
University of Se.f 1- Ferhat Abbas

Faculy Of Sciences

Compter Science Department

UNIX SYSTEM ADMINISTRATION
1st Year Master Cyber Security

By Dr. Lyazid TOUMI

Contents
1 Introduction to UNIX System Administration 9

1 The Role of a UNIX System Administrator 10
1.1 Core Responsibilities 10
1.2 The Administrator’s Toolkit 10

2 Importance of Shell Proficiency 10
2.1 Advantages of Shell Usage 11
2.2 Shell vs. GUI Administration 12

3 Key Administrative Tasks 12
3.1 System Monitoring and Performance Tuning 12
3.2 Security Practices and Hardening 13
3.3 Disaster Recovery Planning 14

2 Understanding the UNIX Shell 15
1 Shell Architecture and Components 16

1.1 Core Components 16
1.2 Shell Startup Sequence 16

2 Shell Types and Features 18
2.1 Major UNIX Shell Variants 18
2.2 Shell Feature Matrix 19

3 Command Interpretation Process 19
3.1 Processing Stages . 19
3.2 Expansion Examples 20

4 Interactive vs. Non-Interactive Shells 21
4.1 Interactive Shell Characteristics 21
4.2 Non-Interactive Shell Characteristics 21

5 Shell Configuration and Customization 22
5.1 Environment Variables 22
5.2 Aliases and Functions 23

6 Shell Job Control . 23
6.1 Job Control Best Practices 24

Dr. Lyazid TOUMI

3 Shell Scripting Fundamentals 27
1 Script Basics and Structure 27

1.1 Script Components 27
1.2 Shebang Variations 28
1.3 Exit Status Conventions 29

2 Variables and Data Types 29
2.1 Variable Handling 29
2.2 Special Variables . 30
2.3 Data Type Considerations 31

3 Control Structures . 31
3.1 Conditional Statements 31
3.2 Loop Constructs . 33
3.3 Best Practices . 34

4 Functions and Modularity 34
4.1 Function Definition and Usage 35
4.2 Function Best Practices 36
4.3 Modular Script Design 37

5 Input/Output Handling . 38
5.1 Redirection Operators 38
5.2 Here Documents . 39
5.3 File Descriptor Management 40
5.4 Process Substitution 40

6 Error Handling and Debugging 41
6.1 Error Prevention Techniques 43
6.2 Debugging Methods 44
6.3 Error Recovery Patterns 46

7 Advanced Scripting Techniques 47
7.1 Arrays and Associative Arrays 47
7.2 Process Substitution 49
7.3 Named Pipes and Coprocesses 50

8 Script Security Considerations 50
8.1 Example Secure Script 52
8.2 Common Vulnerabilities and Mitigations 53
8.3 Advanced Security Patterns 54

4 Advanced Shell Features 57
1 Advanced I/O Redirection 57

1.1 File Descriptor Manipulation 57
1.2 Here Documents and Strings 58

2

0 Unix System Administration

2 Process Substitution and Coprocesses 59
2.1 Process Substitution 59
2.2 Coprocesses . 59

3 Advanced Parameter Expansion 60
3.1 Pattern Matching Operators 60

4 Arrays and Associative Arrays 61
4.1 Advanced Array Techniques 61
4.2 Array Processing . 61

5 Shell Options and Customization 62
5.1 set and shopt Commands 62
5.2 Custom Prompt Engineering 62

6 Signal Handling and Traps 63
6.1 Advanced Trap Techniques 63
6.2 Signal Reference . 63

7 Advanced Scripting Patterns 64
7.1 Singleton Pattern . 64
7.2 Daemonization . 64

5 User and Group Administration 67
1 User Account Fundamentals 67

1.1 User Account Components 67
1.2 User Account Fields 67

2 User Account Management 68
2.1 Account Creation . 68
2.2 Account Modification 69

3 Password Policies . 69
3.1 Password Aging Controls 69
3.2 PAM Configuration 70

4 Group Management . 70
4.1 Group Operations 70
4.2 Group Membership Verification 70

5 Privilege Management . 71
5.1 sudo Configuration 71
5.2 Best Practices for sudo 71

6 Account Security . 72
6.1 Account Auditing . 72
6.2 Account Lockdown 72

7 Automated User Management 73
7.1 Bulk Operations . 73

3

Dr. Lyazid TOUMI

7.2 LDAP Integration 73

6 File System Management 75
1 Disk Partitioning and Layout 75

1.1 Partition Table Types 75
1.2 Partitioning Tools 76

2 File System Types and Features 76
2.1 Common UNIX File Systems 76
2.2 File System Creation 77

3 Mounting File Systems . 77
3.1 Mount Options and Strategies 77

4 Advanced File System Features 78
4.1 Logical Volume Management 78
4.2 Quota Management 79

5 File System Maintenance 79
5.1 Monitoring and Analysis 79
5.2 Scheduled Maintenance 80

6 Backup and Recovery . 80
6.1 Backup Strategies 80
6.2 Backup Tools . 81

7 Security and Permissions . 81
7.1 Advanced Permission Management 81
7.2 File Attributes . 82

7 Process and Service Management 83
1 Process Fundamentals . 83

1.1 Process States . 83
1.2 Process Hierarchy 84

2 Process Monitoring . 84
2.1 Monitoring Tools . 84
2.2 Advanced Monitoring 85

3 Process Control . 85
3.1 Signals and Termination 85

4 Process Prioritization . 86
4.1 Nice and Renice . 86
4.2 Scheduling Classes 86

5 Systemd Service Management 87
5.1 Service Unit Files . 87
5.2 Service Commands 88

4

0 Unix System Administration

6 Logging and Debugging . 88
6.1 Journalctl Usage . 88
6.2 Process Tracing . 89

7 Automation and Scheduling 89
7.1 Cron Jobs . 89
7.2 Systemd Timers . 90

8 Resource Limits . 90
8.1 ulimit Configuration 90
8.2 Cgroups v2 . 91

5

Reference Books
• UNIX and Linux System Administration Handbook (5th Ed.), Nemeth,

Snyder, Hein, et al, Oreilly, 2017.

• The Practice of System and Network Administration (3rd Ed.), Limon-
celli, Hogan, Chalup Addison-Wesly, 2017

• Essential System Administration (3rd Ed.), Æleen Frisch, Oreilly,
2022.

• Linux Bible (10th Ed.), Christopher Negus, Oreilly, 2020.

• The Linux Command Line, 2nd Ed. by William Shotts, Oreilly, 2019.

Chapter 1

Introduction to UNIX System
Administration
Chapter Overview
This chapter provides a comprehensive introduction to the essential princi-
ples of UNIX system administration, equipping you with the foundational
knowledge needed to manage and maintain UNIX-based systems effectively.

Key Focus Areas:

• The System Administrator’s Role: Understand the responsibilities,
challenges, and best practices for UNIX administrators, including sys-
tem security, user management, and troubleshooting.

• Shell Proficiency: Discover why mastering the UNIX shell (Bash, Korn,
or others) is critical for efficient administration, automation, and
scripting.

• Core Administrative Tasks: Learn about vital operations such as pro-
cess management, filesystem maintenance, backups, and network con-
figuration.

Why UNIX Still Matters

Despite the rise of modern operating systems, UNIX remains a cornerstone
of enterprise computing, powering servers, cloud infrastructure, and critical
applications. We’ll examine its enduring relevance, stability, and flexibility
in today’s IT landscape.

By the end of this chapter, you’ll have a solid grasp of how system admin-
istrators keep UNIX environments secure, efficient, and reliable, ensuring
seamless operation in professional settings.

Dr. Lyazid TOUMI

1 The Role of a UNIX System Administrator
UNIX system administrators serve as the backbone of any organization
running UNIX or UNIX-like systems. Their multifaceted responsibilities
encompass all aspects of system operation, maintenance, and security.

1.1 Core Responsibilities

• System Installation and Configuration:
– OS installation, patching, and upgrades
– Kernel tuning and performance optimization
– Filesystem hierarchy and storage management
– Package and dependency management

• User and Security Management:
– User account lifecycle management
– Permission and access control (RBAC)
– Authentication system configuration (PAM, LDAP)
– Security auditing and compliance

• Network Services Administration:
– TCP/IP stack configuration
– Firewall (iptables/nftables) and routing management
– Network service management (DNS, DHCP, NFS, Samba)
– VPN and remote access configuration

1.2 The Administrator’s Toolkit

A proficient UNIX administrator maintains expertise in several categories
of essential tools:
Modern administrators also utilize configuration management tools (Ansi-
ble, Puppet, Chef) and containerization technologies (Docker, Kubernetes)
in contemporary UNIX environments.

2 Importance of Shell Proficiency
While graphical tools exist, the command-line interface (CLI) remains the
most powerful and ubiquitous administration method for UNIX systems,
offering unparalleled control and flexibility.

10

1 Unix System Administration

Table 1: Essential UNIX Administration Tools

Tool Category Representative Utilities
Process Management ps, top, htop, kill, pkill, nice, renice, systemd
Filesystem Tools df, du, mount, umount, fsck, lsblk, lsof, find
Network Utilities ip, ss, netstat, ping, traceroute, dig, tcpdump,

nmap
Security Tools sudo, su, chmod, chown, chattr, iptables,

auditd, fail2ban
System Monitoring vmstat, iostat, sar, dmesg, journalctl, nagios,

zabbix

2.1 Advantages of Shell Usage

1. Automation Capabilities:
• Create reusable scripts for repetitive tasks
• Implement complex workflows with conditionals and loops
• Schedule automated maintenance jobs

Automated Backup Script

1 #!/bin/bash
2 # Automated backup script with logging and error handling
3 BACKUP_DIR="/backups"
4 LOG_FILE="/var/log/backup_$(date +\%Y\%m\%d).log"
5 SOURCE_DIR="/important_data"
6

7 {
8 echo "Starting backup at $(date)"
9 mkdir -p $BACKUP_DIR
10 tar -czf "$BACKUP_DIR/$(date +\%Y\%m\%d).tar.gz"

"$SOURCE_DIR" \↪
11 && echo "Backup completed successfully" \
12 || echo "Backup failed!"
13 find $BACKUP_DIR -name '*.tar.gz' -mtime +30 -delete
14 echo "Cleanup completed at $(date)"
15 } > $LOG_FILE 2>&1

2. Remote Administration:
• Secure shell (SSH) for encrypted remote access

11

Dr. Lyazid TOUMI

• rsync for efficient differential file transfers
• Terminal multiplexers (screen, tmux) for persistent sessions
• SSH key-based authentication for passwordless access

3. Scripting Power:
• Combine utilities via pipes and redirection
• Advanced text processing with awk, sed, and grep
• Job scheduling with cron and systemd timers
• Error handling and logging capabilities

2.2 Shell vs. GUI Administration

Table 2: Comparison of CLI and GUI Administration Methods

Feature Command Line GUI Tools
Resource Usage Minimal CPU/RAM Significant overhead
Remote Access Full functionality via

SSH
Often requires
VNC/RDP

Automation Complete scripting sup-
port

Limited to recorded
macros

Reproducibility Self-documenting scripts Requires manual docu-
mentation

Precision Exact control Often abstracted opera-
tions

Speed Immediate execution Multiple clicks required

Key Insight: Professional system administrators typically use CLI for 90%
of tasks, reserving GUI tools only for specific monitoring or configuration
scenarios.

