Université Ferhat Abbas Setif 1
Faculy Of Sciences

Compter Science Department

DATA WAREHOUSES

2" Year Master Data Engineering and Web Technologies

By Dr. Lyazid TOUMI

Contents

1 Data Warehouse Architecture and Design

1
2
3

7
8

Introduction to Data Warehousing
Data Warehoue architecture
Core Architecture Principles
3.1 Subject Orientation
3.2 Data Integration
3.3 Time Variance
3.4 Non-Volatility
Multidimensional Data Modeling
4.1 OLAP Implementation Approaches
Physical Design Considerations
5.1 Redundant Structures
5.2 Non-Redundant Structures
Performance Tuning Strategies
6.1 Hardware Level
6.2 DBMS Level
6.3 Logical Level
Commercial Implementation Tools
Conclusion L

2 Data Warehouse Reporting

1
2
3

Introduction to DWH Reporting
Reporting Architecture oL
Oracle Reporting Tools
3.1 Oracle Analytics Server
3.2 Oracle APEX for Reporting
Optimizing Reports with Materialized Views
4.1 Report-Specific MVs
Parameterized Reporting
5.1 SQL Query Parameters
Scheduled Report Delivery
6.1 Automated Email Reports

10
10
10
10
11
11
12
12
12
13
13
13
13
13
14
14
14

Dr. Lyazid TOUMI

7 Performance Considerations 23
7.1 Report Query Optimization 23

7.2 Query Design Patterns 23

8 Security and Access Control 24
8.1 Row-Level Security 24

9 Advanced Visualization Techniques 25
9.1 Time-Series Analysis 25

10 Best Practices oL 25
10.1 Report Development Guidelines 25

10.2 Performance Checklist 25

11 Emerging Trends oL 25
11.1 Modern Reporting Features 25

3 ETL Processes in Data Warehousing 27
1 Introduction to ETL oL 27
2 Oracle ETL Tools Overview 27
2.1 Tool Comparison 27

3 Extraction Patterns L. 29
3.1 Change Data Capture (CDC) 29

4 Transformation Techniques 30
4.1 Data Cleansing 30

5 Loading Strategies 31
5.1 Bulk Loading with SQL*Loader 31

5.2 External Tables 32

6 Incremental Loading 34
6.1 SCD Type 2 Implementation 34

7 High-Performance ETL Techniques 35
7.1 Parallel DMLo 35

7.2 Partition Exchange Loading 36

8 Error Handling and Recovery 37
8.1 ETL Auditing Framework 37

9 Optimizing ETL Performance 38
9.1 Performance Tuning Checklist 38

9.2 Memory Configuration 38

10 Best Practices o oL 38
10.1 ETL Design Principles 38

10.2 Oracle-Specific Recommendations 39

11 Emerging Trends L. 39
11.1 Modern ETL Approaches 39

4 Data Warehouses Indexation Strategies

1
2

4
)
6

Introduction to Data Warehouse Indexing
Oracle-Specific Indexing Techniques . . .

2.1 B-Tree Indexes in Oracle

2.2 Bitmap Indexes in Oracle

2.3 Bitmap Join Indexes in Oracle

Index Selection Methodology

3.1 Cost-Based Approach in Oracle

3.2 Implementation Example

Performance Comparison

Maintenance Strategies.

Conclusion

5 Horizontal Partitioning in Data Warehouses

1
2

Introduction
Partitioning Strategies
2.1 Partitioning Key Selection

2.2 Partition Granularity
Oracle Partitioning Fundamentals

4.1 Range partitioning mode

4.2 Hash partitioning mode
4.3 List partitioning mode

4.4 Composite partitioning mode . . .
4.5 Multicolumn partitioning mode

4.6 Reference partitioning mode
4.7 Virtual column partitioning

Partition Pruning Optimization
Partitioned Index Strategies
6.1 Local vs Global Indexes
6.2 Index Creation Examples
Partition Maintenance Automation
Performance Considerations
8.1 Partitioning Overhead
8.2 Monitoring Partition Usage

Real-World Implementation Case Study

Conclusion and Best Practices.

3.1 Partitioning Types
3.2 Creating Partitioned Tables
Horizontal partitioning modes

0 Data Warehouses

Dr. Lyazid TOUMI

6 Materialized Views in Data Warehouses 65
1 Materialized View Selection Problem 65
1.1 Problem Formulation 65

1.2 Selection Algorithms 66

2 Pruning Techniques 66
2.1 Dominance Pruning 67

2.2 Constraint-Based Pruning 67

2.3 Multi-Query Optimization Pruning 67

3 Oracle Materialized View Fundamentals 68
4 Refresh Mechanisms 68
5 Query Rewriteo oo 69
6 Partitioned Materialized Views 70
7 MV Maintenance Best Practices 70
8 Advanced MV Selection in Oracle 71
9 Real-World Example 71
10 Materialized View vs. Indexes 73
11 Advanced Features 73
12 Conclusion 73
7 Data Warehouse Administration and Tuning 75
1 Introduction to DWH Administration 75
2 Oracle Data Warehouse Architecture 7
3 Storage Management 7
3.1 Tablespace Strategy 7

3.2 Compression Techniques 77

4 Performance Tuning Methodology 78
4.1 Tuning Approach 78

4.2 Key Performance Metrics 78

5 Query Optimization Techniques 79
5.1 Optimizer Statistics 79

5.2 SQL Plan Management 79

6 Parallel Execution Tuning 80
6.1 Configuration Parameters 80

6.2 Monitoring Parallel Queries 80

7 ETL Process Optimization. 80
7.1 ETL Tuning Techniques 80

8 Resource Management 81
8.1 Database Resource Manager 81

10

11

0 Data Warehouses

Monitoring and Maintenance 82
9.1 Automated Maintenance Tasks 82
Troubleshooting Common Issues 82
10.1 Performance Problem Resolution 82
Conclusion and Best Practices. 83
11.1 Administration Checklist 83
11.2 Ongoing Tuning Process 83

Reference Books

e The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling (3rd Edition), Ralph Kimball and Margy Ross, Wiley , 2013.

e Building the Data Warehouse, W. H. Inmon, John Wiley Sons, 2005

e Oracle database performance tuning: a checklist approach with simple
and comprehensive guide to diagnose, optimize, and deliver, SANJAY
MISHRA, kindle edition, 2025

Chapter 1

Data Warehouse Architecture and Design

1 Introduction to Data Warehousing

Modern enterprises rely on data warehouses as centralized repositories for
analytical processing. Unlike traditional databases focused on day-to-day
operations, data warehouses specialize in storing historical business data
optimized for complex analysis and decision support.

These systems typically employ specialized schema designs:

e Star Schema: A simple structure with one central fact table linked to
dimension tables

e Snowflake Schema: A normalized version of star schema where dimen-
sions are further broken down

Query performance challenges primarily stem from:

e Large-scale join operations between fact and dimension tables
e Increasing data volumes, especially in scientific applications

e Complex analytical queries requiring aggregated results

Dr. Lyazid TOUMI

2 Data Warehoue architecture

! I — —=
Files =
Data sn;art
—A — : .
e — -— C> oAP | |
@ - ;
Reports Data smart
——— . Data mining
- ; .
Paiabases Data smart . g
L : [
, : Statistics
. Data warehouse Admin analysis
<—Extraction ><€ Integration > € Analysis—>

Figure 1: Data warehouses building process.

3 Core Architecture Principles

The fundamental architecture of data warehouses revolves around four key
characteristics:

3.1 Subject Orientation

Data warehouses organize information around specific business subjects
rather than operational functions. For instance:

e Retail: Sales performance analysis
e Telecom: Call pattern examination

e Healthcare: Patient treatment outcomes

3.2 Data Integration

A data warehouse consolidates information from multiple source systems
through:

10

e Standardized naming conventions

e Consistent measurement units

e Unified data formats

e Conflict resolution mechanisms

3.3 Time Variance

1 Data Warehouses

Unlike operational systems that focus on current data, warehouses maintain
historical records to enable:

e Trend analysis

e Year-over-year comparisons

e Pattern recognition across time periods

3.4 Non-Volatility

Once data enters the warehouse:

e [t remains unchanged for analysis consistency

e Updates occur through periodic refreshes

e Historical snapshots are preserved

Table 1: Comparison of OLTP and OLAP Systems

Characteristic

OLTP Systems

OLAP Systems

Primary Purpose
Data Structure
Query Patterns
Performance Focus
Data Freshness
Storage Approach

Transaction processing
Highly normalized
Simple, predictable
Fast writes

Real-time

Many small tables

Analytical processing
Denormalized
Complex, ad-hoc
Fast reads

Periodic updates
Few large tables

11

Dr. Lyazid TOUMI

4 Multidimensional Data Modeling

The data cube serves as the foundation for analytical processing, consisting
of:

e Dimensions: Business perspectives (e.g., time, location, product)
e Measures: Quantitative values (e.g., sales amount, quantity)
e Hierarchies: Drill-down paths (e.g., year quarter month)

For a cube with n dimensions, there are 2" possible aggregation levels
(cuboids). Figure 2 illustrates a three-dimensional data cube.

