
Université Ferhat Abbas Se1f 1

Faculy Of Sciences

Compter Science Department

DATA WAREHOUSES
2nd Year Master Data Engineering and Web Technologies

By Dr. Lyazid TOUMI

Contents
1 Data Warehouse Architecture and Design 9

1 Introduction to Data Warehousing 9
2 Data Warehoue architecture 10
3 Core Architecture Principles 10

3.1 Subject Orientation 10
3.2 Data Integration . 10
3.3 Time Variance . 11
3.4 Non-Volatility . 11

4 Multidimensional Data Modeling 12
4.1 OLAP Implementation Approaches 12

5 Physical Design Considerations 12
5.1 Redundant Structures 13
5.2 Non-Redundant Structures 13

6 Performance Tuning Strategies 13
6.1 Hardware Level . 13
6.2 DBMS Level . 13
6.3 Logical Level . 14

7 Commercial Implementation Tools 14
8 Conclusion . 14

2 Data Warehouse Reporting 15
1 Introduction to DWH Reporting 15
2 Reporting Architecture . 15
3 Oracle Reporting Tools . 15

3.1 Oracle Analytics Server 15
3.2 Oracle APEX for Reporting 17

4 Optimizing Reports with Materialized Views 18
4.1 Report-Specific MVs 18

5 Parameterized Reporting 20
5.1 SQL Query Parameters 20

6 Scheduled Report Delivery 22
6.1 Automated Email Reports 22

Dr. Lyazid TOUMI

7 Performance Considerations 23
7.1 Report Query Optimization 23
7.2 Query Design Patterns 23

8 Security and Access Control 24
8.1 Row-Level Security 24

9 Advanced Visualization Techniques 25
9.1 Time-Series Analysis 25

10 Best Practices . 25
10.1 Report Development Guidelines 25
10.2 Performance Checklist 25

11 Emerging Trends . 25
11.1 Modern Reporting Features 25

3 ETL Processes in Data Warehousing 27
1 Introduction to ETL . 27
2 Oracle ETL Tools Overview 27

2.1 Tool Comparison . 27
3 Extraction Patterns . 29

3.1 Change Data Capture (CDC) 29
4 Transformation Techniques 30

4.1 Data Cleansing . 30
5 Loading Strategies . 31

5.1 Bulk Loading with SQL*Loader 31
5.2 External Tables . 32

6 Incremental Loading . 34
6.1 SCD Type 2 Implementation 34

7 High-Performance ETL Techniques 35
7.1 Parallel DML . 35
7.2 Partition Exchange Loading 36

8 Error Handling and Recovery 37
8.1 ETL Auditing Framework 37

9 Optimizing ETL Performance 38
9.1 Performance Tuning Checklist 38
9.2 Memory Configuration 38

10 Best Practices . 38
10.1 ETL Design Principles 38
10.2 Oracle-Specific Recommendations 39

11 Emerging Trends . 39
11.1 Modern ETL Approaches 39

2

0 Data Warehouses

4 Data Warehouses Indexation Strategies 41
1 Introduction to Data Warehouse Indexing 41
2 Oracle-Specific Indexing Techniques 41

2.1 B-Tree Indexes in Oracle 41
2.2 Bitmap Indexes in Oracle 42
2.3 Bitmap Join Indexes in Oracle 42

3 Index Selection Methodology 42
3.1 Cost-Based Approach in Oracle 42
3.2 Implementation Example 43

4 Performance Comparison 44
5 Maintenance Strategies . 44
6 Conclusion . 44

5 Horizontal Partitioning in Data Warehouses 47
1 Introduction . 47
2 Partitioning Strategies . 47

2.1 Partitioning Key Selection 47
2.2 Partition Granularity 48

3 Oracle Partitioning Fundamentals 48
3.1 Partitioning Types 48
3.2 Creating Partitioned Tables 49

4 Horizontal partitioning modes 49
4.1 Range partitioning mode 49
4.2 Hash partitioning mode 51
4.3 List partitioning mode 52
4.4 Composite partitioning mode 53
4.5 Multicolumn partitioning mode 55
4.6 Reference partitioning mode 56
4.7 Virtual column partitioning 57

5 Partition Pruning Optimization 58
6 Partitioned Index Strategies 59

6.1 Local vs Global Indexes 59
6.2 Index Creation Examples 59

7 Partition Maintenance Automation 60
8 Performance Considerations 60

8.1 Partitioning Overhead 60
8.2 Monitoring Partition Usage 61

9 Real-World Implementation Case Study 61
10 Conclusion and Best Practices 62

3

Dr. Lyazid TOUMI

6 Materialized Views in Data Warehouses 65
1 Materialized View Selection Problem 65

1.1 Problem Formulation 65
1.2 Selection Algorithms 66

2 Pruning Techniques . 66
2.1 Dominance Pruning 67
2.2 Constraint-Based Pruning 67
2.3 Multi-Query Optimization Pruning 67

3 Oracle Materialized View Fundamentals 68
4 Refresh Mechanisms . 68
5 Query Rewrite . 69
6 Partitioned Materialized Views 70
7 MV Maintenance Best Practices 70
8 Advanced MV Selection in Oracle 71
9 Real-World Example . 71
10 Materialized View vs. Indexes 73
11 Advanced Features . 73
12 Conclusion . 73

7 Data Warehouse Administration and Tuning 75
1 Introduction to DWH Administration 75
2 Oracle Data Warehouse Architecture 77
3 Storage Management . 77

3.1 Tablespace Strategy 77
3.2 Compression Techniques 77

4 Performance Tuning Methodology 78
4.1 Tuning Approach . 78
4.2 Key Performance Metrics 78

5 Query Optimization Techniques 79
5.1 Optimizer Statistics 79
5.2 SQL Plan Management 79

6 Parallel Execution Tuning 80
6.1 Configuration Parameters 80
6.2 Monitoring Parallel Queries 80

7 ETL Process Optimization 80
7.1 ETL Tuning Techniques 80

8 Resource Management . 81
8.1 Database Resource Manager 81

4

0 Data Warehouses

9 Monitoring and Maintenance 82
9.1 Automated Maintenance Tasks 82

10 Troubleshooting Common Issues 82
10.1 Performance Problem Resolution 82

11 Conclusion and Best Practices 83
11.1 Administration Checklist 83
11.2 Ongoing Tuning Process 83

5

Reference Books
• The Data Warehouse Toolkit: The Definitive Guide to Dimensional

Modeling (3rd Edition), Ralph Kimball and Margy Ross, Wiley , 2013.

• Building the Data Warehouse, W. H. Inmon, John Wiley Sons, 2005

• Oracle database performance tuning: a checklist approach with simple
and comprehensive guide to diagnose, optimize, and deliver, SANJAY
MISHRA, kindle edition, 2025

Chapter 1

Data Warehouse Architecture and Design
1 Introduction to Data Warehousing
Modern enterprises rely on data warehouses as centralized repositories for
analytical processing. Unlike traditional databases focused on day-to-day
operations, data warehouses specialize in storing historical business data
optimized for complex analysis and decision support.

These systems typically employ specialized schema designs:

• Star Schema: A simple structure with one central fact table linked to
dimension tables

• Snowflake Schema: A normalized version of star schema where dimen-
sions are further broken down

Query performance challenges primarily stem from:

• Large-scale join operations between fact and dimension tables

• Increasing data volumes, especially in scientific applications

• Complex analytical queries requiring aggregated results

Dr. Lyazid TOUMI

2 Data Warehoue architecture

Data smart

Data smart

Data warehouse
OLAP

Data smart

Databases

Extraction Integration Analysis

Reporting

Data warehouse Admin

Files

Reports

Statistics
analysis

ETL

Data mining

Figure 1: Data warehouses building process.

3 Core Architecture Principles
The fundamental architecture of data warehouses revolves around four key
characteristics:

3.1 Subject Orientation

Data warehouses organize information around specific business subjects
rather than operational functions. For instance:

• Retail: Sales performance analysis

• Telecom: Call pattern examination

• Healthcare: Patient treatment outcomes

3.2 Data Integration

A data warehouse consolidates information from multiple source systems
through:

10

1 Data Warehouses

• Standardized naming conventions

• Consistent measurement units

• Unified data formats

• Conflict resolution mechanisms

3.3 Time Variance

Unlike operational systems that focus on current data, warehouses maintain
historical records to enable:

• Trend analysis

• Year-over-year comparisons

• Pattern recognition across time periods

3.4 Non-Volatility

Once data enters the warehouse:

• It remains unchanged for analysis consistency

• Updates occur through periodic refreshes

• Historical snapshots are preserved

Table 1: Comparison of OLTP and OLAP Systems

Characteristic OLTP Systems OLAP Systems
Primary Purpose Transaction processing Analytical processing
Data Structure Highly normalized Denormalized
Query Patterns Simple, predictable Complex, ad-hoc
Performance Focus Fast writes Fast reads
Data Freshness Real-time Periodic updates
Storage Approach Many small tables Few large tables

11

Dr. Lyazid TOUMI

4 Multidimensional Data Modeling
The data cube serves as the foundation for analytical processing, consisting
of:

• Dimensions: Business perspectives (e.g., time, location, product)

• Measures: Quantitative values (e.g., sales amount, quantity)

• Hierarchies: Drill-down paths (e.g., year quarter month)

For a cube with n dimensions, there are 2𝑛 possible aggregation levels
(cuboids). Figure 2 illustrates a three-dimensional data cube.