3 Key Administrative Tasks

3.1 System Monitoring and Performance Tuning

Effective administrators implement comprehensive monitoring strategies to
maintain optimal system health:

• Performance Metrics Collection:

12

1 Unix System Administration

System Monitoring Commands

1 # CPU and process statistics
2 top -b -n 1 | head -n 20
3 mpstat -P ALL 1 5
4

5 # Memory utilization analysis
6 free -h
7 vmstat -SM 1 5
8

9 # Disk I/O monitoring
10 iostat -xmdz 1
11 iotop -o
12

13 # Network throughput
14 iftop -n -i eth0
15 nload eth0

• Log Management Framework:
– Centralized logging with syslog-ng/rsyslog
– Automated log rotation (logrotate)
– Real-time monitoring with tail -f or journalctl -f
– Log analysis tools (grep, awk, ELK Stack)

3.2 Security Practices and Hardening

Essential security measures for production systems:

1. Authentication and Access Control:
• Password policies (/etc/login.defs, pam_pwquality)
• SSH hardening (disable root login, change port)
• Two-factor authentication implementation
• Regular audit of sudo privileges (/etc/sudoers)

2. System Hardening Procedures:
• Service minimization (disable unused services)
• Filesystem permission audits (find / -perm /4000)
• Regular security updates (yum-cron, unattended-upgrades)
• Firewall configuration (iptables/nftables)
• SELinux/AppArmor enforcement

13

Dr. Lyazid TOUMI

3.3 Disaster Recovery Planning

A comprehensive disaster recovery strategy includes:

Table 3: Enterprise Backup Strategy Framework

Backup Type Frequency Implementation
Full System
Image

Monthly dd, Clonezilla

Incremental Files Daily rsync –link-dest
Configuration
State

On Change RCS, Git, etckeeper

Database Dumps Hourly mysqldump, pg_dump
Cloud
Synchronization

Continuous rclone, Duplicity

• Recovery Testing: Regular restore drills
• Offsite Storage: 3-2-1 backup rule (3 copies, 2 media, 1 offsite)
• Documentation: Detailed recovery procedures

Best Practice: Automate backup verification through checksum validation
and periodic test restores.

Chapter Summary
This chapter introduced the critical role of UNIX system administrators
and the tools they use. We emphasized the importance of shell proficiency
and covered fundamental administrative tasks. The coming chapters will
explore these concepts in greater depth, providing practical examples and
advanced techniques.

14

Chapter 2

Understanding the UNIX Shell
Chapter Overview
This chapter offers a comprehensive exploration of the UNIX shell environ-
ment, a critical tool for system administrators and power users. We will
examine:

Key Learning Objectives

• Shell Architecture: Understand the underlying structure and components
of UNIX shells

• Shell Variants: Compare major shell types (Bourne, Bash, Zsh, Ksh) and
their features

• Command Processing: Analyze the interpretation cycle from input to
execution

• Shell Modes: Differentiate between interactive and non-interactive shell
operations

• Environment Customization: Master configuration techniques for optimal
productivity

Administrative Relevance

The chapter emphasizes practical shell skills essential for:

• Efficient system maintenance and troubleshooting
• Automation of repetitive administrative tasks
• Development of robust system management scripts
• Secure shell configuration for multi-user environments

Through practical examples and configuration case studies, you will gain the
expertise needed to leverage the UNIX shell’s full potential in professional
system administration contexts.

Dr. Lyazid TOUMI

1 Shell Architecture and Components
The UNIX shell operates as a sophisticated command interpreter with a
modular architecture designed for flexibility and extensibility.

1.1 Core Components

• Command Parser:
– Lexical analysis and tokenization
– Special character handling (metacharacters, wildcards)
– Syntax tree generation

• Variable Subsystem:
– Environment variable management (export, env)
– Shell variable expansion ($VAR, ${VAR})
– Special parameters ($0, $?, $$)

• Process Controller:
– Fork-exec mechanism
– Job control (fg, bg, jobs)
– Signal handling (trap, kill)

• I/O Redirection:
– File descriptor management (>, <, 2>)
– Pipeline implementation (|)
– Here-documents (<<)

1.2 Shell Startup Sequence

The shell initialization process follows a precise order when establishing the
execution environment:

16

2 Unix System Administration

Shell Initialization Files

1 # System-wide configuration files (processed first)
2 /etc/profile # Global environment and startup programs
3 /etc/bash.bashrc # System-wide functions and aliases
4 /etc/environment # Environment variable definitions
5

6 # User-specific files (processed in order of precedence)
7 ~/.bash_profile # Login shell initialization
8 ~/.bash_login # Alternative login configuration
9 ~/.profile # Fallback login configuration
10 ~/.bashrc # Non-login interactive shell configuration
11 ~/.bash_logout # Cleanup commands on shell exit

Note: The exact file processing order varies between shell types (Bash, Zsh,
Ksh). Login shells process different files than non-login interactive shells.

17

Dr. Lyazid TOUMI

2 Shell Types and Features

2.1 Major UNIX Shell Variants

Table 4: UNIX Shell Comparison and Characteristics

Shell Key Features Common
Deployment

Bourne Shell
(sh) • Original UNIX shell (1977)

• Basic scripting capabilities
• Limited interactive features

• System startup
scripts

• POSIX-
compliant
environments

Bash
(Bourne-Again
SHell)

• sh-compatible with GNU exten-
sions

• Command history and editing
• Arrays and associative arrays

• Default Linux
shell

• macOS
terminal (until
10.15)

Korn Shell
(ksh) • Advanced scripting features

• Floating-point arithmetic
• Co-processes

• Enterprise
UNIX systems

• AIX default
shell

C Shell
(csh/tcsh) • C-like syntax

• Built-in arithmetic
• Command history

• BSD systems
• Scientific

computing
Z Shell (zsh)

• Advanced completion system
• Plugin and theme support
• Shared command history

• Developer
workstations

• macOS default
since 10.15

18

2 Unix System Administration

2.2 Shell Feature Matrix

Table 5: Detailed Shell Feature Comparison

Feature sh bash ksh csh zsh
POSIX
Compliance

Full Partial Full No Partial

Command History
Job Control
Associative Arrays v4.0+
Floating-Point
Math
Plugin System

Key Observations:

• Bash dominates Linux systems while ksh remains prevalent in enterprise
UNIX

• Zsh offers the most interactive features but has higher resource usage
• For maximum portability, sh remains the safest choice for system scripts
• Modern shells (bash 5.0+, zsh) continue to add features like JSON sup-

port

3 Command Interpretation Process
The shell follows a sophisticated multi-stage process when interpreting and
executing commands. This pipeline ensures proper handling of both simple
commands and complex scripting constructs.

3.1 Processing Stages

1. Lexical Analysis:
• Tokenization of input into words and operators
• Identification of metacharacters and quoting
• Comment removal

2. Expansion Phase (in order of execution):
• Brace expansion: {a,b,c}.txt → a.txt b.txt c.txt
• Tilde expansion: ~/user → /home/user

19

Dr. Lyazid TOUMI

• Parameter expansion: $VAR, ${VAR:-default}
• Command substitution: $(cmd) or `cmd`
• Arithmetic expansion: $((expression))
• Process substitution: <(cmd), >(cmd) (bash/zsh)
• Word splitting (using IFS)
• Filename expansion (globbing): *.txt

3. Redirection Handling:
• File descriptor manipulation
• Here-documents/here-strings
• Pipeline creation

4. Execution Phase:
• Built-in vs external command determination
• PATH resolution
• Process creation (fork-exec)

3.2 Expansion Examples

Advanced Shell Expansion Examples

1 #!/bin/bash
2 # Brace expansion
3 echo file-{1..3}.{txt,log} # file-1.txt file-1.log file-2.txt...
4

5 # Nested command substitution
6 disk_usage=$(df -h $(mount | awk '/\/$/ {print $1}'))
7

8 # Advanced parameter expansion
9 default_path="/usr/local/bin"
10 echo "Using ${PATH:-$default_path}"
11

12 # Arithmetic in command substitution
13 timeout_seconds=$(($(date +%s) + 3600))
14

15 # Process substitution
16 diff <(sort file1) <(sort file2)

Note: The expansion order is critical - brace expansion occurs before vari-
able expansion, which occurs before word splitting. Quoting can suppress
unwanted expansions.

20

2 Unix System Administration

4 Interactive vs. Non-Interactive Shells
UNIX shells operate in fundamentally different modes depending on their
execution context, affecting both functionality and configuration.

