University of Setif 1- Ferhat Abbas
Faculy Of Sciences

Compter Science Department

UNIX SYSTEM ADMINISTRATION

1%t Year Master Cyber Security

By Dr. Lyazid TOUMI

Contents

1 Introduction to UNIX System Administration

1

The Role of a UNIX System Administrator
1.1 Core Responsibilities
1.2 The Administrator’s Toolkit
Importance of Shell Proficiency
2.1 Advantages of Shell Usage
2.2 Shell vs. GUI Administration
Key Administrative Tasks

3.1 System Monitoring and Performance Tuning
3.2 Security Practices and Hardening
3.3 Disaster Recovery Planning

2 Understanding the UNIX Shell

1

Shell Architecture and Components.
1.1 Core Components
1.2 Shell Startup Sequence
Shell Types and Features
2.1 Major UNIX Shell Variants
2.2 Shell Feature Matrix
Command Interpretation Process
3.1 Processing Stages o oL

3.2 Expansion Examples 0 0.
Interactive vs. Non-Interactive Shells
4.1 Interactive Shell Characteristics

4.2 Non-Interactive Shell Characteristics
Shell Configuration and Customization
5.1 Environment Variables
5.2 Aliases and Functions
Shell Job Control
6.1 Job Control Best Practices

10
10
10
10
11
12
12
12
13
14

Dr. Lyazid TOUMI

3 Shell Scripting Fundamentals 27
1 Script Basics and Structureo oL 27
1.1 Script Components L. 27

1.2 Shebang Variations 28

1.3 Exit Status Conventions 29

2 Variables and Data Types 29
2.1 Variable Handling 29

2.2 Special Variables 30

2.3 Data Type Considerations 31

3 Control Structures 31
3.1 Conditional Statements 31

3.2 Loop Constructs 33

3.3 Best Practices 34

4 Functions and Modularity 34
4.1 Function Definition and Usage 35

4.2 Function Best Practices 36

4.3 Modular Script Design 37

5 Input/Output Handling 38
5.1 Redirection Operators 38

5.2 Here Documents 39

5.3 File Descriptor Management 40

5.4 Process Substitution o000 40

6 Error Handling and Debugging 41
6.1 Error Prevention Techniques 43

6.2 Debugging Methods 44

6.3 Frror Recovery Patterns 46

7 Advanced Scripting Techniques 47
7.1 Arrays and Associative Arrays 47

7.2 Process Substitutiono 49

7.3 Named Pipes and Coprocesses 50

8 Script Security Considerations. 50
8.1 Example Secure Script 52

8.2 Common Vulnerabilities and Mitigations 53

8.3 Advanced Security Patterns 54

4 Advanced Shell Features 57
1 Advanced I/O Redirection 57
1.1 File Descriptor Manipulation 57

1.2 Here Documents and Strings 58

User

0 Unix System Administration

Process Substitution and Coprocesses 59
2.1 Process Substitution 000 59
2.2 Coprocesses v i e 59
Advanced Parameter Expansion 60
3.1 Pattern Matching Operators 60
Arrays and Associative Arrays 61
4.1 Advanced Array Techniques 61
4.2 Array Processing oL 61
Shell Options and Customization 62
5.1 set and shopt Commands 62
5.2 Custom Prompt Engineering 62
Signal Handling and Traps. 63
6.1 Advanced Trap Techniques 63
6.2 Signal Reference 63
Advanced Scripting Patterns 64
7.1 Singleton Pattern 64
7.2 Daemonization 0. 64
and Group Administration 67
User Account Fundamentals 67
1.1 User Account Components 67
1.2 User Account Fields 67
User Account Management 68
2.1 Account Creation 68
2.2 Account Modification 69
Password Policieso 69
3.1 Password Aging Controls 69
3.2 PAM Configuration 70
Group Management 70
4.1 Group Operations 70
4.2 Group Membership Verification 70
Privilege Managemento 71
5.1 sudo Configuration 71
5.2 Best Practices for sudo. 71
Account Security 72
6.1 Account Auditing L oL 72
6.2 Account Lockdown oL 72
Automated User Management 73
7.1 Bulk Operations 73

Dr. Lyazid TOUMI

7.2 LDAP Integration 73

6 File System Management 75
1 Disk Partitioning and Layout 75
1.1 Partition Table Types 75

1.2 Partitioning Tools 76

2 File System Types and Features. 76
2.1 Common UNIX File Systems 76

2.2 File System Creation 7

3 Mounting File Systems oL 7
3.1 Mount Options and Strategies 7

4 Advanced File System Features 78
4.1 Logical Volume Management 78

4.2 Quota Management 79

) File System Maintenance 79
5.1 Monitoring and Analysis 79

5.2 Scheduled Maintenance 80

6 Backup and Recovery 80
6.1 Backup Strategies 80

6.2 Backup Tools 81

7 Security and Permissions L. 81
7.1 Advanced Permission Management 81

7.2 File Attributes 82

7 Process and Service Management 83
1 Process Fundamentals 83
1.1 Process States 83

1.2 Process Hierarchy 84

2 Process Monitoring L. 84
2.1 Monitoring Tools 84

2.2 Advanced Monitoring 85

3 Process Control 85
3.1 Signals and Termination 85

4 Process Prioritization 000 86
4.1 Nice and Renice 86

4.2 Scheduling Classes 86

) Systemd Service Management L. 87
5.1 Service Unit Files. 87

5.2 Service Commands 88

0 Unix System Administration

Logging and Debugging 88
6.1 Journaletl Usage 88
6.2 Process Tracing 89
Automation and Scheduling 89
7.1 CronJobs o 89
7.2 Systemd Timers 90
Resource Limits 0. 90
8.1 ulimit Configuration 90
8.2 Cgroups v2 91

Reference Books

e UNIX and Linux System Administration Handbook (5th Ed.), Nemeth,
Snyder, Hein, et al, Oreilly, 2017.

e The Practice of System and Network Administration (3rd Ed.), Limon-
celli, Hogan, Chalup Addison-Wesly, 2017

e Essential System Administration (3rd Ed.), Zleen Frisch, Oreilly,
2022.

e Linux Bible (10th Ed.), Christopher Negus, Oreilly, 2020.

e The Linux Command Line, 2nd Ed. by William Shotts, Oreilly, 2019.

Chapter 1

Introduction to UNIX System
Administration

Chapter Overview

This chapter provides a comprehensive introduction to the essential princi-
ples of UNIX system administration, equipping you with the foundational
knowledge needed to manage and maintain UNIX-based systems effectively.

Key Focus Areas:

e The System Administrator’s Role: Understand the responsibilities,
challenges, and best practices for UNIX administrators, including sys-
tem security, user management, and troubleshooting.

e Shell Proficiency: Discover why mastering the UNIX shell (Bash, Korn,
or others) is critical for efficient administration, automation, and
scripting.

e Core Administrative Tasks: Learn about vital operations such as pro-
cess management, filesystem maintenance, backups, and network con-
figuration.

Why UNIX Still Matters

Despite the rise of modern operating systems, UNIX remains a cornerstone
of enterprise computing, powering servers, cloud infrastructure, and critical
applications. We’ll examine its enduring relevance, stability, and flexibility
in today’s I'T landscape.

By the end of this chapter, you’ll have a solid grasp of how system admin-
istrators keep UNIX environments secure, efficient, and reliable, ensuring
seamless operation in professional settings.

Dr. Lyazid TOUMI

1 The Role of a UNIX System Administrator

UNIX system administrators serve as the backbone of any organization
running UNIX or UNIX-like systems. Their multifaceted responsibilities
encompass all aspects of system operation, maintenance, and security.

1.1 Core Responsibilities

e System Installation and Configuration:

— OS installation, patching, and upgrades

— Kernel tuning and performance optimization
— Filesystem hierarchy and storage management
— Package and dependency management

e User and Security Management:

— User account lifecycle management

— Permission and access control (RBAC)
Authentication system configuration (PAM, LDAP)
Security auditing and compliance

e Network Services Administration:

— TCP/IP stack configuration

Firewall (iptables/nftables) and routing management

— Network service management (DNS, DHCP, NFS, Samba)
— VPN and remote access configuration

1.2 The Administrator’s Toolkit

A proficient UNIX administrator maintains expertise in several categories
of essential tools:

Modern administrators also utilize configuration management tools (Ansi-
ble, Puppet, Chef) and containerization technologies (Docker, Kubernetes)
in contemporary UNIX environments.

2 Importance of Shell Proficiency

While graphical tools exist, the command-line interface (CLI) remains the
most powerful and ubiquitous administration method for UNIX systems,
offering unparalleled control and flexibility.