Figure 2: Three-dimensional data cube example

4.1 OLAP Implementation Approaches

5 Physical Design Considerations
Effective physical design significantly impacts query performance. Opti-
mization techniques fall into two categories:

12

1 Data Warehouses

Table 2: OLAP Implementation Comparison

Feature ROLAP MOLAP HOLAP
Storage Medium Relational DB Multidimensional array Hybrid
Query Speed Moderate Fast Balanced
Storage Efficiency High Low for sparse data Medium
Implementation Star/snowflake Proprietary format Combined

5.1 Redundant Structures

• Indexes: Accelerate data retrieval

• Materialized Views: Pre-computed query results

• Vertical Partitioning: Column-wise table splitting

5.2 Non-Redundant Structures

• Horizontal Partitioning: Row-wise table division

• Parallel Processing: Distributed query execution

• Query Scheduling: Workload prioritization

6 Performance Tuning Strategies
Data warehouse tuning operates at three levels:

6.1 Hardware Level

• RAID storage configurations

• Query Processing Units (QPUs)

• Memory allocation optimization

6.2 DBMS Level

• Buffer pool sizing

• Checkpoint frequency adjustment

• Concurrency control settings

13

Dr. Lyazid TOUMI

6.3 Logical Level

• Query rewriting

• Optimal index selection

• Partitioning strategy refinement

7 Commercial Implementation Tools
Major database vendors provide specialized tuning advisors:

• Microsoft SQL Server: Database Tuning Advisor (DTA)

• IBM DB2: Design Advisor with workload management

• Oracle: Automatic Workload Repository (AWR)-based tuning

8 Conclusion
This chapter covered essential data warehouse concepts including:

• Foundational architecture principles

• Multidimensional modeling approaches

• Physical design optimization techniques

• Performance tuning methodologies

These fundamentals provide the basis for understanding advanced data
warehouse optimization techniques covered in subsequent chapters.

14

Chapter 2

Data Warehouse Reporting
1 Introduction to DWH Reporting
Data warehouse reporting transforms raw data into actionable business
intelligence through:

• Standardized operational reports

• Interactive dashboards

• Ad-hoc analytical queries

• Self-service BI tools

• Scheduled report distribution

2 Reporting Architecture

3 Oracle Reporting Tools

3.1 Oracle Analytics Server

1 -- Create dedicated reporting user
2 CREATE USER report_owner IDENTIFIED BY "R3port$2023"
3 DEFAULT TABLESPACE reporting
4 TEMPORARY TABLESPACE temp
5 QUOTA UNLIMITED ON reporting;
6

7 -- Grant necessary privileges
8 GRANT CREATE SESSION, CREATE VIEW,
9 CREATE MATERIALIZED VIEW TO report_owner;
10 GRANT SELECT ON dwh.sales TO report_owner;

Dr. Lyazid TOUMI

Figure 3: Data Warehouse Reporting Architecture

16

2 Data Warehouses

3.2 Oracle APEX for Reporting

1 -- Create APEX report region
2 BEGIN
3 APEX_APPLICATION_PAGE.CREATE_PAGE(
4 application_id => 100,
5 page_id => 10,
6 page_name => 'Sales Dashboard');
7

8 APEX_APPLICATION_PAGE.CREATE_REGION(
9 page_id => 10,
10 region_name => 'Monthly Sales',
11 source_type => 'SQL',
12 source => 'SELECT TO_CHAR(sale_date,''YYYY-MM'') AS month,
13 SUM(amount) AS total_sales
14 FROM sales
15 GROUP BY TO_CHAR(sale_date,''YYYY-MM'')
16 ORDER BY 1 DESC');
17 END;

17

Dr. Lyazid TOUMI

4 Optimizing Reports with Materialized Views

4.1 Report-Specific MVs

1 CREATE MATERIALIZED VIEW mv_monthly_sales
2 REFRESH COMPLETE ON DEMAND
3 ENABLE QUERY REWRITE
4 AS
5 SELECT
6 TO_CHAR(s.sale_date,'YYYY-MM') AS month,
7 r.region_name,
8 p.product_category,
9 COUNT(*) AS transaction_count,
10 SUM(s.amount) AS total_sales,
11 SUM(s.quantity) AS total_units
12 FROM
13 sales s
14 JOIN products p ON s.product_id = p.product_id
15 JOIN regions r ON s.region_id = r.region_id
16 GROUP BY
17 TO_CHAR(s.sale_date,'YYYY-MM'),
18 r.region_name,
19 p.product_category;

18

2 Data Warehouses

19

Dr. Lyazid TOUMI

5 Parameterized Reporting

5.1 SQL Query Parameters

1 -- PL/SQL function for dynamic reporting
2 CREATE OR REPLACE FUNCTION get_sales_report(
3 p_start_date DATE,
4 p_end_date DATE,
5 p_region_id NUMBER DEFAULT NULL,
6 p_category_id NUMBER DEFAULT NULL)
7 RETURN SYS_REFCURSOR
8 IS
9 v_cursor SYS_REFCURSOR;
10 v_sql VARCHAR2(4000);
11 BEGIN
12 v_sql := 'SELECT s.sale_date, c.customer_name,
13 p.product_name, s.amount
14 FROM sales s
15 JOIN customers c ON s.customer_id = c.customer_id
16 JOIN products p ON s.product_id = p.product_id
17 WHERE s.sale_date BETWEEN :1 AND :2';
18

19 IF p_region_id IS NOT NULL THEN
20 v_sql := v_sql || ' AND c.region_id = :3';
21 END IF;
22

23 IF p_category_id IS NOT NULL THEN
24 v_sql := v_sql || ' AND p.category_id = :4';
25 END IF;
26

27 v_sql := v_sql || ' ORDER BY s.sale_date DESC';
28

29 IF p_region_id IS NULL AND p_category_id IS NULL THEN
30 OPEN v_cursor FOR v_sql USING p_start_date, p_end_date;
31 ELSIF p_region_id IS NOT NULL AND p_category_id IS NULL THEN
32 OPEN v_cursor FOR v_sql USING p_start_date, p_end_date,

p_region_id;↪
33 ELSE
34 OPEN v_cursor FOR v_sql USING p_start_date, p_end_date,
35 p_region_id, p_category_id;
36 END IF;
37

38 RETURN v_cursor;
39 END;

20

2 Data Warehouses

21

Dr. Lyazid TOUMI

6 Scheduled Report Delivery

6.1 Automated Email Reports

1 BEGIN
2 DBMS_SCHEDULER.CREATE_JOB(
3 job_name => 'SEND_DAILY_SALES_REPORT',
4 job_type => 'PLSQL_BLOCK',
5 job_action => 'BEGIN
6 -- Generate report as CSV
7 DECLARE
8 v_file UTL_FILE.FILE_TYPE;
9 v_csv CLOB;
10 BEGIN
11 v_file :=

UTL_FILE.FOPEN(''REPORT_DIR'',''sales.csv'',''W'');↪
12

13 FOR r IN (
14 SELECT * FROM sales
15 WHERE sale_date = TRUNC(SYSDATE)-1
16 ORDER BY sale_id
17) LOOP
18 v_csv := v_csv || r.sale_id || '','' ||
19 r.sale_date || '','' ||
20 r.amount || CHR(10);
21 END LOOP;
22

23 UTL_FILE.PUT_LINE(v_file, v_csv);
24 UTL_FILE.FCLOSE(v_file);
25

26 -- Email report
27 APEX_MAIL.SEND(
28 p_to => ''managers@company.com'',
29 p_from => ''reports@company.com'',
30 p_subj => ''Daily Sales Report'',
31 p_body => ''Attached is

yesterday''''s sales report'',↪
32 p_attachment => ''REPORT_DIR/sales.csv'');
33 END;
34 END;',
35 start_date => SYSDATE,
36 repeat_interval => 'FREQ=DAILY; BYHOUR=8',
37 enabled => TRUE);
38 END;

22

2 Data Warehouses

7 Performance Considerations

7.1 Report Query Optimization

Table 3: Report Query Optimization Techniques

Problem Solution
Slow-running reports Create summary materialized views
High concurrency Implement result caching
Large data volumes Use pagination (LIMIT/OFFSET)
Complex calculations Pre-compute in ETL

7.2 Query Design Patterns

1 -- Paginated report with analytic functions
2 SELECT * FROM (
3 SELECT
4 s.sale_id,
5 s.sale_date,
6 c.customer_name,
7 p.product_name,
8 s.amount,
9 SUM(s.amount) OVER (PARTITION BY c.customer_id) AS cust_total,
10 ROW_NUMBER() OVER (ORDER BY s.sale_date DESC) AS rn
11 FROM
12 sales s
13 JOIN customers c ON s.customer_id = c.customer_id
14 JOIN products p ON s.product_id = p.product_id
15 WHERE
16 s.sale_date BETWEEN :start_date AND :end_date
17)
18 WHERE rn BETWEEN :page_start AND :page_end
19 ORDER BY sale_date DESC;

23

Dr. Lyazid TOUMI

8 Security and Access Control

8.1 Row-Level Security

1 -- Create security policy
2 BEGIN
3 DBMS_RLS.ADD_POLICY(
4 object_schema => 'DWH',
5 object_name => 'SALES',
6 policy_name => 'REGION_ACCESS_POLICY',
7 function_schema => 'SECURITY',
8 policy_function => 'AUTHORIZE_BY_REGION',
9 statement_types => 'SELECT',
10 update_check => TRUE);
11 END;
12 -- Policy function example
13 CREATE OR REPLACE FUNCTION security.authorize_by_region(
14 p_schema IN VARCHAR2,
15 p_object IN VARCHAR2)
16 RETURN VARCHAR2
17 IS
18 v_predicate VARCHAR2(200);
19 BEGIN
20 IF SYS_CONTEXT('USERENV','SESSION_USER') = 'REPORT_USER' THEN
21 v_predicate := 'region_id IN (
22 SELECT region_id FROM user_regions
23 WHERE username = SYS_CONTEXT(''USERENV'',''SESSION_USER''))';
24 END IF;
25