4.1 Interactive Shell Characteristics

• User Interface:
– Presents a command prompt (PS1 variable)
– Supports line editing and command history
– Provides tab completion and suggestions

• Behavior:
– Reads commands from terminal device
– Enables full job control (fg, bg, jobs)
– Processes user-specific RC files (e.g., /.bashrc)
– Handles signals (Ctrl-C, Ctrl-Z) interactively

• Use Cases:
– Direct system administration
– Development and debugging
– Exploratory data analysis

4.2 Non-Interactive Shell Characteristics

• Execution Mode:
– Reads commands from files or pipes
– No visual prompt or line editing
– Limited signal handling

• Configuration:
– Processes only ENV file if specified
– Skips most user-specific configurations
– Often runs with restricted options (–norc, –noprofile)

• Use Cases:
– Script execution
– Automated batch processing
– System startup/shutdown procedures

21

Dr. Lyazid TOUMI

Table 6: Key Differences Between Shell Modes

Feature Interactive Shell Non-Interactive Shell
Command Source Terminal input Files/pipes
Prompt Display Yes No
RC File Processing Full Minimal
Job Control Complete Limited
Error Handling Interactive Exit on error
Default Options -i flag –norc

Administrative Note: Scripts should explicitly declare #!/bin/bash - to
avoid inheriting interactive shell configurations that may cause unexpected
behavior.

5 Shell Configuration and Customization

5.1 Environment Variables

Critical environment variables for professional system administration:

Essential Environment Variables

1 # System paths (order matters for security)
2 PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin
3 MANPATH=/usr/local/man:/usr/share/man
4

5 # Security-related settings
6 umask 027 # Default file permissions
7 TMOUT=900 # Session timeout (15 mins)
8 HISTCONTROL=ignoreboth # Ignore duplicate commands
9 HISTIGNORE="&:ls:ll:la:cd:exit" # Exclude trivial commands
10

11 # Application defaults
12 EDITOR=/usr/bin/vim # Preferred text editor
13 PAGER=/usr/bin/less # Paging program
14 PS1='[\u@\h \W]\$ ' # Custom prompt
15

16 # Development environment
17 LD_LIBRARY_PATH=/usr/local/lib # Library paths
18 PKG_CONFIG_PATH=/usr/local/lib/pkgconfig

22

2 Unix System Administration

5.2 Aliases and Functions

Professional-grade shell customizations:

Advanced Admin Customizations

1 # System monitoring aliases
2 alias meminfo='free -m -l -t'
3 alias cpuinfo='lscpu'
4 alias diskusage='df -h -x tmpfs -x devtmpfs'
5 alias openports='ss -tulnp'
6

7 # Safety nets
8 alias rm='rm -i'
9 alias cp='cp -i'
10 alias mv='mv -i'
11

12 # Advanced functions
13 service_manage() {
14 local service=$1
15 local action=$2
16 sudo systemctl $action $service
17 }
18

19 find_large_files() {
20 find ${1:-.} -type f -size +${2:-10M} -exec ls -lh {} \+ | awk '{

print \$9 ": " \$5 }'↪
21 }
22

23 # Git shortcuts (for systems with git)
24 if command -v git &>/dev/null; then
25 alias gs='git status'
26 alias gl='git log --oneline --graph --decorate'
27 fi

6 Shell Job Control
Comprehensive job management for administrators:

23

Dr. Lyazid TOUMI

Table 7: Advanced Job Control Reference

Command Function and Usage
Ctrl+Z Suspend foreground job (SIGTSTP)
bg [%job] Resume suspended job in background
fg [%job] Bring job to foreground
jobs -l List jobs with PID information
kill -%n Send signal to job number n
nohup command & Run command immune to hangups
disown -h [%job] Remove job from shell’s job table
setsid command Run in new session (daemonize)

6.1 Job Control Best Practices

• Use tmux or screen for long-running processes
• Prefer nohup or disown for critical background jobs
• Monitor background jobs with wait in scripts
• Use process groups (set -m) for complex job control
• Consider systemd-run for persistent services

Note: Modern systems often use systemd for service management, but shell
job control remains essential for interactive administration.

Chapter Summary
This chapter explored the UNIX shell’s architecture, various shell types,
and their features. We examined the command interpretation process and
differences between interactive and non-interactive shells. The configuration
techniques covered will help administrators customize their environment for
maximum productivity. The next chapter will build on these concepts with
shell scripting fundamentals.

Review Questions
1. Explain the three main phases of shell command interpretation

2. Compare and contrast Bash and Korn shell features

3. Describe how environment variables differ from shell variables

24

2 Unix System Administration

4. What are the key differences between interactive and non-interactive
shells?

5. Create a .bashrc configuration with five useful aliases for system ad-
ministration

25

Chapter 3

Shell Scripting Fundamentals
Chapter Overview
This chapter serves as a hands-on guide to mastering UNIX shell script-
ing, equipping system administrators with the skills to automate repetitive
tasks, streamline system management, and enhance operational efficiency.

1 Script Basics and Structure
This section covers the fundamental building blocks of UNIX shell scripts,
from basic components to interpreter selection. Understanding these core
concepts is essential for writing effective and portable scripts.

1.1 Script Components

Every well-structured shell script contains these essential elements:

Dr. Lyazid TOUMI

Basic Script Structure with Annotations

1 #!/bin/bash # Shebang line (Section \ref{subsec:shebang})
2 # Script: backup.sh # Metadata comments
3 # Author: Admin # (Name, date, purpose)
4 # Description: Creates system backups
5

6 config="/etc/backup.conf" # Variable declaration
7 LOGFILE="/var/log/backup.log" # Constant convention
8

9 validate_input() { # Function definition
10 [-f "$config"] || {
11 echo "Error: Config missing" >&2
12 return 1
13 }
14 }
15 main() { # Main program logic
16 validate_input || exit 1
17 tar -czf "/backup/$(date +\%F).tar.gz" /target
18 }
19 main "$@" # Execution entry point
20 exit 0 # Explicit exit status (Section

\ref{subsec:exit-status})↪

Key components explained:
• Shebang Line: Mandatory first line specifying the interpreter (see Section

1.2)
• Metadata: Comments documenting purpose, author, and version
• Variable Scope:

– UPPERCASE for constants
– lowercase for local variables

• Modular Design: Functions for reusable code blocks
• Error Handling: Explicit status checks and exits

1.2 Shebang Variations

The shebang (#!) determines script execution behavior. Choose carefully
based on:

Critical considerations:
• Portability: env finds the interpreter in user’s PATH
• Security: Hard paths prevent interpreter hijacking

28

3 Unix System Administration

Table 8: Common Shebang Interpreters and Use Cases

Type Advantages Example
Absolute Path Guaranteed interpreter loca-

tion
#!/bin/bash

env Lookup Portable across systems #!/usr/bin/env bash
POSIX Mode Cross-shell compatibility #!/bin/sh
Language Specific Direct execution without

wrapper
#!/usr/bin/perl

• Features: Bashisms ([[]] arrays) won’t work in /bin/sh

1.3 Exit Status Conventions

Standard exit codes and their meanings:

Table 9: Reserved Exit Status Codes

Code Meaning
0 Success
1 General error
2 Misuse of shell builtins
126 Command cannot execute
127 Command not found
128+N Terminated by signal N

Best practices:
• Always return explicit statuses: return 0 or exit 1
• Document custom codes (64-113 available for user-defined errors)
• Use constants: readonly E_CONFIG=78

2 Variables and Data Types
This section covers shell variable handling, data typing conventions, and
special built-in variables essential for script development.

2.1 Variable Handling

Shell variables follow specific declaration and scoping rules:

29

Dr. Lyazid TOUMI

Variable Assignment

1 # Basic assignment (no spaces around =)
2 username="admin"!\label{line:basic_assign}!

Key concepts:
• Assignment: No spaces around =
• Constants: Use readonly or declare -r
• Scoping: local limits visibility to functions
• Typing: declare options:

– -i for integers
– -a for arrays
– -r for read-only

2.2 Special Variables

Shell provides automatic variables for script control:

Table 10: Predefined Shell Variables with Examples

Variable Purpose Example Usage
$0 Current script name echo "Running: $0"
$1--$9 Positional parameters backup_file=$1
$* All arguments as single

string
log_args.sh "$*"

$@ All arguments as separate
strings

process_files "$@"

$# Argument count [$# -eq 0] && usage
$? Last command exit status mkdir tmp || echo "Failed: $?"
$$ Current process PID LOG="$$.log"
$! Last background process

PID
kill $!

Critical notes:
• Parameter Expansion: Always quote variables: "$@" vs $*
• Default Values: Use :- syntax: $VAR:-default
• Error Handling: Check $? immediately after commands
• Process Control: $$ for temp files, $! for job control

30

3 Unix System Administration

2.3 Data Type Considerations

Table 11: Shell Variable Typing Behaviors

Type Declaration Behavior
String Default (untyped) Text processing, expan-

sion
Integer declare -i Arithmetic without expr
Array declare -a Indexed lists (0-based)
Associative Array declare -A Key-value pairs (Bash

4+)
Read-only readonly or declare -r Immutable after assign-

ment

Practical examples:

Typed Variable Usage

1 declare -i total=0
2 total+=5 # No $ required for arithmetic
3

4 declare -A services=(
5 [web]="nginx"
6 [db]="postgresql"
7)
8 echo "${services[web]}" # Outputs: nginx

3 Control Structures
This section covers the fundamental control flow mechanisms in shell script-
ing, enabling decision-making and repetitive operations.

3.1 Conditional Statements

Shell scripts support several conditional execution patterns:

31

Dr. Lyazid TOUMI

Conditional Statements with Best Practices

1 #!/bin/bash
2

3 # Basic if-elif-else (POSIX compliant)
4 if [-f "/etc/passwd"]; then!\label{line:if-file}!
5 echo "System user file exists"
6 elif [-d "/etc"]; then!\label{line:elif-dir}!
7 echo "/etc directory exists but passwd missing"
8 else
9 echo "Critical system files missing" >&2!\label{line:stderr}!
10 exit 1
11 fi!\label{line:fi}!
12

13 # Modern Bash conditional ([[]] with regex)
14 if [["$OS" =~ ^[Ll]inux]]; then!\label{line:regex}!
15 echo "Linux variant detected"
16 fi
17

18 # Case statement (pattern matching)
19 case $1 in!\label{line:case}!
20 start--start)
21 service𝑠 𝑡𝑎𝑟 𝑡
22 ;;
23 stop--stop)
24 service_stop
25 ;;
26 status|--status)
27 service_status
28 ;;
29 *)!\label{line:case-default}!
30 echo "Usage: $0 {startstopstatus}" >&2
31 exit 2
32 ;;
33 esac!\label{line:esac}!