2\

NN NN

N
DNANANAN

Customer

NN NN

14 611 | 72

'
L]

Product

Figure 2: Three-dimensional data cube example

4.1 OLAP Implementation Approaches
5 Physical Design Considerations
Effective physical design significantly impacts query performance. Opti-

mization techniques fall into two categories:

12

1 Data Warehouses

Table 2: OLAP Implementation Comparison

Feature ROLAP MOLAP HOLAP
Storage Medium | Relational DB | Multidimensional array | Hybrid
Query Speed Moderate Fast Balanced
Storage Efficiency | High Low for sparse data Medium
Implementation Star/snowflake | Proprietary format Combined

5.1 Redundant Structures

e Indexes: Accelerate data retrieval

e Materialized Views: Pre-computed query results

e Vertical Partitioning: Column-wise table splitting

5.2 Non-Redundant Structures

e Horizontal Partitioning: Row-wise table division
e Parallel Processing: Distributed query execution

e Query Scheduling: Workload prioritization

6 Performance Tuning Strategies

Data warehouse tuning operates at three levels:

6.1 Hardware Level

e RAID storage configurations
e Query Processing Units (QPUs)

o Memory allocation optimization

6.2 DBMS Level

e Buffer pool sizing
e Checkpoint frequency adjustment

e Concurrency control settings

13

Dr. Lyazid TOUMI

6.3 Logical Level
e Query rewriting
e Optimal index selection

e Partitioning strategy refinement

7 Commercial Implementation Tools
Major database vendors provide specialized tuning advisors:
e Microsoft SQL Server: Database Tuning Advisor (DTA)

e IBM DB2: Design Advisor with workload management

e Oracle: Automatic Workload Repository (AWR)-based tuning

8 Conclusion
This chapter covered essential data warehouse concepts including:

e Foundational architecture principles
e Multidimensional modeling approaches
e Physical design optimization techniques

e Performance tuning methodologies

These fundamentals provide the basis for understanding advanced data
warehouse optimization techniques covered in subsequent chapters.

14

Chapter 2

Data Warehouse Reporting

1 Introduction to DWH Reporting

Data warehouse reporting transforms raw data into actionable business
intelligence through:

e Standardized operational reports

e Interactive dashboards

Ad-hoc analytical queries

Self-service BI tools

Scheduled report distribution

2 Reporting Architecture

3 Oracle Reporting Tools

3.1 Oracle Analytics Server

-- Create dedicated reporting user

CREATE USER report owner IDENTIFIED BY "R3port$2023"
DEFAULT TABLESPACE reporting

TEMPORARY TABLESPACE temp

QUOTA UNLIMITED ON reporting;

- Grant necessary privileges
GRANT CREATE SESSION, CREATE VIEW,
CREATE MATERIALIZED VIEW TO report owner;
GRANT SELECT ON dwh.sales TO report owner;

I T - NS R N SR R

S

Dr. Lyazid TOUMI

DWH REPORTING
ARCHITECTURE

16

Data
Source

Data
Source

Data
Source

]

Reporting

DWH

Figure 3: Data Warehouse Reporting Architecture

2 Data Warehouses

3.2 Oracle APEX for Reporting

1 -- Create APEX report region

2 BEGIN

3 APEX APPLICATION PAGE.CREATE PAGE(
4 application id => 100,

5 page id => 10,

6 page name => 'Sales Dashboard');

8 APEX APPLICATION_ PAGE.CREATE REGION(

9 page id => 10,

10 region name => 'Monthly Sales',

11 source type => 'SQL',

12 source => 'SELECT TO CHAR(sale date,''YYYY-MM'') AS month,
13 SUM(amount) AS total sales

14 FROM sales

15 GROUP BY TO CHAR(sale date,''YYYY-MM'')

16 ORDER BY 1 DESC');

17 END;

17

Dr. Lyazid TOUMI

4 Optimizing Reports with Materialized Views

4.1 Report-Specific MVs

1 CREATE MATERIALIZED VIEW mv monthly sales

2 REFRESH COMPLETE ON DEMAND

3 ENABLE QUERY REWRITE

4+ AS

5 SELECT

6 TO CHAR(s.sale date, 'YYYY-MM') AS month,

7 r.region name,

8 p.product category,

9 COUNT(*) AS transaction count,

10 SUM(s.amount) AS total sales,

1 SUM(s.quantity) AS total units

12 FROM

13 sales s

14 JOIN products p ON s.product id = p.product id
15 JOIN regions r ON s.region id = r.region id
16 GROUP BY

17 TO CHAR(s.sale date, 'YYYY-MM'),

18 r.region name,

19 p.product category;

18

2 Data Warehouses

19

Dr. Lyazid TOUMI

5 Parameterized Reporting

5.1 SQL Query Parameters

1 -- PL/SQL function for dynamic reporting

2 CREATE OR REPLACE FUNCTION get sales report(

3 p start date DATE,

4 p_end date DATE,

5 p_region id NUMBER DEFAULT NULL,

6 p category id NUMBER DEFAULT NULL)

7 RETURN SYS REFCURSOR

s IS

9 v _cursor SYS REFCURSOR;

10 v_sql VARCHAR2(4000);

1 BEGIN

12 v sql := 'SELECT s.sale date, c.customer name,

13 p.product name, s.amount

14 FROM sales s

15 JOIN customers ¢ ON s.customer id = c.customer id

16 JOIN products p ON s.product id = p.product id

17 WHERE s.sale date BETWEEN :1 AND :2°';

18

19 IF p region id IS NOT NULL THEN

2 v sql :=v sql || ' AND c.region id = :3"';

21 END IF;

22

23 IF p category id IS NOT NULL THEN

24 v sql :=v sql || ' AND p.category id = :4';

25 END IF;

26

27 v sql := v sql || ' ORDER BY s.sale date DESC';

28

29 IF p region id IS NULL AND p category id IS NULL THEN

0 OPEN v cursor FOR v _sql USING p start date, p end date;

31 ELSIF p region id IS NOT NULL AND p category id IS NULL THEN

32 OPEN v cursor FOR v sql USING p start date, p end date,
- p_region id;

33 ELSE

34 OPEN v cursor FOR v sql USING p start date, p end date,

35 p region id, p category id;

36 END IF;

37

38 RETURN v cursor;

39 END;

20

2 Data Warehouses

21

Dr. Lyazid TOUMI

6 Scheduled Report Delivery

6.1 Automated Email Reports

1 BEGIN
2 DBMS SCHEDULER.CREATE JOB(
3 job name => 'SEND DAILY SALES REPORT',
4 job type => 'PLSQL BLOCK',
5 job action => 'BEGIN
6 -- Generate report as CSV
7 DECLARE
8 v _file UTL FILE.FILE TYPE;
9 v csv CLOB;
10 BEGIN
1 v file :=

— UTL FILE.FOPEN(''REPORT DIR'',''sales.csv'',''W'");
12
13 FOR r IN (
14 SELECT * FROM sales
15 WHERE sale date = TRUNC(SYSDATE)-1
16 ORDER BY sale id
17) LOOP
18 v csv :=vVv csv || r.sale id || ""',"'" ||
19 r.sale date || '',"'"' ||
20 r.amount || CHR(10);
21 END LOOP;
22
23 UTL FILE.PUT LINE(v file, v csv);
b4 UTL FILE.FCLOSE(v file);
25
26 -- Email report
27 APEX MAIL.SEND(
28 p to => ''managers@company.com"'’,
29 p from => ''reports@company.com'"',
0 p subj => ''Daily Sales Report'',
31 p body => ''Attached is

- yesterday''''s sales report'',

32 p attachment => ''REPORT DIR/sales.csv'');
33 END;
4 END; ',
35 start date => SYSDATE,
36 repeat interval => 'FREQ=DAILY; BYHOUR=8',
37 enabled => TRUE);
33 END;

22

2 Data Warehouses

7 Performance Considerations

7.1 Report Query Optimization

Table 3: Report Query Optimization Techniques

Problem Solution
Slow-running reports | Create summary materialized views
High concurrency Implement result caching

Large data volumes | Use pagination (LIMIT/OFFSET)
Complex calculations | Pre-compute in ETL

7.2 Query Design Patterns

1

12

14
15
16
17
18

19

-- Paginated report with analytic functions
SELECT * FROM (
SELECT

S.
s.sale date,
c.customer name,
p.

s.amount,

sale id,

product name,

SUM(s.amount) OVER (PARTITION BY c.customer id) AS cust total,
ROW NUMBER() OVER (ORDER BY s.sale date DESC) AS rn

FROM

sales s

JOIN customers c ON s.customer id = c.customer id

JOIN products p ON s.product id = p.product id
WHERE

S

)

.sale date BETWEEN :start date AND :end date

WHERE rn BETWEEN :page start AND :page end
ORDER BY sale date DESC;

23

Dr. Lyazid TOUMI

8 Security and Access Control

8.1 Row-Level Security

1 -- Create security policy

2 BEGIN

3 DBMS RLS.ADD POLICY(

4 object schema => 'DWH',

5 object name => 'SALES',

6 policy name => 'REGION ACCESS POLICY',
7 function schema => 'SECURITY',

8 policy function => 'AUTHORIZE BY REGION',
9 statement types => 'SELECT',

10 update check => TRUE);