10

1 Unix System Administration

Table 1: Essential UNIX Administration Tools

Tool Category

Representative Utilities

Process Management

ps, top, htop, kill, pkill, nice, renice, systemd

Filesystem Tools

df, du, mount, umount, fsck, Isblk, lsof, find

Network Utilities

ip, ss, netstat, ping, traceroute, dig, tcpdump,
nmap

Security Tools

sudo, su, chmod, chown, chattr, iptables,
auditd, fail2ban

System Monitoring

vmstat, iostat, sar, dmesg, journalctl, nagios,
zabbix

2.1 Advantages of Shell Usage

1. Automation Capabilities:

e Create reusable scripts for repetitive tasks
e Implement complex workflows with conditionals and loops
e Schedule automated maintenance jobs

Automated Backup Script

#!/bin/bash

5} > $L0G FILE 2>&1

1

2 # Automated backup script with logging and error handling
3 BACKUP_DIR="/backups"

4 LOG FILE="/var/log/backup $(date +\%Y\%m\%d).log"

5 SOURCE DIR="/important data"
6

7
8
9

{
echo "Starting backup at $(date)"
mkdir -p $BACKUP DIR
10 tar -czf "$BACKUP DIR/$(date +\%Y\%m\%d).tar.gz"
— "$SOURCE DIR" \
11 && echo "Backup completed successfully" \
12 || echo "Backup failed!"
13 find $BACKUP DIR -name '*.tar.gz' -mtime +30 -delete
14 echo "Cleanup completed at $(date)"

2. Remote Administration:

e Secure shell (SSH) for encrypted remote access

11

Dr. Lyazid TOUMI

e rsync for efficient differential file transfers
e Terminal multiplexers (screen, tmux) for persistent sessions
e SSH key-based authentication for passwordless access

3. Scripting Power:

Combine utilities via pipes and redirection
Advanced text processing with awk, sed, and grep
Job scheduling with cron and systemd timers
Error handling and logging capabilities

2.2 Shell vs. GUI Administration

Table 2: Comparison of CLI and GUI Administration Methods

Feature Command Line GUI Tools
Resource Usage Minimal CPU/RAM Significant overhead
Remote Access Full functionality via | Often requires
SSH VNC/RDP
Automation Complete scripting sup- | Limited to recorded
port macros
Reproducibility Self-documenting scripts | Requires manual docu-
mentation
Precision Exact control Often abstracted opera-
tions
Speed Immediate execution Multiple clicks required

Key Insight: Professional system administrators typically use CLI for 90%
of tasks, reserving GUI tools only for specific monitoring or configuration
scenarios.

3 Key Administrative Tasks

3.1 System Monitoring and Performance Tuning

Effective administrators implement comprehensive monitoring strategies to
maintain optimal system health:

e Performance Metrics Collection:

12

1 Unix System Administration

System Monitoring Commands

CPU and process statistics
top -b -n 1 | head -n 20
mpstat -P ALL 1 5

1
2
3
4
5 # Memory utilization analysis
¢ free -h

7 vmstat -SM 1 5

8

9 # Disk I/0 monitoring

10 iostat -xmdz 1

un iotop -o

13 # Network throughput
14 iftop -n -i ethO
15 nload etho®

e Log Management Framework:

— Centralized logging with syslog-ng/rsyslog

— Automated log rotation (logrotate)

— Real-time monitoring with tail -f or journalctl -f
— Log analysis tools (grep, awk, ELK Stack)

3.2 Security Practices and Hardening

Essential security measures for production systems:

1. Authentication and Access Control:

Password policies (/etc/login.defs, pam__pwquality)
SSH hardening (disable root login, change port)
Two-factor authentication implementation

Regular audit of sudo privileges (/etc/sudoers)

2. System Hardening Procedures:

e Service minimization (disable unused services)

e Filesystem permission audits (find / -perm /4000)

e Regular security updates (yum-cron, unattended-upgrades)
e Firewall configuration (iptables/nftables)

e SELinux/AppArmor enforcement

13

Dr. Lyazid TOUMI

3.3 Disaster Recovery Planning
A comprehensive disaster recovery strategy includes:

Table 3: Enterprise Backup Strategy Framework

Backup Type Frequency Implementation

Full System Monthly dd, Clonezilla

Image

Incremental Files | Daily rsync —link-dest
Configuration On Change RCS, Git, etckeeper
State

Database Dumps | Hourly mysqldump, pg_ dump
Cloud Continuous rclone, Duplicity
Synchronization

e Recovery Testing: Regular restore drills
e Offsite Storage: 3-2-1 backup rule (3 copies, 2 media, 1 offsite)
e Documentation: Detailed recovery procedures

Best Practice: Automate backup verification through checksum validation
and periodic test restores.

Chapter Summary

This chapter introduced the critical role of UNIX system administrators
and the tools they use. We emphasized the importance of shell proficiency
and covered fundamental administrative tasks. The coming chapters will
explore these concepts in greater depth, providing practical examples and
advanced techniques.

14

Chapter 2
Understanding the UNIX Shell

Chapter Overview

This chapter offers a comprehensive exploration of the UNIX shell environ-
ment, a critical tool for system administrators and power users. We will
examine:

Key Learning Objectives

e Shell Architecture: Understand the underlying structure and components
of UNIX shells

e Shell Variants: Compare major shell types (Bourne, Bash, Zsh, Ksh) and
their features

e Command Processing: Analyze the interpretation cycle from input to
execution

e Shell Modes: Differentiate between interactive and non-interactive shell
operations

e Environment Customization: Master configuration techniques for optimal
productivity

Administrative Relevance

The chapter emphasizes practical shell skills essential for:

e Efficient system maintenance and troubleshooting
e Automation of repetitive administrative tasks

e Development of robust system management scripts

e Secure shell configuration for multi-user environments

Through practical examples and configuration case studies, you will gain the
expertise needed to leverage the UNIX shell’s full potential in professional
system administration contexts.

Dr. Lyazid TOUMI

1 Shell Architecture and Components

The UNIX shell operates as a sophisticated command interpreter with a
modular architecture designed for flexibility and extensibility.

1.1 Core Components

e Command Parser:

— Lexical analysis and tokenization
— Special character handling (metacharacters, wildcards)
— Syntax tree generation

e Variable Subsystem:

— Environment variable management (export, env)
— Shell variable expansion ($VAR, ${VAR})
— Special parameters ($0, $?, $$)

e Process Controller:

— Fork-exec mechanism
— Job control (fg, bg, jobs)
— Signal handling (trap, kill)

e 1/0 Redirection:

— File descriptor management (>, <, 2>)
Pipeline implementation (|)
Here-documents (<<)

1.2 Shell Startup Sequence

The shell initialization process follows a precise order when establishing the
execution environment:

16

2 Unix System Administration

Shell Initialization Files

1 # System-wide configuration files (processed first)

2 /etc/profile # Global environment and startup programs
3 /etc/bash.bashrc # System-wide functions and aliases
4 /etc/environment # Environment variable definitions

¢ # User-specific files (processed in order of precedence)

7 ~/.bash profile # Login shell initialization

8 ~/.bash login # Alternative login configuration

9 ~/.profile # Fallback login configuration

10 ~/.bashrc # Non-login interactive shell configuration
n ~/.bash logout # Cleanup commands on shell exit

Note: The exact file processing order varies between shell types (Bash, Zsh,
Ksh). Login shells process different files than non-login interactive shells.

17

Dr. Lyazid TOUMI

2 Shell Types and Features

2.1 Major UNIX Shell Variants

Table 4: UNIX Shell Comparison and Characteristics

Shell

Key Features

Common
Deployment

Bourne Shell
(sh)

e Original UNIX shell (1977)
e Basic scripting capabilities
e Limited interactive features

e System startup
scripts

e POSIX-
compliant
environments

Bash
(Bourne-Again
SHell)

sh-compatible with GNU exten-
sions

e Command history and editing
e Arrays and associative arrays

e Default Linux
shell

e macOS
terminal (until

10.15)

o Built-in arithmetic
e Command history

Korn Shell
(ksh) e Advanced scripting features e Enterprise
e Floating-point arithmetic UNIX systems
e Co-processes o AIX default
shell
C Shell
(csh/tesh) e C-like syntax e BSD systems

e Scientific
computing

Z Shell (zsh)

e Advanced completion system
e Plugin and theme support
e Shared command history

e Developer
workstations

e macOS default
since 10.15

18

2 Unix System Administration

2.2 Shell Feature Matrix

Table 5: Detailed Shell Feature Comparison

Feature sh bash ksh csh zsh
POSIX Full Partial Full No Partial
Compliance

Command History X v v v v
Job Control X v v v v
Associative Arrays X v4.0+ v X v
Floating-Point X X v v v
Math

Plugin System X X X X v

Key Observations:

e Bash dominates Linux systems while ksh remains prevalent in enterprise
UNIX

o Zsh offers the most interactive features but has higher resource usage

e For maximum portability, sh remains the safest choice for system scripts

e Modern shells (bash 5.0+, zsh) continue to add features like JSON sup-
port

3 Command Interpretation Process

The shell follows a sophisticated multi-stage process when interpreting and
executing commands. This pipeline ensures proper handling of both simple
commands and complex scripting constructs.

3.1 Processing Stages

1. Lexical Analysis:

e Tokenization of input into words and operators
e Identification of metacharacters and quoting
e Comment removal

2. Expansion Phase (in order of execution):

e Brace expansion: {a,b,c}.txt - a.txt b.txt c.txt
e Tilde expansion: ~/user - /home/user

19

Dr. Lyazid TOUMI

Parameter expansion: $VAR, ${VAR: -default}
Command substitution: $(cmd) or “cmd®
Arithmetic expansion: $((expression))

Process substitution: <(cmd), >(cmd) (bash/zsh)
Word splitting (using IFS)

Filename expansion (globbing): *.txt

3. Redirection Handling:

e File descriptor manipulation
e Here-documents/here-strings
e Pipeline creation

4. Execution Phase:

e Built-in vs external command determination
e PATH resolution
e Process creation (fork-exec)

3.2 Expansion Examples

Advanced Shell Expansion Examples

1 #!/bin/bash
2 # Brace expansion
3 echo file-{1..3}.{txt,log} # file-1l.txt file-1l.log file-2.txt...

5 # Nested command substitution
¢ disk usage=$(df -h $(mount | awk '/\/$/ {print $1}'))

s # Advanced parameter expansion
9 default path="/usr/local/bin"
10 echo "Using ${PATH:-$default path}"

12 # Arithmetic in command substitution
13 timeout seconds=$(($(date +%s) + 3600))

15 # Process substitution
16 diff <(sort filel) <(sort file2)

Note: The expansion order is critical - brace expansion occurs before vari-
able expansion, which occurs before word splitting. Quoting can suppress
unwanted expansions.

20

2 Unix System Administration

4 Interactive vs. Non-Interactive Shells

UNIX shells operate in fundamentally different modes depending on their
execution context, affecting both functionality and configuration.