Key features:
• Test Operators:

– []: POSIX-compliant (spaces required)
– [[]]: Bash extension (safer, supports regex)

• Error Handling:
– Redirect errors to stderr (Line ??)
– Use meaningful exit codes (Line ??)

32

3 Unix System Administration

• Pattern Matching:
– case for multiple patterns
– Regex support in [[]]

3.2 Loop Constructs

Shell provides three primary looping mechanisms:

Loop Structures with Practical Applications

1 #!/bin/bash
2

3 # For loop (iterating lists)
4 for package in nginx postgresql redis; do!\label{line:for-list}!
5 if ! which "$package" &>/dev/null; then
6 apt-get install -y "$package"
7 fi
8 done
9

10 # While loop (stream processing)
11 while IFS= read -r line; do!\label{line:while-read}!
12 [["$line" =~ ^#]] && continue # Skip comments
13 process_log_entry "$line"
14 done < /var/log/app.log!\label{line:done-redirect}!
15

16 # Until loop (polling)
17 attempt=0
18 until [$attempt -ge 3] || db_connection_test;

do!\label{line:until}!↪
19 sleep $((attempt * 2))
20 ((attempt++))
21 done!\label{line:until-done}!
22

23 # C-style for loop
24 for ((i=0; i<10; i++)); do!\label{line:c-style}!
25 echo "Iteration $i"
26 done

Loop control techniques:
• List Processing:

– Word splitting in for (Line ??)
– Safe reading with IFS= and -r (Line ??)

33

Dr. Lyazid TOUMI

• Flow Control:
– continue to skip iterations
– break to exit loops early

• Redirection:
– File input redirection
– Process substitution < <(cmd)

3.3 Best Practices

Table 12: Control Structure Anti-Patterns vs Recommended Ap-
proaches

Avoid Prefer
if [$var] (empty string check) if [-n "$var"] (explicit

test)
for f in `ls` (unquoted command sub) for f in * (globbing) or

while read
Nested if chains case statements or early re-

turns
Infinite while true loops Timeout mechanisms: time-

out command

Advanced patterns:

Parallel Processing Example

1 # Process files in parallel (Bash 4+)
2 max_jobs=4
3 for file in *.log; do
4 ((current_jobs >= max_jobs)) && wait -n
5 process_file "$file" &
6 ((current_jobs++))
7 done
8 wait # Cleanup remaining jobs

4 Functions and Modularity
This section covers shell function implementation strategies for creating
maintainable, reusable scripts. Proper function design is crucial for script
organization and debugging.

34

3 Unix System Administration

4.1 Function Definition and Usage

Advanced Function Techniques

1 #!/bin/bash
2

3 # Self-documenting function (metadata in comments)
4 # @desc: Checks disk space with optional threshold
5 # @usage: check_disk_usage [threshold_percent]
6 # @param: $1 - Warning threshold (default: 90)
7 check_disk_usage() {
8 local threshold=${1:-90}!\label{line:local-default}!
9 local usage=$(df -h --output=pcent,target | tail -n +2)
10

11 while read -r pct mount; do!\label{line:while-read}!
12 pct=${pct%\%}
13 ((pct >= threshold)) && {
14 echo "WARNING: $mount at ${pct}%" >&2
15 return 1
16 }
17 done <<< "$usage"!\label{line:here-string}!
18

19 return 0
20 }
21

22 # Library function (sourced from external file)
23 # @desc: Validates email format
24 # @usage: validate_email "address"
25 validate_email() {
26 [["$1" =~ ^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$]]
27 }
28

29 # Main execution flow
30 if check_disk_usage 95; then!\label{line:func-call}!
31 echo "Disk space OK"
32 else
33 exit 1
34 fi

Key features:
• Parameter Handling:

– Default values
– Named parameters via $1, $2, etc.

35

Dr. Lyazid TOUMI

• Data Processing:
– Here strings for input
– Process substitution alternatives

• Return Values:
– Explicit status codes (0=success)
– Boolean patterns

4.2 Function Best Practices

4.2.1 Implementation Guidelines

• Variable Scope:
– Always declare local variables
– Avoid global state modifications

• Error Handling:
– Use set -euo pipefail in functions
– Implement cleanup traps

• Documentation:
– Include usage examples
– Document parameters and return values

4.2.2 Design Patterns

Table 13: Common Shell Function Patterns

Pattern Implementation
Validation Return 0/1 with error messages to stderr
Logger Centralized logging function with levels
Wrapper Function that modifies command behavior
Callback Pass function names as parameters

Example of advanced patterns:

36

3 Unix System Administration

Logger Implementation

1 #!/bin/bash
2

3 # Logging library function
4 log() {
5 local level=$1
6 local message=$2
7 local timestamp=$(date +"%Y-%m-%d %T")
8

9 case $level in
10 INFO) color="\033[0;32m" ;;
11 WARN) color="\033[0;33m" ;;
12 ERROR) color="\033[0;31m" ;;
13 esac
14

15 echo -e "${color}${timestamp} [${level}] ${message}\033[0m" >&2
16 }
17

18 # Usage
19 log INFO "Processing started"
20 log ERROR "Invalid configuration" && exit 1

4.3 Modular Script Design

• Source Organization:
– Separate functions into lib/*.sh files
– Main script under bin/

• Namespace Management:
– Prefix related functions (file_, db_)
– Use source for library inclusion

• Dependency Control:
– Verify function availability
– Implement version checks

Example project structure:

/usr/local/bin/myapp
/usr/local/lib/myapp/
├── utils.sh # Common functions
├── config.sh # Configuration loader
└── modules/ # Feature-specific functions

37

Dr. Lyazid TOUMI

5 Input/Output Handling
This section covers advanced techniques for managing script input/output
streams, including redirection, piping, and document embedding.

5.1 Redirection Operators

Table 14: Advanced I/O Redirection Reference

Operator Effect Example
> file Overwrite file with stdout ls > dir_contents.txt
>> file Append stdout to file echo $result >> log.txt
2> file Redirect stderr only rm badfile 2> errors.log
2>&1 Combine stderr with stdout cmd > log 2>&1
&> file Redirect both streams (Bash) ./script &> output.log
< file Use file as stdin sort < data.txt
<<< Here string (Bash) grep "text" <<< $var
| Pipe between commands ps aux | grep ssh
>| file Force overwrite (noclobber) echo "data" >| file
<> file Read/write same file exec 3<> lockfile

Critical nuances:
• Stream Numbers: 0=stdin, 1=stdout, 2=stderr
• Order Matters: 2>&1 >file differs from >file 2>&1
• File Descriptors: Create custom (3-9) for complex I/O

38

3 Unix System Administration

5.2 Here Documents
Advanced Here Document Techniques

1 #!/bin/bash
2

3 # Basic heredoc with variable expansion
4 cat <<CONFIG > app_settings.conf
5 # Generated $(date)
6 DB_HOST=${DB_HOST:-localhost}
7 DB_PORT=${DB_PORT:-5432}
8 MAX_RETRIES=3
9 CONFIG
10

11 # Indented heredoc (Bash 4+)
12 cat <<-EOF | while read -r line; do
13 \tThis line preserves tabs
14 \tBut leading tabs are stripped
15 EOF
16 echo "Processing: $line"
17 done
18

19 # Literal heredoc (no expansion)
20 ssh server <<'REMOTE_CMDS' # Single quotes matter
21 sudo apt update
22 sudo apt upgrade -y
23 REMOTE_CMDS
24

25 # Heredoc to variable
26 read -r -d '' help_msg <<HELP
27 Usage: $0 [options]
28 -h Show this help
29 -v Enable verbose mode
30 HELP

Key features:
• Delimiter Choice: Uppercase markers (EOF, CONFIG) for visibility
• Expansion Control:

– Quoted delimiters disable expansion
– Unquoted allows variables/commands

• Indentation: <<- strips leading tabs (not spaces)

39

Dr. Lyazid TOUMI

5.3 File Descriptor Management

Advanced FD Manipulation

1 # Multiple output streams
2 {
3 echo "Header"
4 ls /nonexistent 2>&3
5 } 1>output.log 3>errors.log
6

7 # Persistent file descriptors
8 exec 4<database.sql # Open for reading
9 while read -u4 line; do
10 parse_sql "$line"
11 done
12 exec 4<&- # Close descriptor
13

14 # Network redirection
15 exec 5<>/dev/tcp/google.com/80
16 echo -e "GET / HTTP/1.1\nHost: google.com\n\n" >&5
17 cat <&5

Best practices:
• Cleanup: Always close custom FDs with <&- or >&-
• Atomic Writes: Use > tmpfile && mv tmpfile target for safety
• Buffering: stdbuf utility controls stream buffering

5.4 Process Substitution
Comparing Files Without Temp Files

1 # Compare sorted outputs
2 diff <(sort file1) <(sort file2)
3

4 # Multi-input processing
5 paste <(cut -f1 data.tsv) <(cut -f3 data.tsv)
6

7 # Output capture
8 while read -r result; do
9 process "$result"
10 done < <(complex_cmd --options)

Advantages:

40

3 Unix System Administration

• Avoids temporary files
• Enables parallel processing
• Maintains variable scope

6 Error Handling and Debugging
This section covers professional techniques for building resilient shell scripts
and effective debugging methodologies.

