

1 Projet -2e Année ingénieur

Cahier des charges

Un cahier des charges est un document formel qui définit les besoins, les attentes et les

spécifications d'un projet, d'un produit ou d'un service. Il sert de référence pour toutes les parties

prenantes impliquées dans le projet, y compris les clients, les équipes de développement, les

fournisseurs et les autres parties concernées.

Le cahier des charges décrit en détail les objectifs du projet, les fonctionnalités requises, les

contraintes techniques, les exigences de performance, les délais, les ressources disponibles et

d'autres aspects importants du projet. Il fournit une base solide pour la planification, la

conception et la mise en œuvre du projet.

La rédaction d'un cahier des charges efficace nécessite une compréhension approfondie des

besoins du projet, une communication claire avec les parties prenantes et une attention aux

détails. Un cahier des charges bien rédigé sert de document de référence essentiel tout au long

du projet et contribue à la réussite globale du projet.

L’analyse du cahier des charges est une étape cruciale pour comprendre pleinement les

attentes du projet. Voici comment vous pouvez approfondir cette analyse :

1. Décomposition en Sections Clés :

 Comprenez le contexte global du projet.

Il est important de comprendre le contexte global du projet. Cela signifie avoir une vision

claire de l'environnement dans lequel le projet va évoluer, ainsi que des objectifs, des besoins

et des contraintes qui y sont associés. Clarifiez l'objectif principal du projet. Quel problème le

projet vise-t-il à résoudre ? Quels sont les résultats attendus ? Cette étape est essentielle pour

établir une compréhension commune entre toutes les parties prenantes.

 Identifiez les parties prenantes et leurs rôles

Déterminez les personnes et les entités qui sont impliquées dans le projet. Cela peut inclure

les clients, les utilisateurs finaux, les membres de l'équipe de développement, les responsables

des décisions, etc. Identifiez également les personnes qui seront impliquées dans la rédaction et

la validation du cahier des charges.

2. Objectifs du Projet :

 Définissez clairement les résultats attendus

Il est crucial de définir clairement les résultats attendus du projet. Cela signifie avoir une

vision précise des objectifs finaux et des livrables souhaités. En définissant clairement les

résultats attendus, vous établissez une orientation claire pour le projet. Cela permet à toutes les

2 Projet -2e Année ingénieur

parties prenantes de comprendre les objectifs à atteindre et de se concentrer sur la réalisation

de ces résultats spécifiques.

 Assurez-vous que les objectifs sont mesurables et alignés sur les besoins de l’entreprise

Définir les résultats attendus aide à aligner les attentes de toutes les parties prenantes. Cela

permet d'éviter les malentendus et les interprétations erronées des objectifs du projet.

L'alignement des attentes favorise une meilleure collaboration et une meilleure compréhension

mutuelle.

3. Exigences Fonctionnelles :

 Listez toutes les fonctionnalités attendues du logiciel.

Pour lister toutes les fonctionnalités attendues d'un logiciel dans un cahier des charges, il

est important de bien comprendre les besoins et les attentes des utilisateurs, ainsi que les

objectifs du projet. Voici quelques étapes pour vous aider à établir une liste complète des

fonctionnalités attendues :

 Analysez les besoins des utilisateurs : Identifiez les différentes catégories d'utilisateurs

du logiciel et comprenez leurs besoins spécifiques. Cela peut nécessiter des entretiens,

des sondages ou des études de marché pour recueillir des informations précieuses sur

les fonctionnalités attendues.

 Identifiez les objectifs du logiciel : Comprenez les objectifs globaux du logiciel, qu'il

s'agisse d'automatiser des processus, d'améliorer l'efficacité, de fournir des informations

précises, etc. Ces objectifs vous aideront à définir les fonctionnalités clés nécessaires

pour les atteindre.

 Organisez les fonctionnalités par catégories : Divisez les fonctionnalités en catégories

logiques pour faciliter la compréhension et l'organisation. Par exemple, vous pouvez

avoir des catégories telles que l'authentification utilisateur, la gestion des données, les

rapports et les analyses, les fonctionnalités de communication, etc.

 Priorisez les fonctionnalités : Établissez un ordre de priorité en fonction de l'importance

et de l'urgence des fonctionnalités. Cela vous aidera à allouer les ressources et à planifier

le développement du logiciel de manière efficace.

 Décrivez les fonctionnalités en détail : Pour chaque fonctionnalité, fournissez une

description détaillée qui spécifie comment elle devrait fonctionner, quelles sont les

interactions attendues avec l'utilisateur et quelles sont les contraintes ou les exigences

techniques associées.