4.1 Interactive Shell Characteristics

e User Interface:

— Presents a command prompt (PS1 variable)
— Supports line editing and command history
— Provides tab completion and suggestions

e Behavior:

— Reads commands from terminal device

— Enables full job control (fg, bg, jobs)

— Processes user-specific RC files (e.g., /.bashrc)
— Handles signals (Ctrl-C, Ctrl-Z) interactively

e Use Cases:

— Direct system administration
— Development and debugging
— Exploratory data analysis

4.2 Non-Interactive Shell Characteristics

e Execution Mode:

— Reads commands from files or pipes
— No visual prompt or line editing
— Limited signal handling

e Configuration:

— Processes only ENV file if specified
— Skips most user-specific configurations
— Often runs with restricted options (—norc, —noprofile)

e Use Cases:

— Script execution
— Automated batch processing
— System startup/shutdown procedures

21

Dr. Lyazid TOUMI

Table 6: Key Differences Between Shell Modes

Feature Interactive Shell Non-Interactive Shell
Command Source Terminal input Files/pipes

Prompt Display Yes No

RC File Processing Full Minimal

Job Control Complete Limited

Error Handling Interactive Exit on error
Default Options -i flag —norc

Administrative Note: Scripts should explicitly declare #!/bin/bash - to
avoid inheriting interactive shell configurations that may cause unexpected
behavior.

5 Shell Configuration and Customization

5.1 Environment Variables

Critical environment variables for professional system administration:

Essential Environment Variables

1 # System paths (order matters for security)
2 PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
3 MANPATH=/usr/local/man:/usr/share/man

5 # Security-related settings

6 umask 027 # Default file permissions
7 TMOUT=900 # Session timeout (15 mins)
s HISTCONTROL=ignoreboth # Ignore duplicate commands
9 HISTIGNORE="&:1ls:1l:la:cd:exit" # Exclude trivial commands

n # Application defaults

12 EDITOR=/usr/bin/vim # Preferred text editor
13 PAGER=/usr/bin/less # Paging program
14 PS1='[\u@\h \W]\$ ' # Custom prompt

16 # Development environment
17 LD_LIBRARY_PATH=/usr/local/lib # Library paths
18 PKG CONFIG PATH=/usr/local/lib/pkgconfig

22

2 Unix System Administration

5.2 Aliases and Functions

Professional-grade shell customizations:

Advanced Admin Customizations

1 # System monitoring aliases

2 alias meminfo='free -m -1 -t'

3 alias cpuinfo='lscpu'

4 alias diskusage='df -h -x tmpfs -x devtmpfs
5 alias openports='ss -tulnp'

7 # Safety nets

s alias rm='rm -i'
9 alias cp='cp -i'
10 alias mv='mv -i'

12 # Advanced functions
13 service manage() {

14 local service=$1

15 local action=$2

16 sudo systemctl $action $service

17}

18

19 find large files() {

20 find ${1:-.} -type f -size +${2:-106M} -exec ls -lh {} \+ | awk '{
o print \$9 ": " \$5 }'

21}

22
s # Git shortcuts (for systems with git)
b+ 1f command -v git &>/dev/null; then

25 alias gs='git status'
26 alias gl='git log --oneline --graph --decorate'
27 i

6 Shell Job Control

Comprehensive job management for administrators:

23

Dr. Lyazid TOUMI

Table 7: Advanced Job Control Reference

Command Function and Usage

Ctrl+z Suspend foreground job (SIGTSTP)
bg [%job] Resume suspended job in background
fg [%job] Bring job to foreground

jobs -1 List jobs with PID information

kill -%n Send signal to job number n

nohup command & Run command immune to hangups
disown -h [%job] | Remove job from shell’s job table
setsid command Run in new session (daemonize)

6.1 Job Control Best Practices

Use tmux or screen for long-running processes
Prefer nohup or disown for critical background jobs
Monitor background jobs with wait in scripts

Use process groups (set -m) for complex job control
Consider systemd-run for persistent services

Note: Modern systems often use systemd for service management, but shell
job control remains essential for interactive administration.

Chapter Summary

This chapter explored the UNIX shell’s architecture, various shell types,
and their features. We examined the command interpretation process and
differences between interactive and non-interactive shells. The configuration
techniques covered will help administrators customize their environment for
maximum productivity. The next chapter will build on these concepts with
shell scripting fundamentals.

Review Questions

1. Explain the three main phases of shell command interpretation
2. Compare and contrast Bash and Korn shell features

3. Describe how environment variables differ from shell variables

24

2 Unix System Administration

4. What are the key differences between interactive and non-interactive
shells?

5. Create a .bashrc configuration with five useful aliases for system ad-
ministration

25

Chapter 3
Shell Scripting Fundamentals

Chapter Overview

This chapter serves as a hands-on guide to mastering UNIX shell script-
ing, equipping system administrators with the skills to automate repetitive
tasks, streamline system management, and enhance operational efficiency.

1 Script Basics and Structure

This section covers the fundamental building blocks of UNIX shell scripts,
from basic components to interpreter selection. Understanding these core
concepts is essential for writing effective and portable scripts.

1.1 Script Components

Every well-structured shell script contains these essential elements:

Dr. Lyazid TOUMI

Basic Script Structure with Annotations

1 #!/bin/bash # Shebang line (Section \ref{subsec:shebang})
2 # Script: backup.sh # Metadata comments
3 # Author: Admin # (Name, date, purpose)

4+ # Description: Creates system backups

¢ config="/etc/backup.conf" # Variable declaration
7 LOGFILE="/var/log/backup.log" # Constant convention

9 validate input() { # Function definition

10 [-f "$config" 1 || {

11 echo "Error: Config missing" >&2

12 return 1

13 }

4}

15 main() { # Main program logic

16 validate input || exit 1

17 tar -czf "/backup/$(date +\%F).tar.gz" /target
18}

19 main "$@" # Execution entry point

bo exit 0 # Explicit exit status (Section

o \ref{subsec:exit-status})

Key components explained:

Shebang Line: Mandatory first line specifying the interpreter (see Section
1.2)

Metadata: Comments documenting purpose, author, and version
Variable Scope:

— UPPERCASE for constants

— lowercase for local variables

Modular Design: Functions for reusable code blocks

Error Handling: Explicit status checks and exits

1.2 Shebang Variations

The shebang (#!) determines script execution behavior. Choose carefully
based on:
Critical considerations:

e Portability: env finds the interpreter in user’s PATH
e Security: Hard paths prevent interpreter hijacking

28

3 Unix System Administration

Table 8: Common Shebang Interpreters and Use Cases

Type Advantages Example
Absolute Path Guaranteed interpreter loca- | #!/bin/bash
tion
env Lookup Portable across systems #!/usr/bin/env bash
POSIX Mode Cross-shell compatibility #!/bin/sh
Language Specific | Direct execution without | #!/usr/bin/perl
wrapper

e Features: Bashisms ([[]] arrays) won’t work in /bin/sh

1.3 Exit Status Conventions
Standard exit codes and their meanings:

Table 9: Reserved Exit Status Codes

Code Meaning

0 Success

1 General error

2 Misuse of shell builtins
126 Command cannot execute
127 Command not found
128+N | Terminated by signal N

Best practices:

e Always return explicit statuses: return 0 or exit 1
e Document custom codes (64-113 available for user-defined errors)
e Use constants: readonly E_CONFIG=78

2 Variables and Data Types

This section covers shell variable handling, data typing conventions, and
special built-in variables essential for script development.

2.1 Variable Handling

Shell variables follow specific declaration and scoping rules:

29

Dr. Lyazid TOUMI

Variable Assignment

1 # Basic assignment (no spaces around =)
2 username="admin"!\label{line:basic assign}!

Key concepts:

Assignment: No spaces around =
Constants: Use readonly or declare -r

Scoping: local limits visibility to functions
Typing: declare options:

— -1 for integers
— -a for arrays
— -r for read-only

2.2 Special Variables

Shell provides automatic variables for script control:

Table 10: Predefined Shell Variables with Examples

Variable | Purpose Example Usage

$0 Current script name echo "Running: $0"

$1--4$9 Positional parameters backup file=$1

$* All arguments as single | log args.sh "$*"
string

$@ All arguments as separate | process files "$@"
strings

$# Argument count [$# -eq 0] && usage

$? Last command exit status | mkdir tmp || echo "Failed: $?"

$$ Current process PID L0G="$%$.1log"

$! Last background process | kill $!

PID

Critical notes:

30

Default Values: Use

Parameter Expansion: Always quote variables: "$@" vs $*
- syntax: $VAR: -default

Error Handling: Check $? immediately after commands
Process Control: $$ for temp files, $! for job control

3 Unix System Administration

2.3 Data Type Considerations

Table 11: Shell Variable Typing Behaviors

Type Declaration Behavior

String Default (untyped) Text processing, expan-
sion

Integer declare -i Arithmetic without expr

Array declare -a Indexed lists (0-based)

Associative Array | declare -A Key-value pairs (Bash
4+)

Read-only readonly or declare -r | Immutable after assign-
ment

Practical examples:

Typed Variable Usage

declare -i total=0
total+=5 # No $ required for arithmetic

declare -A services=(
[web]="nginx"
[db]="postgresql"
)
echo "${services[web]}" # Outputs: nginx

L e ;T - RN

3 Control Structures

This section covers the fundamental control flow mechanisms in shell script-
ing, enabling decision-making and repetitive operations.

3.1 Conditional Statements

Shell scripts support several conditional execution patterns:

31

Dr. Lyazid TOUMI

Conditional Statements with Best Practices

1 #!/bin/bash

3 # Basic if-elif-else (POSIX compliant)
4 if [-f "/etc/passwd"]; then!\label{line:if-file}!

5 echo "System user file exists"

¢ elif [-d "/etc" 1; then!\label{line:elif-dir}!

