
CHAPTER 2

DIFFERENTIAL EQUATIONS

Differential equations are equations that describe the relationship between a function and
its derivatives. there are two main typs ordinary differential equations which involved
derivatives with respect to the signale variable and partial differential equations which
involved derivatives with respect to multiple variables.
Differential equations are used in chemistry for various important applications, including:
1 Kinetics of Reactions: They describe how the concentration of reactants and products
changes over time. Rate laws, which relate the rate of a reaction to the concentration of
reactants, are often expressed as differential equations.
2 Chemical Equilibrium: Differential equations can model how a chemical system evolves
over time until it reaches equilibrium, helping to understand the dynamics of reaction sys-
tems.
3 Thermodynamics: In thermodynamic processes, differential equations describe changes in
energy, temperature, and pressure in relation to state variables.
4 Transport Phenomena: They model the movement of molecules, such as diffusion or flow in
reaction media, which is essential for understanding processes like mass transfer in reactors.
5 Population Dynamics: In biochemistry and environmental chemistry, differential equations
help model the growth and interaction of populations, such as bacteria or species in an
ecosystem.
6 Dynamic Systems: They are used to analyze feedback systems in chemical processes, such
as catalytic reactions, where the rate may depend on the concentration of intermediates.
Overall, differential equations provide a mathematical framework for understanding and pre-
dicting the behavior of chemical systems over time.

1 First-Order Differential Equation

A first-order differential equation is an equation that involves the derivative of an unknown
function with respect to a certain variable. In general, it takes the form: dy

dx
= f(x, y), where

dy
dx

represents the rate of change of y with respect to x, and f(x, y) is a function that defines
the relationship between x and y.
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14 differential equations

1.1 Types of First-Order Differential Equations

1-Separable Differential Equations
These can be written in such a way that all terms involving x are on one side, and all terms
involving y are on the other.

Example :
Let’s consider the following equation: dy

dx
= x2y

Rewrite the equation as dy
y

= x2dx,

Then, integrate both sides
∫

dy
y

=
∫
x2dx,

the result is ln |y| = 1
3
x3 + k, where k is the constant of integration.

the final solution is y(x) = C exp 1
3
x3, where C = ±K. �

2-Linear Differential Equations
These are of the form dy

dx
+ P (x)y = Q(x), where P,Q are functions of the variablex, and y

is the unknown function we want to find.
Steps to Solve:
1-Identify the coefficients: Determine P (x) and Q(x).
2-Calculate the integrating factor: This is calculated as follows µ(x) = e

∫
P (x)dx

3-Multiply the equation by the integrating factor: This makes the left side integrable.
4-Integrate: Integrate both sides of the equation.
5-Solve for y: Finally, find y.

Example :
Let’s consider the equation: dy/dx+ 3y = 6.
1 Here, we identify P (x) = 3 and Q(x) = 6.
2 We calculate the integrating factor: µ(x) = e

∫
3dx = e3x.

3 We multiply the equation by e3x: e3x dy
dx

+ 3ye3x = 6e3x.
4 The left side becomes: d

dx
(ye3x) = 6e3x.

5 Now we integrate both sides: ye−3x = 2e3x + C.
6 Finally, we solve for y : y = 2 + Ce−3x �

2 Second-Order Differential Equation

Definition 2.1

A second order differential equation is defined as a differential equation that includes
a function and its second-order derivative and no other higher-order derivative of the
function can appear in the equation. It can be of different types depending upon the
power of the derivative and the functions involved. These differential equations can be
solved using the auxiliary equation.
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Let us go through some special types of second order differential equations given below
2.1 Types of Second-Order Differential Equations

Linear Second Order Differential Equation

Definition 2.2

A linear second order differential equation is written as d2y
dx2

+ p(x) dy
dx

+ q(x)y = f(x),
where
- d2y
dx2

= y′′ is the second derivative of y with respect to x.
- p(x), q(x), and f(x) are functions depending on the variable x.
The goal is to find the function y(x) that satisfies this equation.

Example :
Some of its examples are y′′ + 6x = 5, y′′ + xy′ + y = 0, etc. �

Homogeneous Equations

Definition 2.3

When f(x) = 0, the equation is called homogeneous. The solution depends only on
the intrinsic properties of the function without any external force acting on it.