11 END;

12 -- Policy function example

13 CREATE OR REPLACE FUNCTION security.authorize by region(
14 p_schema IN VARCHAR2,

15 p object IN VARCHAR2)

16 RETURN VARCHAR2

17 IS

18 v _predicate VARCHAR2(200);

19 BEGIN

2o IF SYS_CONTEXT('USERENV', 'SESSION USER') = 'REPORT_USER' THEN

21 v_predicate := 'region id IN (

22 SELECT region_id FROM user regions

23 WHERE username = SYS CONTEXT(''USERENV'',''SESSION USER''))"';
24 END IF;

25
6 RETURN v predicate;
27 END;

~

24

2 Data Warehouses

9 Advanced Visualization Techniques

9.1 Time-Series Analysis

1 -- MATCH RECOGNIZE for trend analysis
2 SELECT *

3 FROM daily sales

4 MATCH RECOGNIZE (

5 PARTITION BY product id

6 ORDER BY sale date

7 MEASURES

8 STRT.sale date AS start date,

9 LAST (DOWN.sale date) AS bottom date,
10 LAST(UP.sale date) AS recovery date

1 ONE ROW PER MATCH
12 PATTERN (STRT DOWN+ UP+)

13 DEFINE

14 DOWN AS amount < PREV(amount),
15 UP AS amount > PREV(amount)

6) mr

17 ORDER BY product id, start date;

10 Best Practices

10.1 Report Development Guidelines

Modular Design: Build reusable report components

Parameter Validation: Sanitize all user inputs

Performance Testing: Validate with production data volumes

Documentation: Maintain data dictionaries and lineage

Version Control: Track report changes systematically

10.2 Performance Checklist
11 Emerging Trends

11.1 Modern Reporting Features

e Natural Language Processing: Voice-activated reporting

25

Dr. Lyazid TOUMI

Table 4: Report Performance Checklist

Area Verification

Query Design Proper indexing and partitioning
Execution Plan | Optimal join methods and access paths
Result Size Appropriate pagination/filtering
Caching Effective use of result cache
Concurrency Tested under expected user load

e Augmented Analytics: Automated insights generation
e Embedded Analytics: Reports within operational apps
e Real-time Dashboards: Streaming data visualization

e Mobile Optimization: Responsive report design

1 -- Oracle Continuous Query Notification
2 DECLARE

3 1 regid NUMBER;

4 1 cursor SYS REFCURSOR;

5 BEGIN

6 DBMS CHANGE NOTIFICATION.ENABLE REG(

7 regid => 1 regid,

8 callback => 'reporting.refresh dashboard',

9 gosflags => DBMS CHANGE NOTIFICATION.QOS QUERY);

1 OPEN 1 cursor FOR

12 SELECT product id, SUM(amount)
13 FROM sales
14 GROUP BY product id;

16 DBMS_CHANGE_NOTIFICATION.REGISTER(

17 regid => 1 regid,

18 cursor => 1 cursor,

19 operations => DBMS CHANGE NOTIFICATION.ALL OPERATIONS);
2o END;

26

Chapter 3
ETL Processes in Data Warehousing

1 Introduction to ETL

ETL (Extract, Transform, Load) forms the backbone of data warehouse
population, involving;:

e Extraction: Data collection from source systems
e Transformation: Data cleansing and conversion

e Loading: Populating target data warehouse structures

2 Oracle ETL Tools Overview

2.1 Tool Comparison

Table 5: Oracle ETL Tool Comparison

Tool Best For Complexity
Oracle Data Integrator (ODI) | Enterprise ETL High
SQL*Loader Flat file loading Low
External Tables File processing Medium
PL/SQL Custom transformations | Medium
APEX Data Loading Ad-hoc loads Low

Dr. Lyazid TOUMI

28

ETL

ARCHITECTURE

\

Source]

Source I—P

Source

ETL

#

Figure 4: Typical ETL Architecture in Data Warehousing

3 Extraction Patterns

3.1 Change Data Capture (CDC)

3 Data Warehouses

17

18

19

20

21

22

23

25

26

27

28

29

30

-- Create change table
BEGIN

DBMS_CDC_PUBLISH.CREATE CHANGE TABLE(

owner
change table name
change set name
source schema
source table
column type list
capture values

rs id

row id

user id

timestamp
object id

=> 'SRC OWNER',
=> 'CUSTOMERS CT',
=> 'DWH_CHANGE SET',
=> 'SRC_OWNER',

=> 'CUSTOMERS ',

=> 'CUSTOMER_ID NUMBER, NAME VARCHAR2(100)',

=> 'both',

END;

-- Subscribe to changes
BEGIN
DBMS CDC SUBSCRIBE.CREATE SUBSCRIPTION(

change set name =>
description =>
subscription name =>

'DWH CHANGE SET',
'Customer changes',
"CUSTOMER SUB');

DBMS CDC SUBSCRIBE.SUBSCRIBE (

END;

subscription name =>

source schema =
source table =>
column list =>
subscriber view =>

'CUSTOMER SUB',
"SRC_OWNER",
"CUSTOMERS ',
'CUSTOMER_ID, NAME',
'CUSTOMERS CHANGES') ;

29

Dr. Lyazid TOUMI

4 Transformation Techniques

4.1 Data Cleansing

1 -- Standardization and cleansing
2 CREATE OR REPLACE PROCEDURE clean customer data AS
3 BEGIN

4 -- Fix phone formats
5 UPDATE stage customers
6 SET phone = REGEXP REPLACE(phone, '[70-9]', ''")

7 WHERE REGEXP LIKE(phone, '[70-9]1');

9 -- Standardize addresses
10 UPDATE stage customers
1 SET address = INITCAP(TRIM(address)),

12 city = UPPER(city),
13 state = UPPER(state);
14

15 -- Validate emails

16 UPDATE stage customers

17 SET is valid = CASE

18 WHEN REGEXP LIKE(email,

- '~[A-Za-z0-9. %+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$")
19 THEN 1 ELSE © END;

20

21 -- Deduplicate records

22 FOR dup rec IN (

23 SELECT MIN(rowid) keep rowid, customer id
24 FROM stage customers

25 GROUP BY customer id

26 HAVING COUNT(*) > 1

27) LOOP

28 DELETE FROM stage customers

29 WHERE customer id = dup rec.customer id
30 AND rowid != dup_rec.keep rowid;

31 END LOOP;

2 END;

30

5 Loading Strategies

5.1 Bulk Loading with SQL*Loader

3 Data Warehouses

1

load customers.ctl

LOAD DATA

INFILE '/data/customers.csv'
BADFILE '/data/customers.bad'
DISCARDFILE '/data/customers.dsc'

APPEND
INTO TABLE stage customers
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

TRAILING NULLCOLS
(
customer id,
name,
email,
phone,
address,
city,
state,
zip,
load date "SYSDATE",
load source CONSTANT "CSV IMPORT"

31

Dr. Lyazid TOUMI

5.2 External Tables

1 CREATE OR REPLACE DIRECTORY ext tab dir AS '/data/external';

3 CREATE TABLE ext sales (

4 sale id NUMBER,

5 sale date DATE,

6 product id NUMBER,

7 customer id NUMBER,

8 amount NUMBER(10,2)

9)
10 ORGANIZATION EXTERNAL (

1 TYPE ORACLE LOADER

12 DEFAULT DIRECTORY ext tab dir

13 ACCESS PARAMETERS (

14 RECORDS DELIMITED BY NEWLINE
15 BADFILE 'sales.bad'

16 LOGFILE 'sales.log'

17 FIELDS TERMINATED BY '|'

18 MISSING FIELD VALUES ARE NULL
19)

2o LOCATION ('sales 2023.dat')

21)

b2 REJECT LIMIT UNLIMITED;

23

ba -- Query external data directly

25 SELECT * FROM ext sales WHERE sale date > SYSDATE-30;

32

3 Data Warehouses

33

Dr. Lyazid TOUMI

6 Incremental Loading

6.1 SCD Type 2 Implementation

1 CREATE OR REPLACE PROCEDURE load dim customers AS
2 BEGIN

3 -- Insert new records and changed records
4 INSERT INTO dim customers (

5 customer key,

6 customer id,

7 name,

8 email,

9 effective date,

10 expiry date,

1 current flag

12)

13 SELECT

14 dim cust seq.NEXTVAL,

15 s.customer id,

16 S.name,

17 s.email,

18 SYSDATE,

19 TO DATE('31-DEC-9999', 'DD-MON-YYYY'),

20 'Y!

21 FROM

22 stage customers s

23 LEFT JOIN dim customers d ON s.customer id = d.customer id
24 AND d.current flag = 'Y'
25 WHERE

26 d.customer key IS NULL OR

27 (s.name !'= d.name OR s.email != d.email);

28

29 -- Expire changed records

0 UPDATE dim customers d

31 SET current flag = 'N',

32 expiry date = SYSDATE-1
33 WHERE current flag = 'Y'

34 AND EXISTS (

35 SELECT 1 FROM stage customers s

36 WHERE s.customer id = d.customer id

37 AND (s.name != d.name OR s.email != d.email)
38)

39

o COMMIT;

41 END;

34

3 Data Warehouses

7 High-Performance ETL Techniques

7.1 Parallel DML

-- Enable parallel DML
ALTER SESSION ENABLE PARALLEL DML;

-- Parallel direct-path insert
INSERT /*+ APPEND PARALLEL(8) */ INTO sales fact
SELECT /*+ PARALLEL(8) FULL(s) */
s.sale id,
.sale date,
.customer key,
.product key,
.amount

nw T o u

FROM
stage sales s
JOIN dim customers c¢ ON s.customer id = c.customer id
JOIN dim products p ON s.product id = p.product id
WHERE
s.sale date BETWEEN :start date AND :end date;

COMMIT;

35

Dr.