7 echo "/etc directory exists but passwd missing"

s else

9 echo "Critical system files missing" >&2!\label{line:stderr}!
10 exit 1

n fil\label{line:fi}!

13 # Modern Bash conditional ([[1] with regex)

14 1if [["$0S" =~ ~[L1l]inux 1]; then!\label{line:regex}!
15 echo "Linux variant detected"
16 i

18 # Case statement (pattern matching)
19 case $1 in!\label{line:case}!

20 start--start)

21 servicegtart

22 v

23 stop--stop)

24 service stop

25 h

26 statusm--status)

27 service status

28 ’y

29 *) I\label{line:case-default}!
0 echo "Usage: $0 {startstopstatus}" >&2
31 exit 2

32 HH
3 esac!\label{line:esac}!

Key features:

e Test Operators:

— [1: POSIX-compliant (spaces required)

— [[11: Bash extension (safer, supports regex)
e Error Handling:

— Redirect errors to stderr (Line 77)

— Use meaningful exit codes (Line 77)

32

3 Unix System Administration

e Pattern Matching:
— case for multiple patterns
— Regex support in [[]]
3.2 Loop Constructs

Shell provides three primary looping mechanisms:

Loop Structures with Practical Applications

1 #!/bin/bash

3 # For loop (iterating lists)
4+ for package in nginx postgresql redis; do!\label{line:for-list}!

5 if ! which "$package" &>/dev/null; then
6 apt-get install -y "$package"

7 fi

s done

10 # While loop (stream processing)

1n while IFS= read -r line; do!\label{line:while-read}!
12 [["$line" =~ ~# 1] && continue # Skip comments
13 process log entry "$line"

14 done < /var/log/app.log!\label{line:done-redirect}!

16 # Until loop (polling)
17 attempt=0

18 until [$attempt -ge 3 1 || db connection test;
— do!\label{line:until}!

19 sleep $((attempt * 2))

bo ((attempt++))

21 done!\label{line:until-done}!

22

23 # C-style for loop

s for ((i=0; i<10; i++)); do!\label{line:c-style}!
25 echo "Iteration $i"

e done

Loop control techniques:

List Processing:
— Word splitting in for (Line 77?)
— Safe reading with IFS= and -r (Line 77?)

33

Dr. Lyazid TOUMI

e Flow Control:
— continue to skip iterations
— break to exit loops early
e Redirection:
— File input redirection
— Process substitution < <(cmd)

3.3 Best Practices

Table 12: Control Structure Anti-Patterns vs Recommended Ap-
proaches

Avoid Prefer

if [$var] (empty string check) if [-n "$var" 1 (explicit
test)

for f in *1s° (unquoted command sub) | for f in * (globbing) or
while read

Nested if chains case statements or early re-
turns
Infinite while true loops Timeout mechanisms: time-

out command

Advanced patterns:

Parallel Processing Example

Process files in parallel (Bash 4+)

max jobs=4

for file in *.log; do
((current jobs >= max jobs)) && wait -n
process file "$file" &
((current jobs++))

done

wait # Cleanup remaining jobs

® N G R W N e

4 Functions and Modularity

This section covers shell function implementation strategies for creating
maintainable, reusable scripts. Proper function design is crucial for script
organization and debugging.

34

3 Unix System Administration

4.1 Function Definition and Usage

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Advanced Function Techniques

#!/bin/bash

Self-documenting function (metadata in comments)
@desc: Checks disk space with optional threshold
@usage: check disk usage [threshold percent]
@param: $1 - Warning threshold (default: 90)
check disk usage() {
local threshold=${1:-90}'\label{line:local-default}!
local usage=$(df -h --output=pcent,target [|| tail -n +2)

while read -r pct mount; do!\label{line:while-read}!
pct=${pcts%| %}
((pct >= threshold)) && {
echo "WARNING: $mount at ${pct}%" >&2
return 1

}

done <<< "$usage"!\label{line:here-string}!

return 0

Library function (sourced from external file)
@desc: Validates email format
@usage: validate email "address"
validate email() {
[["$1" =~ "[A-Za-z0-9. %+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$ 1]

Main execution flow

if check disk usage 95; then!\label{line:func-call}!
echo "Disk space OK"

else
exit 1

fi

Key features:

Parameter Handling:
— Default values
— Named parameters via $1, $2, etc.

35

Dr. Lyazid TOUMI

e Data Processing:
— Here strings for input
— Process substitution alternatives
e Return Values:
— Explicit status codes (0=success)
— Boolean patterns

4.2 Function Best Practices
4.2.1 Implementation Guidelines

e Variable Scope:
— Always declare local variables
— Avoid global state modifications
e Error Handling:
— Use set -euo pipefail in functions
— Implement cleanup traps
e Documentation:
— Include usage examples
— Document parameters and return values

4.2.2 Design Patterns

Table 13: Common Shell Function Patterns

Pattern Implementation

Validation | Return 0/1 with error messages to stderr

Logger Centralized logging function with levels

Wrapper Function that modifies command behavior

Callback Pass function names as parameters

Example of advanced patterns:

36

3 Unix System Administration

Logger Implementation

1 #!/bin/bash

3 # Logging library function
4 log() {

5 local level=$l

6 local message=$2

7 local timestamp=$(date +"%Y-%m-%d %T")
8

9 case $level in

10 INFO) color="\033[0;32m" ;;

1 WARN) color="\033[0;33m" ;;

12 ERROR) color="\033[0;31m" ;;

13 esac

14

15 echo -e "${color}${timestamp} [${level}] ${message}\033[Om" >&2
16}

17

18 # Usage

19 log INFO "Processing started"
po Log ERROR "Invalid configuration" && exit 1

4.3 Modular Script Design

e Source Organization:
— Separate functions into lib/*.sh files
— Main script under bin/

e Namespace Management:
— Prefix related functions (file , db)
— Use source for library inclusion

e Dependency Control:
— Verify function availability
— Implement version checks

Example project structure:

/usr/local/bin/myapp

/usr/local/lib/myapp/

F— utils.sh # Common functions

— config.sh # Configuration loader

L— modules/ # Feature-specific functions

37

Dr. Lyazid TOUMI

5 Input/Output Handling

This section covers advanced techniques for managing script input/output
streams, including redirection, piping, and document embedding.

5.1 Redirection Operators

Table 14: Advanced I/O Redirection Reference

Operator | Effect

Example

> file Overwrite file with stdout

1s > dir contents.txt

>> file | Append stdout to file

echo $result >> log.txt

2> file Redirect stderr only

rm badfile 2> errors.log

2>81 Combine stderr with stdout

cmd > log 2>&1

& file | Redirect both streams (Bash)

./script & output.log

< file Use file as stdin

sort < data.txt

<<< Here string (Bash)

grep "text" <<< $var

| Pipe between commands

ps aux | grep ssh

>| file | Force overwrite (noclobber)

echo "data" >| file

<> file | Read/write same file

exec 3<> lockfile

Critical nuances:

e Stream Numbers: 0=stdin, 1=stdout, 2=stderr
e Order Matters: 2>&1 >file differs from >file 2>&1
e File Descriptors: Create custom (3-9) for complex I/0

38

3 Unix System Administration

5.2 Here Documents

N
=

24

25

26

27

28

29

30

Advanced Here Document Techniques

#!/bin/bash

Basic heredoc with variable expansion
cat <<CONFIG > app settings.conf

Generated $(date)

DB HOST=${DB HOST:-localhost}

DB PORT=${DB PORT:-5432}

MAX RETRIES=3

CONFIG

Indented heredoc (Bash 4+)

cat <<-EOF | while read -r line; do
\tThis line preserves tabs
\tBut leading tabs are stripped

EOF
echo "Processing: $line"

done

Literal heredoc (no expansion)

ssh server <<'REMOTE CMDS' # Single quotes matter
sudo apt update

sudo apt upgrade -y

REMOTE_CMDS

Heredoc to variable
read -r -d '' help msg <<HELP
Usage: $0 [options]

-h Show this help

-v Enable verbose mode
HELP

Key features:

Delimiter Choice: Uppercase markers (EOF, CONFIG) for visibility
Expansion Control:

— Quoted delimiters disable expansion

— Unquoted allows variables/commands

Indentation: <<- strips leading tabs (not spaces)

39

Dr. Lyazid TOUMI

5.3 File Descriptor Management

Advanced FD Manipulation

1 # Multiple output streams

2 o
3 echo "Header"
4 1s /nonexistent 2>&3

5} l>output.log 3>errors.log

7 # Persistent file descriptors

s exec 4<database.sql # Open for reading
9 while read -u4 line; do

10 parse sql "$line"

un done

12 exec 4<&- # Close descriptor

4 # Network redirection

15 exec 5<>/dev/tcp/google.com/80

6 echo -e "GET / HTTP/1.1\nHost: google.com\n\n" >&5
17 cat <&5

Best practices:

e Cleanup: Always close custom FDs with <&- or >&-
e Atomic Writes: Use > tmpfile && mv tmpfile target for safety
e Buffering: stdbuf utility controls stream buffering

5.4 Process Substitution

Comparing Files Without Temp Files

1 # Compare sorted outputs
2 diff <(sort filel) <(sort file2)

4 # Multi-input processing
5 paste <(cut -fl data.tsv) <(cut -f3 data.tsv)

7 # Output capture

s while read -r result; do

9 process "$result"

10 done < <(complex cmd --options)

Advantages:

40

3 Unix System Administration

e Avoids temporary files
e Enables parallel processing
e Maintains variable scope

6 Error Handling and Debugging

This section covers professional techniques for building resilient shell scripts
and effective debugging methodologies.

41

Dr. Lyazid TOUMI

42

3 Unix System Administration

6.1 Error Prevention Techniques

Enterprise-Grade Script Hardening

1 #!/bin/bash

2 # Strict execution mode (recommended set)

3 set -euo pipefail!\label{line:strict-mode}!