Example :
Some of its examples are y′′ + y′ − 6y = 0, y′′ − 9y′ + 20y = 0, etc. �

Non-homogeneous Second Order Differential Equation

Definition 2.4

A differential equation of the form y′′ + p(x)y′ + q(x)y = f(x) is said to be a non-
homogeneous second order differential equation if f(x) 6= 0, it means there is an exter-
nal force or influence (such as a source or interference).

Example :
Some of its examples are y′′ + y′ − 6y = x, y′′ − 9y′ + 20y = sinx, etc. �

2.2 Solving Second Order Differential Equation

Now that we have understood the meaning of second order differential equation and their
different forms, we shall proceed towards learning how to solve them. Here, we will focus on
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learning to solve 2nd differential equations with constant coefficients using the method of un-
determined coefficients. First, let us understand how to solve the second order homogeneous
differential equations.
Solving Homogeneous Second Order Differential Equation

A homogeneous second order differential equation with constant coefficients is of the form
y′′ + py′ + qy = 0, where p, q are constants. To solve, we find the roots of the characteristic
equation r2 + pr + q = 0. Based on the nature of the roots, the solution can be
-If the roots are real and distinct: y(x) = C1e

r1x + C2e
r2x

-If the roots are equal: y(x) = C1e
rx + C2xe

rx

-If the roots are complex: y(x) = eαx(C1 cos βx+ C2 sin βx), where r1, r1 = α± iβ

Example :
Solve the 2nd order differential equation y′′ − 6y′ + 5y = 0 Assume y = erx and find its
first and second derivative: y′ = rerx, y′′ = r2erx

Next, substitute the values of y, y′, and y′′ in y′′ − 6y′ + 5y = 0 We have
r2erx − 6rerx + 5erx = 0⇒ erx(r2 − 6r + 5) = 0 ⇒ r2 − 6r + 5 = 0
⇒ (r − 5)(r − 1) = 0⇒ r = 1, 5
Since the roots of the characteristic equation are distinct and real, therefore the general
solution of the given differential equation is y(x) = C1e

x + C2e
5x. �

Example :
Solve the second order differential equation y′′ − 8y′ + 16y = 0
Assume y = erx and find its first and second derivative y′ = rerx, y′′ = r2erx

Next, substitute the values of y, y′, and y′′ in y′′ − 8y′ + 16y = 0. We have
r2erx − 8rerx + 16erx = 0⇒ erx(r2 − 8r + 16) = 0 ⇒ r2 − 8r + 16 = 0
⇒ (r − 4)(r − 4) = 0⇒ r = 4, 4
Since the roots of the characteristic equation are identical and real, therefore the general
solution of the given differential equation is y(x) = C1e

4x + C2xe
rx. �

Example :
Solve the second order differential equation 9y′′ + 12y′ + 29y = 0
Assume y = erx and find its first and second derivative y′ = rerx, y′′ = r2erx

Next, substitute the values of y, y′, and y′′ in 9y′′ + 12y′ + 29y = 0. We have
9r2erx + 12rerx + 29erx = 0⇒ erx(9r2 + 12r + 29) = 0 ⇒ 9r2 + 12r + 29 = 0

⇒ r = −12±
√

1380i
18

⇒ r = −2
3
± 5

3
i Since the roots of the characteristic equation are complex

conjugates, therefore the general solution of the given second order differential equation
is y = e

−2
3
x[C1 sin 5

3
x+ C2 cos 5

3
x]. �

Solving Non-Homogeneous Second Order Differential Equation

the general solution is of the form y = yh + yp, where yh is the complementary solution of
the homogeneous second order differential equation and yp is the particular solution of the
non-homogeneous differential equation y′′ + py′ + qy = f(x).
Since yh is the solution of the homogeneous differential equation, we can determine its value
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using the methods that we discussed in the previous section.
Solving the particular solution by undetermined coefficients method
Which only works when f(x) is a polynomial, exponential, sine, cosine or a linear combination
of those, to find the particular solution yp, we can guess the solution depending upon the
value of f(x). The table given below shows the possible particular solution yp corresponding
to each f(x).

f(x) yp
beax Aeax

axn + lowerorderpowersofx Cnx
n + Cn−1x

n−1 + ...+ C0

Pcos(ax) or Q sin(ax) A cos(ax)+B sin(ax)

Let us now consider a few examples of second order differential equations and solve them
using the method of undetermined coefficients

Example :
Find the complete solution of the second order differential equation y′′ − 6y′ + 5y = e−3x.
first we will find the general solution of the homogeneous differential equation y′′ − 6y′ +
5y = 0. We have solved this equation in the previous section in the solved examples and
hence the complementary solution is yh = C1e

x + C2e
5x.