41

Dr. Lyazid TOUMI

42

3 Unix System Administration

6.1 Error Prevention Techniques

Enterprise-Grade Script Hardening

1 #!/bin/bash
2 # Strict execution mode (recommended set)
3 set -euo pipefail!\label{line:strict-mode}!
4 shopt -s failglob # Fail on unmatched globs
5 # Comprehensive dependency check
6 require_commands() {!\label{line:require-cmds}!
7 local missing=()
8 for cmd in "$@"; do
9 if ! command -v "$cmd" &>/dev/null; then
10 missing+=("$cmd")
11 fi
12 done
13 ((${#missing[@]})) && {!\label{line:missing-check}!
14 echo "Missing dependencies:" >&2
15 printf ' - %s\n' "${missing[@]}" >&2
16 exit 1
17 }
18 }
19

20 # Validated argument processing
21 parse_arguments() {!\label{line:arg-parser}!
22 [["$#" -ge 2]] {
23 echo "Usage: ${0##*/} <input> <output>" >&2
24 exit 2
25 }
26 [[-r "$1"]] {!\label{line:file-check}!
27 echo "Cannot read input file: $1" >&2
28 exit 3
29 }
30 # Safe output redirection check
31 if ! touch "$2" &>/dev/null; then!\label{line:write-check}!
32 echo "Cannot write to output: $2" >&2
33 exit 4
34 fi
35 }
36 # Main execution with error trapping
37 main() {
38 require_commands rsync jq date!\label{line:main-requires}!
39 parse_arguments "$@"
40 # Business logic here
41 process_data "$1" "$2"
42 }
43 main "$@"

43

Dr. Lyazid TOUMI

Key hardening practices:
• Strict Mode (Line ??):

– -e: Exit on error
– -u: Fail on unset variables
– -o pipefail: Catch pipeline errors

• Dependency Management (Lines ??-??):
– Early validation of required tools
– User-friendly error reporting

• Input Validation (Lines ??-??):
– Argument count checking
– File accessibility verification

6.2 Debugging Methods

6.2.1 Systematic Debugging Approaches

Table 15: Debugging Techniques Matrix

Method Implementation Use Case
Trace Mode set -x or bash -x

script.sh
Step-by-step execution

Error Traps trap 'echo Error in $0
at $LINENO' ERR

Contextual error logging

Syntax Check bash -n script.sh Pre-execution validation
Verbose Mode set -v Show raw input process-

ing
Custom Logging exec 3> debug.log;

PS4='+ $(date) '
Timestamped tracing

44

3 Unix System Administration

6.2.2 Advanced Tracing Example

Production-Grade Debugging

1 #!/bin/bash
2

3 # Configure debug output
4 DEBUG_LOG="${TMPDIR:-/tmp}/script_debug.$$"
5 exec 5> "$DEBUG_LOG"!\label{line:debug-fd}!
6 BASH_XTRACEFD="5"!\label{line:xtracefd}!
7

8 # Enhanced trace formatting
9 PS4='+[${LINENO}][${FUNCNAME[0]:-main}]: '!\label{line:ps4}!
10 set -x
11

12 # Debug trap with backtrace
13 trap 'echo "Error at ${LINENO}: ${BASH_COMMAND}" >&5;\
14 echo "Call stack:\n${FUNCNAME[@]}" >&5'

ERR!\label{line:err-trap}!↪
15

16 # Function demonstrating tracing
17 process_item() {
18 local item=$1
19 [[-z "$item"]] && return 1
20

21 echo "Processing: $item"
22 }
23

24 main() {
25 process_item "$1"
26 }
27

28 main "$@"

Debugging best practices:
• Isolated Logging (Lines ??-??):

– Separate debug output from application streams
– Use unique filenames ($$ for PID)

• Enhanced Tracing (Line ??):
– Include line numbers and function names
– Add timestamps for performance analysis

• Error Context (Line ??):

45

Dr. Lyazid TOUMI

– Capture failing command and location
– Log call stack for complex scripts

6.3 Error Recovery Patterns

Resilient Execution Framework

1 #!/bin/bash
2 # Global error handler
3 trap 'cleanup ${LINENO} "${BASH_COMMAND}"' EXIT ERR
4 cleanup() {
5 local line=$1 cmd=$2
6 local status=$?
7 ((status == 0)) && return
8 echo "CRITICAL: Failure at line $line: '$cmd'" >&2
9 echo "Exit status: $status" >&2
10 # Resource cleanup
11 rm -f "$TEMP_FILE"
12 [[-n "$DB_CONN"]] && disconnect_db
13 exit $status
14 }
15 # Temporary file handling
16 TEMP_FILE=$(mktemp) || {
17 echo "Temp file creation failed" >&2
18 exit 1
19 }
20 # Business logic with automatic cleanup
21 process_data() {
22 # Operations that may fail
23 transform_data > "$TEMP_FILE"
24 load_to_database "$TEMP_FILE"
25 }
26 main() {
27 initialize_db_connection
28 process_data
29 }
30 main "$@"

Recovery strategies:
• Resource Guarantees:

– trap on both EXIT and ERR
– Atomic file operations

46

3 Unix System Administration

• State Management:
– Clean up temporary resources
– Close network connections

• Diagnostic Data:
– Preserve error context
– Log environment state

7 Advanced Scripting Techniques
This section explores powerful shell programming features for complex data
processing and system automation tasks.

7.1 Arrays and Associative Arrays

7.1.1 Indexed Arrays

Professional Array Patterns

1 #!/bin/bash
2

3 # Safe array initialization
4 log_files=()
5 while IFS= read -r -d $'\0' file; do
6 log_files+=("$file") # Append null-delimited finds
7 done < <(find /var/log -name '*.log' -print0)
8

9 # Array operations
10 echo "Found ${#log_files[@]} log files" # Count elements
11 printf ' - %s\n' "${log_files[@]}" # Iterate safely
12 sorted=($(printf '%s\n' "${log_files[@]}" | sort -r)) # Sort
13

14 # Slice and subset patterns
15 recent_files=("${log_files[@]:0:5}") # First 5 elements
16 error_files=(${log_files[@]/*error*}) # Subset matching
17

18 # Parallel processing
19 for file in "${recent_files[@]}"; do
20 analyze_log "$file" &
21 done
22 wait

Key Features:

47

Dr. Lyazid TOUMI

• Null-Delimited Safety: Robust handling of filenames with spaces
• Memory Efficiency: Streaming into arrays without subshells
• Modern Substitution: Pattern-based filtering and slicing

7.1.2 Associative Arrays (Bash 4+)

Configuration Management Example

1 declare -A service_config=(
2 [port]="8080"
3 [timeout]="300"
4 [max_connections]="1000"
5)
6

7 # Dynamic configuration building
8 read_config() {
9 while IFS='=' read -r key value; do
10 [[$key]] && service_config["$key"]="$value"
11 done < config.properties
12 }
13

14 # Validation check
15 validate_config() {
16 required_keys=(port timeout)
17 for key in "${required_keys[@]}"; do
18 [[-v service_config[$key]]] || {
19 echo "Missing $key in config" >&2
20 return 1
21 }
22 done
23 }

Common Use Cases:
• Configuration management systems
• Key-value data processing
• State tracking in complex scripts

48

3 Unix System Administration

7.2 Process Substitution
Advanced Data Pipelines

1 #!/bin/bash
2

3 # Real-time log analysis
4 analyze_access() {
5 awk '{print $1}' <(tail -F /var/log/nginx/access.log) | \
6 sort | uniq -c | sort -nr
7 }
8

9 # Database ETL pattern
10 extract_transform() {
11 psql -c "COPY (SELECT * FROM sales) TO STDOUT CSV" | \
12 awk -F, '{if($3 > 1000) print $1,$2*1.08}' > \
13 >(gzip > processed_$(date +\%F).csv.gz)
14 }
15

16 # Multi-stream processing
17 compare_servers() {
18 paste \
19 <(ssh web1 "vmstat 1 5 | tail -4") \
20 <(ssh web2 "vmstat 1 5 | tail -4") | \
21 column -t
22 }
23

24 # Secure temporary processing
25 encrypt_data() {
26 gpg --encrypt \
27 <(tar cz sensitive_data) \
28 > archive_$(date +\%s).tar.gz.gpg
29 }

Performance Considerations:
• Memory Efficiency: Avoids intermediate files
• Parallelism: Enables concurrent processing
• Stream Security: Encrypted pipeline patterns

49

Dr. Lyazid TOUMI

7.3 Named Pipes and Coprocesses

Inter-Process Communication

1 # Named pipe for persistent IPC
2 PIPE=/tmp/mypipe
3 mkfifo "$PIPE"
4

5 # Writer process
6 while true; do
7 sensors > "$PIPE"
8 sleep 5
9 done &
10

11 # Reader process
12 while read -r data; do
13 check_temperatures "$data"
14 done < "$PIPE"
15

16 # Coprocess for stateful interaction
17 coproc DB_CONN {
18 psql -U user -d inventory
19 }
20

21 # Send query
22 echo "SELECT * FROM products;" >&${DB_CONN[1]}
23

24 # Read results
25 read -u ${DB_CONN[0]} -r result

8 Script Security Considerations
This section covers essential security practices for production-grade shell
scripting, addressing common vulnerabilities and hardening techniques.

50

3 Unix System Administration

Table 16: Security Configuration Checklist

Category Insecure Pattern Secure Alternative
File Handling rm -rf $TMP/* rm -rf -- "$TMP"/*
Command Execution eval $user_input case $user_input in

safe_cmd) ... ;; esac
Temporary Files > /tmp/data mktemp -p /secure/tmp
Privileges sudo cmd sudo

--non-interactive
-- cmd

51

Dr. Lyazid TOUMI

8.0.1 System Hardening

8.1 Example Secure Script

Hardened Database Backup Script

1 #!/bin/bash
2 set -euo pipefail
3 shopt -s failglob # Fail on failed glob expansion
4 # Environment hardening
5 export PATH="/bin:/usr/bin:/sbin:/usr/sbin"
6 umask 077 # Restrict new file permissions
7 # Validate credentials file
8 readonly CRED_FILE="${HOME}/.dbcreds"
9 [[-f "$CRED_FILE"]] || { echo "Credentials missing" >&2; exit 1; }
10 [["$(stat -c %a "$CRED_FILE")" == 600]] || {
11 echo "Insecure credentials permissions" >&2
12 exit 1}
13 # Validate and sanitize input
14 validate_hostname() {
15 [["$1" =~ ^[a-zA-Z0-9.-]+$]] || return 1
16 getent hosts "$1" >/dev/null || return 1}
17 if (($# != 1)) || ! validate_hostname "$1"; then
18 echo "Usage: $0 <valid_hostname>" >&2
19 exit 2
20 fi
21 # Secure temporary directory
22 readonly TMP_DIR=$(mktemp -d -p /secure/tmp backup.XXXXXXXXXX)
23 trap 'rm -rf -- "$TMP_DIR"' EXIT INT TERM
24 # Database operations with credential protection
25 read_db_password() {
26 local pass
27 IFS= read -r pass < <(
28 gpg --quiet --decrypt "$CRED_FILE" 2>/dev/null
29) || {
30 echo "Credential decryption failed" >&2
31 exit 3}
32 printf '%s' "$pass"}
33 # Execute with minimal privileges
34 if [[$EUID -eq 0]]; then
35 exec setpriv --reuid=backupuser --init-groups "$0" "$@"
36 fi
37 # Main backup operation
38 PGPASSWORD=$(read_db_password) pg_dump -h "$1" -U backupuser \
39 | gzip -9 > "$TMP_DIR/dump.sql.gz" || {
40 echo "Backup failed" >&2
41 exit 4}