3 Projet -2e Année ingénieur

 Spécifiez les cas d'utilisation : Pour certaines fonctionnalités, il peut être utile de décrire

des cas d'utilisation spécifiques pour illustrer comment elles seront utilisées dans des

situations réelles. Cela permet de mieux comprendre le comportement attendu du

logiciel.

 Considérez les exigences non fonctionnelles : En plus des fonctionnalités, n'oubliez pas

d'inclure les exigences non fonctionnelles telles que la performance, la sécurité, la

compatibilité, la convivialité, etc. Ces exigences sont essentielles pour garantir la qualité

globale du logiciel.

Il est important de noter que la liste des fonctionnalités attendues peut évoluer au fil du

temps en fonction des changements dans les besoins des utilisateurs ou des objectifs du projet.

Il est donc essentiel de maintenir une communication ouverte avec toutes les parties prenantes

et de mettre à jour le cahier des charges au besoin.

 Détaillez les actions spécifiques que le logiciel doit accomplir.

Pour détailler les actions spécifiques que le logiciel doit accomplir, il est nécessaire de se

baser sur les fonctionnalités attendues et les besoins des utilisateurs. Voici quelques étapes pour

vous aider à décrire ces actions de manière précise :

 Analysez les fonctionnalités attendues : Revisitez la liste des fonctionnalités attendues

que vous avez établie précédemment. Identifiez les actions spécifiques qui doivent être

effectuées pour chaque fonctionnalité. Par exemple, si vous avez une fonctionnalité de

création de compte utilisateur, les actions spécifiques pourraient inclure la collecte des

informations d'inscription, la vérification de la validité des données, et la création d'un

compte dans la base de données.

 Décomposez les actions en étapes : Pour chaque action spécifique, décomposez-la en

étapes plus détaillées. Cela permet de capturer tous les éléments nécessaires pour

accomplir l'action de manière complète. Par exemple, pour l'action de collecte des

informations d'inscription, les étapes pourraient inclure l'affichage du formulaire

d'inscription, la saisie des données par l'utilisateur, la validation des données et

l'enregistrement des informations dans la base de données.

 Spécifiez les interactions avec l'utilisateur : Décrivez comment l'utilisateur interagira

avec le logiciel pour effectuer chaque action. Cela peut inclure des éléments tels que les

interfaces utilisateur, les boutons, les menus, les formulaires, etc. Assurez-vous de

couvrir toutes les actions possibles et de décrire les réactions attendues du logiciel à

chaque interaction.

4 Projet -2e Année ingénieur

 Définissez les règles et les contraintes : Pour chaque action, identifiez les règles et les

contraintes qui doivent être respectées. Cela peut inclure des exigences de validation

des données, des contraintes de sécurité, des règles métier spécifiques, etc. Spécifiez

clairement ces règles afin de garantir que le logiciel fonctionne conformément aux

attentes.

 Décrivez les résultats attendus : Pour chaque action spécifique, décrivez les résultats

attendus ou les sorties du logiciel. Cela peut inclure des messages d'erreur, des

confirmations de réussite, des affichages de données, etc. Assurez-vous de spécifier

clairement les résultats attendus afin de pouvoir vérifier si le logiciel fonctionne

correctement.

 Utilisez des diagrammes ou des flux de travail : Pour faciliter la compréhension, vous

pouvez également utiliser des diagrammes ou des flux de travail pour représenter

visuellement les actions spécifiques et les interactions avec l'utilisateur. Cela aide à

visualiser le déroulement du processus et à identifier les différentes étapes.

Il est important de noter que la description des actions spécifiques doit être suffisamment

détaillée pour permettre aux développeurs de comprendre et d'implémenter les fonctionnalités

de manière précise. Une communication claire avec les parties prenantes est essentielle pour

s'assurer que toutes les actions requises sont prises en compte et que les besoins des utilisateurs

sont correctement satisfaits.

 Utilisez des verbes d’action pour décrire les fonctionnalités. Organisez-les en catégories

logiques (par exemple, fonctionnalités de base, fonctionnalités avancées)

Lors de la description des fonctionnalités d'un logiciel, il est courant d'utiliser des verbes

d'action pour exprimer clairement ce que le logiciel doit accomplir. Les verbes d'action aident

à décrire les actions spécifiques que les utilisateurs peuvent effectuer ou que le système peut

exécuter. Voici quelques exemples de verbes d'action couramment utilisés pour décrire les

fonctionnalités :

 Fonctionnalités de base :

 - Créer : Permet aux utilisateurs de créer de nouveaux éléments, tels que des comptes,

des documents, des enregistrements, etc.

