of thumb: A join between a table with a primary key and
a table with the corresponding foreign key produces a result with the same
number of rows as the table containing the foreign key.

5.5.5 Comprehensive Example: Selectivity in Practice

5.5.5.1 Query and Statistical Information

Consider the query:

1 SELECT supplierName
2 FROM supplier S, shipment SH
3 WHERE S.snum = SH.snum
4 AND S.city = 'London'
5 AND SH.shipdate = '01-JUN-2006';

Statistical information:

• card(supplier) = 200
• cardcity(supplier) = 50
• card(shipment) = 100, 000
• cardshipdate(shipment) = 1, 000

5.5.5.2 Case 1: Join Executed First

• Join result size: 𝑆(snum)×card(supplier)×card(shipment) = 1
200 ×200×100, 000 = 100, 000

• Final result: 𝑆(city = London)×𝑆(shipdate = 01-JUN-2006)×100, 000 =
1
50 ×

1
1000 × 100, 000 = 2 rows
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5.5.5.3 Case 2: Selections Executed First

• Selected suppliers: 𝑆(city = London) × card(supplier) = 1
50 × 200 = 4

rows

• Selected shipments: 𝑆(shipdate = 01-JUN-2006) × card(shipment) =
1

1000 × 100, 000 = 100 rows

• Join result: 𝑆(snum) × 4 × 100 = 1
200 × 4 × 100 = 2 rows

Both approaches yield the same final result (2 rows), but the early-
selection strategy processes significantly smaller intermediate tables, result-
ing in substantially better performance.

5.6 Advanced Optimization Considerations

5.6.1 Physical Design Impact on Optimization

The effectiveness of query optimization is intimately connected to physical
database design decisions:

• Index Selection: Appropriate indexes can dramatically reduce the cost
of selection and join operations, but introduce overhead for update
operations

• Partitioning: Horizontal and vertical partitioning strategies can im-
prove query performance by reducing the amount of data that needs
to be scanned

• Materialized Views: Precomputed query results can eliminate expen-
sive join and aggregation operations at query time

• Clustering: Physically organizing data based on query patterns can
minimize I/O operations

Optimizers must consider these physical design elements when generating
and comparing alternative execution plans.
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5.6.2 Limitations and Challenges in Query Optimization

Despite sophisticated optimization techniques, several challenges persist:

• Cost Model Accuracy: Cost estimates are only as good as the un-
derlying statistical information and the accuracy of the cost model
itself

• Search Space Limitations: The exponential growth of possible plans
with query complexity forces optimizers to use heuristic approaches
rather than exhaustive search

• Correlation Estimation: Estimating selectivities for correlated predi-
cates remains challenging with standard statistical approaches

• Runtime Dynamics: Static optimization cannot account for runtime
factors like system load, memory availability, or concurrent resource
contention

• Complex Data Types: Optimization techniques for traditional data
types don’t always extend well to complex types like spatial, temporal,
or multimedia data

5.6.3 Emerging Trends in Query Optimization

Recent developments in query optimization include:

• Adaptive Query Processing: Techniques that adjust execution strate-
gies based on runtime feedback

• Machine Learning Approaches: Using historical query performance
data to improve future optimization decisions

• Multi-Objective Optimization: Balancing competing goals like execu-
tion time, resource consumption, and result freshness

• Cloud-Native Optimization: Techniques tailored for distributed database
architectures and elastic resource environments

• Approximate Query Processing: Delivering timely approximate re-
sults for interactive analytics on massive datasets

97



5 Query Optimization in Database Systems

5.7 Conclusion
Query optimization represents a cornerstone of modern database system
performance. Through the systematic application of transformation rules,
cost-based evaluation, and statistical analysis, optimizers can identify exe-
cution strategies that deliver query results orders of magnitude faster than
naive approaches.

The fundamental principle that emerges consistently throughout opti-
mization theory and practice is the importance of reducing data volume
as early as possible in query processingparticularly before expensive join
operations. This principle, combined with accurate cost estimation and in-
telligent plan enumeration, enables database systems to process complex
queries efficiently despite the combinatorial explosion of possible execution
strategies.

As data volumes continue to grow and application requirements evolve,
query optimization remains an active area of research and development.
The techniques covered in this course provide a solid foundation for under-
standing both current optimization practices and future advancements in
this critical field of database technology.

Exercises
1. Using the three-table database example from Section 3, calculate the

I/O cost for executing the query using join order 3 (P join SH join S)
with selections before joins.