52

3 Unix System Administration

Security Features Implemented:
• Privilege Separation:

– Automatic privilege dropping for operations
– Dedicated system user context

• Credential Protection:
– Encrypted credential storage
– Secure password handling without persistence

• Secure Execution:
– Restricted PATH environment
– Atomic temporary file handling
– Network security enforcement

8.2 Common Vulnerabilities and Mitigations

Table 17: Shell Script Security Risks

Vulnerability Example Solution
Shell Injection rm $user_input rm -- "$user_input"
Race Conditions > /tmp/file mktemp + O_EXCL
TOCTOU Issues [-f $f] && rm $f Atomic operations
Information Leak ps aux ‖ grep pass Credential sanitization

53

Dr. Lyazid TOUMI

8.3 Advanced Security Patterns

Audit Logging Framework

1 #!/bin/bash
2 set -o functrace # Trace function calls
3 shopt -s extdebug # Enable debugging hooks
4

5 # Security audit log configuration
6 readonly AUDIT_LOG="/var/log/script_audit.log"
7 exec 5>> "$AUDIT_LOG" # Dedicated file descriptor
8

9 # Log security events
10 log_audit_event() {
11 printf '[%s] [UID=%d] %s\n' \
12 "$(date --utc +%Y-%m-%dT%H:%M:%SZ)" \
13 "$EUID" \
14 "$*" >&5
15 }
16

17 # Command execution wrapper
18 secure_exec() {
19 log_audit_event "Executing: $*"
20 command "$@" || {
21 log_audit_event "Failed (status=$?): $*"
22 return 1
23 }
24 }
25

26 # Intercept dangerous commands
27 alias rm='secure_exec rm --preserve-root --one-file-system'

Chapter Summary
This chapter covered essential shell scripting techniques from basic syntax
to advanced features. We examined variables, control structures, functions,
and robust error handling. The security practices and debugging methods
will help create maintainable administration scripts.

54

3 Unix System Administration

Practical Exercises
1. Create a script that checks disk space and emails alerts when below

threshold

2. Write a user management script with add/delete/list functions

3. Develop a log rotation script with compression and retention policy

4. Implement a network port scanner using shell functions

5. Build a configuration file generator using here documents

Administration Exercises
1. Create a script that monitors disk space and emails alerts when usage

exceeds 90%

2. Write a command pipeline to identify the top 5 memory-consuming
processes

3. Configure user accounts with appropriate permissions for a shared
development environment

4. Analyze web server logs to identify the most frequent visitors

5. Troubleshoot a network connectivity issue using the commands cov-
ered

55

Chapter 4

Advanced Shell Features
Chapter Overview
This chapter explores sophisticated shell capabilities that enable adminis-
trators to build powerful, efficient solutions. We’ll cover I/O redirection,
process substitution, coprocesses, advanced parameter expansion, and shell
customization techniques for professional-grade scripting.

1 Advanced I/O Redirection

1.1 File Descriptor Manipulation

Table 18: File Descriptor Reference

FD Name Description

0 stdin Standard input
1 stdout Standard output
2 stderr Standard error
3-9 Additional descriptors

Dr. Lyazid TOUMI

FD Operations

1 # Redirect stderr to stdout
2 command 2>&1
3

4 # Redirect both to file
5 command &> output.log
6

7 # Custom file descriptors
8 exec 3<> /tmp/lockfile # Open FD 3 for RW
9 echo "locked" >&3
10 exec 3>&- # Close FD 3
11

12 # Redirect to multiple destinations
13 { echo "Message"; ls /nonexistent; } 2>&1 | tee output.log

1.2 Here Documents and Strings

Here Document Techniques

1 # Indented here document (Bash 4+)
2 cat <<-EOF
3 This text will have
4 leading tabs removed
5 EOF
6

7 # Parameter expansion in here string
8 tr 'a-z' 'A-Z' <<< "$USER"
9

10 # Execute remote commands via SSH
11 ssh server.example.com <<'EOSSH'
12 sudo apt update
13 sudo apt upgrade -y
14 EOSSH

58

4 Unix System Administration

2 Process Substitution and Coprocesses

2.1 Process Substitution
Process Substitution Examples

1 # Compare sorted outputs
2 diff <(sort file1) <(sort file2)
3

4 # Multi-input processing
5 join <(cut -f1 data1) <(cut -f2 data2)
6

7 # Avoid temporary files
8 paste -d: <(cut -d: -f1 /etc/passwd) \
9 <(cut -d: -f3 /etc/passwd)

2.2 Coprocesses

Coprocess Communication

1 # Start coprocess
2 coproc DB_CONN {
3 mysql -u admin -p"$DB_PASS" inventory
4 }
5

6 # Send query
7 echo "SELECT * FROM products;" >&${DB_CONN[1]}
8

9 # Read results
10 mapfile -t results <&${DB_CONN[0]}
11 echo "${results[@]}"

59

Dr. Lyazid TOUMI

3 Advanced Parameter Expansion

3.1 Pattern Matching Operators

Table 19: Parameter Expansion Operators

Expression Effect

${var%pattern} Remove shortest suffix match
${var%%pattern} Remove longest suffix match
${var#pattern} Remove shortest prefix match
${var##pattern} Remove longest prefix match
${var//pattern/repl} Global replacement
${var:offset:length} Substring expansion
${var:-default} Use default if unset

Parameter Expansion Examples

1 # Convert path to filename
2 filename=${fullpath##*/}
3

4 # Change file extension
5 newfile=${file%.*}.bak
6

7 # Default values
8 backup_dir=${BACKUP_DIR:-/var/backups}
9

10 # Case conversion
11 upper=${filename^^}
12 lower=${filename,,}
13

14 # Array slicing
15 subarray=("${files[@]:2:5}")

60

4 Unix System Administration

4 Arrays and Associative Arrays

4.1 Advanced Array Techniques

Array Operations

1 # Indexed array
2 services=("nginx" "mysql" "redis")
3

4 # Associative array (Bash 4+)
5 declare -A ports=(
6 [http]=80
7 [https]=443
8 [ssh]=22
9)
10

11 # Multi-dimensional simulation
12 declare -A servers
13 servers[web,primary]="web1.example.com"
14 servers[web,backup]="web2.example.com"
15

16 # Array manipulation
17 all_services=("${services[@]}" "${!ports[@]}")

4.2 Array Processing

Array Processing Examples

1 # Read files into array
2 mapfile -t lines < config.cfg
3

4 # Filter array
5 readarray -t log_files < <(find /var/log -type f -name "*.log")
6

7 # Join array elements
8 printf -v joined '%s,' "${services[@]}"
9 echo "${joined%,}" # Remove trailing comma
10

11 # Array intersection
12 comm -12 <(printf '%s\n' "${array1[@]}" | sort) \
13 <(printf '%s\n' "${array2[@]}" | sort)

61

Dr. Lyazid TOUMI

5 Shell Options and Customization

5.1 set and shopt Commands

Table 20: Useful Shell Options

Option Effect

set -o nounset Treat unset variables as errors
set -o pipefail Pipeline exit status is last failure
shopt -s globstar Enable ** recursive globbing
shopt -s dotglob Include hidden files in globs
shopt -s extglob Enable extended pattern matching
shopt -s nocaseglob Case-insensitive globbing

5.2 Custom Prompt Engineering

Advanced Prompt Customization

1 # Git-aware prompt
2 PS1='\[\e[1;32m\]\u@\h\[\e[0m\]:\[\e[1;34m\]\w\[\e[0m\]\
3 $(git branch &>/dev/null; if [$? -eq 0]; then \
4 echo " \[\e[1;33m\]($(git branch | grep "^*" | cut -d" " -f2-))"; \
5 fi)\[\e[0m\]\$ '
6

7 # Right-aligned information
8 PS1='\[$(tput sc; printf "%*s" $COLUMNS "$(date +%H:%M)"; tput

rc)\]\u@\h:\w\$ '↪

62

4 Unix System Administration

6 Signal Handling and Traps

6.1 Advanced Trap Techniques

Signal Handling

1 # Cleanup on script exit
2 trap 'rm -f "$TMPFILE"; exit' EXIT
3

4 # Ignore Ctrl-C
5 trap '' SIGINT
6

7 # Stackable traps
8 trap 'echo "First handler"' EXIT
9 trap 'echo "Second handler"' EXIT
10

11 # Process-specific traps
12 (
13 trap 'echo "Child exiting"' EXIT
14 sleep 5
15)

6.2 Signal Reference

Table 21: Common UNIX Signals

Signal Number Purpose

SIGHUP 1 Hangup detection
SIGINT 2 Keyboard interrupt (Ctrl-C)
SIGQUIT 3 Quit with core dump
SIGKILL 9 Immediate termination
SIGTERM 15 Graceful termination
SIGTSTP 20 Terminal stop (Ctrl-Z)

63

Dr. Lyazid TOUMI

7 Advanced Scripting Patterns

7.1 Singleton Pattern

Singleton Implementation

1 # Ensure single instance
2 LOCKFILE="/tmp/$(basename "$0").lock"
3 exec 9>"$LOCKFILE"
4 flock -n 9 || exit 1

7.2 Daemonization
Daemon Template

1 #!/bin/bash
2

3 # Daemon initialization
4 umask 0
5 cd /
6 setsid --fork >/dev/null 2>&1
7

8 # Main daemon loop
9 while true; do
10 perform_task
11 sleep $INTERVAL
12 done

Chapter Summary
This chapter explored advanced shell features including sophisticated I/O
redirection, process substitution, parameter expansion, and array manip-
ulation. We covered professional scripting patterns, signal handling, and
shell customization techniques essential for system administrators.