 - Modifier : Autorise la modification des éléments existants, tels que les informations

de profil, les paramètres, les contenus, etc.

 - Supprimer : Permet la suppression d'éléments existants.

 - Afficher : Affiche les informations, les données ou les résultats à l'écran.

5 Projet -2e Année ingénieur

 - Rechercher : Permet aux utilisateurs de trouver des éléments spécifiques en fonction

de critères de recherche définis.

 - Envoyer : Permet l'envoi de données, de messages ou de notifications.

 - Enregistrer : Enregistre les modifications ou les données saisies par les utilisateurs.

 - Importer/Exporter : Permet d'importer ou d'exporter des données depuis ou vers

d'autres systèmes ou formats.

 Fonctionnalités avancées :

 - Générer : Produit automatiquement des rapports, des factures, des graphiques, etc.

 - Automatiser : Exécute des tâches ou des processus de manière automatique ou

planifiée.

 - Intégrer : Permet l'intégration avec d'autres systèmes ou services externes.

 - Collaborer : Autorise la collaboration et le partage d'informations entre utilisateurs.

 - Personnaliser : Permet aux utilisateurs de personnaliser l'interface, les paramètres ou

les préférences selon leurs besoins.

 - Notifier : Envoie des notifications ou des alertes aux utilisateurs pour les informer

de certaines actions ou événements.

 - Suivre : Permet le suivi des activités, des modifications ou des états des éléments.

 - Sécuriser : Applique des mesures de sécurité, telles que l'authentification, le

chiffrement des données, etc.

Il est important de noter que ces verbes d'action sont des exemples et qu'ils peuvent être

adaptés en fonction des besoins spécifiques du logiciel. L'organisation des fonctionnalités en

catégories logiques, telles que les fonctionnalités de base et avancées, facilite la compréhension

et la structuration du cahier des charges. Cela permet également aux parties prenantes de mieux

comprendre les différentes capacités du logiciel et d'identifier les priorités en termes de

développement et de mise en œuvre.

4. Exigences Non Fonctionnelles :

 Identifiez les contraintes de performance, de sécurité, de convivialité, etc.

Lors de la conception d'un logiciel, il est essentiel d'identifier et de prendre en compte les

contraintes de performance, de sécurité, de convivialité et autres. Ces contraintes garantissent

que le logiciel fonctionne de manière optimale, qu'il est sécurisé et qu'il offre une expérience

utilisateur satisfaisante. Voici quelques exemples de contraintes courantes :

6 Projet -2e Année ingénieur

 Contraintes de performance :

 - Temps de réponse : Le logiciel doit répondre rapidement aux actions de l'utilisateur

pour éviter les retards frustrants.

 - Capacité : Le logiciel doit être capable de gérer un volume de données ou

d'utilisateurs spécifié sans ralentir ou se bloquer.

 - Utilisation des ressources : Le logiciel doit utiliser efficacement les ressources

système, telles que la mémoire, le processeur, le réseau, etc.

 - Évolutivité : Le logiciel doit pouvoir s'adapter à une augmentation du nombre

d'utilisateurs, de données ou de transactions sans perte de performance.

 Contraintes de sécurité :

 - Authentification : Le logiciel doit offrir des mécanismes d'authentification pour

garantir que seules les personnes autorisées peuvent accéder aux données ou aux

fonctionnalités.

 - Confidentialité : Le logiciel doit protéger les données sensibles et personnelles contre

tout accès non autorisé ou toute divulgation.

 - Intégrité : Le logiciel doit garantir que les données ne sont pas altérées ou modifiées

de manière non autorisée.

 - Contrôle d'accès : Le logiciel doit gérer les autorisations et les privilèges des

utilisateurs pour restreindre l'accès aux fonctionnalités ou aux données en fonction des

rôles ou des niveaux de permission.

 Contraintes de convivialité :

 - Interface utilisateur intuitive : Le logiciel doit offrir une interface conviviale, facile

à comprendre et à utiliser pour les utilisateurs, avec une navigation claire et des

interactions intuitives.

 - Accessibilité : Le logiciel doit être accessible aux personnes handicapées, notamment

en prenant en compte les normes d'accessibilité pour les personnes malvoyantes,

malentendantes ou présentant d'autres limitations.

 - Ergonomie : Le logiciel doit prendre en compte les principes de conception

ergonomique pour réduire la fatigue et les erreurs de l'utilisateur, en garantissant une

disposition logique des éléments, une taille de police lisible, etc.