Lyazid TOUMI

7.2 Partition Exchange Loading

r

-- Load data into staging table
INSERT /*+ APPEND */ INTO sales stage
SELECT * FROM external sales source;

-- Create constraints/indexes on stage table
ALTER TABLE sales stage ADD CONSTRAINT pk stage
PRIMARY KEY (sale id);

-- Exchange partition

ALTER TABLE sales fact

EXCHANGE PARTITION sales 2023 05
WITH TABLE sales stage

INCLUDING INDEXES

WITHOUT VALIDATION;

-- Update global indexes
ALTER TABLE sales fact
UPDATE GLOBAL INDEXES;

36

3 Data Warehouses

8 Error Handling and Recovery

8.1 ETL Auditing Framework

1 CREATE TABLE etl audit (

2 audit id NUMBER GENERATED ALWAYS AS IDENTITY,
3 process name VARCHAR2(100),

4 start time TIMESTAMP,

5 end time TIMESTAMP,

6 rows processed NUMBER,

7 status VARCHAR2(20),

8 error message VARCHAR2(4000),

9 CONSTRAINT pk etl audit PRIMARY KEY (audit id)

0);

12 CREATE OR REPLACE PROCEDURE log etl event (

13 p process IN VARCHARZ2,

14 p status IN VARCHAR2,

15 p_rows IN NUMBER DEFAULT NULL,
16 p _error IN VARCHAR2 DEFAULT NULL
17) AS

18 v audit id NUMBER;

19 BEGIN

20 IF p status = 'START' THEN

21 INSERT INTO etl audit (process name, start time, status)
22 VALUES (p process, SYSTIMESTAMP, p status)
23 RETURNING audit id INTO v audit id;
24 ELSE

25 UPDATE etl audit

26 SET end time = SYSTIMESTAMP,

27 status = p status,

28 rows processed = p rows,

29 error _message = p _error

30 WHERE process name = p process

31 AND status = 'START'

32 AND end time IS NULL;

33 END IF;

34

35 COMMIT;

356 END;

37

Dr. Lyazid TOUMI

9 Optimizing ETL Performance

9.1 Performance Tuning Checklist

Table 6: ETL Performance Optimization Techniques

Area Optimization

Extraction Use change data capture
Transformation | Push processing to database
Loading Direct-path inserts
Parallelism Configure appropriate DOP
Memory Optimize PGA allocation
Partitioning Implement partition exchange

9.2 Memory Configuration

.

- Configure memory for ETL operations
ALTER SYSTEM SET pga aggregate target=8G;
ALTER SYSTEM SET memory target=16G SCOPE=SPFILE;

- Session-level memory settings
ALTER SESSION SET sort area size=256M;
ALTER SESSION SET hash area size=512M;

1
2
3
4
5
6
7

10 Best Practices

10.1 ETL Design Principles

e Modularity: Build reusable components

Recoverability: Implement checkpoint restart

Monitoring: Comprehensive logging

Performance: Design for throughput

Maintainability: Clear documentation

38

3 Data Warehouses

10.2 Oracle-Specific Recommendations

1 CREATE OR REPLACE PROCEDURE run etl process AS
2 v_rows NUMBER;

3 v_start TIMESTAMP := SYSTIMESTAMP;

4+ BEGIN

5 -- Log start

6 log etl event('DAILY SALES LOAD', 'START');
7

8 -- Extract phase

9 extract sales data(v rows);

11 -- Transform phase

12 transform sales data(v rows);

13

14 -- Load phase

15 load sales fact(v rows);

16

17 -- Log completion

18 log etl event('DAILY SALES LOAD', 'COMPLETE', v rows);
19

20 -- Handle exceptions

21 EXCEPTION

22 WHEN OTHERS THEN

23 log etl event('DAILY SALES LOAD', 'ERROR', v rows,
o SQLERRM) ;

25 RAISE;

26 END;

11 Emerging Trends

11.1 Modern ETL Approaches
e ELT: Transform after loading

Streaming ETL: Real-time processing

Cloud ETL: Serverless architectures

Data Mesh: Distributed ownership

ML Integration: Embedded transformations

39

Dr.

Lyazid TOUMI

1
2
3
4

5

N

-- Oracle Autonomous Data Warehouse ETL
BEGIN
DBMS CLOUD.CREATE CREDENTIAL(
credential name => 'OBJ_STORE CRED',
username => 'cloud user',
password => 'secure password');

DBMS CLOUD.COPY DATA(

table name => 'STAGE SALES',
credential name => 'OBJ STORE CRED',
file uri list =>
— ‘'https://t.oraclecloud.com/n/namespace/b/bucket/o/sales*.csv’',
format => json object('type' value 'csv', 'delimiter' value
>)

END;

/

40

Chapter 4

Data Warehouses Indexation Strategies

1 Introduction to Data Warehouse Indexing

Indexing in data warehouses serves fundamentally different purposes com-
pared to OLTP systems. Where traditional databases optimize for frequent
small writes, data warehouses require specialized indexing strategies for:

e Large-scale analytical queries
e Complex joins across star schemas
e Aggregation operations on fact tables

e Historical data analysis

2 Oracle-Specific Indexing Techniques

2.1 B-Tree Indexes in Oracle

While B-trees remain ubiquitous, Oracle implements several optimizations
for data warehousing:

1 -- Oracle B-tree index with storage parameters
2 CREATE INDEX idx customer name ON customers(cust name)
3 TABLESPACE dw_indexes

4 STORAGE (INITIAL 256M NEXT 128M)

5 COMPRESS ADVANCED LOW;

Key considerations for Oracle:

e Use COMPRESS ADVANCED LOW for space savings
e Larger block sizes (8K/16K) for warehouse indexes

e Consider NOLOGGING for bulk loads

Dr. Lyazid TOUMI

2.2 Bitmap Indexes in Oracle

Oracle’s bitmap implementation is particularly suited for data warehouses:

- Oracle bitmap index example
CREATE BITMAP INDEX idx sales channel ON sales(sales channel)
TABLESPACE bitmap indexes
COMPUTE STATISTICS;

oW N

Best practices:
e Ideal for low-cardinality columns (<100 distinct values)
e Avoid on frequently updated tables

e Use BITMAP MERGE for efficient combination

2.3 Bitmap Join Indexes in Oracle

Oracle’s implementation pre-joins dimension and fact tables:

CREATE BITMAP INDEX idx_ sales customer_region
ON sales(customers.region)

FROM sales, customers

WHERE sales.cust id = customers.cust id

LOCAL NOLOGGING;

[B N YO

Performance characteristics:
e 3-10x faster for star schema queries
e 50-75% space savings over materialized views

e Automatic maintenance during ETL

3 Index Selection Methodology

3.1 Cost-Based Approach in Oracle
Oracle’s DBMS__ ADVISOR package provides index recommendations:

42

4 Data Warehouses

-- Generate index recommendations
DECLARE
task name VARCHAR2(30);

BEGIN
task name := DBMS ADVISOR.CREATE TASK('SQL Access Advisor');

DBMS_ADVISOR.SET TASK PARAMETER(task name, 'ANALYSIS SCOPE',
— 'INDEXES');
DBMS_ADVISOR.EXECUTE TASK(task name);

END;

/

-- View recommendations
SELECT * FROM user advisor recommendations;

3.2 Implementation Example

Consider a sales data warehouse with these optimization steps:

-- Step 1: Create dimension table indexes
CREATE BITMAP INDEX idx time year ON time dim(calendar year)
TABLESPACE dw indexes;

-- Step 2: Create fact table join indexes

CREATE BITMAP INDEX idx_ fact customer

ON sales fact(customer dim.cust segment)

FROM sales fact, customer dim

WHERE sales fact.cust id = customer dim.cust id;

-- Step 3: Add B-tree indexes for high-cardinality columns
CREATE INDEX idx sales amount ON sales fact(amount sold)
TABLESPACE dw indexes

COMPRESS;

43

Dr. Lyazid TOUMI

4 Performance Comparison

Table 7: Index Performance Characteristics in Oracle

Index Type | Create Time | Storage Size | Query Speedup
B-Tree Medium Large 2-5x

Bitmap Fast Small 5-20x

Bitmap Join | Slow Medium 10-50x

Maintenance Strategies

1

-- Rebuild fragmented indexes
ALTER INDEX idx customer name REBUILD ONLINE;

-- Monitor index usage
SELECT index name, used FROM v\$object usage;

-- Partition large indexes

CREATE INDEX idx sales date ON sales(sale date)
GLOBAL PARTITION BY RANGE (sale date)
(PARTITION p 2020 VALUES LESS THAN