2. Design a set of histograms for the shipment table that would help the
optimizer make better decisions for queries filtering on shipdate, and
explain how these histograms would improve selectivity estimation.

3. Prove the correctness of the transformation rule for commuting selec-
tions and joins using relational algebra.

4. Compare the advantages and disadvantages of dynamic programming
versus greedy search strategies for query optimization in terms of
optimization time and plan quality.

5. Design an experiment to determine when query hints should be used
instead of relying on the optimizer’s built-in decision processes.
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6.1 Introduction to Transactions
A database transaction is a sequence of operations performed as a single
logical unit of work in a database. It ensures data integrity and consistency
by adhering to the ACID properties: Atomicity, Consistency, Isolation, and
Durability. Transactions begin with a BEGIN command, end with COM-
MIT (to save changes) or ROLLBACK (to undo changes), and can include
intermediate savepoints. They are essential in multi-user environments to
prevent conflicts and maintain data reliability. Examples include transfer-
ring funds in banking systems or managing orders in e-commerce.

6.1.1 Definition and Importance

A database transaction is a sequence of operations performed as a sin-
gle logical unit of work in a database management system (DBMS). It
groups related operations, such as INSERT, UPDATE, or DELETE, into a
single entity to ensure data integrity and consistency. Transactions follow
the ACID properties: Atomicity ensures all operations succeed or none do;
Consistency maintains valid database states; Isolation prevents concurrent
transactions from interfering; and Durability ensures committed changes
are permanent. Transactions begin with a BEGIN statement and end with
COMMIT (to save changes) or ROLLBACK (to undo changes). They are
essential for managing complex workflows, handling errors, and maintain-
ing reliability in multi-user environments. By treating multiple operations
as a single unit, transactions ensure that databases remain accurate and
consistent, even during failures or concurrent access. Importance:

Database transactions are vital for maintaining data integrity, consis-
tency, and reliability in modern applications. They ensure that all opera-
tions within a transaction are completed successfully or rolled back, prevent-
ing partial updates and data corruption. Transactions enable concurrency
control, allowing multiple users to access and modify data simultaneously
without conflicts. They also provide error recovery mechanisms, ensuring
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databases can revert to a consistent state in case of failures. By enforc-
ing ACID properties, transactions support critical operations like financial
transactions, inventory management, and order processing. They improve
system stability, enhance user experience, and ensure compliance with regu-
latory standards. In distributed systems, transactions maintain consistency
across multiple databases, enabling scalability and high availability. Over-
all, transactions are the backbone of reliable and efficient database manage-
ment, supporting complex workflows and ensuring data accuracy in real-
world applications.

6.1.2 ACID Properties

Transactions follow the ACID properties:
• Atomicity: Ensures that all steps in a transaction are completed or

none at all.

• Consistency: Guarantees that a transaction brings the database from
one valid state to another.

• Isolation: Ensures transactions operate independently, avoiding inter-
ference.

• Durability: Once committed, the effects of a transaction persist, even
after system failures.

6.1.3 Example of a Simple Transaction

1 BEGIN;
2 UPDATE accounts SET balance = balance - 100 WHERE account_id = 1;
3 UPDATE accounts SET balance = balance + 100 WHERE account_id = 2;
4 COMMIT;

In this transaction, money is transferred between accounts. The transac-
tion either completes fully, transferring money from one account to another,
or fails, leaving both accounts in their original states.

6.2 Transaction Lifecycle
The lifecycle of a transaction includes several phases: initiation, execution,
validation, and completion.
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Transaction

Atomicity Consistency

Isolation Durability

Ensures
all-or-nothing

Maintains
valid state

Avoids
interference Persist changes

Figure 6.1: ACID Properties of a Transaction

6.2.1 Phases of a Transaction

1. Begin Transaction: Marks the start of a transaction.

2. Execute Statements: Database operations are performed.

3. Validation (Check for Success): Determines if the transaction can pro-
ceed.

4. Commit or Rollback: Commits changes if successful; otherwise, rolls
back.

6.3 Isolation Levels
Isolation levels define how strictly transactions are isolated from each other,
affecting consistency and concurrency. The following levels are common:
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Begin Transaction

Execute Statements

Successful?

Commit

Rollback

End Transaction

Yes

No

Figure 6.2: Transaction Lifecycle

6.3.1 Read Uncommitted

In this level, a transaction can see changes made by other transactions
that have not yet been committed. This can lead to dirty reads, where
uncommitted, potentially inconsistent, or invalid data is read. While this
level offers the highest concurrency, it provides the lowest level of data
consistency and integrity. It is rarely used in scenarios where data accuracy
is critical.