 Autres contraintes :

 - Compatibilité : Le logiciel doit être compatible avec les systèmes d'exploitation, les

navigateurs web, les versions de matériel spécifiés ou les normes de l'industrie.

7 Projet -2e Année ingénieur

 - Maintenance et évolutivité : Le logiciel doit être conçu de manière à faciliter la

maintenance future et à permettre l'ajout de nouvelles fonctionnalités ou modules.

 - Coût : Le logiciel doit respecter les contraintes budgétaires spécifiées pour le

développement, le déploiement et la maintenance.

Il est important de documenter ces contraintes clairement dans le cahier des charges et de les

prendre en compte tout au long du processus de développement du logiciel. Cela garantira que

le logiciel répond aux exigences de performance, de sécurité et de convivialité attendues, tout

en respectant les contraintes spécifiques du projet.

 Considérez les aspects de qualité, tels que la maintenabilité, la scalabilité, etc.

Lors de la conception d'un logiciel, il est important de prendre en compte les aspects de qualité

pour garantir que celui-ci est maintenable, scalable et répond aux normes de qualité attendues.

Voici quelques-uns de ces aspects :

 Maintenabilité :

 - Lisibilité du code : Le code source doit être bien structuré, commenté et facile à

comprendre afin de faciliter la maintenance ultérieure par les développeurs.

 - Modularité : Le logiciel doit être divisé en modules autonomes et cohérents, ce qui

permet de faciliter les modifications et les mises à jour futures sans affecter l'ensemble

du système.

 - Extensibilité : Le logiciel doit être conçu de manière à permettre l'ajout de nouvelles

fonctionnalités ou de nouveaux modules sans nécessiter de modifications majeures de

l'architecture existante.

 - Testabilité : Le logiciel doit être conçu de manière à faciliter les tests unitaires, les

tests d'intégration et les tests de validation, afin de garantir la qualité et la stabilité du

logiciel.

 Scalabilité :

 - Évolutivité horizontale et verticale : Le logiciel doit être capable de gérer une

augmentation de la charge de travail ou du nombre d'utilisateurs en ajoutant des

ressources (évolutivité horizontale) ou en améliorant les ressources existantes

(évolutivité verticale).

 - Répartition de charge : Le logiciel doit être en mesure de répartir la charge de travail

sur plusieurs serveurs ou nœuds pour garantir une utilisation efficace des ressources et

une performance optimale.

8 Projet -2e Année ingénieur

 - Gestion des données : Le logiciel doit être capable de gérer de grandes quantités de

données, en utilisant des mécanismes tels que le partitionnement, la mise en cache, la

compression, etc.

 Fiabilité :

 - Tolérance aux erreurs : Le logiciel doit être capable de gérer les erreurs et les

exceptions de manière à minimiser les interruptions de service et à garantir la continuité

des opérations.

 - Sauvegarde et restauration : Le logiciel doit offrir des mécanismes de sauvegarde

réguliers et de restauration en cas de défaillance du système ou de perte de données.

 - Surveillance et journalisation : Le logiciel doit être en mesure de surveiller son

propre état et d'enregistrer les informations de journalisation pertinentes pour faciliter

la détection des problèmes et le débogage.

 Interopérabilité :

 - Standards et protocoles : Le logiciel doit respecter les standards et les protocoles de

l'industrie pour assurer son intégration avec d'autres systèmes et services.

 - API et interfaces : Le logiciel doit offrir des interfaces bien définies et documentées

pour permettre l'intégration avec d'autres applications ou services tiers.

Lors de la conception et du développement du logiciel, il est important de prendre en compte

ces aspects de qualité dès le début du processus. Cela permet de garantir que le logiciel est

robuste, évolutif et maintenable, tout en respectant les normes de qualité attendues par les

utilisateurs et les parties prenantes.

 Spécifiez les conditions auxquelles le système doit répondre.

Lors de la spécification des conditions auxquelles un système doit répondre, il est important de

définir clairement les exigences et les contraintes auxquelles le système doit satisfaire. Ces

conditions peuvent être fonctionnelles (ce que le système doit faire) ou non fonctionnelles (les

caractéristiques du système). Voici quelques exemples de conditions couramment spécifiées :

 Exigences fonctionnelles :

 - Fonctionnalités : Décrivez les fonctionnalités spécifiques que le système doit offrir,

par exemple, la capacité de créer, modifier ou supprimer des éléments.

 - Comportement : Spécifiez comment le système doit se comporter dans certaines

situations, par exemple, comment il doit gérer les erreurs ou les exceptions.