Advanced Exercises
1. Create a script that uses coprocesses to maintain persistent database

connections

64

4 Unix System Administration

2. Implement a recursive directory processor using globstar and null-
terminated output

3. Develop a configuration file parser using associative arrays

4. Build a signal-aware daemon with proper cleanup handling

5. Design a custom prompt showing Git status, SSH connections, and
load average

65

Chapter 5

User and Group Administration
Chapter Overview
This chapter provides a comprehensive guide to managing user and group
accounts in UNIX systems. We’ll cover account creation, password policies,
privilege management, and security best practices for system administra-
tors.

1 User Account Fundamentals

1.1 User Account Components

Table 22: User Account Configuration Files

File Purpose

/etc/passwd User account information
/etc/shadow Secure password storage
/etc/group Group definitions
/etc/skel/ Default user files
/etc/login.defs Account creation defaults
/etc/default/useradd User creation defaults

1.2 User Account Fields

/etc/passwd Entry Structure

1 username:x:UID:GID:GECOS:homedir:shell

Dr. Lyazid TOUMI

Table 23: /etc/passwd Field Descriptions

Field Example Description

Username jsmith Login name
Password x Password placeholder
UID 1001 User ID number
GID 1001 Primary group ID
GECOS John Smith User information
Home /home/jsmith Home directory
Shell /bin/bash Login shell

2 User Account Management

2.1 Account Creation
User Creation Examples

1 # Basic user creation
2 useradd -m -c "John Smith" -s /bin/bash jsmith
3

4 # With specific UID/GID
5 useradd -u 1501 -g developers -G sudo,www-data jdoe
6

7 # Set password interactively
8 passwd jsmith
9

10 # Non-interactive password setting
11 echo "jsmith:password123" | chpasswd

68

5 Unix System Administration

2.2 Account Modification
User Modification Examples

1 # Change user properties
2 usermod -c "John Q. Smith" -l jqsmith jsmith
3

4 # Add to supplementary groups
5 usermod -aG sudo,adm jqsmith
6

7 # Lock/unlock account
8 usermod -L jqsmith # Lock
9 usermod -U jqsmith # Unlock
10

11 # Change home directory
12 usermod -d /new/home/jqsmith -m jqsmith

3 Password Policies

3.1 Password Aging Controls

Password Policy Examples

1 # Set password expiration
2 chage -M 90 -m 7 -W 14 jsmith
3

4 # Force password change on login
5 chage -d 0 jsmith
6

7 # View password aging
8 chage -l jsmith

Table 24: Password Policy Configuration

Option Effect

-M days Maximum password age
-m days Minimum password age
-W days Warning period
-I days Inactive period
-E date Expiration date

69

Dr. Lyazid TOUMI

3.2 PAM Configuration

PAM Password Complexity

1 # /etc/pam.d/common-password
2 password requisite pam_pwquality.so retry=3 \
3 minlen=12 difok=3 ucredit=-1 lcredit=-1 dcredit=-1 ocredit=-1

4 Group Management

4.1 Group Operations

Group Management Examples

1 # Create new group
2 groupadd -g 2001 developers
3

4 # Modify group
5 groupmod -n devteam developers
6

7 # Delete group
8 groupdel devteam
9

10 # Add user to group
11 gpasswd -a jsmith devteam
12

13 # Remove user from group
14 gpasswd -d jsmith devteam

4.2 Group Membership Verification

Group Membership Checks

1 # List user groups
2 groups jsmith
3

4 # Check effective group membership
5 id jsmith
6

7 # Find all users in a group
8 getent group sudo | cut -d: -f4 | tr ',' '\n'

70

5 Unix System Administration

5 Privilege Management

5.1 sudo Configuration

/etc/sudoers Examples

1 # Allow user full sudo access
2 jsmith ALL=(ALL:ALL) ALL
3

4 # Allow group to run specific commands
5 %developers ALL=(ALL) /usr/bin/apt, /usr/bin/systemctl
6

7 # Passwordless sudo for specific command
8 %backup ALL=(ALL) NOPASSWD: /usr/bin/rsync
9

10 # Command aliases
11 Cmnd_Alias NETWORKING = /sbin/route, /sbin/ifconfig
12 %operators ALL=(ALL) NETWORKING

5.2 Best Practices for sudo

• Use visudo for editing sudoers file

• Grant minimal required privileges

• Prefer group-based over user-based rules

• Implement command restrictions where possible

• Log all sudo activity (Defaults logfile="/var/log/sudo.log")

71

Dr. Lyazid TOUMI

6 Account Security

6.1 Account Auditing

Security Audit Examples

1 # Find accounts with empty passwords
2 awk -F: '($2 == "") {print $1}' /etc/shadow
3

4 # Find non-root UID 0 accounts
5 awk -F: '($3 == 0) {print $1}' /etc/passwd | grep -v root
6

7 # Check last login times
8 lastlog | grep -v "Never logged in"
9

10 # Find inactive accounts
11 useradd -D | grep INACTIVE
12 find /home -type d -mtime +90 -exec ls -ld {} \;

6.2 Account Lockdown
Security Hardening

1 # Disable system accounts
2 usermod -s /sbin/nologin daemon
3 chage -E 0 daemon
4

5 # Set restrictive umask
6 echo "umask 027" >> /etc/profile
7

8 # Disable root SSH login
9 sed -i 's/^PermitRootLogin yes/PermitRootLogin no/'

/etc/ssh/sshd_config↪
10

11 # Restrict cron access
12 echo "root" > /etc/cron.allow
13 rm -f /etc/cron.deny

72

5 Unix System Administration

7 Automated User Management

7.1 Bulk Operations

Bulk User Management

1 # Create users from list
2 while read -r user; do
3 useradd -m "$user"
4 done < userlist.txt
5

6 # Reset passwords for all users
7 getent passwd | cut -d: -f1 | xargs -I{} chage -d 0 {}
8

9 # Disable expired accounts
10 awk -F: '$2 == "!!" {print $1}' /etc/shadow | xargs -I{} usermod -L

{}↪

7.2 LDAP Integration

LDAP Configuration

1 # Install LDAP tools
2 apt install libnss-ldap libpam-ldap ldap-utils
3

4 # Configure nsswitch.conf
5 passwd: files ldap
6 group: files ldap
7 shadow: files ldap
8

9 # Test LDAP lookup
10 getent passwd
11 ldapsearch -x -b "dc=example,dc=com"

Chapter Summary
This chapter covered comprehensive user and group administration tech-
niques including account creation, password policies, privilege management,
and security hardening. We explored both command-line tools and config-
uration files essential for system administrators.

73

Dr. Lyazid TOUMI

Administration Exercises
1. Create a script that audits user accounts for password expiration and

inactive sessions

2. Implement a sudo policy that allows developers to manage services
but not modify system files

3. Configure PAM to enforce strong password policies (minimum length,
complexity)

4. Design a bulk user import process from a CSV file

5. Harden system accounts by disabling shells and setting expiration
dates

74

Chapter 6

File System Management
Chapter Overview
This chapter provides an in-depth examination of UNIX file system admin-
istration, covering disk partitioning, filesystem types, mounting strategies,
performance optimization, and advanced management techniques essential
for system administrators.

1 Disk Partitioning and Layout

1.1 Partition Table Types

Table 25: Partition Table Comparison

Type Maximum Size Features

MBR 2TB Limited to 4 primary partitions
GPT 8ZB Up to 128 partitions, CRC pro-

tection

Dr. Lyazid TOUMI

1.2 Partitioning Tools

Partition Management Examples

1 # List block devices
2 lsblk -o NAME,SIZE,FSTYPE,MOUNTPOINT
3

4 # Create GPT partition table
5 parted /dev/sda mklabel gpt
6

7 # Create new partition
8 parted -a optimal /dev/sda mkpart primary ext4 0% 100%
9

10 # Verify partition alignment
11 parted /dev/sda align-check optimal 1

2 File System Types and Features

2.1 Common UNIX File Systems

Table 26: File System Comparison

File System Strengths Ideal Use Case

ext4 Stable, journaling General purpose
XFS High performance, scalabil-

ity
Large files, media

Btrfs Snapshots, checksums Data integrity
ZFS Advanced features, com-

pression
Enterprise storage

tmpfs Memory-backed Temporary files

76

6 Unix System Administration

2.2 File System Creation

File System Operations

1 # Create ext4 filesystem
2 mkfs.ext4 -L datavolume /dev/sda1
3

4 # Create XFS filesystem
5 mkfs.xfs -f -L bigdata /dev/sdb1
6

7 # Add ZFS storage pool
8 zpool create datapool mirror /dev/sdc /dev/sdd
9

10 # Check filesystem integrity
11 fsck -y /dev/sda1

3 Mounting File Systems

3.1 Mount Options and Strategies

Table 27: Common Mount Options

Option Purpose

noatime Disable access time updates
nodiratime Disable directory access time
relatime Optimized access time updates
discard Enable TRIM (SSDs)
data=journal Full data journaling
barrier=1 Write barrier enforcement

77

Dr. Lyazid TOUMI

Mount Examples

1 # Temporary mount
2 mount /dev/sdb1 /mnt/data
3

4 # Persistent mount (add to /etc/fstab)
5 UUID=1234-5678 /data ext4 defaults,noatime 0 2
6

7 # Bind mount
8 mount --bind /var/www /srv/www
9

10 # Remount with new options
11 mount -o remount,ro /dev/sda1

4 Advanced File System Features

4.1 Logical Volume Management

LVM Operations

1 # Initialize physical volume
2 pvcreate /dev/sdb
3

4 # Create volume group
5 vgcreate vg_data /dev/sdb
6

7 # Create logical volume
8 lvcreate -L 100G -n lv_www vg_data
9

10 # Extend logical volume
11 lvextend -L +50G /dev/vg_data/lv_www
12 resize2fs /dev/vg_data/lv_www