26 RETURN v_predicate;
27 END;

24

2 Data Warehouses

9 Advanced Visualization Techniques

9.1 Time-Series Analysis

1 -- MATCH_RECOGNIZE for trend analysis
2 SELECT *
3 FROM daily_sales
4 MATCH_RECOGNIZE (
5 PARTITION BY product_id
6 ORDER BY sale_date
7 MEASURES
8 STRT.sale_date AS start_date,
9 LAST(DOWN.sale_date) AS bottom_date,
10 LAST(UP.sale_date) AS recovery_date
11 ONE ROW PER MATCH
12 PATTERN (STRT DOWN+ UP+)
13 DEFINE
14 DOWN AS amount < PREV(amount),
15 UP AS amount > PREV(amount)
16) mr
17 ORDER BY product_id, start_date;

10 Best Practices

10.1 Report Development Guidelines

• Modular Design: Build reusable report components

• Parameter Validation: Sanitize all user inputs

• Performance Testing: Validate with production data volumes

• Documentation: Maintain data dictionaries and lineage

• Version Control: Track report changes systematically

10.2 Performance Checklist

11 Emerging Trends

11.1 Modern Reporting Features

• Natural Language Processing: Voice-activated reporting

25

Dr. Lyazid TOUMI

Table 4: Report Performance Checklist

Area Verification
Query Design Proper indexing and partitioning
Execution Plan Optimal join methods and access paths
Result Size Appropriate pagination/filtering
Caching Effective use of result cache
Concurrency Tested under expected user load

• Augmented Analytics: Automated insights generation

• Embedded Analytics: Reports within operational apps

• Real-time Dashboards: Streaming data visualization

• Mobile Optimization: Responsive report design

1 -- Oracle Continuous Query Notification
2 DECLARE
3 l_regid NUMBER;
4 l_cursor SYS_REFCURSOR;
5 BEGIN
6 DBMS_CHANGE_NOTIFICATION.ENABLE_REG(
7 regid => l_regid,
8 callback => 'reporting.refresh_dashboard',
9 qosflags => DBMS_CHANGE_NOTIFICATION.QOS_QUERY);
10

11 OPEN l_cursor FOR
12 SELECT product_id, SUM(amount)
13 FROM sales
14 GROUP BY product_id;
15

16 DBMS_CHANGE_NOTIFICATION.REGISTER(
17 regid => l_regid,
18 cursor => l_cursor,
19 operations => DBMS_CHANGE_NOTIFICATION.ALL_OPERATIONS);
20 END;

26

Chapter 3

ETL Processes in Data Warehousing
1 Introduction to ETL
ETL (Extract, Transform, Load) forms the backbone of data warehouse
population, involving:

• Extraction: Data collection from source systems

• Transformation: Data cleansing and conversion

• Loading: Populating target data warehouse structures

2 Oracle ETL Tools Overview

2.1 Tool Comparison

Table 5: Oracle ETL Tool Comparison

Tool Best For Complexity
Oracle Data Integrator (ODI) Enterprise ETL High
SQL*Loader Flat file loading Low
External Tables File processing Medium
PL/SQL Custom transformations Medium
APEX Data Loading Ad-hoc loads Low

Dr. Lyazid TOUMI

Figure 4: Typical ETL Architecture in Data Warehousing

28

3 Data Warehouses

3 Extraction Patterns

3.1 Change Data Capture (CDC)

1 -- Create change table
2 BEGIN
3 DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE(
4 owner => 'SRC_OWNER',
5 change_table_name => 'CUSTOMERS_CT',
6 change_set_name => 'DWH_CHANGE_SET',
7 source_schema => 'SRC_OWNER',
8 source_table => 'CUSTOMERS',
9 column_type_list => 'CUSTOMER_ID NUMBER, NAME VARCHAR2(100)',
10 capture_values => 'both',
11 rs_id => 'y',
12 row_id => 'y',
13 user_id => 'y',
14 timestamp => 'y',
15 object_id => 'n');
16 END;
17 -- Subscribe to changes
18 BEGIN
19 DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION(
20 change_set_name => 'DWH_CHANGE_SET',
21 description => 'Customer changes',
22 subscription_name => 'CUSTOMER_SUB');
23

24 DBMS_CDC_SUBSCRIBE.SUBSCRIBE(
25 subscription_name => 'CUSTOMER_SUB',
26 source_schema => 'SRC_OWNER',
27 source_table => 'CUSTOMERS',
28 column_list => 'CUSTOMER_ID, NAME',
29 subscriber_view => 'CUSTOMERS_CHANGES');
30 END;

29

Dr. Lyazid TOUMI

4 Transformation Techniques

4.1 Data Cleansing

1 -- Standardization and cleansing
2 CREATE OR REPLACE PROCEDURE clean_customer_data AS
3 BEGIN
4 -- Fix phone formats
5 UPDATE stage_customers
6 SET phone = REGEXP_REPLACE(phone, '[^0-9]', '')
7 WHERE REGEXP_LIKE(phone, '[^0-9]');
8

9 -- Standardize addresses
10 UPDATE stage_customers
11 SET address = INITCAP(TRIM(address)),
12 city = UPPER(city),
13 state = UPPER(state);
14

15 -- Validate emails
16 UPDATE stage_customers
17 SET is_valid = CASE
18 WHEN REGEXP_LIKE(email,

'^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$')↪
19 THEN 1 ELSE 0 END;
20

21 -- Deduplicate records
22 FOR dup_rec IN (
23 SELECT MIN(rowid) keep_rowid, customer_id
24 FROM stage_customers
25 GROUP BY customer_id
26 HAVING COUNT(*) > 1
27) LOOP
28 DELETE FROM stage_customers
29 WHERE customer_id = dup_rec.customer_id
30 AND rowid != dup_rec.keep_rowid;
31 END LOOP;
32 END;

30

3 Data Warehouses

5 Loading Strategies

5.1 Bulk Loading with SQL*Loader

1 # load_customers.ctl
2 LOAD DATA
3 INFILE '/data/customers.csv'
4 BADFILE '/data/customers.bad'
5 DISCARDFILE '/data/customers.dsc'
6 APPEND
7 INTO TABLE stage_customers
8 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
9 TRAILING NULLCOLS
10 (
11 customer_id,
12 name,
13 email,
14 phone,
15 address,
16 city,
17 state,
18 zip,
19 load_date "SYSDATE",
20 load_source CONSTANT "CSV_IMPORT"
21)

31

Dr. Lyazid TOUMI

5.2 External Tables

1 CREATE OR REPLACE DIRECTORY ext_tab_dir AS '/data/external';
2

3 CREATE TABLE ext_sales (
4 sale_id NUMBER,
5 sale_date DATE,
6 product_id NUMBER,
7 customer_id NUMBER,
8 amount NUMBER(10,2)
9)
10 ORGANIZATION EXTERNAL (
11 TYPE ORACLE_LOADER
12 DEFAULT DIRECTORY ext_tab_dir
13 ACCESS PARAMETERS (
14 RECORDS DELIMITED BY NEWLINE
15 BADFILE 'sales.bad'
16 LOGFILE 'sales.log'
17 FIELDS TERMINATED BY '|'
18 MISSING FIELD VALUES ARE NULL
19)
20 LOCATION ('sales_2023.dat')
21)
22 REJECT LIMIT UNLIMITED;
23

24 -- Query external data directly
25 SELECT * FROM ext_sales WHERE sale_date > SYSDATE-30;

32

3 Data Warehouses

33

Dr. Lyazid TOUMI

6 Incremental Loading

6.1 SCD Type 2 Implementation

1 CREATE OR REPLACE PROCEDURE load_dim_customers AS
2 BEGIN
3 -- Insert new records and changed records
4 INSERT INTO dim_customers (
5 customer_key,
6 customer_id,
7 name,
8 email,
9 effective_date,
10 expiry_date,
11 current_flag
12)
13 SELECT
14 dim_cust_seq.NEXTVAL,
15 s.customer_id,
16 s.name,
17 s.email,
18 SYSDATE,
19 TO_DATE('31-DEC-9999','DD-MON-YYYY'),
20 'Y'
21 FROM
22 stage_customers s
23 LEFT JOIN dim_customers d ON s.customer_id = d.customer_id
24 AND d.current_flag = 'Y'
25 WHERE
26 d.customer_key IS NULL OR
27 (s.name != d.name OR s.email != d.email);
28

29 -- Expire changed records
30 UPDATE dim_customers d
31 SET current_flag = 'N',
32 expiry_date = SYSDATE-1
33 WHERE current_flag = 'Y'
34 AND EXISTS (
35 SELECT 1 FROM stage_customers s
36 WHERE s.customer_id = d.customer_id
37 AND (s.name != d.name OR s.email != d.email)
38);
39

40 COMMIT;
41 END;

34

3 Data Warehouses

7 High-Performance ETL Techniques

7.1 Parallel DML

1 -- Enable parallel DML
2 ALTER SESSION ENABLE PARALLEL DML;
3

4 -- Parallel direct-path insert
5 INSERT /*+ APPEND PARALLEL(8) */ INTO sales_fact
6 SELECT /*+ PARALLEL(8) FULL(s) */
7 s.sale_id,
8 s.sale_date,
9 c.customer_key,
10 p.product_key,
11 s.amount
12 FROM
13 stage_sales s
14 JOIN dim_customers c ON s.customer_id = c.customer_id
15 JOIN dim_products p ON s.product_id = p.product_id
16 WHERE
17 s.sale_date BETWEEN :start_date AND :end_date;
18

19 COMMIT;

35

Dr. Lyazid TOUMI

7.2 Partition Exchange Loading

1 -- Load data into staging table
2 INSERT /*+ APPEND */ INTO sales_stage
3 SELECT * FROM external_sales_source;
4

5 -- Create constraints/indexes on stage table
6 ALTER TABLE sales_stage ADD CONSTRAINT pk_stage
7 PRIMARY KEY (sale_id);
8