Next, we will find the particular solution yp. Since f(x) = e−3x is of the form Ae−3x, let
us assume yp = Ae−3x.
Now differentiating yp, we have y′p = −3Ae−3x and y′′p = 9Ae−3x.
Substituting these values in the given second order differential equation, we have
y′′p − 6y′p + 5yp = e−3x ⇒ 9Ae−3x − 6(−3Ae − 3x) + 5Ae−3x = e−3xAe−3x(9 + 18 + 5) =
e−3x ⇒ 32Ae− 3x = e−3x ⇒ A = 1

32

Hence, the particular solution yp = 1
32
e−3x.

Therefore, the complete solution of the given non-homogeneous 2nd order differential
equation is y = C1e

x + C2e
5x + 1

32
e−3x. �

Example :
Consider the equation d2y

dx2
+ y = sinx

First, solve the homogeneous equation: d2y
dx2

+ y = 0⇒ r2 + 1 = 0⇒ r = ±i,
so the homogeneous solution is yh(x) = C1 cosx+ C2 sinx
Now, we look for a particular solution yp(x) Since the right-hand side is sinx, we try
yp = Ax cosx+Bx sinx, so we get y′p = (A+Bx) cosx+ (B − Ax) sinx,
and y′′p = (−Ax+ 2B) cosx− (Bx+ 2A) sinx
After differentiating and substituting, we obtain yp = −1

2
x cosx

Thus, the general solution is y = yh + yp = C1 cosx+ C2 sinx− 1
2
x cosx. �

Example :
Solve the second order differential equation y′′ − 6y′ + 5y = cos2x+ e−3x

As we have solved the homogeneous differential equation, we have solved this equation
in the previous section in the solved examples and hence the complementary solution is
yh = C1e

x + C2e
5x.

Next, we will find the particular solution of the given differential equation individually for
cos 2x and e−3x, that is, determine the particular solution of y′′ − 6y′ + 5y = cos 2x and
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y′′ − 6y′ + 5y = e−3x separately.
From example above, we have the particular solution of the differential equation y′′−6y′+
5y = e−3x as 1

32
e−3x.

Now, we will find the particular solution of the equation y′′ − 6y′ + 5y = cos 2x using the
table. Assume the particular solution of the form yp = A cos 2x+B sin 2x. Differentiating
this, we have y′p = −2A sin 2x+ 2B cos 2x and y′′p = −4A cos 2x− 4B sin 2x.
Substituting these values in the differential equation y′′ − 6y′ + 5y = cos2x, we have
−4Acos2x− 4Bsin2x− 6(−2Asin2x+ 2Bcos2x) + 5(Acos2x+Bsin2x) = cos2x
⇒ (A−12B)cos2x+(B+12A)sin2x = cos2x⇒ A−12B = 1 and B+12A = 0⇒ A = 1

145

and B = −12
145
⇒ yp = ( 1

145
)cos2x− ( 12

145
)sin2x

Now, taking the sum of both particular solutions, the final particular solution of the given
second order differential equation y′′ − 6y′ + 5y = cos2x+ e−3x is
yp = ( 1

32
)e−3x + ( 1

145
)cos2x− ( 12

145
)sin2x.

Therefore, the complete solution of the differential equation is
y = C1e

x + C2e
5x + 1

32
e−3x + 1

145
cos2x− ( 12

145
)sin2x �

Solving the particular solution by variation of parameters method
Which works on a wide range of functions but is a little messy to use.
To keep things simple, we are only going to look at the case y′′ + py′ + qy = f(x)
The complete solution to such an equation can be found by combining two types of solution
-The general solution of the homogeneous equation y′′ + py′ + qy = 0
-Particular solutions of the non-homogeneous equation y′′ + py′ + qy = f(x)
Note that f(x) could be a single function or a sum of two or more functions. Once we have
found the general solution and all the particular solutions, then the final complete solution
is found by adding all the solutions together. This method relies on integration, the problem
with this method is that, although it may yield a solution, in some cases the solution has to
be left as an integral.
The fundamental solutions of the equation:
- If yh(x) = C1e

r1x + C2e
r2x =⇒ y1 = er1x, y2 = er2x.