- (TO DATE('2021-01-61"','YYYY-MM-DD')),
PARTITION p 2021 VALUES LESS THAN (MAXVALUE));

6

Conclusion

Effective data warehouse indexing in Oracle requires:

44

e Strategic combination of B-tree and bitmap indexes

e Proper use of partitioned indexes for large tables

e Regular monitoring and maintenance

e Workload-aware index selection

4 Data Warehouses

-- Example complete indexing strategy
BEGIN
-- Drop unused indexes
FOR rec IN (SELECT index name FROM user indexes WHERE status =
— 'UNUSED') LOOP
EXECUTE IMMEDIATE 'DROP INDEX ' || rec.index name;
END LOOP;

-- Rebuild fragmented indexes

DBMS STATS.GATHER SCHEMA STATS('DW USER');
END;
/

45

Chapter 5

Horizontal Partitioning in Data
Warehouses

1 Introduction

Horizontal partitioning (HP) has become an indispensable technique in
modern data warehouse design, particularly for Oracle-based systems. This
physical database design technique divides table rows across multiple phys-
ical structures while maintaining a single logical view. The approach offers
significant benefits for large-scale data warehouses:

e Improved Query Performance: Partition pruning eliminates unneces-
sary partitions from scan operations

e Enhanced Manageability: Maintenance operations can target specific
partitions

e Better Availability: Individual partitions can remain available during
maintenance

e Efficient Data Lifecycle Management: Aging data can be easily archived

2 Partitioning Strategies

2.1 Partitioning Key Selection

The choice of partitioning key significantly impacts performance. Ideal can-
didates:

e Frequently used in WHERE clauses for partition pruning

e Exhibit natural data distribution (dates, regions)

Dr. Lyazid TOUMI
e Support common access patterns
e Have sufficient cardinality to prevent skew

2.2 Partition Granularity

Table 8: Partition Granularity Trade-offs

Granularity Advantages Disadvantages

Coarse (Yearly) Fewer partitions Less pruning opportunity
Medium (Monthly) | Balanced approach | Moderate maintenance
Fine (Daily) Maximum pruning | High partition count

3 Oracle Partitioning Fundamentals

3.1 Partitioning Types

Oracle supports several partitioning methods:
e Range Partitioning: Ideal for time-series data
e List Partitioning: Suitable for discrete values
e Hash Partitioning: Even data distribution

e Composite Partitioning: Combines methods

48

3.2 Creating Partitioned Tables

5 Data Warehouses

1 CREATE TABLE sales (

2 sale id NUMBER,

3 sale date DATE,

4 customer id NUMBER,
amount NUMBER(10,2)

5

¢) PARTITION BY RANGE (sale date)

7

8 PARTITION sales 2020 VALUES LESS THAN

— (TO DATE('2021-01-01','YYYY-MM-DD')),

9 PARTITION sales_ 2021 VALUES LESS THAN
- (TO_DATE('2022-01-01','YYYY-MM-DD')),
10 PARTITION sales max VALUES LESS THAN (MAXVALUE)

1) TABLESPACE sales data;

4 Horizontal partitioning modes

4.1 Range partitioning mode

The range mode is the first partitioning mode integrated in ORACLE 8.
This mode uses the domain Dy of the attribute Ay used as partitioning key
of R. Each range has lower and upper bounds (see the example in Fig. 4.2

below)

49

Dr. Lyazid TOUMI

Example The Fig. 5 illustrates a range partitioning of the Customers

Age <18
—>
0 18|19 45[46 100 —> 18< Age <45
L, 0
Age 245

o

Age

Figure 5: Range Mode.

on Age as partitioning key. The following ORACLE statement allows rang
partitioning of Customers:

CREATE TABLE Customers

(CID number(9), Name varchar(25), City varchar(25),

Gender char(1l), Age number(3)

PARTITION BY RANGE(Gender)

(PARTITION C-Childs VALUES LESS THAN (18) TABLESPACE TBS-Childs,
PARTITION C-Adults VALUES LESS THAN (45) TABLESPACE TBS-Adults,
PARTITION C-0Olds VALUES LESS THAN (MAXVALUE) TABLESPACE TBS-0lds) ;

N o U A W N

e The PARTITION BY RANGE clause specifies that range-based par-
titioning is being used. Each partition is assigned a name, such as
C_Infants, which represents the partition containing tuples where
Age < 18.

e The TABLESPACE clause allows each partition to be stored in a
predefined physical space.

When a tuple is inserted into the relation R, it is automatically placed
into the appropriate partition based on the value of the ‘Age‘ column. For
instance, if a tuple with Age = 40 is inserted, the DBMS first compares the
‘Age‘ value with the upper bound of the smallest partition. Finding that

50

5 Data Warehouses

40 > 18, the system proceeds to the next partition. It then checks 40 < 45
and inserts the tuple into the corresponding partition.

This partitioning mode is particularly effective for queries with range-
based restriction predicates. For example:

1 SELECT Name FROM Customers
2 WHERE Age > 45;

In this case, the DBMS only loads the partition stored in the TBS Olds
Tablespace to answer the query, optimizing performance.

4.2 Hash partitioning mode

This mode utilizes a hashing algorithm provided by the DBMS. The user is

cID Customer 1

=

E—— Ficibia

F(CID)

A 4

Customer 2

Customer F(CID)=b

v

Figure 6: Hach Mode.

required to specify the partitioning key and the desired number of partitions.
The hashing algorithm ensures an even distribution of tuples across the
partitions, resulting in partitions of approximately equal size (see Fig. 7).

e Example: The following statement demonstrates the partitioning of
the ‘Customers‘ table into four partitions using the ‘CID‘ attribute
as the partitioning key. Each partition is stored in a separate TA-
BLESPACE (TBS1, TBS2, TBS3, and TBS4).

51

Dr. Lyazid TOUMI

CREATE TABLE CUSTOMER (CID number(9), Name varchar(25),
City varchar(25),Gender char(1l), Age number(3))
PARTITION BY HASH (CID)

PARTITION 4 STORE IN (TBS1, TBS2, TBS4, TBS4) ;

T R N

The partitions names are automatically assigned by DBMS during
the partitioning process.

4.3 List partitioning mode

City
—>

City="Algiers’

Customer 1
Algiers Sétif Béjaia [—> City="Sétif

Customer 2

Customer > City="Béjaia’
Customer 3

Figure 7: List mode.

List partitioning allows partitions to be defined based on a list of discrete
values for the partitioning key. This method enables the grouping and orga-
nization of unordered and unrelated sets of data in an intuitive and logical
manner.

e Example The following statement demonstrates the partitioning of
the ‘Customer‘ relation into four partitions using the list mode, with
the ‘City‘ attribute as the partitioning key. The four partitions contain
customers from Setif, Bejaia, Algiers, and other cities, respectively
(see Fig. 7).

52

5 Data Warehouses

1 CREATE TABLE CUSTOMER (CID number(9), Name varchar(25), City
- varchar(25),

2 Gender char(l), Age number(3))

3 PARTITION BY LIST (City)

4 (PARTITION C-Setif VALUES ('Setif'),

5 PARTITION C-Bejaia VALUES ('Bejaia'),

¢ PARTITION C-Algiers VALUES ('Algiers'),

7 PARTITION C-Otherwise VALUES (DEFAULT)) ;

4.4 Composite partitioning mode

Attribut A Attribut B

Before Partitioning

SPM 1

l Partition 1 Partition 2 l Partition 3

First Level

Partition 1-1 Partition 1-2 Partition 2-1 Partition 2 2 Partition 3-1 Partition 3-2

o i e s i i

Second Level

Vi
I
I
I
SPM 2 SPM 2 SPM 2 |
I
I
I
I
I

Figure 8: Composite partitioning mode.

Composite partitioning mode (CPO) combines two single partitioning
modes, SPM1 and SPM2 (see Fig. 7?). In this approach, the relation is first
partitioned using SPM1, and then each resulting partition is further sub-
divided into sub-partitions using SPM2 whiteoracle. =~ Several composite
partitioning modes are obtained by combining single partitioning modes.

53

Dr. Lyazid TOUMI

Age City
Customer
List Mode
l Customer 1 Customer 2 l Customer 3
City="Algiers’ City="Sétif’ City="Bejaia’
I |1 I 1
Range Mode Range Mode Range Mode
[| | | | 1
[| [
Customer 1-1 Customer 1-2 Customer 2-1 Customer 2-2 Customer 3-1 Customer 3-2

e —— p———

Figure 9: Example of composite partitioning mode.