4+ shopt -s failglob # Fail on unmatched globs

5 # Comprehensive dependency check

¢ require commands() {!\label{line:require-cmds}!

7 local missing=()

8 for cmd in "$@"; do

9 if ! command -v "$cmd" &>/dev/null; then
10 missing+=("$cmd")

11 fi

12 done

13 ((${#missing[@]})) && {!\label{line:missing-check}!
14 echo "Missing dependencies:" >&2

15 printf ' - %s\n' "${missing[@]}" >&2

16 exit 1

17 }

18}

o # Validated argument processing
21 parse arguments() {!\label{line:arg-parser}!

22 [["$#" -ge 2 11 {

23 echo "Usage: ${0##*/} <input> <output>" >&2
24 exit 2

25 }

26 [[-r "$1" 11 {'\label{line:file-check}!

27 echo "Cannot read input file: $1" >&2

23 exit 3

29 }

30 # Safe output redirection check

31 if ! touch "$2" &/dev/null; then!\label{line:write-check}!
32 echo "Cannot write to output: $2" >&2

33 exit 4

34 fi

55}

3¢ # Main execution with error trapping
37 main() {

38 require commands rsync jq date!\label{line:main-requires}!
39 parse arguments "$@"

o # Business logic here

a1 process data "$1" "$2"

2}

43 main "$@"

Dr. Lyazid TOUMI

Key hardening practices:
e Strict Mode (Line 77):
— -e: Exit on error
— -u: Fail on unset variables
— -0 pipefail: Catch pipeline errors
e Dependency Management (Lines 77-77):
— Early validation of required tools
— User-friendly error reporting
e Input Validation (Lines 77-77):
— Argument count checking
— File accessibility verification

6.2 Debugging Methods
6.2.1 Systematic Debugging Approaches

Table 15: Debugging Techniques Matrix

Method Implementation Use Case

Trace Mode set -x or bash -x | Step-by-step execution
script.sh

Error Traps trap ‘'echo Error in $0 | Contextual error logging
at $LINENO' ERR

Syntax Check bash -n script.sh Pre-execution validation

Verbose Mode set -v Show raw input process-

ing

Custom Logging | exec 3> debug.log; | Timestamped tracing

PS4='+ $(date) '

44

3 Unix System Administration

6.2.2 Advanced Tracing Example

20
21
22
23

2

=

25
26
27

28

Production-Grade Debugging

#!/bin/bash

Configure debug output
DEBUG_LOG="${TMPDIR: -/tmp}/script_debug.$$"
exec 5> "$DEBUG LOG"!\label{line:debug-fd}!
BASH XTRACEFD="5"!\label{line:xtracefd}!

Enhanced trace formatting
PS4="+[${LINENO}] [${FUNCNAME[O]:-main}]: '!\label{line:ps4}!
set -x

Debug trap with backtrace

trap 'echo "Error at ${LINENO}: ${BASH COMMAND}" >&5;\
echo "Call stack:\n${FUNCNAME[@]}" >&5'
- ERR!\label{line:err-trap}!

Function demonstrating tracing
process item() {

local item=$1

[[-z "$item"]] && return 1

echo "Processing: $item"

}
main() {
process item "$1"
}
main "$@"

Debugging best practices:

Isolated Logging (Lines 77-77):

— Separate debug output from application streams
— Use unique filenames ($$ for PID)

Enhanced Tracing (Line ?7):

— Include line numbers and function names

— Add timestamps for performance analysis

Error Context (Line 77):

45

Dr. Lyazid TOUMI

— Capture failing command and location
— Log call stack for complex scripts

6.3 Error Recovery Patterns

Resilient Execution Framework

1 #!/bin/bash

2 # Global error handler

3 trap 'cleanup ${LINENO} "${BASH COMMAND}"' EXIT ERR
4 cleanup() {

5 local line=$1 cmd=$2

6 local status=$7?

7 ((status ==)) && return

8 echo "CRITICAL: Failure at line $line: '$cmd'" >&2
9 echo "Exit status: $status" >&2

10 # Resource cleanup

11 rm -f "$TEMP FILE"

12 [[-n "$DB CONN" 1] && disconnect db

13 exit $status

1w}

15 # Temporary file handling
16 TEMP_FILE=$(mktemp) || {

17 echo "Temp file creation failed" >&2
18 exit 1
19}

bo # Business logic with automatic cleanup
21 process data() {

22 # Operations that may fail

23 transform data > "$TEMP FILE"
24 load to database "$TEMP FILE"
s}

e main() {

27 initialize db connection

28 process data

o}

o main "$@"

Recovery strategies:

e Resource Guarantees:
— trap on both EXIT and ERR
— Atomic file operations

46

3 Unix System Administration

e State Management:
— Clean up temporary resources
— Close network connections
e Diagnostic Data:
— Preserve error context
— Log environment state

7 Advanced Scripting Techniques

This section explores powerful shell programming features for complex data
processing and system automation tasks.

7.1 Arrays and Associative Arrays

7.1.1 Indexed Arrays

Professional Array Patterns

1 #!/bin/bash

3 # Safe array initialization

4+ log files=()
5 while IFS= read -r -d $'\0' file; do
6 log files+=("$file") # Append null-delimited finds

7 done < <(find /var/log -name '*.log' -print0)

9 # Array operations

10 echo "Found ${#log files[@]} log files" # Count elements

n printf ' - %s\n' "${log files[@]}" # Iterate safely

2 sorted=($(printf 'Ss\n' "${log files[@]}" | sort -r)) # Sort

1 # Slice and subset patterns
15 recent files=("${log files[@]:0:5}") # First 5 elements
16 error files=(${log files[@]/*error*}) # Subset matching

18 # Parallel processing

1v for file in "${recent files[@]}"; do
20 analyze log "$file" &

21 done

2 wait

Key Features:

47

Dr. Lyazid TOUMI

e Null-Delimited Safety: Robust handling of filenames with spaces
e Memory Efficiency: Streaming into arrays without subshells
e Modern Substitution: Pattern-based filtering and slicing

7.1.2 Associative Arrays (Bash 4+)

Configuration Management Example

1 declare -A service config=(

2 [port]="8080"
3 [timeout]="300"
4 [max connections]="1000"

7 # Dynamic configuration building

s read config() {

9 while IFS='=' read -r key value; do

10 [[$key 1] && service config["$key"]="$value"
1 done < config.properties

14 # Validation check
15 validate config() {

16 required keys=(port timeout)

17 for key in "${required keys[@]}"; do

18 [[-v service config[$key]l 11 || {

19 echo "Missing $key in config" >&2
20 return 1

21 }

22 done

23}

Common Use Cases:

Configuration management systems
Key-value data processing
State tracking in complex scripts

48

3 Unix System Administration

7.2 Process Substitution

20

21

22

23

24

2

3

26

27

28

29

Advanced Data Pipelines

#!/bin/bash

Real-time log analysis

analyze access() {
awk '{print $1}' <(tail -F /var/log/nginx/access.log) | \
sort | uniq -c | sort -nr

Database ETL pattern

extract transform() {
psql -c "COPY (SELECT * FROM sales) TO STDOUT CSV" | \
awk -F, '{if($3 > 1000) print $1,$2*1.08}' > \
>(gzip > processed $(date +\%F).csv.gz)

Multi-stream processing
compare _servers() {
paste \
<(ssh webl "vmstat 1 5 | tail -4") \
<(ssh web2 "vmstat 1 5 | tail -4") |
column -t

\

Secure temporary processing
encrypt data() {
gpg --encrypt \
<(tar cz sensitive data) \
> archive $(date +\%s).tar.gz.gpg

Performance Considerations:

e Memory Efficiency: Avoids intermediate files
e Parallelism: Enables concurrent processing

Stream Security: Encrypted pipeline patterns

49

Dr. Lyazid TOUMI

7.3 Named Pipes and Coprocesses

Inter-Process Communication

1 # Named pipe for persistent IPC
2 PIPE=/tmp/mypipe
3 mkfifo "$PIPE"

5 # Writer process
s while true; do

7 sensors > "$PIPE"
8 sleep 5
9 done &

n # Reader process

12 while read -r data; do

13 check temperatures "$data"
14 done < "$PIPE"

16 # Coprocess for stateful interaction
17 coproc DB CONN {
18 psql -U user -d inventory

21 # Send query

22 echo "SELECT * FROM products;" >&${DB CONN[1]}
23

24 # Read results

25 read -u ${DB CONN[O]} -r result

8 Script Security Considerations

This section covers essential security practices for production-grade shell
scripting, addressing common vulnerabilities and hardening techniques.

50

3 Unix System Administration

Table 16: Security Configuration Checklist

Category Insecure Pattern Secure Alternative
File Handling rm -rf $TMP/* rm -rf -- "$TMP"/*
Command Execution | eval $user _input case $user _input in
safe cmd) ... ;; esac
Temporary Files > /tmp/data mktemp -p /secure/tmp
Privileges sudo cmd sudo
--non-interactive
-- cmd

51

Dr.