 - Flux de travail : Décrivez les étapes ou les séquences d'actions que le système doit

suivre pour accomplir une tâche spécifique.

9 Projet -2e Année ingénieur

 - Intégration : Spécifiez comment le système doit s'intégrer avec d'autres systèmes ou

services, tels que l'utilisation d'API ou de protocoles spécifiques.

 Exigences non fonctionnelles :

 - Performance : Définissez les exigences de performance spécifiques, telles que les

temps de réponse, la capacité ou la vitesse de traitement.

 - Sécurité : Spécifiez les exigences de sécurité, telles que l'authentification, le

chiffrement des données, la gestion des autorisations, etc.

 - Convivialité : Décrivez les exigences de convivialité, telles que l'ergonomie de

l'interface utilisateur, l'accessibilité, la facilité d'utilisation, etc.

 - Maintenabilité : Spécifiez les exigences de maintenabilité, telles que la lisibilité du

code, la modularité, la facilité de test et de débogage.

 - Évolutivité : Décrivez les exigences d'évolutivité, telles que la capacité du système

à s'adapter à une augmentation de la charge de travail ou du nombre d'utilisateurs.

 - Disponibilité : Spécifiez les exigences de disponibilité, telles que les temps d'arrêt

planifiés, les mécanismes de sauvegarde et de récupération, etc.

Il est important de spécifier ces conditions de manière claire, concise et mesurable. Les

exigences doivent être définies de manière à pouvoir être vérifiées et validées lors du

développement et des tests du système. Une documentation détaillée des conditions auxquelles

le système doit répondre facilitera la compréhension des exigences par les développeurs, les

testeurs et les parties prenantes, et permettra de s'assurer que le système est conçu et mis en

œuvre conformément aux attentes.

5. Contraintes Techniques :

 Mentionnez les technologies spécifiques à utiliser

Lorsqu'il s'agit de mentionner les technologies spécifiques à utiliser dans un projet, il est

important de prendre en compte plusieurs facteurs tels que les exigences fonctionnelles et non

fonctionnelles du projet, les compétences et les ressources disponibles, les contraintes

techniques, les coûts, la maintenance future, etc. Voici quelques exemples de technologies

spécifiques qui pourraient être utilisées dans différents domaines :

 Développement web :

 - Langages de programmation : HTML, CSS, JavaScript, Python, Ruby, PHP, etc.

 - Frameworks web : React, Angular, Vue.js, Ruby on Rails, Laravel, Django, etc.

10 Projet -2e Année ingénieur

 - Bases de données : MySQL, PostgreSQL, MongoDB, Firebase, etc.

 - Serveurs web : Apache, Nginx, Node.js, etc.

 Développement mobile :

 - Plateformes mobiles : iOS (Swift, Objective-C), Android (Java, Kotlin), React

Native, Xamarin, Flutter, etc.

 - Bases de données mobiles : SQLite, Realm, Firebase Realtime Database, etc.

 - Outils de développement : Android Studio, Xcode, Visual Studio, etc.

 Développement d'applications d'entreprise :

 - Langages de programmation : Java, C#, .NET, Python, etc.

 - Systèmes de gestion de bases de données : Oracle, Microsoft SQL Server,

PostgreSQL, etc.

 - Serveurs d'applications : Apache Tomcat, JBoss, IBM WebSphere, etc.

 - Frameworks d'entreprise : Spring, .NET Framework, Ruby on Rails, etc.

 Intelligence artificielle et apprentissage automatique :

 - Langages de programmation : Python, R, Java, etc.

 - Frameworks d'apprentissage automatique : TensorFlow, PyTorch, scikit-learn,

Keras, etc.

 - Outils de traitement du langage naturel : NLTK, SpaCy, Gensim, etc.

 - Plateformes d'IA : Google Cloud AI, Microsoft Azure AI, IBM Watson, etc.

 Cloud computing :

 - Fournisseurs de services cloud : Amazon Web Services (AWS), Microsoft Azure,

Google Cloud Platform (GCP), etc.

 - Services de stockage : Amazon S3, Azure Blob Storage, Google Cloud Storage, etc.

 - Services de calcul : Amazon EC2, Azure Virtual Machines, Google Compute

Engine, etc.

 - Services de gestion de bases de données : Amazon RDS, Azure SQL Database,

Google Cloud SQL, etc.

Il est important de sélectionner les technologies en fonction des besoins spécifiques du

projet, en tenant compte de facteurs tels que la compatibilité, la performance, la sécurité, la

disponibilité des ressources et l'évolutivité. Une analyse approfondie des exigences et des

options technologiques disponibles est nécessaire pour prendre une décision éclairée sur les

technologies à utiliser dans un projet donné.