The ‘Customer relation is first partitioned using ‘Gender‘ as the parti-
tioning key. Each resulting partition is then further subdivided into sub-
partitions using ‘Age‘ as the partitioning key (see Fig. 9). This is achieved
using the following statement:

o4

5 Data Warehouses

1 CREATE TABLE CUSTOMER

2 (CID number(9), Name varchar(25), City varchar(25),

3 Gender char(l), Age number(3)

4 PARTITION BY LIST (Gender)

5 SUBPARTITION BY RANGE (Age)

¢ SUBPARTITION TEMPLATE

7 (SUBPARTITION C-Childs VALUES LESS THAN (16) TABLESPACE TBS-Childs,

s SUBPARTITION C-Adults VALUES LESS THAN (MAXVALUE) TABLESPACE
~ TBS-Adults))

9 (PARTITION C-Setif VALUES ('Setif'),

10 PARTITION C-Bejaia VALUES ('Bejaia'),

1n PARTITION C-Algiers VALUES ('Algiers')

12 PARTITION C-Otherwise VALUES (DEFAULT));

4.5 Multicolumn partitioning mode

The multicolumn partitioning mode combines range and hash partitioning
methods, allowing up to 16 partitioning key columns. In this mode, the par-
titioning key, composed of multiple columns, provides finer granularity com-
pared to single-column partitioning. A common example is a decomposed
‘DATE’ column, split into separate ‘year‘, ‘month‘, and ‘day‘ columns. In
DBMS, the n" partitioning key is evaluated only when the values of the
preceding n — 1 keys exactly match the bounds of the corresponding n — 1
partitions.

The following example illustrates the range partitioning of the relation
Sales using two key partitioning Year and Month:

1 CREATE TABLE sales (

2 Year NUMBER,
3 Month NUMBER,
4 Day NUMBER,
5 Amount NUMBER)

¢ PARTITION BY RANGE (Year,Month)

7 (PARTITION before2014 VALUES LESS THAN (2014,1),
8 PARTITION ql 2014 VALUES LESS THAN (2014,4),
9 PARTITION g2_2014 VALUES LESS THAN (2014,7),
10 PARTITION g3 2014 VALUES LESS THAN (2014,10),

1 PARTITION q4 2014 VALUES LESS THAN (2014,1),

12 PARTITION future VALUES LESS THAN (MAXVALUE,O0));

55

Dr. Lyazid TOUMI
4.6 Reference partitioning mode

D City

Customer

List Mode
1 L

Customerl Customer 2

City="Algiers’ City="Sétif’

Sale1l=SalexCustomerl Sale2=SalexXCustomer2

*
T Reference Mode

Customer 3

City="Bejaia’

Sale3=SalexCustomer3

CID

Sale

Figure 10: Example of reference partitioning mode.

Previously, we discussed single and composite partitioning methods used
for partitioning individual relations. In this section, we introduce the ref-
erence partitioning mode, as implemented in the Oracle 11g environment.
Reference partitioning enables the partitioning of two related relations, R

and S, which are connected through referential constraints. The partitioning

key is determined based on the existing parent-child relationship, enforced
by active and enabled primary key and foreign key constraints whiteoracle.

56

5 Data Warehouses

First, the relation R is partitioned using either a single or composite
partitioning mode. If a single partitioning mode is applied to R, the number
of partitions in R will be the same as the number of partitions in S. In
contrast, if a composite partitioning mode is used for R, the number of
partitions in R will correspond to the number of sub-partitions in S.

e Example
The ‘Customer* relation is divided into three partitions: Customerl,
Customer2, and Customer3 (see Fig. 10) using the List partitioning
mode. Subsequently, three ‘Sales’ partitions are created, with each
partition corresponding to a specific ‘Customer‘ partition. The fol-
lowing statement demonstrates the partitioning of the ‘Sales relation
into three partitions using the reference partitioning mode:

CREATE TABLE SALES

(CID number(9), Date DATE , Amount Number(10,2)

CONSTRAINT Customer Cs FOREIGN KEY (CID) REFERENCES Customer(CID))
PARTITION BY REFERENCE(Customer Cs);

T RN

4.7 Virtual column partitioning

This partitioning mode utilizes a virtual column in the same way as a reg-
ular column. All partitioning modes are supported with virtual columns,
including range partitioning and various combinations of composite parti-
tioning modes.

o7

Dr. Lyazid TOUMI

1 CREATE TABLE sales(

2 Pid NUMBER(6) NOT NULL

3, Cid NUMBER NOT NULL

4 , Tid DATE NOT NULL

5, CHid CHAR(1) NOT NULL

¢ , PROMOid NUMBER(6) NOT NULL

7, quantitySold NUMBER(3) NOT NULL

s , amountSold NUMBER(10,2) NOT NULL

9 , totalAmount AS (quantitySold * amountSold)

u PARTITION BY RANGE (Tid) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
12 SUBPARTITION BY RANGE(totalAmount)
13 SUBPARTITION TEMPLATE

14 (SUBPARTITION Psmall VALUES LESS THAN (1000)

15 , SUBPARTITION Pmedium VALUES LESS THAN (5000)

16 , SUBPARTITION Plarge VALUES LESS THAN (10000)

17 , SUBPARTITION Pextreme VALUES LESS THAN (MAXVALUE)

18)
v (PARTITION sales before 2007 VALUES LESS THAN
o (TO DATE('01-JAN-2007', 'dd-MON-yyyy'))

5 Partition Pruning Optimization

Partition pruning is Oracle’s ability to eliminate partitions from query ex-
ecution. Effective pruning requires:

e Proper predicate formulation
e Statistics on partitioned tables

e Appropriate partition key selection

o8

5 Data Warehouses

-- Check execution plan for pruning
EXPLAIN PLAN FOR
SELECT * FROM sales

WHERE sale date BETWEEN DATE '2021-01-01' AND DATE '2021-03-31°';

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

-- Monitor pruning effectiveness
SELECT * FROM V$SQL PLAN

WHERE object name = 'SALES'

AND options LIKE '%PARTITIONS';

6

Partitioned Index Strategies

6.1 Local vs Global Indexes

Table 9: Index Partitioning Characteristics

Feature Local Index Global Index
Alignment 1:1 with partitions | Independent
Availability | Partition-level Table-level
Maintenance | Automatic Manual

6.2 Index Creation Examples

-- Local partitioned index
CREATE INDEX idx sales local ON sales(customer id) LOCAL;

-- Global partitioned index
CREATE INDEX idx sales global ON sales(sale id) GLOBAL
PARTITION BY RANGE (sale id)
(
PARTITION pl VALUES LESS THAN (1000000),
PARTITION p2 VALUES LESS THAN (MAXVALUE)

);

-- Global non-partitioned index
CREATE INDEX idx sales amount ON sales(amount);

59

Dr. Lyazid TOUMI

7 Partition Maintenance Automation

1 -- Scheduled partition maintenance

2 BEGIN

3 DBMS SCHEDULER.CREATE JOB (

4 job name => 'MAINTAIN SALES PARTITIONS',
5 job type => 'PLSQL BLOCK',

6 job action => 'BEGIN

7 maintain sales partitions();
8 END; ',

9 start date => SYSTIMESTAMP,

10 repeat interval => 'FREQ=MONTHLY; BYMONTHDAY=1',
11 enabled => TRUE);

12 END;

13/

14

15 -- Example maintenance procedure

16 CREATE OR REPLACE PROCEDURE maintain sales partitions AS
17 BEGIN

18 -- Add next month's partition
19 EXECUTE IMMEDIATE
2 "ALTER TABLE sales ADD PARTITION

< sales '||TO CHAR(ADD MONTHS(SYSDATE,1),'YYYY MM')||
2 ' VALUES LESS THAN

< (TO DATE('''||TO CHAR(ADD MONTHS(TRUNC(SYSDATE, 'MM'),2),
b2 "YYYY-MM-DD')||'""', " 'YYYY-MM-DD''))";
23
o -- Archive old data
25 archive old sales data();
26 END;
27/

8 Performance Considerations

8.1 Partitioning Overhead
e Increased dictionary complexity
e Additional memory requirements

e Potential for suboptimal execution plans

60

5 Data Warehouses

8.2 Monitoring Partition Usage

1 -- Identify hot partitions

2 SELECT table name, partition name, accesses

3 FROM (

4 SELECT table name, partition name,

5 SUM(physical reads) accesses,

6 RANK() OVER (ORDER BY SUM(physical reads) DESC) rnk

7 FROM dba tab partitions p

8 JOIN dba hist seg stat s ON p.partition name = s.partition name
9 WHERE p.table name = 'SALES'

10 GROUP BY table name, partition name

n o)
12 WHERE rnk <= 5;

14 -- Check partition skew

15 SELECT partition name, COUNT(*) row count
16 FROM sales

17 GROUP BY partition name

18 ORDER BY row count DESC;

9 Real-World Implementation Case Study
Financial services data warehouse with:
e 10TB fact table partitioned by trade date (daily)
e 12 subpartitions by region
e Composite partitioning with range-hash
Performance results:
e ETL processes reduced from 6 hours to 45 minutes
e Month-end reporting queries improved from 3 hours to 12 minutes

e Backup window reduced by 80%

61

Dr. Lyazid TOUMI

1 CREATE TABLE trade facts (

2 trade id NUMBER,

3 trade date DATE,

4 instrument id NUMBER,

5 trader id NUMBER,

6 counterparty NUMBER,

7 amount NUMBER(20,2),
8 currency CHAR(3),

9 region code VARCHAR2(3)

10) PARTITION BY RANGE (trade date)

1n INTERVAL (NUMTODSINTERVAL(1, 'DAY'))

12 SUBPARTITION BY HASH (instrument id)

13 SUBPARTITIONS 12

1 (

15 PARTITION p initial VALUES LESS THAN (DATE '2000-01-01'")
16) PARALLEL 8;

18 -- Local bitmap indexes for low-cardinality columns

19 CREATE BITMAP INDEX bidx trade curr ON trade facts(currency) LOCAL;

o CREATE BITMAP INDEX bidx trade region ON trade facts(region code)
— LOCAL;

10 Conclusion and Best Practices

e Design for Pruning: Structure partitions to match common query pat-
terns

Monitor Growth: Implement automated partition maintenance

Balance Granularity: Avoid excessive partition counts

Consider Storage: Place active partitions on faster storage

Test Thoroughly: Validate partition strategies with realistic work-
loads

62

5 Data Warehouses

-- Comprehensive partition analysis

SELECT p.table name, p.partition name, p.tablespace name,
p.high value, s.bytes/1024/1024 size mb,
nvl(s.num rows,0) row count

FROM dba tab partitions p

LEFT JOIN dba tab statistics s

ON p.table name = s.table name

AND p.partition name = s.partition name

WHERE p.table name = 'TRADE FACTS'

ORDER BY p.partition position;

63

Chapter 6

Materialized Views in Data Warehouses

Materialized views (MVs) are one of the most powerful optimization tech-
niques in data warehousing, providing pre-computed results for complex
queries. Unlike regular views that execute queries on demand, MVs store
the actual result sets physically.