Lyazid TOUMI

8.0.1 System Hardening

8.1 Example Secure Script

20

21

22

23

24

25

27

28

30

31

32

33

34

35

36

37

38

Hardened Database Backup Script

#!/bin/bash

set -euo pipefail

shopt -s failglob # Fail on failed glob expansion

Environment hardening

export PATH="/bin:/usr/bin:/sbin:/usr/sbin"

umask 077 # Restrict new file permissions

Validate credentials file

readonly CRED FILE="${HOME}/.dbcreds"

[[-f "$CRED FILE" 11 || { echo "Credentials missing" >&2; exit 1; }

[["$(stat -c %a "$CRED FILE")" == 600]] || {
echo "Insecure credentials permissions" >&2
exit 1}

Validate and sanitize input
validate hostname() {
[["$1" =~ "[a-zA-Z0-9.-1+$]] || return 1
getent hosts "$1" >/dev/null || return 1}
if (($# !'=1)) || ! validate hostname "$1"; then
echo "Usage: $0 <valid hostname>" >&2
exit 2
fi
Secure temporary directory
readonly TMP DIR=$(mktemp -d -p /secure/tmp backup.XXXXXXXXXX)
trap 'rm -rf -- "$TMP DIR"' EXIT INT TERM
Database operations with credential protection
read db password() {
local pass
IFS= read -r pass < <(
gpg --quiet --decrypt "$CRED FILE" 2>/dev/null
) 1A
echo "Credential decryption failed" >&2
exit 3}
printf '%s' "$pass"}
Execute with minimal privileges
if [[$EUID -eq 0 1]; then
exec setpriv --reuid=backupuser --init-groups "$0" "$@"
fi
Main backup operation
PGPASSWORD=$(read db password) pg dump -h "$1" -U backupuser \

| gzip -9 > "$TMP DIR/dump.sql.gz" || {
echo "Backup failed" >&2
exit 4}

3 Unix System Administration

Security Features Implemented:

e Privilege Separation:
— Automatic privilege dropping for operations
— Dedicated system user context
e Credential Protection:
— Encrypted credential storage
— Secure password handling without persistence
e Secure Execution:
— Restricted PATH environment
— Atomic temporary file handling
— Network security enforcement

8.2 Common Vulnerabilities and Mitigations

Table 17: Shell Script Security Risks

Vulnerability Example Solution

Shell Injection rm $user_input rm -- "$user input"
Race Conditions | > /tmp/file mktemp + 0 EXCL
TOCTOU Issues | [-f $F 1 & rm $f Atomic operations
Information Leak | ps aux || grep pass Credential sanitization

53

Dr. Lyazid TOUMI

8.3 Advanced Security Patterns

Audit Logging Framework

1 #!/bin/bash
2 set -o functrace # Trace function calls
3 shopt -s extdebug # Enable debugging hooks

5 # Security audit log configuration
¢ readonly AUDIT LOG="/var/log/script audit.log"
7 exec 5>> "$AUDIT LOG" # Dedicated file descriptor

9 # Log security events
10 log audit event() {

11 printf '[%s] [UID=%d] %s\n' |\

12 "$(date --utc +%Y-%m-%dT%H:%M:%S5Z)" |
13 "$EUID" \

14 k" >85

5}

17 # Command execution wrapper
18 secure exec() {

19 log audit event "Executing: $*"

o command "$@" || {

21 log audit event "Failed (status=$7): $*"
22 return 1

23 }

e}

25
26 # Intercept dangerous commands
27 alias rm='secure exec rm --preserve-root --one-file-system'

Chapter Summary

This chapter covered essential shell scripting techniques from basic syntax
to advanced features. We examined variables, control structures, functions,
and robust error handling. The security practices and debugging methods
will help create maintainable administration scripts.

o4

3 Unix System Administration

Practical Exercises

1.

Create a script that checks disk space and emails alerts when below
threshold

Write a user management script with add/delete/list functions

Develop a log rotation script with compression and retention policy

. Implement a network port scanner using shell functions

Build a configuration file generator using here documents

Administration Exercises

1.

Create a script that monitors disk space and emails alerts when usage
exceeds 90%

Write a command pipeline to identify the top 5 memory-consuming
processes

Configure user accounts with appropriate permissions for a shared
development environment

. Analyze web server logs to identify the most frequent visitors

Troubleshoot a network connectivity issue using the commands cov-
ered

55

Chapter 4
Advanced Shell Features

Chapter Overview
This chapter explores sophisticated shell capabilities that enable adminis-
trators to build powerful, efficient solutions. We’ll cover 1/O redirection,

process substitution, coprocesses, advanced parameter expansion, and shell
customization techniques for professional-grade scripting.

1 Advanced I/O Redirection

1.1 File Descriptor Manipulation

Table 18: File Descriptor Reference

FD Name Description

stdin Standard input
1 stdout Standard output
2 stderr Standard error
3-9 Additional descriptors

Dr. Lyazid TOUMI

FD Operations

1 # Redirect stderr to stdout
2 command 2>&1

4 # Redirect both to file
5 command &> output.log

7 # Custom file descriptors

s exec 3<> /tmp/lockfile # Open FD 3 for RW

9 echo "locked" >&3

10 exec 3>&- # Close FD 3

1

12 # Redirect to multiple destinations

13 { echo "Message"; ls /nonexistent; } 2>&1 | tee output.log

1.2 Here Documents and Strings

Here Document Techniques

1 # Indented here document (Bash 4+)
2 cat <<-EOF

3 This text will have
4 leading tabs removed
5 EOF

7 # Parameter expansion in here string
s tr 'a-z' 'A-Z' <<< "S$USER"

10 # Execute remote commands via SSH
1 ssh server.example.com <<'EQSSH'

12 sudo apt update
13 sudo apt upgrade -y
14 EOSSH

o8

4 Unix System Administration

2 Process Substitution and Coprocesses

2.1 Process Substitution

Process Substitution Examples

1 # Compare sorted outputs
2 diff <(sort filel) <(sort file2)

4 # Multi-input processing
5 join <(cut -fl datal) <(cut -f2 data2)

7 # Avoid temporary files
s paste -d: <(cut -d: -fl /etc/passwd) \
9 <(cut -d: -f3 /etc/passwd)

2.2 Coprocesses

Coprocess Communication

1 # Start coprocess
2 coproc DB CONN {
3 mysql -u admin -p"$DB PASS" inventory

¢ # Send query
7 echo "SELECT * FROM products;" >&${DB CONN[1]}

9 # Read results
1o mapfile -t results <&${DB CONN[O]}
n echo "${results[@]}"

59

Dr. Lyazid TOUMI

3 Advanced Parameter Expansion

3.1 Pattern Matching Operators

Table 19: Parameter Expansion Operators

Expression Effect

${varspattern} Remove shortest suffix match
${varsspattern} Remove longest suffix match

${var#pattern} Remove shortest prefix match
${var##pattern} Remove longest prefix match

${var//pattern/repl} Global replacement
${var:offset:length} Substring expansion
${var:-default} Use default if unset

Parameter Expansion Examples

Convert path to filename
filename=${fullpath##*/}

Change file extension
newfile=${file%. *}.bak

Default values
backup dir=${BACKUP DIR:-/var/backups}

© ® N o W R W N e

0 # Case conversion
n upper=${filename™"}
12 lower=${filename, ,}

14 # Array slicing
15 subarray=("${files[@]:2:5}")

60

4 Unix System Administration

4 Arrays and Associative Arrays

4.1 Advanced Array Techniques

Array Operations

1 # Indexed array
2 services=("nginx" "mysql" "redis")

4+ # Associative array (Bash 4+)
5 declare -A ports=(

6 [http]=80
7 [https]=443
8 [ssh]=22

n # Multi-dimensional simulation

12 declare -A servers

13 servers[web,primary]="webl.example.com"
1u servers[web,backup]="web2.example.com"

16 # Array manipulation
17 all services=("${services[@]}" "${!ports[@]}")

4.2 Array Processing

Array Processing Examples

1 # Read files into array
2 mapfile -t lines < config.cfg

4 # Filter array
5 readarray -t log files < <(find /var/log -type f -name "*.log")

7 # Join array elements
s printf -v joined '%s,' "${services[@]}"
9 echo "${joined%, }" # Remove trailing comma

u # Array intersection
12 comm -12 <(printf '%s\n' "${arrayl[@]}" | sort) |\
13 <(printf 'Ss\n' "${array2[@]}" | sort)

61

Dr. Lyazid TOUMI

5 Shell Options and Customization

5.1 set and shopt Commands

Table 20: Useful Shell Options

Option Effect

set -0 nounset Treat unset variables as errors

set -0 pipefail Pipeline exit status is last failure
shopt -s globstar Enable ** recursive globbing
shopt -s dotglob Include hidden files in globs

shopt -s extglob Enable extended pattern matching

shopt -s nocaseglob Case-insensitive globbing

5.2 Custom Prompt Engineering

Advanced Prompt Customization

Git-aware prompt

PS1="\[\e[1;32m\]\u@\h\ [\e[Om\]:\[\e[1;34m\]\w\ [\e[Om\]\
$(git branch &/dev/null; if [$? -eq 0 1; then \
fi)\[\e[OM\]\$ '

Right-aligned information

[I R N B R YN RN

o rc)\Jlu@\h:\w\$ '

echo " \[\e[1;33m\]($(git branch | grep "~*" | cut -d" "

PS1="\[$(tput sc; printf "%*s" $COLUMNS "$(date +%H:%M)";

-f2-

tput

)"\

62

4 Unix System Administration

6 Signal Handling and Traps

6.1 Advanced Trap Techniques

Signal Handling

Cleanup on script exit
trap 'rm -f "$TMPFILE"; exit' EXIT

1

2

3

4 # Ignore Ctrl-C
5 trap '' SIGINT
6

7

8

9

Stackable traps
trap 'echo "First handler"' EXIT
trap 'echo "Second handler"' EXIT

n # Process-specific traps

2

13 trap 'echo "Child exiting"' EXIT
14 sleep 5

5)

6.2 Signal Reference

Table 21: Common UNIX Signals

Signal Number Purpose

SIGHUP 1 Hangup detection

SIGINT 2 Keyboard interrupt (Ctrl-C)
SIGQUIT 3 Quit with core dump
SIGKILL 9 Immediate termination
SIGTERM 15 Graceful termination
SIGTSTP 20 Terminal stop (Ctrl-Z)

63

Dr. Lyazid TOUMI

7 Advanced Scripting Patterns

7.1 Singleton Pattern

Singleton Implementation

Ensure single instance
LOCKFILE="/tmp/$(basename "$0").lock"
exec 9>"$LOCKFILE"

flock -n 9 || exit 1

T R CEN

7.2 Daemonization

Daemon Template

#!/bin/bash

Daemon initialization

umask 0

cd /

setsid --fork >/dev/null 2>&1

Main daemon loop
while true; do

10 perform task

u sleep $INTERVAL
12 done

R I = Y R N SR RN

Chapter Summary

This chapter explored advanced shell features including sophisticated I/0O
redirection, process substitution, parameter expansion, and array manip-
ulation. We covered professional scripting patterns, signal handling, and
shell customization techniques essential for system administrators.