11 Projet -2e Année ingénieur

 Spécifiez les versions minimales requises des logiciels et des langages de programmation.

Lors de la spécification des versions minimales requises des logiciels et des langages de

programmation, il est important de définir les versions qui sont compatibles avec les

fonctionnalités et les exigences du projet, tout en prenant en compte les contraintes techniques

et les besoins de l'environnement d'exécution. Voici quelques points à considérer lors de la

spécification des versions minimales :

 Langages de programmation :

 - Spécifiez la version minimale du langage de programmation requis, par exemple,

Python 3.5 ou supérieur, Java 8 ou supérieur.

 - Tenez compte des fonctionnalités spécifiques du langage de programmation dont

vous avez besoin dans votre projet et assurez-vous que la version minimale définie les

prend en charge.

 - Vérifiez la compatibilité avec les frameworks, les bibliothèques et les outils tiers que

vous prévoyez d'utiliser, car ils peuvent avoir leurs propres exigences de version

minimale.

 Logiciels et bibliothèques :

 - Spécifiez les versions minimales des logiciels et des bibliothèques tiers utilisés dans

votre projet, tels que les bases de données, les serveurs d'applications, les outils de

développement, les frameworks, etc.

 - Tenez compte des fonctionnalités spécifiques dont vous avez besoin dans ces

logiciels et bibliothèques, et assurez-vous que les versions minimales définies les

prennent en charge.

 - Vérifiez la compatibilité entre les différentes versions des logiciels et des

bibliothèques afin de garantir un fonctionnement harmonieux du système.

 Systèmes d'exploitation :

 - Spécifiez les versions minimales des systèmes d'exploitation pris en charge par votre

application, que ce soit pour les serveurs, les ordinateurs de bureau ou les appareils

mobiles.

 - Tenez compte des fonctionnalités spécifiques du système d'exploitation dont vous

avez besoin, ainsi que de la compatibilité avec les logiciels et les bibliothèques utilisés.

 - Assurez-vous de prendre en compte la prise en charge des mises à jour de sécurité et

de la maintenance à long terme des versions spécifiées.

12 Projet -2e Année ingénieur

Il est important de garder à l'esprit que les versions minimales spécifiées doivent être

réalistes et raisonnables, en tenant compte des contraintes techniques et des pratiques de

l'industrie. Il est également recommandé de suivre les meilleures pratiques en matière de gestion

des versions et de garder à jour les logiciels et les langages de programmation pour bénéficier

des dernières améliorations, correctifs de sécurité et fonctionnalités.

6. Planification :

 Identifiez les grandes étapes du projet.

L'identification des grandes étapes d'un projet est essentielle pour sa planification, son suivi

et sa gestion efficaces. Bien que les étapes spécifiques puissent varier en fonction de la nature

du projet, voici une structure générale qui peut être utilisée pour identifier les grandes étapes :

 Définition du projet :

 - Identifier les objectifs et les résultats attendus du projet.

 - Établir le périmètre du projet et les limites de ce qui est inclus.

 - Identifier les parties prenantes et leurs attentes.

 - Évaluer les ressources nécessaires et les contraintes du projet.

 Planification du projet :

 - Définir les livrables et les résultats attendus à chaque étape du projet.

 - Établir un calendrier et une séquence d'activités pour atteindre les objectifs du projet.

 - Identifier les ressources nécessaires, y compris les personnes, les budgets et les

équipements.

 - Évaluer les risques potentiels et mettre en place des mesures d'atténuation

appropriées.

 - Élaborer un plan de communication et de collaboration avec les parties prenantes.

 Exécution du projet :

 - Mettre en œuvre les activités et les tâches définies dans le plan du projet.

 - Coordonner les ressources et les équipes pour atteindre les objectifs spécifiques.

 - Suivre l'avancement du projet et ajuster les plans si nécessaire.

 - Gérer les problèmes et les risques qui surviennent pendant l'exécution.

 Contrôle et suivi :

 - Surveiller et évaluer régulièrement l'avancement du projet par rapport aux objectifs

fixés.

 - Vérifier la qualité des livrables et des résultats du projet.

 - Effectuer des ajustements si des écarts importants sont identifiés.

13 Projet -2e Année ingénieur

 - Communiquer régulièrement avec les parties prenantes pour maintenir l'alignement

et gérer les attentes.

 Clôture du projet :

 - Finaliser et livrer les livrables et les résultats du projet.