1 Materialized View Selection Problem

The materialized view selection problem is a critical challenge in data ware-
house design, involving the identification of the optimal set of views to
materialize under resource constraints.

1.1 Problem Formulation

Given:
e A set of queries Q = {q1, ¢, ... ¢,} With frequencies f(g;)
e A set of candidate materialized views V = {v;,vs, ..., iy}
e Storage space constraint S
e Maintenance cost constraint M
Objective: Select a subset V' CV that:
e Minimizes total query processing cost quQ f(q) - cost(q, V")
e Satisfies)., oy size(v) < S

o Satisfies).,y maintenance_cost(v) < M

Dr. Lyazid TOUMI

1.2 Selection Algorithms

Common approaches include:

e Greedy Algorithms: Iteratively select views offering the highest benefit-
to-size ratio

e Genetic Algorithms: Use evolutionary techniques to find near-optimal
solutions

e Integer Programming: Formulate as optimization problem with con-
straints

Algorithm 1 Greedy Materialized View Selection
1: Input: Queries Q, Views V, Space S

2: V'« @ > Selected views
3: remaining _space < S
4: while remaining__space > 0 do
5: for each ve V\V’ do
6: bene fit[v] < query__cost_ reduction(v, Q)
7 ratio[v] « benefit[v]/size(v)
8: end for
9: best « argmax(ratio)
10: it size(best) < remaining _space then
11: V'« V' U {best}
12: remaining__space < remaining__space — size(best)
13: else
14: Break
15: end if

16: end while
17: return V’

2 Pruning Techniques

Pruning reduces the search space for materialized view selection by elimi-
nating suboptimal candidates.

66

6 Data Warehouses

2.1 Dominance Pruning

A view v; dominates v, if:
e v; can answer all queries that v, can answer
o size(vy) < size(w)
e maintenance__cost(v;) < maintenance__cost(vy)

Dominated views can be safely pruned from consideration.

2.2 Constraint-Based Pruning

Eliminate views that:
e Exceed storage constraints (size(v;) > S)
e Have maintenance costs exceeding thresholds

e Provide minimal query performance improvement (bene fit(v;) < €)

2.3 Multi-Query Optimization Pruning

Identify common subexpressions across queries and materialize only the

most beneficial shared components.

67

Dr

. Lyazid TOUMI

Oracle Materialized View Fundamentals

CREATE MATERIALIZED VIEW mv sales summary
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT
t.calendar year,
p.product category,
c.cust region,
SUM(s.amount sold) AS total sales,
COUNT (*) AS transaction count
FROM
sales s
JOIN times t ON s.time id = t.time id
JOIN products p ON s.prod id = p.prod id
JOIN customers ¢ ON s.cust id = c.cust id
GROUP BY
t.calendar year,
p.product category,
c.cust region;

4

Refresh Mechanisms

Oracle provides several refresh options:

68

6 Data Warehouses

1 -- Fast refresh (incremental)
2 CREATE MATERIALIZED VIEW mv daily sales
3 REFRESH FAST ON COMMIT

4 AS

5 SELECT

6 TRUNC(sale date) AS day,
7 product id,

8 SUM(amount) AS daily total
9 FROM

10 sales

1 GROUP BY

12 TRUNC(sale date),

13 product id;

14

15 -- Scheduled complete refresh

16 CREATE MATERIALIZED VIEW mv_monthly summary
17 REFRESH COMPLETE

18 START WITH SYSDATE NEXT SYSDATE+1

19 AS

bo SELECT /* monthly aggregation query */;

5 Query Rewrite

Oracle’s query rewrite automatically redirects queries to use MVs:

1 -- Enable system-wide query rewrite
2 ALTER SYSTEM SET query rewrite enabled=TRUE;

4 -- Verify rewrite capability

5 EXPLAIN PLAN FOR

6 SELECT

7 t.calendar year,

8 SUM(s.amount sold)

9 FROM

10 sales s

1 JOIN times t ON s.time id = t.time id
12 GROUP BY

13 t.calendar year;

15 SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

69

Dr. Lyazid TOUMI

6 Partitioned Materialized Views

For large datasets, partition MVs by time ranges:

1 CREATE MATERIALIZED VIEW mv_sales quarterly
2 PARTITION BY RANGE (quarter end date)
3 (

4 PARTITION p 2020 ql VALUES LESS THAN
~ (TO_DATE('2020-04-01','YYYY-MM-DD')),
5 PARTITION p 2020 g2 VALUES LESS THAN

— (TO DATE('2020-07-01','YYYY-MM-DD'))
6)
7 REFRESH COMPLETE ON DEMAND

s AS

9 SELECT

10 TRUNC(time id,'Q') AS quarter end date,
1 product category,

12 AVG(amount sold) AS avg sales

13 FROM

14 sales s

15 JOIN products p ON s.prod id = p.prod id
16 GROUP BY

17 TRUNC(time id, 'Q'),

18 product category;

7 MV Maintenance Best Practices

1 -- Monitor MV refresh status
2 SELECT mview name, last refresh date, staleness
3 FROM user mviews;

5 -- Gather statistics regularly
¢ EXEC DBMS STATS.GATHER TABLE STATS('DW SCHEMA', 'MV_SALES SUMMARY');

s -- Parallel refresh for large MVs

9 ALTER MATERIALIZED VIEW mv large sales
10 REFRESH COMPLETE

1n PARALLEL 8;

70

6 Data Warehouses

& Advanced MV Selection in Oracle

Oracle provides tools for automated MV selection:

1 -- Use SQL Access Advisor for MV recommendations

2 DECLARE

3 taskname VARCHAR2(30) := 'MV_ADVISOR TASK';

4+ BEGIN

5 DBMS ADVISOR.CREATE TASK('SQL Access Advisor', taskname);
6 DBMS ADVISOR.CREATE SQLWKLD (taskname);

7 DBMS ADVISOR.ADD SQLWKLD REF(

8 taskname, 'SELECT /* frequent query */');
9 DBMS ADVISOR.SET TASK PARAMETER(

10 taskname, 'STORAGE LIMIT', '10GB');

1 DBMS ADVISOR.EXECUTE TASK(taskname);

12 END;

3/

14

15 -- View recommendations

16 SELECT rec id, rank, benefit, command
17 FROM user advisor recommendations
18 WHERE task name = 'MV_ADVISOR TASK';

9 Real-World Example

Retail data warehouse implementation:

71

Dr.

Lyazid TOUMI

18

19

20

21

22

23

o

4

25

27

28

30

CREATE MATERIALIZED VIEW mv retail analysis
BUILD IMMEDIATE
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT
t.calendar year,
.calendar quarter desc,
.country id,
.cust income level,
.prod category,
.prod subcategory,
.channel desc,
p.prod list price,
SUM(s.amount sold) AS sum amount,
SUM(s.quantity sold) AS sum quantity,
COUNT(*) AS cnt
FROM
sales s
JOIN times t ON s.time id = t.time id
JOIN customers c ON s.cust id = c.cust id
JOIN products p ON s.prod id = p.prod id
JOIN channels c ON s.channel id = c.channel id
GROUP BY
ROLLUP(t.calendar year, t.calendar quarter desc),
c.country id,
c.cust income level,
CUBE(p.prod category, p.prod subcategory),
c.channel desc,
p.prod list price;

0O T T O 0O

Performance impact observed:

72

e 15x faster for monthly reporting queries
e 80% reduction in CPU usage for dashboard queries

o 40% shorter ETL windows

6 Data Warehouses

Table 10: Comparison of Optimization Techniques

Characteristic Materialized Views | Indexes

Storage Overhead | High Medium
Maintenance Cost | High Low-Medium
Query Scope Complex queries Single table access
Freshness Periodic Real-time

Best For Aggregations Predicate filtering

10 Materialized View vs. Indexes

11 Advanced Features

-- Nested materialized views
CREATE MATERIALIZED VIEW mv nested
REFRESH COMPLETE
AS
SELECT

calendar year,

product category,

SUM(sum amount) AS yearly category sales
FROM

mv_sales summary
GROUP BY

calendar year,

product category;

