CHAPTER 2
DIFFERENTIAL EQUATIONS

Differential equations are equations that describe the relationship between a function and
its derivatives. there are two main typs ordinary differential equations which involved
derivatives with respect to the signale variable and partial differential equations which
involved derivatives with respect to multiple variables.

Differential equations are used in chemistry for various important applications, including:
1 Kinetics of Reactions: They describe how the concentration of reactants and products
changes over time. Rate laws, which relate the rate of a reaction to the concentration of
reactants, are often expressed as differential equations.

2 Chemical Equilibrium: Differential equations can model how a chemical system evolves
over time until it reaches equilibrium, helping to understand the dynamics of reaction sys-
tems.

3 Thermodynamics: In thermodynamic processes, differential equations describe changes in
energy, temperature, and pressure in relation to state variables.

4 Transport Phenomena: They model the movement of molecules, such as diffusion or flow in
reaction media, which is essential for understanding processes like mass transfer in reactors.
5 Population Dynamics: In biochemistry and environmental chemistry, differential equations
help model the growth and interaction of populations, such as bacteria or species in an
ecosystem.

6 Dynamic Systems: They are used to analyze feedback systems in chemical processes, such
as catalytic reactions, where the rate may depend on the concentration of intermediates.
Overall, differential equations provide a mathematical framework for understanding and pre-
dicting the behavior of chemical systems over time.

1 First-Order Differential Equation

A first-order differential equation is an equation that involves the derivative of an unknown

function with respect to a certain variable. In general, it takes the form: Z—’I = f(x,y), where
% represents the rate of change of y with respect to x, and f(x,y) is a function that defines

the relationship between = and .

13



differential equations

1.1 Types of First-Order Differential Equations

1-Separable Differential Equations
These can be written in such a way that all terms involving = are on one side, and all terms
involving y are on the other.

Example :

Let’s consider the following equation: Z—i = 2%y

Rewrite the equation as %” = 2%dw,

Then, integrate both sides [ %y = [ 2?dx,

the result is In [y| = $2* + &, where k is the constant of integration.
the final solution is y(z) = C'exp $27, where C' = £K.

2-Linear Differential Equations
These are of the form % + P(x)y = Q(x), where P, () are functions of the variablex, and y
is the unknown function we want to find.
Steps to Solve:
1-Identify the coefficients: Determine P(z) and Q(z).
2-Calculate the integrating factor: This is calculated as follows u(z) = e/ P(#)d
3-Multiply the equation by the integrating factor: This makes the left side integrable.
4-Integrate: Integrate both sides of the equation.
5-Solve for y: Finally, find 3.

Example :

Let’s consider the equation: dy/dx + 3y = 6.

1 Here, we identify P(z) = 3 and Q(z) = 6.

2 We calculate the integrating factor: u(z) = e/ 3% = ¢
3 We multiply the equation by ¢*: 3% 4 3y’ = Geie,
4 The left side becomes: - (ye®”) = 6¢*.

5 Now we integrate both sides: ye 3% = 2¢3* + (.

6 Finally, we solve for y:y = 2 + Ce 3"

3z

2 Second-Order Differential Equation

Definition 2.1

A second order differential equation is defined as a differential equation that includes
a function and its second-order derivative and no other higher-order derivative of the
function can appear in the equation. It can be of different types depending upon the
power of the derivative and the functions involved. These differential equations can be
solved using the auxiliary equation.
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Let us go through some special types of second order differential equations given below

2.1 Types of Second-Order Differential Equations

Linear Second Order Differential Equation

Definition 2.2

A linear second order differential equation is written as % +p(2) % + g(z)y = f(),
where

- ;1272’ = 1/ is the second derivative of y with respect to x.

- p(x),q(x), and f(z) are functions depending on the variable .

The goal is to find the function y(z) that satisfies this equation.

Example :
Some of its examples are i + 62 = 5,y" + zy’ +y = 0, etc.

Homogeneous Equations

Definition 2.3

When f(z) = 0, the equation is called homogeneous. The solution depends only on
the intrinsic properties of the function without any external force acting on it.

Example :
Some of its examples are ' + ' — 6y = 0,y” — 9y + 20y = 0, etc.

Non-homogeneous Second Order Differential Equation

Definition 2.4

A differential equation of the form y” + p(z)y’ + q(x)y = f(z) is said to be a non-
homogeneous second order differential equation if f(z) # 0, it means there is an exter-
nal force or influence (such as a source or interference).

Example :
Some of its examples are iy’ + ' — 6y = x,y" — 9y’ + 20y = sin z, etc.

2.2 Solving Second Order Differential Equation

Now that we have understood the meaning of second order differential equation and their
different forms, we shall proceed towards learning how to solve them. Here, we will focus on
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learning to solve 2nd differential equations with constant coefficients using the method of un-
determined coefficients. First, let us understand how to solve the second order homogeneous
differential equations.