Advanced Exercises

1. Create a script that uses coprocesses to maintain persistent database
connections

64

4 Unix System Administration

. Implement a recursive directory processor using globstar and null-
terminated output

. Develop a configuration file parser using associative arrays
. Build a signal-aware daemon with proper cleanup handling

. Design a custom prompt showing Git status, SSH connections, and
load average

65

Chapter 5

User and Group Administration

Chapter Overview

This chapter provides a comprehensive guide to managing user and group
accounts in UNIX systems. We’ll cover account creation, password policies,
privilege management, and security best practices for system administra-
tors.

1 User Account Fundamentals

1.1 User Account Components

Table 22: User Account Configuration Files

File Purpose

/ete/passwd User account information
/etc/shadow Secure password storage
/etc/group Group definitions
/etc/skel/ Default user files
/etc/login.defs Account creation defaults

/etc/default /useradd User creation defaults

1.2 User Account Fields

/etc/passwd Entry Structure

1 username:x:UID:GID:GECOS:homedir:shell

Dr. Lyazid TOUMI

Table 23: /etc/passwd Field Descriptions

Field Example Description
Username jsmith Login name
Password x Password placeholder
UID 1001 User ID number

GID 1001 Primary group ID
GECOS John Smith User information
Home /home/jsmith Home directory

Shell /bin/bash Login shell

2 User Account Management

2.1 Account Creation

User Creation Examples

Basic user creation
useradd -m -c "John Smith" -s /bin/bash jsmith

With specific UID/GID
useradd -u 1501 -g developers -G sudo,www-data jdoe

Set password interactively
passwd jsmith

R I - Y R N SR RN

1 # Non-interactive password setting
u echo "jsmith:passwordl123" | chpasswd

68

5 Unix System Administration

2.2 Account Modification

User Modification Examples

1 # Change user properties
2 usermod -c "John Q. Smith" -1 jgsmith jsmith

4 # Add to supplementary groups
5 usermod -aG sudo,adm jgsmith

7 # Lock/unlock account
s usermod -L jgsmith # Lock
9 usermod -U jgsmith # Unlock

1n # Change home directory
12 usermod -d /new/home/jgsmith -m jgsmith

3 Password Policies

3.1 Password Aging Controls

Password Policy Examples

1 # Set password expiration
2 chage -M 90 -m 7 -W 14 jsmith

4 # Force password change on login
5 chage -d 0 jsmith

7 # View password aging
8 chage -1 jsmith

Table 24: Password Policy Configuration

Option Effect

-M days Maximum password age
-m days Minimum password age
-W days Warning period

-I days Inactive period

-E date Expiration date

69

Dr. Lyazid TOUMI

3.2 PAM Configuration

PAM Password Complexity

1 # /etc/pam.d/common-password
2 password requisite pam pwquality.so retry=3 \
3 minlen=12 difok=3 ucredit=-1 lcredit=-1 dcredit=-1 ocredit=-1

4 Group Management

4.1 Group Operations

Group Management Examples

1 # Create new group
2 groupadd -g 2001 developers

4 # Modify group
s groupmod -n devteam developers

7 # Delete group
s groupdel devteam

10 # Add user to group
n gpasswd -a jsmith devteam

13 # Remove user from group
14 gpasswd -d jsmith devteam

4.2 Group Membership Verification

Group Membership Checks

1 # List user groups
2 groups jsmith

4+ # Check effective group membership
5 id jsmith

7 # Find all users in a group
s getent group sudo | cut -d: -f4 | tr '," '\n'

70

5 Unix System Administration

5 Privilege Management

5.1 sudo Configuration

/etc/sudoers Examples

1 # Allow user full sudo access
2 jsmith ALL=(ALL:ALL) ALL

4 # Allow group to run specific commands
5 %developers ALL=(ALL) /usr/bin/apt, /usr/bin/systemctl

7 # Passwordless sudo for specific command
s %backup ALL=(ALL) NOPASSWD: /usr/bin/rsync

10 # Command aliases
n Cmnd Alias NETWORKING = /sbin/route, /sbin/ifconfig
12 %operators ALL=(ALL) NETWORKING

5.2 Best Practices for sudo

e Use visudo for editing sudoers file

Grant minimal required privileges

Prefer group-based over user-based rules

e Implement command restrictions where possible

Log all sudo activity (Defaults logfile="/var/log/sudo.log")

71

Dr.

Lyazid TOUMI

6 Account Security

6.1

10
1

12

Account Auditing

Security Audit Examples

Find accounts with empty passwords
awk -F: '($2 == "") {print $1}' /etc/shadow

Find non-root UID 0 accounts
awk -F: '($3 == 0) {print $1}' /etc/passwd | grep -v root

Check last login times
lastlog | grep -v "Never logged in"

Find inactive accounts
useradd -D | grep INACTIVE
find /home -type d -mtime +90 -exec ls -1d {} \;

6.2 Account Lockdown

Security Hardening

Disable system accounts
usermod -s /sbin/nologin daemon
chage -E 0 daemon

Set restrictive umask
echo "umask 027" >> /etc/profile

Disable root SSH login
sed -i 's/”PermitRootLogin yes/PermitRootLogin no/'
- /etc/ssh/sshd_config

Restrict cron access
echo "root" > /etc/cron.allow
rm -f /etc/cron.deny

72

5 Unix System Administration

7 Automated User Management

7.1 Bulk Operations

Bulk User Management

1 # Create users from list
2 while read -r user; do

3 useradd -m "$user"

4 done < userlist.txt

¢ # Reset passwords for all users
7 getent passwd | cut -d: -fl | xargs -I{} chage -d 0 {}

9 # Disable expired accounts
10 awk -F: '$2 == "I!" {print $1}' /etc/shadow | xargs -I{} usermod -L

- {}

7.2 LDAP Integration

LDAP Configuration

1 # Install LDAP tools
2 apt install libnss-ldap libpam-ldap ldap-utils

4 # Configure nsswitch.conf

5 passwd: files ldap
6 group: files ldap
7 shadow: files ldap

9 # Test LDAP lookup
10 getent passwd
n ldapsearch -x -b "dc=example,dc=com"

Chapter Summary

This chapter covered comprehensive user and group administration tech-
niques including account creation, password policies, privilege management,
and security hardening. We explored both command-line tools and config-
uration files essential for system administrators.

73

Dr. Lyazid TOUMI

Administration Exercises

74

1.

Create a script that audits user accounts for password expiration and
inactive sessions

. Implement a sudo policy that allows developers to manage services

but not modify system files

Configure PAM to enforce strong password policies (minimum length,
complexity)

Design a bulk user import process from a CSV file

. Harden system accounts by disabling shells and setting expiration

dates

Chapter 6

File System Management

Chapter Overview

This chapter provides an in-depth examination of UNIX file system admin-
istration, covering disk partitioning, filesystem types, mounting strategies,
performance optimization, and advanced management techniques essential
for system administrators.

1 Disk Partitioning and Layout

1.1 Partition Table Types

Table 25: Partition Table Comparison

Type Maximum Size Features
MBR 2TB Limited to 4 primary partitions
GPT 8ZB Up to 128 partitions, CRC pro-

tection

Dr. Lyazid TOUMI

1.2 Partitioning Tools

Partition Management Examples

List block devices
1sblk -o NAME,SIZE,FSTYPE,MOUNTPOINT

Create GPT partition table
parted /dev/sda mklabel gpt

Create new partition

T S B N Y T N S N N

10 # Verify partition alignment
n parted /dev/sda align-check optimal 1

parted -a optimal /dev/sda mkpart primary ext4 0% 100%

2 File System Types and Features

2.1 Common UNIX File Systems

Table 26: File System Comparison

File System Strengths

Ideal Use Case

extd Stable, journaling

XFS High performance, scalabil-
ity

Btrfs Snapshots, checksums

ZFS Advanced features, com-
pression

tmpfs Memory-backed

General purpose
Large files, media

Data integrity
Enterprise storage

Temporary files

76

6 Unix System Administration

2.2 File System Creation

File System Operations

Create ext4 filesystem
mkfs.ext4 -L datavolume /dev/sdal

Create XFS filesystem
mkfs.xfs -f -L bigdata /dev/sdbl

7 # Add ZFS storage pool
s zpool create datapool mirror /dev/sdc /dev/sdd

10 # Check filesystem integrity
n fsck -y /dev/sdal

3 Mounting File Systems

3.1 Mount Options and Strategies

Table 27: Common Mount Options

Option Purpose

noatime Disable access time updates
nodiratime Disable directory access time
relatime Optimized access time updates
discard Enable TRIM (SSDs)
data=journal Full data journaling

barrier=1 Write barrier enforcement

77

Dr. Lyazid TOUMI

Mount Examples

1 # Temporary mount
2 mount /dev/sdbl /mnt/data

4+ # Persistent mount (add to /etc/fstab)
5 UUID=1234-5678 /data ext4 defaults,noatime 0 2