6.3.2 Read Committed

In this level, transactions can only see data that has been committed by
other transactions, preventing dirty reads. However, it allows non-repeatable
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reads, meaning if the same data is read multiple times within a transaction,
it may change if other transactions commit modifications in between. This
level strikes a balance between consistency and concurrency, making it a
common choice for many applications.

6.3.3 Repeatable Read

In this level, a transaction ensures that once it reads a row, no other trans-
action can modify that row until the initial transaction is complete. This
prevents non-repeatable reads, where a transaction might see different val-
ues for the same row if read multiple times. However, it still allows phantom
reads, where new rows added by other transactions can appear in subse-
quent reads. This level provides a higher degree of consistency compared
to Read Committed but with reduced concurrency.

6.3.4 Serializable

The Serializable isolation level is the strictest, ensuring full isolation by
locking rows or ranges of rows. This prevents other transactions from mod-
ifying or inserting data that would affect the current transaction. It elimi-
nates dirty reads, non-repeatable reads, and phantom reads, providing the
highest level of data consistency. However, this comes at the cost of reduced
concurrency and potential performance overhead, as transactions may need
to wait for locks to be released. It is typically used in scenarios where ab-
solute data integrity is critical.

6.4 Concurrency Control
Concurrency control manages access in a multi-user environment, ensuring
transaction isolation while balancing performance.

6.4.1 Locking Mechanisms

Locking mechanisms include:

• Pessimistic Locking: Locks data preemptively, blocking other trans-
actions.

• Optimistic Locking: Allows concurrent access but checks for conflicts
at commit.
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6.4.2 Deadlock Handling

A deadlock occurs when two or more transactions wait on each other to
release locks. Deadlocks are resolved through techniques like timeout and
deadlock detection.

T1 T2

Resource A Resource B

waitingwaiting

holds holds

Figure 6.3: Deadlock Example: Transaction T1 and T2 each wait-
ing for resources held by the other.

6.5 Error Handling and Recovery
Error handling in databases ensures that if a transaction fails, the system
can revert to its previous state, maintaining data integrity. This is achieved
through mechanisms like rollbacks, which undo changes made during the
failed transaction. By implementing proper error handling, databases pre-
vent partial updates or corruption, ensuring consistency. It also helps in
identifying and logging errors for debugging and future improvements. Over-
all, error handling is crucial for reliable and stable database operations,
safeguarding against unexpected failures.

6.5.1 Rollback Mechanisms

A rollback ensures that if a transaction encounters an error or fails, all
changes made by that transaction are undone. This restores the database
to its previous consistent state, maintaining data integrity. Rollbacks are
a key feature of transactional systems, ensuring that partial or incomplete
changes do not persist. They help enforce the atomicity property of trans-
actions, where either all operations succeed or none do. This mechanism is
crucial for reliability, especially in complex or critical systems.
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6.5.2 Savepoints

Savepoints allow a transaction to roll back to a specific point without can-
celing the entire transaction. They provide finer control by marking inter-
mediate stages within a transaction. If an error occurs, you can revert to a
savepoint, undoing only the changes made after that point, while preserv-
ing earlier work. This is useful for complex transactions with multiple steps,
enabling partial rollbacks. Savepoints enhance flexibility and efficiency in
error handling, allowing transactions to continue from a known good state.
They help maintain progress without starting over.

1 BEGIN;
2 UPDATE accounts SET balance = balance - 100 WHERE account_id = 1;
3 SAVEPOINT savepoint1;
4 UPDATE accounts SET balance = balance / 0 WHERE account_id = 2; --

Intentional error↪
5 ROLLBACK TO savepoint1;
6 COMMIT;

6.6 Best Practices for Transactions
Following best practices for transactions optimizes database performance
while maintaining consistency.

• Keep Transactions Short: Avoid lengthy transactions to minimize lock
times.

• Use Appropriate Isolation Levels: Balance performance and isolation
needs.

• Handle Errors Gracefully: Implement savepoints for controlled roll-
backs.

6.7 Advanced Concepts
Advanced concepts include distributed transactions and protocols for han-
dling them.

105



6 Transactions

6.7.1 Distributed Transactions

These transactions span multiple databases, requiring a coordination pro-
tocol like Two-Phase Commit (2PC).