Solving Homogeneous Second Order Differential Equation

A homogeneous second order differential equation with constant coefficients is of the form
y" + py' + qy = 0, where p, g are constants. To solve, we find the roots of the characteristic
equation 7% + pr + ¢ = 0. Based on the nature of the roots, the solution can be
-If the roots are real and distinct: y(z) = Cre™" + Che™”
-If the roots are equal: y(z) = C1e"™” + Cowe’™
-If the roots are complex: y(z) = e**(C cos fa + Cysin fz), where 1,7 = a £+ i

Example :

Solve the 2nd order differential equation y” — 6y’ + 5y = 0 Assume y = ¢’* and find its
first and second derivative: ¢/ = re™, " = r?e’®

Next, substitute the values of 1,7/, and v in v — 6y’ + 5y = 0 We have

r2e™ — 6re™ + 5" =0= e (r* —6r+5) =0=r*—6r+5=0
=@r=-5r-1)=0=r=1,5

Since the roots of the characteristic equation are distinct and real, therefore the general
solution of the given differential equation is y(z) = Cie” + Che™.

Example :

Solve the second order differential equation v’ — 8y’ + 16y = 0

Assume y = ¢"* and find its first and second derivative ¢ = re’* y” = r#e’”*

Next, substitute the values of 3, v/, and v” in /" — 8y’ + 16y = 0. We have

r2e™ — 8re™ +16e™ = 0= e (r* = 8r +16) =0 =1 -8 + 16 =0
=(r—4)(r—-4)=0=r=4,4

Since the roots of the characteristic equation are identical and real, therefore the general
solution of the given differential equation is y(z) = C1e*® + Coze™™.

2

Example :

Solve the second order differential equation 9y” + 12y + 29y = 0

Assume y = ¢ and find its first and second derivative ¢/ = re’, y" = r2e’®

Next, substitute the values of 1,7/, and v in 9y” + 12y + 29y = 0. We have

9r2e™ + 12re™ +29e™ =0 = " (Ir? +12r +29) =0 = 9r? +12r +29 =0

=1 = %\g@ =>r = %2 + g’a Since the roots of the characteristic equation are complex
conjugates, therefore the general solution of the given second order differential equation

) —2 5 5
is y = e *[Cy sin 32 + Cy cos 37).

Solving Non-Homogeneous Second Order Differential Equation

the general solution is of the form y = v;, + v, where y, is the complementary solution of
the homogeneous second order differential equation and y, is the particular solution of the
non-homogeneous differential equation v + py’ + qy = f(x).
Since 1, is the solution of the homogeneous differential equation, we can determine its value
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using the methods that we discussed in the previous section.

Solving the particular solution by undetermined coefficients method

Which only works when f(x) is a polynomial, exponential, sine, cosine or a linear combination
of those, to find the particular solution v,, we can guess the solution depending upon the
value of f(x). The table given below shows the possible particular solution y, corresponding

to each f(x).

f(x) Yp
be®® Ae®™
ax” + lowerorderpowersofxz | Cpa™ + Cp_12™ 1 + ... + O
Pcos(ax) or Q sin(ax) A cos(ax)+B sin(ax)

Let us now consider a few examples of second order differential equations and solve them

using the method of undetermined coefficients

Example :

Find the complete solution of the second order differential equation v — 61y + 5y = e~

first we will find the general solution of the homogeneous differential equation y” — 6y +

5y = 0. We have solved this equation in the previous section in the solved examples and

hence the complementary solution is 1, = Ce® + Coe™.

Next, we will find the particular solution y,. Since f(z) = e %" is of the form Ae ", let

us assume 1y, = Ae 7.

Now differentiating y,, we have ¢, = —3Ae™*" and y/] = 9Ae "

Substituting these values in the given second order differential equation, we have

Yy — 6y, + 5y, = ¢ = 9Ae™ — 6(—3Ae — 3x) + 5Ae™* = e A (9 + 18 +5) =

e = 324e—3rx == A= 3%
1 3x

Hence, the particular solution y, = 5~
Therefore, the complete solution of the given non-homogeneous 2nd order differential
1 —3x

equation is y = Ce” + Che™ + e

Example :

Consider the equation % +y=sinx

First, solve the homogeneous equation: % +y=0=1r’+1=0=1r=4i,
so the homogeneous solution is () = C) cosx + Cysinx

Now, we look for a particular solution y,(x) Since the right-hand side is sinz, we try
Yp = Arcosz + Brsinw, so we get y, = (A + Bx)cosz + (B — Ax)sinz,

and y, = (—Az + 2B) cosw — (Bx + 2A) sinx

After differentiating and substituting, we obtain y, = —%x cosx

2

Thus, the general solution is y = vy, + y, = Cj cosx + Cysina — %T cos .

Example :

Solve the second order differential equation y” — 61y’ + 5y = cos2z + ¢ *
As we have solved the homogeneous differential equation, we have solved this equation
in the previous section in the solved examples and hence the complementary solution is
Yp = 0161 + 0265:6.