78

6 Unix System Administration

4.2 Quota Management

Disk Quota Setup

1 # Enable quotas in fstab
2 UUID=1234-5678 /home ext4 defaults,usrquota,grpquota 0 2
3

4 # Initialize quota files
5 quotacheck -cug /home
6 quotaon /home
7

8 # Set user quotas
9 setquota -u jsmith 500M 1G 0 0 /home
10

11 # Generate quota reports
12 repquota -a

5 File System Maintenance

5.1 Monitoring and Analysis

Monitoring Examples

1 # Check disk space
2 df -hT -x tmpfs
3

4 # Find large files
5 find / -xdev -type f -size +100M -exec ls -lh {} \+
6

7 # Analyze disk usage
8 ncdu -x /
9

10 # Check inode usage
11 df -i

79

Dr. Lyazid TOUMI

5.2 Scheduled Maintenance
Maintenance Script

1 #!/bin/bash
2 # Weekly filesystem maintenance
3 logger -t maint "Starting filesystem maintenance"
4

5 # Rotate logs
6 logrotate -f /etc/logrotate.conf
7

8 # Trim SSD
9 fstrim -av
10

11 # Check filesystems
12 fsck -A -C -t ext4 -p
13

14 # Update locate database
15 updatedb
16

17 logger -t maint "Completed filesystem maintenance"

6 Backup and Recovery

6.1 Backup Strategies

Table 28: Backup Method Comparison

Method Advantages Limitations

Full Complete recovery Storage intensive
Incremental Efficient storage Complex restoration
Differential Balanced approach Growing backup size
Snapshot Instant recovery Requires COW filesystem

80

6 Unix System Administration

6.2 Backup Tools

Backup Examples

1 # Full backup with tar
2 tar -czpf /backups/full-$(date +\%F).tar.gz --exclude=/backups /
3

4 # Incremental backup with rsync
5 rsync -avh --delete --link-dest=/backups/last_full /

/backups/incr-$(date +\%F)↪
6

7 # Filesystem snapshot
8 lvcreate -s -n db_snap -L 10G /dev/vg_data/lv_database
9

10 # Database dump
11 mysqldump -u root -p --all-databases | gzip > /backups/mysql-$(date

+\%F).sql.gz↪

7 Security and Permissions

7.1 Advanced Permission Management

Permission Examples

1 # Set default permissions
2 setfacl -d -m u::rwx,g::r-x,o::r-x /shared
3

4 # Recursive permission fix
5 find /webroot -type d -exec chmod 755 {} \;
6 find /webroot -type f -exec chmod 644 {} \;
7

8 # Special permissions
9 chmod +t /tmp/uploads # Sticky bit
10 chmod g+s /var/www # Setgid

81

Dr. Lyazid TOUMI

7.2 File Attributes
File Attributes

1 # Make file immutable
2 chattr +i /etc/passwd
3

4 # Secure deletion attribute
5 chattr +s important.doc
6

7 # Append-only logs
8 chattr +a /var/log/secure
9

10 # View attributes
11 lsattr /etc/ssh/sshd_config

Chapter Summary
This chapter covered comprehensive file system management including par-
titioning strategies, filesystem types, mounting options, advanced features
like LVM and quotas, maintenance procedures, and backup solutions. These
techniques form the foundation of reliable storage administration.

Administration Exercises
1. Design a partitioning scheme for a database server with separate par-

titions for OS, logs, and data

2. Implement a monitoring system that alerts when filesystem usage
exceeds 90%

3. Create an automated backup rotation script with full and incremental
backups

4. Configure a secure shared directory with proper permissions and quo-
tas

5. Test recovery procedures by restoring from backup to a test system

82

Chapter 7

Process and Service Management
Chapter Overview
This chapter provides a comprehensive guide to UNIX process and service
management, covering process monitoring, control, prioritization, systemd
service units, and automation techniques essential for system administra-
tors.

1 Process Fundamentals

1.1 Process States

Table 29: UNIX Process States

State Description

R (Running) Currently executing or runnable
S (Sleeping) Waiting for an event
D (Uninterruptible) Waiting on I/O (cannot be killed)
Z (Zombie) Terminated but not reaped
T (Stopped) Suspended by signal

Dr. Lyazid TOUMI

1.2 Process Hierarchy

Process Tree Examples

1 # View process hierarchy
2 pstree -p
3

4 # Show parent-child relationships
5 ps -ef --forest
6

7 # Find parent process ID
8 ps -o ppid= -p [PID]

2 Process Monitoring

2.1 Monitoring Tools

Table 30: Process Monitoring Utilities

Command Purpose

ps Snapshot of processes
top Interactive process viewer
htop Enhanced interactive viewer
vmstat System resource statistics
pidstat Per-process statistics

84

7 Unix System Administration

2.2 Advanced Monitoring

Monitoring Examples

1 # Show threads
2 ps -eLf
3

4 # Monitor process memory
5 pmap -x [PID]
6

7 # Continuous I/O monitoring
8 iotop -oPa
9

10 # Process-specific CPU usage
11 pidstat -u -p [PID] 5 3

3 Process Control

3.1 Signals and Termination

Table 31: Common Process Signals

Signal Number Purpose

SIGTERM 15 Graceful termination
SIGKILL 9 Forceful termination
SIGSTOP 19 Suspend process
SIGCONT 18 Resume process
SIGHUP 1 Reload configuration

85

Dr. Lyazid TOUMI

Process Control Examples

1 # Graceful shutdown
2 kill -TERM [PID]
3

4 # Force kill
5 kill -9 [PID]
6

7 # Kill by name
8 pkill -f "pattern"
9

10 # Kill all matching processes
11 killall -9 process_name

4 Process Prioritization

4.1 Nice and Renice
Priority Management

1 # Start process with low priority
2 nice -n 19 cpu_intensive_task
3

4 # Change running process priority
5 renice -n 10 -p [PID]
6

7 # Show nice values
8 ps -eo pid,ni,comm

4.2 Scheduling Classes

Table 32: Process Scheduling Policies

Policy Description

SCHED_OTHER Default time-sharing
SCHED_FIFO Real-time (first-in, first-out)
SCHED_RR Real-time (round robin)
SCHED_BATCH For batch processes
SCHED_IDLE For very low priority tasks

86

7 Unix System Administration

Scheduling Examples

1 # Set FIFO scheduling
2 chrt -f -p 99 [PID]
3

4 # Run task with batch scheduling
5 chrt -b 0 batch_task

5 Systemd Service Management

5.1 Service Unit Files
Service Unit Example

1 # /etc/systemd/system/custom.service
2 [Unit]
3 Description=Custom Service
4 After=network.target
5

6 [Service]
7 Type=simple
8 User=svcuser
9 Group=svcgroup
10 ExecStart=/usr/local/bin/service_start
11 ExecStop=/usr/local/bin/service_stop
12 Restart=on-failure
13

14 [Install]
15 WantedBy=multi-user.target

87

Dr. Lyazid TOUMI

5.2 Service Commands
Systemd Examples

1 # Start/stop service
2 systemctl start servicename
3 systemctl stop servicename
4

5 # Enable/disable at boot
6 systemctl enable servicename
7 systemctl disable servicename
8

9 # Check status
10 systemctl status servicename
11

12 # Reload modified units
13 systemctl daemon-reload

6 Logging and Debugging

6.1 Journalctl Usage

Journal Examples

1 # Show service logs
2 journalctl -u servicename
3

4 # Follow logs in real-time
5 journalctl -f
6

7 # Filter by priority
8 journalctl -p err
9

10 # Show kernel messages
11 journalctl -k
12

13 # Persistent logging
14 mkdir /var/log/journal
15 systemd-tmpfiles --create --prefix /var/log/journal

88

7 Unix System Administration

6.2 Process Tracing

Debugging Examples

1 # Trace system calls
2 strace -p [PID]
3

4 # Trace child processes
5 strace -f command
6

7 # Monitor file access
8 lsof -p [PID]
9

10 # Network connections
11 ss -tupn

7 Automation and Scheduling

7.1 Cron Jobs
Cron Examples

1 # Edit crontab
2 crontab -e
3

4 # Example entries
5 0 2 * * * /path/to/backup.sh
6 */5 * * * * /path/to/monitor.sh
7

8 # System-wide cron
9 vim /etc/crontab

89

Dr. Lyazid TOUMI

7.2 Systemd Timers

Timer Unit Example

1 # /etc/systemd/system/daily-backup.timer
2 [Unit]
3 Description=Daily Backup Timer
4

5 [Timer]
6 OnCalendar=daily
7 Persistent=true
8

9 [Install]
10 WantedBy=timers.target
11

12 # /etc/systemd/system/daily-backup.service
13 [Unit]
14 Description=Daily Backup
15

16 [Service]
17 Type=oneshot
18 ExecStart=/path/to/backup.sh

8 Resource Limits

8.1 ulimit Configuration

Resource Limits

1 # View limits
2 ulimit -a
3

4 # Set per-session limits
5 ulimit -n 4096 # Open files
6 ulimit -u 500 # User processes
7

8 # System-wide limits
9 vim /etc/security/limits.conf
10 * soft nofile 4096
11 * hard nofile 8192

90

7 Unix System Administration

8.2 Cgroups v2

Cgroup Examples

1 # Create new cgroup
2 mkdir /sys/fs/cgroup/mycgroup
3

4 # Set memory limit
5 echo "100000000" > /sys/fs/cgroup/mycgroup/memory.max
6

7 # Add process to cgroup
8 echo [PID] > /sys/fs/cgroup/mycgroup/cgroup.procs

Chapter Summary
This chapter covered comprehensive process and service management in-
cluding monitoring, control, prioritization, systemd services, logging, au-
tomation, and resource limits. These skills are essential for maintaining
optimal system performance and reliability.

Administration Exercises
1. Create a systemd service unit for a custom application with auto-

restart

2. Write a script to identify and kill zombie processes

3. Configure a CPU-intensive process to use idle scheduling

4. Implement log rotation for a service using journald

5. Set up a systemd timer for weekly maintenance tasks

91