9 -- Exchange partition
10 ALTER TABLE sales_fact
11 EXCHANGE PARTITION sales_2023_05
12 WITH TABLE sales_stage
13 INCLUDING INDEXES
14 WITHOUT VALIDATION;
15

16 -- Update global indexes
17 ALTER TABLE sales_fact
18 UPDATE GLOBAL INDEXES;

36

3 Data Warehouses

8 Error Handling and Recovery

8.1 ETL Auditing Framework

1 CREATE TABLE etl_audit (
2 audit_id NUMBER GENERATED ALWAYS AS IDENTITY,
3 process_name VARCHAR2(100),
4 start_time TIMESTAMP,
5 end_time TIMESTAMP,
6 rows_processed NUMBER,
7 status VARCHAR2(20),
8 error_message VARCHAR2(4000),
9 CONSTRAINT pk_etl_audit PRIMARY KEY (audit_id)
10);
11

12 CREATE OR REPLACE PROCEDURE log_etl_event (
13 p_process IN VARCHAR2,
14 p_status IN VARCHAR2,
15 p_rows IN NUMBER DEFAULT NULL,
16 p_error IN VARCHAR2 DEFAULT NULL
17) AS
18 v_audit_id NUMBER;
19 BEGIN
20 IF p_status = 'START' THEN
21 INSERT INTO etl_audit (process_name, start_time, status)
22 VALUES (p_process, SYSTIMESTAMP, p_status)
23 RETURNING audit_id INTO v_audit_id;
24 ELSE
25 UPDATE etl_audit
26 SET end_time = SYSTIMESTAMP,
27 status = p_status,
28 rows_processed = p_rows,
29 error_message = p_error
30 WHERE process_name = p_process
31 AND status = 'START'
32 AND end_time IS NULL;
33 END IF;
34

35 COMMIT;
36 END;

37

Dr. Lyazid TOUMI

9 Optimizing ETL Performance

9.1 Performance Tuning Checklist

Table 6: ETL Performance Optimization Techniques

Area Optimization
Extraction Use change data capture
Transformation Push processing to database
Loading Direct-path inserts
Parallelism Configure appropriate DOP
Memory Optimize PGA allocation
Partitioning Implement partition exchange

9.2 Memory Configuration

1 -- Configure memory for ETL operations
2 ALTER SYSTEM SET pga_aggregate_target=8G;
3 ALTER SYSTEM SET memory_target=16G SCOPE=SPFILE;
4

5 -- Session-level memory settings
6 ALTER SESSION SET sort_area_size=256M;
7 ALTER SESSION SET hash_area_size=512M;

10 Best Practices

10.1 ETL Design Principles

• Modularity: Build reusable components

• Recoverability: Implement checkpoint restart

• Monitoring: Comprehensive logging

• Performance: Design for throughput

• Maintainability: Clear documentation

38

3 Data Warehouses

10.2 Oracle-Specific Recommendations

1 CREATE OR REPLACE PROCEDURE run_etl_process AS
2 v_rows NUMBER;
3 v_start TIMESTAMP := SYSTIMESTAMP;
4 BEGIN
5 -- Log start
6 log_etl_event('DAILY_SALES_LOAD', 'START');
7

8 -- Extract phase
9 extract_sales_data(v_rows);
10

11 -- Transform phase
12 transform_sales_data(v_rows);
13

14 -- Load phase
15 load_sales_fact(v_rows);
16

17 -- Log completion
18 log_etl_event('DAILY_SALES_LOAD', 'COMPLETE', v_rows);
19

20 -- Handle exceptions
21 EXCEPTION
22 WHEN OTHERS THEN
23 log_etl_event('DAILY_SALES_LOAD', 'ERROR', v_rows,
24 SQLERRM);
25 RAISE;
26 END;

11 Emerging Trends

11.1 Modern ETL Approaches

• ELT: Transform after loading

• Streaming ETL: Real-time processing

• Cloud ETL: Serverless architectures

• Data Mesh: Distributed ownership

• ML Integration: Embedded transformations

39

Dr. Lyazid TOUMI

1 -- Oracle Autonomous Data Warehouse ETL
2 BEGIN
3 DBMS_CLOUD.CREATE_CREDENTIAL(
4 credential_name => 'OBJ_STORE_CRED',
5 username => 'cloud_user',
6 password => 'secure_password');
7

8 DBMS_CLOUD.COPY_DATA(
9 table_name => 'STAGE_SALES',
10 credential_name => 'OBJ_STORE_CRED',
11 file_uri_list =>

'https://t.oraclecloud.com/n/namespace/b/bucket/o/sales*.csv',↪
12 format => json_object('type' value 'csv', 'delimiter' value

','));↪
13 END;
14 /

40

Chapter 4

Data Warehouses Indexation Strategies
1 Introduction to Data Warehouse Indexing
Indexing in data warehouses serves fundamentally different purposes com-
pared to OLTP systems. Where traditional databases optimize for frequent
small writes, data warehouses require specialized indexing strategies for:

• Large-scale analytical queries

• Complex joins across star schemas

• Aggregation operations on fact tables

• Historical data analysis

2 Oracle-Specific Indexing Techniques

2.1 B-Tree Indexes in Oracle

While B-trees remain ubiquitous, Oracle implements several optimizations
for data warehousing:

1 -- Oracle B-tree index with storage parameters
2 CREATE INDEX idx_customer_name ON customers(cust_name)
3 TABLESPACE dw_indexes
4 STORAGE (INITIAL 256M NEXT 128M)
5 COMPRESS ADVANCED LOW;

Key considerations for Oracle:
• Use COMPRESS ADVANCED LOW for space savings

• Larger block sizes (8K/16K) for warehouse indexes

• Consider NOLOGGING for bulk loads

Dr. Lyazid TOUMI

2.2 Bitmap Indexes in Oracle

Oracle’s bitmap implementation is particularly suited for data warehouses:

1 -- Oracle bitmap index example
2 CREATE BITMAP INDEX idx_sales_channel ON sales(sales_channel)
3 TABLESPACE bitmap_indexes
4 COMPUTE STATISTICS;

Best practices:

• Ideal for low-cardinality columns (<100 distinct values)

• Avoid on frequently updated tables

• Use BITMAP MERGE for efficient combination

2.3 Bitmap Join Indexes in Oracle

Oracle’s implementation pre-joins dimension and fact tables:

1 CREATE BITMAP INDEX idx_sales_customer_region
2 ON sales(customers.region)
3 FROM sales, customers
4 WHERE sales.cust_id = customers.cust_id
5 LOCAL NOLOGGING;

Performance characteristics:

• 3-10x faster for star schema queries

• 50-75% space savings over materialized views

• Automatic maintenance during ETL

3 Index Selection Methodology

3.1 Cost-Based Approach in Oracle

Oracle’s DBMS_ADVISOR package provides index recommendations:

42

4 Data Warehouses

1 -- Generate index recommendations
2 DECLARE
3 task_name VARCHAR2(30);
4 BEGIN
5 task_name := DBMS_ADVISOR.CREATE_TASK('SQL Access Advisor');
6 DBMS_ADVISOR.SET_TASK_PARAMETER(task_name, 'ANALYSIS_SCOPE',

'INDEXES');↪
7 DBMS_ADVISOR.EXECUTE_TASK(task_name);
8 END;
9 /
10

11 -- View recommendations
12 SELECT * FROM user_advisor_recommendations;

3.2 Implementation Example

Consider a sales data warehouse with these optimization steps:

1 -- Step 1: Create dimension table indexes
2 CREATE BITMAP INDEX idx_time_year ON time_dim(calendar_year)
3 TABLESPACE dw_indexes;
4

5 -- Step 2: Create fact table join indexes
6 CREATE BITMAP INDEX idx_fact_customer
7 ON sales_fact(customer_dim.cust_segment)
8 FROM sales_fact, customer_dim
9 WHERE sales_fact.cust_id = customer_dim.cust_id;
10

11 -- Step 3: Add B-tree indexes for high-cardinality columns
12 CREATE INDEX idx_sales_amount ON sales_fact(amount_sold)
13 TABLESPACE dw_indexes
14 COMPRESS;

43

Dr. Lyazid TOUMI

4 Performance Comparison

Table 7: Index Performance Characteristics in Oracle

Index Type Create Time Storage Size Query Speedup
B-Tree Medium Large 2-5x
Bitmap Fast Small 5-20x
Bitmap Join Slow Medium 10-50x

5 Maintenance Strategies

1 -- Rebuild fragmented indexes
2 ALTER INDEX idx_customer_name REBUILD ONLINE;
3

4 -- Monitor index usage
5 SELECT index_name, used FROM v\$object_usage;
6

7 -- Partition large indexes
8 CREATE INDEX idx_sales_date ON sales(sale_date)
9 GLOBAL PARTITION BY RANGE (sale_date)
10 (PARTITION p_2020 VALUES LESS THAN

(TO_DATE('2021-01-01','YYYY-MM-DD')),↪
11 PARTITION p_2021 VALUES LESS THAN (MAXVALUE));

6 Conclusion
Effective data warehouse indexing in Oracle requires:

• Strategic combination of B-tree and bitmap indexes

• Proper use of partitioned indexes for large tables

• Regular monitoring and maintenance

• Workload-aware index selection

44

4 Data Warehouses

1 -- Example complete indexing strategy
2 BEGIN
3 -- Drop unused indexes
4 FOR rec IN (SELECT index_name FROM user_indexes WHERE status =

'UNUSED') LOOP↪
5 EXECUTE IMMEDIATE 'DROP INDEX ' || rec.index_name;
6 END LOOP;
7

8 -- Rebuild fragmented indexes
9 DBMS_STATS.GATHER_SCHEMA_STATS('DW_USER');
10 END;
11 /