Next, we will find the particular solution of the given differential equation individually for
cos 2z and e %% that is, determine the particular solution of v — 6y’ + 5y = cos 2z and

T
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y" — 6y + 5y = e 3% separately.
From example above, we have the particular solution of the differential equation v’ — 6y’ +
5y _ 6731‘ as 3%6731"
Now, we will find the particular solution of the equation v — 63/ 4+ 5y = cos 22 using the
table. Assume the particular solution of the form y, = A cos 2z + B sin 2x. Differentiating
this, we have y, = —2Asin 2z + 2B cos2r and y, = —4Acos2r — 4B sin 2z,
Substituting these values in the differential equation " — 6y’ + 5y = cos2z, we have
—4Acos2x — 4Bsin2x — 6(—2Asin2x + 2Bcos2x) + 5(Acos2x + Bsin2z) = cos2x

= (A—12B)cos2x+ (B+12A)sin2x = cos2x = A—12B =land B+12A=0= A =
and B = 72 = y, = (13 )cos2z — ({2 )sin2x
Now, taking the sum of both partlcular solutions, the final particular solution of the given
second order differential equation y” — 6y + 5y = cos2x + ¢ 37 i
yp = (35)e 7" + (155 )cos2x — (75 ) sin2a.
Therefore, the complete solution of the differential equation is

5 —
y = Cre” + Cre™ + 55673 + =cos2x — ({5 )sin2x

14r

Solving the particular solution by variation of parameters method
Which works on a wide range of functions but is a little messy to use.
To keep things simple, we are only going to look at the case v’ + py’ + qy = f(x)
The complete solution to such an equation can be found by combining two types of solution
-The general solution of the homogeneous equation 3" + py’ + qy = 0
-Particular solutions of the non-homogeneous equation y” + py’ + qy = f(x)
Note that f(x) could be a single function or a sum of two or more functions. Once we have
found the general solution and all the particular solutions, then the final complete solution
is found by adding all the solutions together. This method relies on integration, the problem
with this method is that, although it may yield a solution, in some cases the solution has to
be left as an integral.
The fundamental solutions of the equation:
- Ifyp(z) = Cre™™ 4 Che™ =y = €"'7, Yy = ™7
- Ifyp(z) = Cre’™ + Comwe’™ —=> y; = €™, yy = e’
- If yp(z) = e**(C cos fr + Cysin fr) = y; = €“* cos fx, ys = €** sin fx.
If ; and y, are two linearly independent solutions (because neither function is a constant
multiple of the other) of the homogeneous second order differential equation v+ py’ +qy = 0,
then the particular solution of the corresponding second order non-homogeneous differential
equation v + py’ + qy = f(x) can be determined using the formula
Yp = —U1 f[ﬂ%]dr + o f[ylm}d? where
W (yr,y2) = 1y — vy
is called the Wronskian. This method of finding the solution is called the method of variation
of parameters.

Example :

Find a general solution to the following differential equation v — 2y’ + y =
The characteristic equation is 7 —2r +1=0= (r1)(r1) =0=r =1

The general solution of the differential equation is y, = C1e® + Coze®

So, we have y; = e*, 1y, = ze”

The Wronskian of these two functions is

et
t2+1
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xre

e’ (gj + 1)6@ = (T + 1)61 — et = 2%

Find the particular solution using the above formula, so solve the integrals

[y27 Wy =/ Qf(tz(+1 = [ Zfde = In(2® + 1)
and
[y W{;i)m)]dm = ﬁd = f z+1dT‘ = arctan(z)
The general solution is y, = Cie” + Coze” — Le® In(2? + 1) + xe® arctan(z)
Remark.

This method can also be used on non-constant coefficient differential equations, provided
we know a fundamental set of solutions for the associated homogeneous differential equa-

tion.

3 Some common First-order differential equations in Chem-
istry

First-order differential equations are widely used in chemistry, especially in studying chem-
ical reactions and the kinetics of chemical systems. Here are some commonly used first-order
differential equations in chemistry
First-Order Reaction Rate Equation
In first-order chemical reactions, the reactlon rate depends on the concentration of a single
substance. The equation takes the form %2 dt = —k[A], where
[A] is the concentration of reactant A, k is the reaction rate constant and the negative sign
indicates that the concentration of the reactant decreases over time.

Zero-Order Reaction Equation

% = —Fk, This means that the concentration of the substance decreases linearly over time.

Exponential Growth Equation

This equation describes systems where the number of molecules increases over time, such as
dN

in chain reactions or the accumulation of a chemical product. The equation is ;- = 71V,

where N is the number of molecules or concentration of the substance, r is the growth rate.
4 Some common Second-order differential equations in
Chemistry

The Diffusion Equation (Fick’s Second Law of Diffusion)

This equation is important for studying how molecules diffuse through a medium over time.
pC

The general form of Fick’s second law is = D’; TS , where (' is the concentration of the

substance (a function of position = and time ¢, D is the diffusion coefficient, and ’;T% is the
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second derivative of the concentration with respect to position, representing the change in
diffusion with distance.

Heat Equation
In physical chemistry, this equation is used to study the transfer of heat in bodies or materials
% = a% where 7" is the temperature and « is the thermal diffusivity.
Quantum Harmonics (Schrédinger Equation)
This equation is essential for understanding the behavior of electrons in atoms and molecules

and is central to theoretical chemistry ngj ‘C%f + V(x)V(z) = EV