7 # Bind mount
s mount --bind /var/www /srv/www

10 # Remount with new options
un mount -o remount,ro /dev/sdal

4 Advanced File System Features

4.1 Logical Volume Management

LVM Operations

1 # Initialize physical volume
2 pvcreate /dev/sdb

4+ # Create volume group
5 vgcreate vg data /dev/sdb

7 # Create logical volume
s Llvcreate -L 100G -n lv www vg data

10 # Extend logical volume
un lvextend -L +50G /dev/vg data/lv_www
12 resize2fs /dev/vg data/lv www

78

6 Unix System Administration

4.2 Quota Management

Disk Quota Setup

1

2

3

4

Enable quotas in fstab
UUID=1234-5678 /home ext4 defaults,usrquota,grpquota 0 2

Initialize quota files
quotacheck -cug /home
quotaon /home

Set user quotas
setquota -u jsmith 500M 1G 0@ O /home

Generate quota reports
repquota -a

5

File System Maintenance

5.1 Monitoring and Analysis

Monitoring Examples

Check disk space
df -hT -x tmpfs

Find large files
find / -xdev -type f -size +100M -exec ls -lh {} \+

Analyze disk usage
ncdu -x /

Check inode usage
df -i

79

Dr. Lyazid TOUMI

5.2 Scheduled Maintenance

Maintenance Script

1 #!/bin/bash
2 # Weekly filesystem maintenance
3 logger -t maint "Starting filesystem maintenance"

5 # Rotate logs
¢ logrotate -f /etc/logrotate.conf

s # Trim SSD
9 fstrim -av

n # Check filesystems
12 fsck -A -C -t extd -p

14 # Update locate database
15 updatedb

17 logger -t maint "Completed filesystem maintenance"

6 Backup and Recovery

6.1 Backup Strategies

Table 28: Backup Method Comparison

Method Advantages Limitations

Full Complete recovery Storage intensive
Incremental Efficient storage Complex restoration
Differential ~ Balanced approach Growing backup size
Snapshot Instant recovery Requires COW filesystem

80

6 Unix System Administration

6.2 Backup Tools

Backup Examples

1 # Full backup with tar
2 tar -czpf /backups/full-$(date +\%F).tar.gz --exclude=/backups /

4 # Incremental backup with rsync
5 rsync -avh --delete --link-dest=/backups/last full /
— /backups/incr-$(date +\%F)

7 # Filesystem snapshot
8 Llvcreate -s -n db snap -L 106G /dev/vg data/lv_database

10 # Database dump
1n mysqldump -u root -p --all-databases | gzip > /backups/mysql-$(date

- +\%F).sql.gz

7 Security and Permissions

7.1 Advanced Permission Management

Permission Examples

1 # Set default permissions
2 setfacl -d -m u::rwx,g::r-x,0::r-x /shared

4 # Recursive permission fix
5 find /webroot -type d -exec chmod 755 {} \;
¢ find /webroot -type f -exec chmod 644 {} \;

s # Special permissions
9 chmod +t /tmp/uploads # Sticky bit
10 chmod g+s /var/www # Setgid

81

Dr. Lyazid TOUMI

7.2 File Attributes

File Attributes

Make file immutable
chattr +i /etc/passwd

1

2

3

4 # Secure deletion attribute
5 chattr +s important.doc
6
7
8
9

Append-only logs
chattr +a /var/log/secure

10 # View attributes
u lsattr /etc/ssh/sshd_config

\.

Chapter Summary

This chapter covered comprehensive file system management including par-
titioning strategies, filesystem types, mounting options, advanced features
like LVM and quotas, maintenance procedures, and backup solutions. These
techniques form the foundation of reliable storage administration.

Administration Exercises

1. Design a partitioning scheme for a database server with separate par-
titions for OS, logs, and data

2. Implement a monitoring system that alerts when filesystem usage
exceeds 90%

3. Create an automated backup rotation script with full and incremental

backups

4. Configure a secure shared directory with proper permissions and quo-
tas

5. Test recovery procedures by restoring from backup to a test system

82

Chapter 7

Process and Service Management

Chapter Overview

This chapter provides a comprehensive guide to UNIX process and service
management, covering process monitoring, control, prioritization, systemd
service units, and automation techniques essential for system administra-
tors.

1 Process Fundamentals

1.1 Process States

Table 29: UNIX Process States

State Description

R (Running) Currently executing or runnable
S (Sleeping) Waiting for an event

D (Uninterruptible) Waiting on I/O (cannot be killed)
Z (Zombie) Terminated but not reaped

T (Stopped) Suspended by signal

Dr. Lyazid TOUMI

1.2 Process Hierarchy

Process Tree Examples

View process hierarchy
pstree -p

Show parent-child relationships
ps -ef --forest

[S B N SO N

<

Find parent process ID
8 PpS -0 ppid= -p [PID]

2 Process Monitoring

2.1 Monitoring Tools

Table 30: Process Monitoring Utilities

Command Purpose

ps Snapshot of processes

top Interactive process viewer
htop Enhanced interactive viewer
vistat System resource statistics
pidstat Per-process statistics

84

7 Unix System Administration

2.2 Advanced Monitoring

Monitoring Examples

Show threads
ps -eLf

1

2

3

4 # Monitor process memory
5 pmap -x [PID]
6

7

8

9

Continuous I/0 monitoring
iotop -oPa

10 # Process-specific CPU usage
n pidstat -u -p [PID] 5 3

3 Process Control

3.1 Signals and Termination

Table 31: Common Process Signals

Signal Number Purpose

SIGTERM 15 Graceful termination
SIGKILL 9 Forceful termination
SIGSTOP 19 Suspend process
SIGCONT 18 Resume process
SIGHUP 1 Reload configuration

85

Dr.

© ® N o W R W N e

10

1

Lyazid TOUMI

Process Control Examples

Graceful shutdown
kill -TERM [PID]

Force kill
kill -9 [PID]

Kill by name
pkill -f "pattern"

Kill all matching processes
killall -9 process name

4

Process Prioritization

4.1 Nice and Renice

Priority Management

© N U A W N e

Start process with low priority
nice -n 19 cpu intensive task

Change running process priority
renice -n 10 -p [PID]

Show nice values
ps -eo pid,ni,comm

4.2 Scheduling Classes

Table 32: Process Scheduling Policies

Policy Description

SCHED_OTHER Default time-sharing
SCHED_FIFO Real-time (first-in, first-out)
SCHED_ RR Real-time (round robin)
SCHED_BATCH For batch processes
SCHED_ IDLE For very low priority tasks

86

1

2

3

4

5

Scheduling Examples

Set FIFO scheduling
chrt -f -p 99 [PID]

Run task with batch scheduling
chrt -b 0 batch task

7 Unix System Administration

5 Systemd Service Management

5.1 Service Unit Files

Service Unit Example

/etc/systemd/system/custom.service
[Unit]

Description=Custom Service
After=network.target

[Service]

Type=simple

User=svcuser

Group=svcgroup
ExecStart=/usr/local/bin/service start
ExecStop=/usr/local/bin/service stop
Restart=on-failure

[Install]
WantedBy=multi-user.target

87

Dr. Lyazid TOUMI

5.2 Service Commands

Systemd Examples

1 # Start/stop service
2 systemctl start servicename
3 systemctl stop servicename

5 # Enable/disable at boot
¢ systemctl enable servicename
7 systemctl disable servicename

9 # Check status
10 systemctl status servicename

12 # Reload modified units
13 systemctl daemon-reload

6 Logging and Debugging

6.1 Journalctl Usage

Journal Examples

1 # Show service logs
2 journalctl -u servicename

4+ # Follow logs in real-time
5 journalctl -f

7 # Filter by priority
8 journalctl -p err

10 # Show kernel messages
1n journalctl -k

13 # Persistent logging
14 mkdir /var/log/journal
15 systemd-tmpfiles --create --prefix /var/log/journal

88

6.2 Process Tracing

Debugging Examples

7 Unix System Administration

1 # Trace system calls
2 strace -p [PID]

4 # Trace child processes
5 strace -f command

7 # Monitor file access
s lsof -p [PID]

10 # Network connections
un SS -tupn

7 Automation and Scheduling

7.1 Cron Jobs

Cron Examples

1 # Edit crontab
2 crontab -e

4 # Example entries
5 0 2 * * * /path/to/backup.sh
¢ */5 * * * *x /path/to/monitor.sh

8 # System-wide cron
9 vim /etc/crontab

89

Dr.

7.2

Lyazid TOUMI

Systemd Timers

Timer Unit Example

/etc/systemd/system/daily-backup.timer
[Unit]
Description=Daily Backup Timer

[Timer]
OnCalendar=daily
Persistent=true

[Install]
WantedBy=timers.target

/etc/systemd/system/daily-backup.service
[Unit]
Description=Daily Backup

[Service]
Type=oneshot
ExecStart=/path/to/backup.sh

8

Resource Limits

8.1 ulimit Configuration

10

1

Resource Limits

View limits
ulimit -a

Set per-session limits
ulimit -n 4096 # Open files
ulimit -u 500 # User processes

System-wide limits

vim /etc/security/limits.conf
* soft nofile 4096

* hard nofile 8192

90

7 Unix System Administration

8.2 Cgroups v2

Cgroup Examples

Create new cgroup
mkdir /sys/fs/cgroup/mycgroup

Set memory limit
echo "100000000" > /sys/fs/cgroup/mycgroup/memory.max

Add process to cgroup
echo [PID] > /sys/fs/cgroup/mycgroup/cgroup.procs

® N9 G R W N e

Chapter Summary

This chapter covered comprehensive process and service management in-
cluding monitoring, control, prioritization, systemd services, logging, au-
tomation, and resource limits. These skills are essential for maintaining
optimal system performance and reliability.

Administration Exercises

1. Create a systemd service unit for a custom application with auto-
restart

2. Write a script to identify and kill zombie processes
3. Configure a CPU-intensive process to use idle scheduling
4. Implement log rotation for a service using journald

5. Set up a systemd timer for weekly maintenance tasks

91