45

Chapter 5

Horizontal Partitioning in Data
Warehouses
1 Introduction
Horizontal partitioning (HP) has become an indispensable technique in
modern data warehouse design, particularly for Oracle-based systems. This
physical database design technique divides table rows across multiple phys-
ical structures while maintaining a single logical view. The approach offers
significant benefits for large-scale data warehouses:

• Improved Query Performance: Partition pruning eliminates unneces-
sary partitions from scan operations

• Enhanced Manageability: Maintenance operations can target specific
partitions

• Better Availability: Individual partitions can remain available during
maintenance

• Efficient Data Lifecycle Management: Aging data can be easily archived

2 Partitioning Strategies

2.1 Partitioning Key Selection

The choice of partitioning key significantly impacts performance. Ideal can-
didates:

• Frequently used in WHERE clauses for partition pruning

• Exhibit natural data distribution (dates, regions)

Dr. Lyazid TOUMI

• Support common access patterns

• Have sufficient cardinality to prevent skew

2.2 Partition Granularity

Table 8: Partition Granularity Trade-offs

Granularity Advantages Disadvantages
Coarse (Yearly) Fewer partitions Less pruning opportunity
Medium (Monthly) Balanced approach Moderate maintenance
Fine (Daily) Maximum pruning High partition count

3 Oracle Partitioning Fundamentals

3.1 Partitioning Types

Oracle supports several partitioning methods:

• Range Partitioning: Ideal for time-series data

• List Partitioning: Suitable for discrete values

• Hash Partitioning: Even data distribution

• Composite Partitioning: Combines methods

48

5 Data Warehouses

3.2 Creating Partitioned Tables

1 CREATE TABLE sales (
2 sale_id NUMBER,
3 sale_date DATE,
4 customer_id NUMBER,
5 amount NUMBER(10,2)
6) PARTITION BY RANGE (sale_date)
7 (
8 PARTITION sales_2020 VALUES LESS THAN

(TO_DATE('2021-01-01','YYYY-MM-DD')),↪
9 PARTITION sales_2021 VALUES LESS THAN

(TO_DATE('2022-01-01','YYYY-MM-DD')),↪
10 PARTITION sales_max VALUES LESS THAN (MAXVALUE)
11) TABLESPACE sales_data;

4 Horizontal partitioning modes

4.1 Range partitioning mode

The range mode is the first partitioning mode integrated in ORACLE 8.
This mode uses the domain 𝐷𝑘 of the attribute 𝐴𝑘 used as partitioning key
of 𝑅. Each range has lower and upper bounds (see the example in Fig. 4.2
below)

49

Dr. Lyazid TOUMI

Example The Fig. 5 illustrates a range partitioning of the Customers

 Customer

Customer 1

Customer 2

 0 18 19 45 46 100

Customer 3

Attribut F

Attribut F

Customer 3

 Age <18

Age

 Age ≥45

18≤ Age <45

Figure 5: Range Mode.

on Age as partitioning key. The following ORACLE statement allows rang
partitioning of Customers:

1 CREATE TABLE Customers
2 (CID number(9), Name varchar(25), City varchar(25),
3 Gender char(1), Age number(3)
4 PARTITION BY RANGE(Gender)
5 (PARTITION C-Childs VALUES LESS THAN (18) TABLESPACE TBS-Childs,
6 PARTITION C-Adults VALUES LESS THAN (45) TABLESPACE TBS-Adults,
7 PARTITION C-Olds VALUES LESS THAN (MAXVALUE) TABLESPACE TBS-Olds) ;

• The PARTITION BY RANGE clause specifies that range-based par-
titioning is being used. Each partition is assigned a name, such as
𝐶_𝐼 𝑛𝑓 𝑎𝑛𝑡𝑠, which represents the partition containing tuples where
𝐴𝑔𝑒 < 18.

• The TABLESPACE clause allows each partition to be stored in a
predefined physical space.

When a tuple is inserted into the relation 𝑅, it is automatically placed
into the appropriate partition based on the value of the ‘Age‘ column. For
instance, if a tuple with 𝐴𝑔𝑒 = 40 is inserted, the DBMS first compares the
‘Age‘ value with the upper bound of the smallest partition. Finding that

50

5 Data Warehouses

40 > 18, the system proceeds to the next partition. It then checks 40 < 45
and inserts the tuple into the corresponding partition.

This partitioning mode is particularly effective for queries with range-
based restriction predicates. For example:

1 SELECT Name FROM Customers
2 WHERE Age > 45;

In this case, the DBMS only loads the partition stored in the 𝑇𝐵𝑆_𝑂𝑙𝑑𝑠
Tablespace to answer the query, optimizing performance.

4.2 Hash partitioning mode

This mode utilizes a hashing algorithm provided by the DBMS. The user is

 Customer

F(CID)=a

CID Customer 1

Attribut F

Attribut F

Customer 2

F(CID)=b

F(CID)

Figure 6: Hach Mode.

required to specify the partitioning key and the desired number of partitions.
The hashing algorithm ensures an even distribution of tuples across the
partitions, resulting in partitions of approximately equal size (see Fig. 7).

• Example: The following statement demonstrates the partitioning of
the ‘Customers‘ table into four partitions using the ‘CID‘ attribute
as the partitioning key. Each partition is stored in a separate TA-
BLESPACE (TBS1, TBS2, TBS3, and TBS4).

51

Dr. Lyazid TOUMI

1 CREATE TABLE CUSTOMER (CID number(9), Name varchar(25),
2 City varchar(25),Gender char(1), Age number(3))
3 PARTITION BY HASH (CID)
4 PARTITION 4 STORE IN (TBS1, TBS2, TBS4, TBS4) ;

The partitions names are automatically assigned by DBMS during
the partitioning process.

4.3 List partitioning mode

Algiers Sétif Béjaia

City

City=’Algiers’

Customer 2

Customer 1

Attribut F

Attribut F

City=’Sétif’

Customer 3

City=’Béjaia’ Customer

Figure 7: List mode.

List partitioning allows partitions to be defined based on a list of discrete
values for the partitioning key. This method enables the grouping and orga-
nization of unordered and unrelated sets of data in an intuitive and logical
manner.

• Example The following statement demonstrates the partitioning of
the ‘Customer‘ relation into four partitions using the list mode, with
the ‘City‘ attribute as the partitioning key. The four partitions contain
customers from Setif, Bejaia, Algiers, and other cities, respectively
(see Fig. 7).

52

5 Data Warehouses

1 CREATE TABLE CUSTOMER (CID number(9), Name varchar(25), City
varchar(25),↪

2 Gender char(1), Age number(3))
3 PARTITION BY LIST (City)
4 (PARTITION C-Setif VALUES ('Setif'),
5 PARTITION C-Bejaia VALUES ('Bejaia'),
6 PARTITION C-Algiers VALUES ('Algiers'),
7 PARTITION C-Otherwise VALUES (DEFAULT)) ;

4.4 Composite partitioning mode

Partition 3 Partition 2 Partition 1

Attribut A Attribut B

SPM 2

SPM 1

SPM 2 SPM 2

Partition 3-2 Partition 3-1 Partition 2-1 Partition 1-2 Partition 1-1 Partition 2-2

Second Level

First Level

Before Partitioning

Figure 8: Composite partitioning mode.

Composite partitioning mode (CPO) combines two single partitioning
modes, SPM1 and SPM2 (see Fig. ??). In this approach, the relation is first
partitioned using SPM1, and then each resulting partition is further sub-
divided into sub-partitions using SPM2 whiteoracle. Several composite
partitioning modes are obtained by combining single partitioning modes.

53

Dr. Lyazid TOUMI

Customer 3 Customer 2 Customer 1

Age City

List Mode

Range Mode

Customer 3-2 Customer 3-1 Customer 2-1 Customer 1-2 Customer 1-1 Customer 2-2

Customer

City=’Algiers’ City=’Sétif’ City=’Bejaia’

Range Mode Range Mode

Figure 9: Example of composite partitioning mode.

The ‘Customer‘ relation is first partitioned using ‘Gender‘ as the parti-
tioning key. Each resulting partition is then further subdivided into sub-
partitions using ‘Age‘ as the partitioning key (see Fig. 9). This is achieved
using the following statement:

54

5 Data Warehouses

1 CREATE TABLE CUSTOMER
2 (CID number(9), Name varchar(25), City varchar(25),
3 Gender char(1), Age number(3)
4 PARTITION BY LIST (Gender)
5 SUBPARTITION BY RANGE (Age)
6 SUBPARTITION TEMPLATE
7 (SUBPARTITION C-Childs VALUES LESS THAN (16) TABLESPACE TBS-Childs,
8 SUBPARTITION C-Adults VALUES LESS THAN (MAXVALUE) TABLESPACE

TBS-Adults))↪
9 (PARTITION C-Setif VALUES ('Setif'),
10 PARTITION C-Bejaia VALUES ('Bejaia'),
11 PARTITION C-Algiers VALUES ('Algiers')
12 PARTITION C-Otherwise VALUES (DEFAULT));

4.5 Multicolumn partitioning mode

The multicolumn partitioning mode combines range and hash partitioning
methods, allowing up to 16 partitioning key columns. In this mode, the par-
titioning key, composed of multiple columns, provides finer granularity com-
pared to single-column partitioning. A common example is a decomposed
‘DATE‘ column, split into separate ‘year‘, ‘month‘, and ‘day‘ columns. In
DBMS, the 𝑛𝑡ℎ partitioning key is evaluated only when the values of the
preceding 𝑛 − 1 keys exactly match the bounds of the corresponding 𝑛 − 1
partitions.