6.7.2 Two-Phase Commit (2PC)

The 2PC protocol ensures that all participating databases either commit
or rollback to prevent inconsistencies.

1. Phase 1 - Prepare: Each participant secures resources.

2. Phase 2 - Commit/Rollback: All participants commit if prepared; oth-
erwise, they rollback.

6.8 Lab
The purpose of this lab is to deepen your understanding of how trans-
actions work, focusing on advanced topics such as deadlocks, transaction
performance, and nested transactions. Additionally, you will experiment
with different isolation levels and observe how they affect concurrent trans-
actions. Pair up with your project partner to complete this lab.

This is a graded lab. Record your answers to the questions using Libre-
Office Writer or LATEX, and submit one document per pair. Ensure that
the names of both partners are included at the beginning of the document.

6.8.1 Preliminaries

Complete this section individually.

1. Download bank.sql and films.sql from the sciences-courses website
and save them in your working directory.

2. You must decide how to handle autocommit mode. You can disable
autocommit or manually manage transactions by using BEGIN and
COMMIT.

3. To test concurrency, you will need to run multiple psql sessions (Sev-
eral terminal sessions).

106



6.8 Lab

6.8.2 Transactions with Deadlocks

Deadlocks occur when two or more transactions wait for each other to
release locks. In this section, you’ll intentionally create a deadlock and
observe how PostgreSQL resolves it.

• In the first psql session, start a transaction and run the bank.sql
script to create and populate a bank accounts table.

• In the second psql session, start a transaction and run the films.sql
script to create and populate a films table.

• In session 1, update an account balance in the bank table without
committing.

• In session 2, update a film title in the films table without committing.

• In session 1, attempt to update the films table and, in session 2,
attempt to update the bank accounts table. Both transactions should
now be waiting for each other.

• After a short time, PostgreSQL should detect the deadlock and abort
one of the transactions. Observe which session is aborted.

Describe the result of the deadlock and explain how PostgreSQL resolves
the issue. Why was one transaction aborted and not the other?

6.8.3 Measuring Transaction Performance

In this section, you will compare the performance of different transaction
isolation levels.

• Create a new table for recording performance metrics:

1 CREATE TABLE performance_metrics (
2 isolation_level TEXT,
3 transaction_duration INTERVAL
4 );

• Write a script that runs 1000 transactions at different isolation levels
(READ COMMITTED, REPEATABLE READ, and SERIALIZABLE) and records the
duration of each transaction in the performance_metrics table.
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• Run the script at each isolation level and record the average transac-
tion time.

Which isolation level resulted in the fastest transactions? Which was the
slowest? Explain why the results differ between isolation levels.

6.8.4 Nested Transactions

Nested transactions are supported in some databases, allowing sub-transactions
to be committed or rolled back independently. PostgreSQL does not na-
tively support nested transactions but does allow you to mimic them using
SAVEPOINT.

• Start a transaction and insert several rows into the films table.

• Create a SAVEPOINT named sp1.

• Insert additional rows into the films table, then create another save-
point named sp2.

• Simulate an error by updating all records with an invalid value for
one of the columns.

• Roll back to sp2 and verify that the second set of inserts remains
intact.

• Now roll back to sp1 and verify that only the first set of inserts re-
mains.

Describe the behavior of PostgreSQL when using SAVEPOINT. How does
this emulate nested transactions?

6.8.5 Concurrent Updates and Row-Level Locking

In this section, you will explore how PostgreSQL handles row-level locking
when two transactions attempt to update the same rows concurrently.

• In the first psql session, start a transaction and update a few rows in
the films table.

• Without committing, in the second psql session, start another trans-
action and attempt to update the same rows.
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• Observe the behavior of PostgreSQL. One of the transactions will be
blocked until the other commits or rolls back.

• Commit or roll back the first transaction and observe the effect on
the second transaction.

What did you observe when both transactions attempted to update the
same rows? Describe PostgreSQL’s handling of row-level locking and why
one transaction was blocked.

6.8.6 Bonus: Simulating Lost Updates

A lost update occurs when two transactions update the same data without
awareness of each others changes. In this bonus section, you will simulate
a lost update scenario.

• Start two psql sessions.

• In the first session, start a transaction and read a row from the bank
table.

• In the second session, start a transaction and read the same row from
the bank table.

• In the first session, update the balance of the account, then commit.

• In the second session, update the balance of the same account without
re-reading the row and commit.

Did you successfully simulate a lost update? Why does this occur, and
how could you prevent this issue in a real-world system?
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