 - Évaluer les performances du projet et les leçons apprises.

 - Archiver les documents et les informations pertinents.

 - Célébrer les réalisations et reconnaître les contributions des membres de l'équipe.

Il est important de noter que ces étapes sont générales et peuvent nécessiter des ajustements

en fonction des caractéristiques spécifiques de chaque projet. Il est recommandé d'adopter une

approche itérative et incrémentale pour garantir la flexibilité et la capacité d'adaptation aux

changements qui peuvent survenir tout au long du projet.

 Etablissez une chronologie réaliste pour chaque phase.

Établir une chronologie réaliste pour chaque phase d'un projet dépend de nombreux

facteurs, tels que la complexité du projet, les ressources disponibles, les dépendances entre les

tâches, les contraintes de temps et les risques identifiés. Cependant, voici un exemple de

chronologie réaliste pour chaque phase d'un projet :

 Définition du projet :

 - Effectuer une analyse approfondie des besoins et des objectifs du projet (1 à 2

semaines).

 - Identifier les parties prenantes clés et leurs attentes (1 semaine).

 - Élaborer un document de définition du projet, y compris le périmètre, les objectifs et

les résultats attendus (1 à 2 semaines).

 - Obtenir l'approbation et l'engagement des parties prenantes sur la définition du projet

(1 semaine).

 Planification du projet :

 - Élaborer un plan détaillé du projet, y compris le calendrier, les ressources nécessaires

et les activités spécifiques (2 à 4 semaines).

 - Identifier les dépendances entre les tâches et établir une séquence logique d'activités

(1 à 2 semaines).

 - Estimer les coûts du projet et allouer le budget nécessaire (1 à 2 semaines).

 - Évaluer les risques potentiels et développer des plans d'atténuation (1 à 2 semaines).

14 Projet -2e Année ingénieur

 Exécution du projet :

 - Mettre en œuvre les activités et les tâches selon la séquence définie dans le plan du

projet (varie en fonction de la nature du projet).

 - Coordonner les ressources et les équipes pour atteindre les objectifs spécifiques (tout

au long de la phase d'exécution).

 - Effectuer des réunions régulières de suivi et de coordination avec l'équipe du projet

(hebdomadaire ou mensuel, selon les besoins).

 Contrôle et suivi :

 - Surveiller régulièrement l'avancement du projet par rapport au plan établi

(hebdomadaire ou mensuel).

 - Effectuer des contrôles de qualité des livrables et des résultats du projet (tout au long

de la phase d'exécution).

 - Réviser et ajuster le plan du projet en cas de déviations significatives (au besoin).

 Clôture du projet :

 - Finaliser les livrables et les résultats du projet (varie en fonction de la nature du

projet).

 - Effectuer une évaluation des performances du projet et des leçons apprises (1 à 2

semaines).

 - Archiver les documents et les informations pertinents (1 semaine).

 - Célébrer les réalisations et reconnaître les contributions de l'équipe (1 à 2 semaines).

Il est important de noter que la durée de chaque phase peut varier en fonction des facteurs

spécifiques à chaque projet. Il est recommandé d'impliquer les membres clés de l'équipe du

projet dans l'établissement de la chronologie afin de tenir compte de leur expertise et de leur

expérience. De plus, une approche itérative peut être adoptée pour ajuster la chronologie en

fonction des réalités et des défis rencontrés tout au long du projet.

7. Livraisons Attendues :

 Précisez les livrables attendus à chaque étape

Préciser les livrables attendus à chaque étape d'un projet est essentiel pour définir clairement

les résultats tangibles à atteindre à chaque étape du processus. Voici un exemple de livrables

courants à chaque phase d'un projet :

15 Projet -2e Année ingénieur

 Définition du projet :

 - Document de définition du projet : Ce document précise le périmètre du projet, les

objectifs, les résultats attendus, les contraintes et les parties prenantes clés.

 - Analyse des besoins : Un rapport détaillant les besoins du projet, les exigences

fonctionnelles et non fonctionnelles, ainsi que les attentes des parties prenantes.

 - Plan de gestion du projet : Un plan détaillant les activités, les ressources, le calendrier

et les risques identifiés pour la réalisation du projet.

 Planification du projet :

 - Calendrier du projet : Un calendrier détaillé indiquant les principales étapes, les

délais prévus pour chaque tâche et les jalons importants.

 - Plan de gestion des ressources : Un document décrivant les ressources nécessaires

pour chaque étape du projet, y compris les ressources humaines, matérielles et

financières.