The following example illustrates the range partitioning of the relation
Sales using two key partitioning Year and Month:

1 CREATE TABLE sales (
2 Year NUMBER,
3 Month NUMBER,
4 Day NUMBER,
5 Amount NUMBER)
6 PARTITION BY RANGE (Year,Month)
7 (PARTITION before2014 VALUES LESS THAN (2014,1),
8 PARTITION q1_2014 VALUES LESS THAN (2014,4),
9 PARTITION q2_2014 VALUES LESS THAN (2014,7),
10 PARTITION q3_2014 VALUES LESS THAN (2014,10),
11 PARTITION q4_2014 VALUES LESS THAN (2014,1),
12 PARTITION future VALUES LESS THAN (MAXVALUE,0));

55

Dr. Lyazid TOUMI

4.6 Reference partitioning mode

Customer1 Customer 2 Customer 3

CID City

List Mode

Customer

City=’Algiers’ City=’Sétif’ City=’Bejaia’

Ville=’Alger’

Et age≥18

Ville=’Sétif’

Et age<18

Ville=’Sétif’

Et age≥18

CID

Sale

Reference Mode

Sale1=Sale⋉Customer1 Sale2=Sale⋉Customer2 Sale3=Sale⋉Customer3

Figure 10: Example of reference partitioning mode.

Previously, we discussed single and composite partitioning methods used
for partitioning individual relations. In this section, we introduce the ref-
erence partitioning mode, as implemented in the Oracle 11g environment.
Reference partitioning enables the partitioning of two related relations, 𝑅
and 𝑆, which are connected through referential constraints. The partitioning
key is determined based on the existing parent-child relationship, enforced
by active and enabled primary key and foreign key constraints whiteoracle.

56

5 Data Warehouses

First, the relation 𝑅 is partitioned using either a single or composite
partitioning mode. If a single partitioning mode is applied to 𝑅, the number
of partitions in 𝑅 will be the same as the number of partitions in 𝑆. In
contrast, if a composite partitioning mode is used for 𝑅, the number of
partitions in 𝑅 will correspond to the number of sub-partitions in 𝑆.

• Example
The ‘Customer‘ relation is divided into three partitions: Customer1,
Customer2, and Customer3 (see Fig. 10) using the List partitioning
mode. Subsequently, three ‘Sales‘ partitions are created, with each
partition corresponding to a specific ‘Customer‘ partition. The fol-
lowing statement demonstrates the partitioning of the ‘Sales‘ relation
into three partitions using the reference partitioning mode:

1 CREATE TABLE SALES
2 (CID number(9), Date DATE , Amount Number(10,2)
3 CONSTRAINT Customer_Cs FOREIGN KEY (CID) REFERENCES Customer(CID))
4 PARTITION BY REFERENCE(Customer_Cs);

4.7 Virtual column partitioning

This partitioning mode utilizes a virtual column in the same way as a reg-
ular column. All partitioning modes are supported with virtual columns,
including range partitioning and various combinations of composite parti-
tioning modes.

57

Dr. Lyazid TOUMI

1 CREATE TABLE sales(
2 Pid NUMBER(6) NOT NULL
3 , Cid NUMBER NOT NULL
4 , Tid DATE NOT NULL
5 , CHid CHAR(1) NOT NULL
6 , PROMOid NUMBER(6) NOT NULL
7 , quantitySold NUMBER(3) NOT NULL
8 , amountSold NUMBER(10,2) NOT NULL
9 , totalAmount AS (quantitySold * amountSold)
10)
11 PARTITION BY RANGE (Tid) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
12 SUBPARTITION BY RANGE(totalAmount)
13 SUBPARTITION TEMPLATE
14 (SUBPARTITION Psmall VALUES LESS THAN (1000)
15 , SUBPARTITION Pmedium VALUES LESS THAN (5000)
16 , SUBPARTITION Plarge VALUES LESS THAN (10000)
17 , SUBPARTITION Pextreme VALUES LESS THAN (MAXVALUE)
18)
19 (PARTITION sales_before_2007 VALUES LESS THAN
20 (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
21)

5 Partition Pruning Optimization
Partition pruning is Oracle’s ability to eliminate partitions from query ex-
ecution. Effective pruning requires:

• Proper predicate formulation

• Statistics on partitioned tables

• Appropriate partition key selection

58

5 Data Warehouses

1 -- Check execution plan for pruning
2 EXPLAIN PLAN FOR
3 SELECT * FROM sales
4 WHERE sale_date BETWEEN DATE '2021-01-01' AND DATE '2021-03-31';
5

6 SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);
7

8 -- Monitor pruning effectiveness
9 SELECT * FROM V$SQL_PLAN
10 WHERE object_name = 'SALES'
11 AND options LIKE '%PARTITION%';

6 Partitioned Index Strategies

6.1 Local vs Global Indexes

Table 9: Index Partitioning Characteristics

Feature Local Index Global Index
Alignment 1:1 with partitions Independent
Availability Partition-level Table-level
Maintenance Automatic Manual

6.2 Index Creation Examples

1 -- Local partitioned index
2 CREATE INDEX idx_sales_local ON sales(customer_id) LOCAL;
3

4 -- Global partitioned index
5 CREATE INDEX idx_sales_global ON sales(sale_id) GLOBAL
6 PARTITION BY RANGE (sale_id)
7 (
8 PARTITION p1 VALUES LESS THAN (1000000),
9 PARTITION p2 VALUES LESS THAN (MAXVALUE)
10);
11

12 -- Global non-partitioned index
13 CREATE INDEX idx_sales_amount ON sales(amount);

59

Dr. Lyazid TOUMI

7 Partition Maintenance Automation

1 -- Scheduled partition maintenance
2 BEGIN
3 DBMS_SCHEDULER.CREATE_JOB (
4 job_name => 'MAINTAIN_SALES_PARTITIONS',
5 job_type => 'PLSQL_BLOCK',
6 job_action => 'BEGIN
7 maintain_sales_partitions();
8 END;',
9 start_date => SYSTIMESTAMP,
10 repeat_interval => 'FREQ=MONTHLY; BYMONTHDAY=1',
11 enabled => TRUE);
12 END;
13 /
14

15 -- Example maintenance procedure
16 CREATE OR REPLACE PROCEDURE maintain_sales_partitions AS
17 BEGIN
18 -- Add next month's partition
19 EXECUTE IMMEDIATE
20 'ALTER TABLE sales ADD PARTITION

sales_'||TO_CHAR(ADD_MONTHS(SYSDATE,1),'YYYY_MM')||↪
21 ' VALUES LESS THAN

(TO_DATE('''||TO_CHAR(ADD_MONTHS(TRUNC(SYSDATE,'MM'),2),↪
22 'YYYY-MM-DD')||''',''YYYY-MM-DD''))';
23

24 -- Archive old data
25 archive_old_sales_data();
26 END;
27 /

8 Performance Considerations

8.1 Partitioning Overhead

• Increased dictionary complexity

• Additional memory requirements

• Potential for suboptimal execution plans

60

5 Data Warehouses

8.2 Monitoring Partition Usage

1 -- Identify hot partitions
2 SELECT table_name, partition_name, accesses
3 FROM (
4 SELECT table_name, partition_name,
5 SUM(physical_reads) accesses,
6 RANK() OVER (ORDER BY SUM(physical_reads) DESC) rnk
7 FROM dba_tab_partitions p
8 JOIN dba_hist_seg_stat s ON p.partition_name = s.partition_name
9 WHERE p.table_name = 'SALES'
10 GROUP BY table_name, partition_name
11)
12 WHERE rnk <= 5;
13

14 -- Check partition skew
15 SELECT partition_name, COUNT(*) row_count
16 FROM sales
17 GROUP BY partition_name
18 ORDER BY row_count DESC;

9 Real-World Implementation Case Study
Financial services data warehouse with:

• 10TB fact table partitioned by trade date (daily)

• 12 subpartitions by region

• Composite partitioning with range-hash

Performance results:

• ETL processes reduced from 6 hours to 45 minutes

• Month-end reporting queries improved from 3 hours to 12 minutes

• Backup window reduced by 80%

61

Dr. Lyazid TOUMI

1 CREATE TABLE trade_facts (
2 trade_id NUMBER,
3 trade_date DATE,
4 instrument_id NUMBER,
5 trader_id NUMBER,
6 counterparty NUMBER,
7 amount NUMBER(20,2),
8 currency CHAR(3),
9 region_code VARCHAR2(3)
10) PARTITION BY RANGE (trade_date)
11 INTERVAL (NUMTODSINTERVAL(1,'DAY'))
12 SUBPARTITION BY HASH (instrument_id)
13 SUBPARTITIONS 12
14 (
15 PARTITION p_initial VALUES LESS THAN (DATE '2000-01-01')
16) PARALLEL 8;
17

18 -- Local bitmap indexes for low-cardinality columns
19 CREATE BITMAP INDEX bidx_trade_curr ON trade_facts(currency) LOCAL;
20 CREATE BITMAP INDEX bidx_trade_region ON trade_facts(region_code)

LOCAL;↪

10 Conclusion and Best Practices
• Design for Pruning: Structure partitions to match common query pat-

terns

• Monitor Growth: Implement automated partition maintenance

• Balance Granularity: Avoid excessive partition counts

• Consider Storage: Place active partitions on faster storage

• Test Thoroughly: Validate partition strategies with realistic work-
loads

62

5 Data Warehouses

1 -- Comprehensive partition analysis
2 SELECT p.table_name, p.partition_name, p.tablespace_name,
3 p.high_value, s.bytes/1024/1024 size_mb,
4 nvl(s.num_rows,0) row_count
5 FROM dba_tab_partitions p
6 LEFT JOIN dba_tab_statistics s
7 ON p.table_name = s.table_name
8 AND p.partition_name = s.partition_name
9 WHERE p.table_name = 'TRADE_FACTS'
10 ORDER BY p.partition_position;

63

Chapter 6

Materialized Views in Data Warehouses
Materialized views (MVs) are one of the most powerful optimization tech-
niques in data warehousing, providing pre-computed results for complex
queries. Unlike regular views that execute queries on demand, MVs store
the actual result sets physically.