- If yh(x) = C1e
rx + C2xe

rx =⇒ y1 = erx, y2 = xerx.
- If yh(x) = eαx(C1 cos βx+ C2 sin βx) =⇒ y1 = eαx cos βx, y2 = eαx sin βx.
If y1 and y2 are two linearly independent solutions (because neither function is a constant
multiple of the other) of the homogeneous second order differential equation y′′+py′+qy = 0,
then the particular solution of the corresponding second order non-homogeneous differential
equation y′′ + py′ + qy = f(x) can be determined using the formula
yp = −y1

∫
[y2

f(x)
W (y1,y2)

]dx+ y2

∫
[y1

f(x)
W (y1,y2)

]dx, where
W (y1, y2) = y1y

′
2 − y2y

′
1

is called theWronskian. This method of finding the solution is called the method of variation
of parameters.

Example :
Find a general solution to the following differential equation y′′ − 2y′ + y = et

t2+1

The characteristic equation is r2 − 2r + 1 = 0⇒ (r1)(r1) = 0⇒ r = 1
The general solution of the differential equation is yh = C1e

x + C2xe
x

So, we have y1 = ex, y2 = xex

The Wronskian of these two functions is



differential equations 19

∣∣∣∣ ex xex

ex (x+ 1)ex

∣∣∣∣ = (x+ 1)ex − xex = e2x

Find the particular solution using the above formula, so solve the integrals

∫
[y2

f(x)
W (y1,y2)

]dx =
∫

xexex

e2x(t2+1)
dx =

∫
x

x2+1
dx = ln(x2 + 1)

and ∫
[y1

f(x)
W (y1,y2)

]dx = exex

e2x(t2+1)
dx =

∫
1

x2+1
dx = arctan(x)

The general solution is yg = C1e
x + C2xe

x − 1
2
ex ln(x2 + 1) + xex arctan(x) �

Remark.
This method can also be used on non-constant coefficient differential equations, provided
we know a fundamental set of solutions for the associated homogeneous differential equa-
tion.

3 Some common First-order differential equations in Chem-
istry

First-order differential equations are widely used in chemistry, especially in studying chem-
ical reactions and the kinetics of chemical systems. Here are some commonly used first-order
differential equations in chemistry
First-Order Reaction Rate Equation
In first-order chemical reactions, the reaction rate depends on the concentration of a single
substance. The equation takes the form d[A]

dt
= −k[A], where

[A] is the concentration of reactant A, k is the reaction rate constant and the negative sign
indicates that the concentration of the reactant decreases over time.
Zero-Order Reaction Equation
d[A]
dt

= −k, This means that the concentration of the substance decreases linearly over time.
Exponential Growth Equation
This equation describes systems where the number of molecules increases over time, such as
in chain reactions or the accumulation of a chemical product. The equation is dN

dt
= rN,

where N is the number of molecules or concentration of the substance, r is the growth rate.

4 Some common Second-order differential equations in
Chemistry

The Diffusion Equation (Fick’s Second Law of Diffusion)
This equation is important for studying how molecules diffuse through a medium over time.
The general form of Fick’s second law is ρC

ρt
= D ρ2C

ρx2
, where C is the concentration of the

substance (a function of position x and time t, D is the diffusion coefficient, and ρ2C
ρx2

is the
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second derivative of the concentration with respect to position, representing the change in
diffusion with distance.
Heat Equation

In physical chemistry, this equation is used to study the transfer of heat in bodies or materials
ρT
ρt

= α ρ2t
ρx2
, where T is the temperature and α is the thermal diffusivity.

Quantum Harmonics (Schrödinger Equation)
This equation is essential for understanding the behavior of electrons in atoms and molecules
and is central to theoretical chemistry −h2

2m
d2Ψ
dx2

+ V (x)Ψ(x) = EΨ