-- Real-time materialized views (Oracle 12c+)
CREATE MATERIALIZED VIEW mv real time
REFRESH ON STATEMENT

AS

SELECT /* real-time aggregation query */;

12 Conclusion

Key recommendations for materialized views:

e Focus on frequently executed complex queries

e Balance refresh frequency with data freshness needs

73

Dr. Lyazid TOUMI

Monitor query rewrite effectiveness

Consider partitioning for large MVs

Combine with indexes for optimal performance

Use systematic selection and pruning approaches

Leverage database advisor tools for recommendations

1 BEGIN

2 DBMS MVIEW.REFRESH('MV SALES SUMMARY', method => 'F');

3 DBMS STATS.GATHER TABLE STATS('DW SCHEMA', 'MV SALES SUMMARY');
4 DBMS ADVISOR.TUNE MVIEW(task name => 'MV TUNING');

5 END;

6 /

74

Chapter 7

Data Warehouse Administration and
Tuning

1 Introduction to DWH Administration

Data warehouse administration requires specialized skills combining database
management, performance tuning, and business intelligence expertise. Key
responsibilities include:

e (Capacity Planning: Forecasting storage and compute requirements

Performance Management: Ensuring SLAs for query response times

Data Freshness: Managing ETL schedules and refresh cycles

Security: Implementing role-based access controls

Availability: Designing for high availability and disaster recovery

Dr. Lyazid TOUMI

ORACLE DWH
ARCHITECTURE

Sources

Sources

Sources

0

Oracle \
ﬁ
v
@

DWH

Reporting

Analysis

Figure 11: Oracle Data Warehouse Reference Architecture

76

7 Data Warehouses

2 Oracle Data Warehouse Architecture

3 Storage Management

3.1 Tablespace Strategy

1 -- Create dedicated tablespaces for DWH components
2 CREATE TABLESPACE dwh data

3 DATAFILE '+DATA' SIZE 100G AUTOEXTEND ON NEXT 10G
4 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128M

5 SEGMENT SPACE MANAGEMENT AUTO;

7 CREATE TABLESPACE dwh_index
s DATAFILE '+DATA' SIZE 506G AUTOEXTEND ON NEXT 5G
9 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 64M;

1n CREATE TABLESPACE dwh temp
12 TEMPFILE '+TEMP' SIZE 20G AUTOEXTEND ON NEXT 2G
13 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 64M;

3.2 Compression Techniques

Table 11: Oracle Compression Methods for Data Warehouses

Type Compression Ratio | Best For

Basic Table Compression 2x-4x Historical data
Advanced Compression 3x-6x All data
Hybrid Columnar Compression | 10x-15x Analytic tables
1 -- Enable HCC on partitioned tables

2 ALTER TABLE sales MOVE PARTITION sales 2020
3 COMPRESS FOR QUERY HIGH
4 TABLESPACE dwh data;

¢ -- Compress indexes
7 ALTER INDEX sales pk REBUILD COMPRESS ADVANCED HIGH;

77

Dr. Lyazid TOUMI

4 Performance Tuning Methodology

4.1 Tuning Approach

1. Identify: Pinpoint performance bottlenecks

2. Diagnose: Analyze execution plans and statistics

3. Implement: Apply appropriate tuning techniques

4. Validate: Measure improvement impact

5. Monitor: Establish ongoing performance baselines

4.2 Key Performance Metrics

Table 12: Critical DWH Performance Metrics

Metric Target | Monitoring Query
Buffer Cache Hit Ratio >95% | V$SYSSTAT
Library Cache Hit Ratio | >98% | V$LIBRARYCACHE
Disk I/O per Second <100 V$FILESTAT
Parallel Query Utilization | 70-90% | V$PQ_SYSSTAT

78

7 Data Warehouses

5 Query Optimization Techniques

5.1 Optimizer Statistics

-- Configure automated stats collection
BEGIN
DBMS STATS.SET GLOBAL PREFS(
'"AUTOSTATS TARGET', 'ORACLE');

DBMS STATS.SET TABLE PREFS(
'DWH SCHEMA', 'SALES',
"INCREMENTAL', 'TRUE');

END;
/

-- Gather extended statistics
EXEC DBMS STATS.GATHER TABLE STATS(
ownname => 'DWH SCHEMA',
tabname => 'SALES',
method opt => 'FOR ALL COLUMNS SIZE SKEWONLY',
degree => 8);

5.2 SQL Plan Management

-- Capture and maintain plan baselines
ALTER SYSTEM SET optimizer capture sql plan baselines=TRUE;

-- Evolve plans over time
SET SERVEROUTPUT ON
DECLARE
report CLOB;
BEGIN
report := DBMS SPM.EVOLVE SQL PLAN BASELINE(
sql _handle => 'SYS SQL abcl23');
DBMS OUTPUT.PUT LINE(report);
END;
/

79

Dr. Lyazid TOUMI

6 Parallel Execution Tuning

6.1 Configuration Parameters

-- Configure parallel execution

ALTER SYSTEM SET parallel degree policy='AUTO';
ALTER SYSTEM SET parallel servers target=64;
ALTER SYSTEM SET parallel max_servers=128;

-- Table-level parallel settings
ALTER TABLE sales PARALLEL 16;
ALTER INDEX sales pk PARALLEL 8;

6.2 Monitoring Parallel Queries

10
1

12

-- Active parallel queries

SELECT sid, serial#, username, sql id,
degree, req degree, px servers

FROM v$px session p, v$session s

WHERE p.sid = s.sid;

-- Parallel query performance

SELECT sql id, plan hash value,
elapsed time/1000000 secs,
px servers, executions

FROM v$sql

WHERE px_servers > 0

ORDER BY elapsed time DESC;

7

ETL Process Optimization

7.1 ETL Tuning Techniques

80

e Direct Path Loads: Bypass buffer cache for bulk operations
e Partition Exchange Loading: Instant data swaps
e Parallel DML: Accelerate transformations

e Incremental Loading: Process only changed data

7 Data Warehouses

1 -- High-performance ETL pattern

2 INSERT /*+ APPEND PARALLEL(8) */ INTO sales target
3 SELECT /*+ PARALLEL(8) FULL(s) */

4 s.*

5 FROM sales source s

¢ WHERE s.load date > TRUNC(SYSDATE)-1;

s COMMIT;

10 -- Partition exchange loading
n ALTER TABLE sales staging

12 EXCHANGE PARTITION p current
13 WITH TABLE sales new

14 INCLUDING INDEXES;

8 Resource Management

8.1 Database Resource Manager

1 -- Create resource plan

2 BEGIN

3 DBMS RESOURCE MANAGER.CREATE PLAN(

4 plan => 'DWH PLAN',

5 comment => 'Data Warehouse Workload Management');

6

7 DBMS RESOURCE MANAGER.CREATE CONSUMER GROUP(
8 consumer group => 'ETL GROUP',

9 comment => 'ETL Processing');

1 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(

12 plan => 'DWH PLAN',

13 group or subplan => 'ETL GROUP',
14 comment => 'ETL Allocation',

15 mgmt pl => 70);

16 END;

7/

19 ALTER SYSTEM SET resource manager plan = 'DWH PLAN';

81

Dr. Lyazid TOUMI

9 Monitoring and Maintenance

9.1 Automated Maintenance Tasks

1 -- Create maintenance window

2 BEGIN

3 DBMS SCHEDULER.CREATE WINDOW (

4 window name => 'DWH MAINTENANCE WINDOW',
5 resource plan => 'DWH PLAN',

6 start date => TRUNC(SYSDATE)+22/24, -- 10PM
7 duration => INTERVAL '4' HOUR,

8 repeat interval => 'FREQ=DAILY');

9 END;

0 /

11

12 -- Segment advisor job

13 BEGIN

14 DBMS AUTO TASK ADMIN.ENABLE (

15 client name => 'auto space advisor',

16 operation => NULL,

17 window name => NULL);

18 END;

19 /

10 Troubleshooting Common Issues

10.1 Performance Problem Resolution

Table 13: Common DWH Performance Issues

Symptom

Solution

Slow fact table queries
ETL timeouts

Disk contention
Memory pressure

Verify partition pruning, check statistics
Increase PGA, optimize parallel DML
Distribute I/O across multiple devices
Configure automatic memory management

82

7 Data Warehouses

11 Conclusion and Best Practices

11.1 Administration Checklist

e Implement comprehensive monitoring (AWR, ASH)
e Establish regular maintenance windows

e Document all tuning changes

e Test changes in non-production environments

e Review performance trends weekly

11.2 Ongoing Tuning Process

1. Capture baseline performance metrics

2. Identify top resource-intensive operations
3. Apply targeted tuning techniques

4. Validate improvements

5. Update documentation

-- Generate AWR report
SELECT output FROM TABLE(
DBMS WORKLOAD REPOSITORY.awr report text(
1 dbid => (SELECT dbid FROM v$database),
1 inst num => (SELECT instance number FROM v$instance),
1 bid => NULL,
1 eid => NULL));

-- Check for system bottlenecks
SELECT * FROM TABLE(DBMS SQLTUNE.report system monitor);

83