1 Materialized View Selection Problem
The materialized view selection problem is a critical challenge in data ware-
house design, involving the identification of the optimal set of views to
materialize under resource constraints.

1.1 Problem Formulation

Given:

• A set of queries 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛} with frequencies 𝑓 (𝑞𝑖)
• A set of candidate materialized views 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚}
• Storage space constraint 𝑆
• Maintenance cost constraint 𝑀

Objective: Select a subset 𝑉 ′ ⊆ 𝑉 that:

• Minimizes total query processing cost ∑𝑞∈𝑄 𝑓 (𝑞) ⋅ 𝑐𝑜𝑠𝑡(𝑞, 𝑉 ′)
• Satisfies ∑𝑣∈𝑉 ′ 𝑠𝑖𝑧𝑒(𝑣) ≤ 𝑆
• Satisfies ∑𝑣∈𝑉 ′ 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑐𝑜𝑠𝑡(𝑣) ≤ 𝑀

Dr. Lyazid TOUMI

1.2 Selection Algorithms

Common approaches include:

• Greedy Algorithms: Iteratively select views offering the highest benefit-
to-size ratio

• Genetic Algorithms: Use evolutionary techniques to find near-optimal
solutions

• Integer Programming: Formulate as optimization problem with con-
straints

Algorithm 1 Greedy Materialized View Selection
1: Input: Queries 𝑄, Views 𝑉 , Space 𝑆
2: 𝑉 ′ ← ∅ ▷ Selected views
3: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑝𝑎𝑐𝑒 ← 𝑆
4: while 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑝𝑎𝑐𝑒 > 0 do
5: for each 𝑣 ∈ 𝑉 ∖ 𝑉 ′ do
6: 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡[𝑣] ← query_cost_reduction(𝑣 , 𝑄)
7: 𝑟𝑎𝑡𝑖𝑜[𝑣] ← 𝑏𝑒𝑛𝑒𝑓 𝑖𝑡[𝑣]/𝑠𝑖𝑧𝑒(𝑣)
8: end for
9: 𝑏𝑒𝑠𝑡 ← argmax(𝑟𝑎𝑡𝑖𝑜)

10: if 𝑠𝑖𝑧𝑒(𝑏𝑒𝑠𝑡) ≤ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑝𝑎𝑐𝑒 then
11: 𝑉 ′ ← 𝑉 ′ ∪ {𝑏𝑒𝑠𝑡}
12: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑝𝑎𝑐𝑒 ← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑠𝑝𝑎𝑐𝑒 − 𝑠𝑖𝑧𝑒(𝑏𝑒𝑠𝑡)
13: else
14: Break
15: end if
16: end while
17: return 𝑉 ′

2 Pruning Techniques
Pruning reduces the search space for materialized view selection by elimi-
nating suboptimal candidates.

66

6 Data Warehouses

2.1 Dominance Pruning

A view 𝑣1 dominates 𝑣2 if:

• 𝑣1 can answer all queries that 𝑣2 can answer

• 𝑠𝑖𝑧𝑒(𝑣1) ≤ 𝑠𝑖𝑧𝑒(𝑣2)
• 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑐𝑜𝑠𝑡(𝑣1) ≤ 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒_𝑐𝑜𝑠𝑡(𝑣2)

Dominated views can be safely pruned from consideration.

2.2 Constraint-Based Pruning

Eliminate views that:

• Exceed storage constraints (𝑠𝑖𝑧𝑒(𝑣𝑖) > 𝑆)

• Have maintenance costs exceeding thresholds

• Provide minimal query performance improvement (𝑏𝑒𝑛𝑒𝑓 𝑖𝑡(𝑣𝑖) < 𝜖)

2.3 Multi-Query Optimization Pruning

Identify common subexpressions across queries and materialize only the
most beneficial shared components.

67

Dr. Lyazid TOUMI

3 Oracle Materialized View Fundamentals

1 CREATE MATERIALIZED VIEW mv_sales_summary
2 REFRESH COMPLETE ON DEMAND
3 ENABLE QUERY REWRITE
4 AS
5 SELECT
6 t.calendar_year,
7 p.product_category,
8 c.cust_region,
9 SUM(s.amount_sold) AS total_sales,
10 COUNT(*) AS transaction_count
11 FROM
12 sales s
13 JOIN times t ON s.time_id = t.time_id
14 JOIN products p ON s.prod_id = p.prod_id
15 JOIN customers c ON s.cust_id = c.cust_id
16 GROUP BY
17 t.calendar_year,
18 p.product_category,
19 c.cust_region;

4 Refresh Mechanisms
Oracle provides several refresh options:

68

6 Data Warehouses

1 -- Fast refresh (incremental)
2 CREATE MATERIALIZED VIEW mv_daily_sales
3 REFRESH FAST ON COMMIT
4 AS
5 SELECT
6 TRUNC(sale_date) AS day,
7 product_id,
8 SUM(amount) AS daily_total
9 FROM
10 sales
11 GROUP BY
12 TRUNC(sale_date),
13 product_id;
14

15 -- Scheduled complete refresh
16 CREATE MATERIALIZED VIEW mv_monthly_summary
17 REFRESH COMPLETE
18 START WITH SYSDATE NEXT SYSDATE+1
19 AS
20 SELECT /* monthly aggregation query */;

5 Query Rewrite
Oracle’s query rewrite automatically redirects queries to use MVs:

1 -- Enable system-wide query rewrite
2 ALTER SYSTEM SET query_rewrite_enabled=TRUE;
3

4 -- Verify rewrite capability
5 EXPLAIN PLAN FOR
6 SELECT
7 t.calendar_year,
8 SUM(s.amount_sold)
9 FROM
10 sales s
11 JOIN times t ON s.time_id = t.time_id
12 GROUP BY
13 t.calendar_year;
14

15 SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

69

Dr. Lyazid TOUMI

6 Partitioned Materialized Views
For large datasets, partition MVs by time ranges:

1 CREATE MATERIALIZED VIEW mv_sales_quarterly
2 PARTITION BY RANGE (quarter_end_date)
3 (
4 PARTITION p_2020_q1 VALUES LESS THAN

(TO_DATE('2020-04-01','YYYY-MM-DD')),↪
5 PARTITION p_2020_q2 VALUES LESS THAN

(TO_DATE('2020-07-01','YYYY-MM-DD'))↪
6)
7 REFRESH COMPLETE ON DEMAND
8 AS
9 SELECT
10 TRUNC(time_id,'Q') AS quarter_end_date,
11 product_category,
12 AVG(amount_sold) AS avg_sales
13 FROM
14 sales s
15 JOIN products p ON s.prod_id = p.prod_id
16 GROUP BY
17 TRUNC(time_id,'Q'),
18 product_category;

7 MV Maintenance Best Practices

1 -- Monitor MV refresh status
2 SELECT mview_name, last_refresh_date, staleness
3 FROM user_mviews;
4

5 -- Gather statistics regularly
6 EXEC DBMS_STATS.GATHER_TABLE_STATS('DW_SCHEMA','MV_SALES_SUMMARY');
7

8 -- Parallel refresh for large MVs
9 ALTER MATERIALIZED VIEW mv_large_sales
10 REFRESH COMPLETE
11 PARALLEL 8;

70

6 Data Warehouses

8 Advanced MV Selection in Oracle
Oracle provides tools for automated MV selection:

1 -- Use SQL Access Advisor for MV recommendations
2 DECLARE
3 taskname VARCHAR2(30) := 'MV_ADVISOR_TASK';
4 BEGIN
5 DBMS_ADVISOR.CREATE_TASK('SQL Access Advisor', taskname);
6 DBMS_ADVISOR.CREATE_SQLWKLD(taskname);
7 DBMS_ADVISOR.ADD_SQLWKLD_REF(
8 taskname, 'SELECT /* frequent query */');
9 DBMS_ADVISOR.SET_TASK_PARAMETER(
10 taskname, 'STORAGE_LIMIT', '10GB');
11 DBMS_ADVISOR.EXECUTE_TASK(taskname);
12 END;
13 /
14

15 -- View recommendations
16 SELECT rec_id, rank, benefit, command
17 FROM user_advisor_recommendations
18 WHERE task_name = 'MV_ADVISOR_TASK';

9 Real-World Example
Retail data warehouse implementation:

71

Dr. Lyazid TOUMI

1 CREATE MATERIALIZED VIEW mv_retail_analysis
2 BUILD IMMEDIATE
3 REFRESH COMPLETE ON DEMAND
4 ENABLE QUERY REWRITE
5 AS
6 SELECT
7 t.calendar_year,
8 t.calendar_quarter_desc,
9 c.country_id,
10 c.cust_income_level,
11 p.prod_category,
12 p.prod_subcategory,
13 c.channel_desc,
14 p.prod_list_price,
15 SUM(s.amount_sold) AS sum_amount,
16 SUM(s.quantity_sold) AS sum_quantity,
17 COUNT(*) AS cnt
18 FROM
19 sales s
20 JOIN times t ON s.time_id = t.time_id
21 JOIN customers c ON s.cust_id = c.cust_id
22 JOIN products p ON s.prod_id = p.prod_id
23 JOIN channels c ON s.channel_id = c.channel_id
24 GROUP BY
25 ROLLUP(t.calendar_year, t.calendar_quarter_desc),
26 c.country_id,
27 c.cust_income_level,
28 CUBE(p.prod_category, p.prod_subcategory),
29 c.channel_desc,
30 p.prod_list_price;

Performance impact observed:

• 15x faster for monthly reporting queries

• 80% reduction in CPU usage for dashboard queries

• 40% shorter ETL windows

72

6 Data Warehouses

Table 10: Comparison of Optimization Techniques

Characteristic Materialized Views Indexes
Storage Overhead High Medium
Maintenance Cost High Low-Medium
Query Scope Complex queries Single table access
Freshness Periodic Real-time
Best For Aggregations Predicate filtering