 - Plan de communication : Un plan détaillant la stratégie de communication du projet,

y compris les parties prenantes, les canaux de communication et la fréquence des

rapports et des réunions.

 Exécution du projet :

 - Livrables spécifiques : Selon la nature du projet, cela peut inclure des documents,

des rapports, des prototypes, des maquettes, des codes sources, des plans de test, des

manuels d'utilisation, etc.

 - Produits intermédiaires : Des résultats partiels ou des éléments de travail achevés qui

contribuent à la réalisation des livrables finaux.

 - États d'avancement : Des rapports réguliers indiquant l'état d'avancement du projet,

les problèmes rencontrés, les mesures prises et les prévisions pour les étapes suivantes.

 Contrôle et suivi :

 - Rapports de suivi : Des rapports périodiques sur l'avancement du projet, y compris

l'évaluation de la performance par rapport aux objectifs, les mesures correctives prises

et les risques identifiés.

 - Contrôles de qualité : Des évaluations régulières pour vérifier si les livrables

répondent aux normes de qualité définies.

 - Documentation des changements : Un enregistrement des modifications apportées

au projet, y compris les raisons du changement, les impacts et les mesures prises pour

gérer les changements.

16 Projet -2e Année ingénieur

 Clôture du projet :

 - Livrables finaux : Les livrables finaux du projet, tels que les produits, les documents,

les rapports finaux, les manuels d'utilisation, les résultats de test, etc.

 - Évaluation du projet : Un rapport d'évaluation décrivant les résultats du projet, les

leçons apprises, les succès, les défis et les recommandations pour les projets futurs.

 - Rapport de clôture : Un rapport final détaillant toutes les activités effectuées, les

ressources utilisées, les résultats obtenus et les étapes suivies pour clôturer le projet.

Il est important de noter que les livrables spécifiques peuvent varier en fonction de la nature

et de la complexité du projet. Il est recommandé de définir ces livrables en consultation avec

les parties prenantes du projet afin de s'assurer qu'ils répondent aux attentes et aux besoins du

projet.

 Clarifiez les attentes en termes de documentation.

Les attentes en termes de documentation dans un projet peuvent varier en fonction de la

nature du projet, des exigences spécifiques de l'organisation et des parties prenantes impliquées.

Cependant, voici quelques attentes courantes en matière de documentation dans un projet :

 Document de définition du projet :

 - Un document clair et complet définissant le périmètre du projet, les objectifs, les

résultats attendus, les contraintes et les parties prenantes clés.

 - Une description détaillée des besoins et des attentes des parties prenantes, ainsi que

des exigences fonctionnelles et non fonctionnelles du projet.

 Plan de gestion du projet :

 - Un plan détaillé décrivant les activités, les ressources, le calendrier et les risques

identifiés pour la réalisation du projet.

 - Un plan de communication précisant les parties prenantes, les canaux de

communication, la fréquence des rapports et des réunions, ainsi que les responsabilités

de chacun.

 Rapports d'avancement :

 - Des rapports réguliers indiquant l'état d'avancement du projet, les problèmes

rencontrés, les mesures prises et les prévisions pour les étapes suivantes.

 - Une évaluation de la performance du projet par rapport aux objectifs fixés, y compris

les écarts identifiés et les mesures correctives prises.

17 Projet -2e Année ingénieur

 Documentation des processus et des procédures :

 - Des documents décrivant les processus et les procédures utilisés dans le projet, tels

que les méthodologies, les normes de qualité, les modèles de documentation, les plans

de test, etc.

 - Des instructions claires sur la façon de réaliser diverses activités du projet, afin

d'assurer la cohérence et la reproductibilité des résultats.

 Documentation des livrables :

 - Des documents détaillant les livrables spécifiques du projet, tels que les

spécifications techniques, les manuels d'utilisation, les rapports d'analyse, les plans de

maintenance, etc.

 - Une documentation complète des étapes de développement, des décisions prises et

des modifications apportées aux livrables tout au long du projet.

 Documentation de clôture :

 - Un rapport final détaillant toutes les activités effectuées, les ressources utilisées, les

résultats obtenus et les étapes suivies pour clôturer le projet.

 - Une évaluation du projet, comprenant les leçons apprises, les succès, les défis et les

recommandations pour les projets futurs.

Il est important de noter que la documentation doit être adaptée à chaque projet, en tenant

compte de sa taille, de sa complexité et de ses exigences spécifiques. Il est également essentiel

de maintenir la documentation à jour tout au long du projet et de veiller à ce qu'elle soit

accessible et compréhensible pour les parties prenantes concernées.