10 Materialized View vs. Indexes

11 Advanced Features

1 -- Nested materialized views
2 CREATE MATERIALIZED VIEW mv_nested
3 REFRESH COMPLETE
4 AS
5 SELECT
6 calendar_year,
7 product_category,
8 SUM(sum_amount) AS yearly_category_sales
9 FROM
10 mv_sales_summary
11 GROUP BY
12 calendar_year,
13 product_category;
14

15 -- Real-time materialized views (Oracle 12c+)
16 CREATE MATERIALIZED VIEW mv_real_time
17 REFRESH ON STATEMENT
18 AS
19 SELECT /* real-time aggregation query */;

12 Conclusion
Key recommendations for materialized views:

• Focus on frequently executed complex queries

• Balance refresh frequency with data freshness needs

73

Dr. Lyazid TOUMI

• Monitor query rewrite effectiveness

• Consider partitioning for large MVs

• Combine with indexes for optimal performance

• Use systematic selection and pruning approaches

• Leverage database advisor tools for recommendations

1 BEGIN
2 DBMS_MVIEW.REFRESH('MV_SALES_SUMMARY', method => 'F');
3 DBMS_STATS.GATHER_TABLE_STATS('DW_SCHEMA','MV_SALES_SUMMARY');
4 DBMS_ADVISOR.TUNE_MVIEW(task_name => 'MV_TUNING');
5 END;
6 /

74

Chapter 7

Data Warehouse Administration and
Tuning
1 Introduction to DWH Administration
Data warehouse administration requires specialized skills combining database
management, performance tuning, and business intelligence expertise. Key
responsibilities include:

• Capacity Planning: Forecasting storage and compute requirements

• Performance Management: Ensuring SLAs for query response times

• Data Freshness: Managing ETL schedules and refresh cycles

• Security: Implementing role-based access controls

• Availability: Designing for high availability and disaster recovery

Dr. Lyazid TOUMI

Figure 11: Oracle Data Warehouse Reference Architecture

76

7 Data Warehouses

2 Oracle Data Warehouse Architecture

3 Storage Management

3.1 Tablespace Strategy

1 -- Create dedicated tablespaces for DWH components
2 CREATE TABLESPACE dwh_data
3 DATAFILE '+DATA' SIZE 100G AUTOEXTEND ON NEXT 10G
4 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128M
5 SEGMENT SPACE MANAGEMENT AUTO;
6

7 CREATE TABLESPACE dwh_index
8 DATAFILE '+DATA' SIZE 50G AUTOEXTEND ON NEXT 5G
9 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 64M;
10

11 CREATE TABLESPACE dwh_temp
12 TEMPFILE '+TEMP' SIZE 20G AUTOEXTEND ON NEXT 2G
13 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 64M;

3.2 Compression Techniques

Table 11: Oracle Compression Methods for Data Warehouses

Type Compression Ratio Best For
Basic Table Compression 2x-4x Historical data
Advanced Compression 3x-6x All data
Hybrid Columnar Compression 10x-15x Analytic tables

1 -- Enable HCC on partitioned tables
2 ALTER TABLE sales MOVE PARTITION sales_2020
3 COMPRESS FOR QUERY HIGH
4 TABLESPACE dwh_data;
5

6 -- Compress indexes
7 ALTER INDEX sales_pk REBUILD COMPRESS ADVANCED HIGH;

77

Dr. Lyazid TOUMI

4 Performance Tuning Methodology

4.1 Tuning Approach

1. Identify: Pinpoint performance bottlenecks

2. Diagnose: Analyze execution plans and statistics

3. Implement: Apply appropriate tuning techniques

4. Validate: Measure improvement impact

5. Monitor: Establish ongoing performance baselines

4.2 Key Performance Metrics

Table 12: Critical DWH Performance Metrics

Metric Target Monitoring Query
Buffer Cache Hit Ratio >95% V$SYSSTAT
Library Cache Hit Ratio >98% V$LIBRARYCACHE
Disk I/O per Second <100 V$FILESTAT
Parallel Query Utilization 70-90% V$PQ_SYSSTAT

78

7 Data Warehouses

5 Query Optimization Techniques

5.1 Optimizer Statistics

1 -- Configure automated stats collection
2 BEGIN
3 DBMS_STATS.SET_GLOBAL_PREFS(
4 'AUTOSTATS_TARGET', 'ORACLE');
5

6 DBMS_STATS.SET_TABLE_PREFS(
7 'DWH_SCHEMA', 'SALES',
8 'INCREMENTAL', 'TRUE');
9 END;
10 /
11

12 -- Gather extended statistics
13 EXEC DBMS_STATS.GATHER_TABLE_STATS(
14 ownname => 'DWH_SCHEMA',
15 tabname => 'SALES',
16 method_opt => 'FOR ALL COLUMNS SIZE SKEWONLY',
17 degree => 8);

5.2 SQL Plan Management

1 -- Capture and maintain plan baselines
2 ALTER SYSTEM SET optimizer_capture_sql_plan_baselines=TRUE;
3

4 -- Evolve plans over time
5 SET SERVEROUTPUT ON
6 DECLARE
7 report CLOB;
8 BEGIN
9 report := DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE(
10 sql_handle => 'SYS_SQL_abc123');
11 DBMS_OUTPUT.PUT_LINE(report);
12 END;
13 /

79

Dr. Lyazid TOUMI

6 Parallel Execution Tuning

6.1 Configuration Parameters

1 -- Configure parallel execution
2 ALTER SYSTEM SET parallel_degree_policy='AUTO';
3 ALTER SYSTEM SET parallel_servers_target=64;
4 ALTER SYSTEM SET parallel_max_servers=128;
5

6 -- Table-level parallel settings
7 ALTER TABLE sales PARALLEL 16;
8 ALTER INDEX sales_pk PARALLEL 8;

6.2 Monitoring Parallel Queries

1 -- Active parallel queries
2 SELECT sid, serial#, username, sql_id,
3 degree, req_degree, px_servers
4 FROM v$px_session p, v$session s
5 WHERE p.sid = s.sid;
6

7 -- Parallel query performance
8 SELECT sql_id, plan_hash_value,
9 elapsed_time/1000000 secs,
10 px_servers, executions
11 FROM v$sql
12 WHERE px_servers > 0
13 ORDER BY elapsed_time DESC;

7 ETL Process Optimization

7.1 ETL Tuning Techniques

• Direct Path Loads: Bypass buffer cache for bulk operations

• Partition Exchange Loading: Instant data swaps

• Parallel DML: Accelerate transformations

• Incremental Loading: Process only changed data

80

7 Data Warehouses

1 -- High-performance ETL pattern
2 INSERT /*+ APPEND PARALLEL(8) */ INTO sales_target
3 SELECT /*+ PARALLEL(8) FULL(s) */
4 s.*
5 FROM sales_source s
6 WHERE s.load_date > TRUNC(SYSDATE)-1;
7

8 COMMIT;
9

10 -- Partition exchange loading
11 ALTER TABLE sales_staging
12 EXCHANGE PARTITION p_current
13 WITH TABLE sales_new
14 INCLUDING INDEXES;

8 Resource Management

8.1 Database Resource Manager

1 -- Create resource plan
2 BEGIN
3 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
4 plan => 'DWH_PLAN',
5 comment => 'Data Warehouse Workload Management');
6

7 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP(
8 consumer_group => 'ETL_GROUP',
9 comment => 'ETL Processing');
10

11 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
12 plan => 'DWH_PLAN',
13 group_or_subplan => 'ETL_GROUP',
14 comment => 'ETL Allocation',
15 mgmt_p1 => 70);
16 END;
17 /
18

19 ALTER SYSTEM SET resource_manager_plan = 'DWH_PLAN';

81

Dr. Lyazid TOUMI

9 Monitoring and Maintenance

9.1 Automated Maintenance Tasks

1 -- Create maintenance window
2 BEGIN
3 DBMS_SCHEDULER.CREATE_WINDOW(
4 window_name => 'DWH_MAINTENANCE_WINDOW',
5 resource_plan => 'DWH_PLAN',
6 start_date => TRUNC(SYSDATE)+22/24, -- 10PM
7 duration => INTERVAL '4' HOUR,
8 repeat_interval => 'FREQ=DAILY');
9 END;
10 /
11

12 -- Segment advisor job
13 BEGIN
14 DBMS_AUTO_TASK_ADMIN.ENABLE(
15 client_name => 'auto space advisor',
16 operation => NULL,
17 window_name => NULL);
18 END;
19 /

10 Troubleshooting Common Issues

10.1 Performance Problem Resolution

Table 13: Common DWH Performance Issues

Symptom Solution
Slow fact table queries Verify partition pruning, check statistics
ETL timeouts Increase PGA, optimize parallel DML
Disk contention Distribute I/O across multiple devices
Memory pressure Configure automatic memory management

82

7 Data Warehouses

11 Conclusion and Best Practices

11.1 Administration Checklist

• Implement comprehensive monitoring (AWR, ASH)

• Establish regular maintenance windows

• Document all tuning changes

• Test changes in non-production environments

• Review performance trends weekly

11.2 Ongoing Tuning Process

1. Capture baseline performance metrics

2. Identify top resource-intensive operations

3. Apply targeted tuning techniques

4. Validate improvements

5. Update documentation

1 -- Generate AWR report
2 SELECT output FROM TABLE(
3 DBMS_WORKLOAD_REPOSITORY.awr_report_text(
4 l_dbid => (SELECT dbid FROM v$database),
5 l_inst_num => (SELECT instance_number FROM v$instance),
6 l_bid => NULL,
7 l_eid => NULL));
8

9 -- Check for system bottlenecks
10 SELECT * FROM TABLE(DBMS_SQLTUNE.report_system_monitor);

83

