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Chapitre 1 : Introduction 

Cinématique du point matériel 

Définition : La cinématique est l’étude du mouvement en fonction du temps 
indépendamment des causes produisant ce mouvement (les forces appliquées au point 
matériel, la masse, l’inertie). 
a- Repère: Pour repérer la position d’une particule, il est nécessaire de définir un repère 
d’espace. Cela consiste à choisir une origine O et une base (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗). Le trièdre 
(𝑂, 𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗)  est le repère d’espace. 
b- Référentiel: Un référentiel est un repère spatial muni d’un repère temporel (repère + 
horloge). 
 

Soit un référentiel 𝑅, dont le repère d’espace à pour origine un point O, et par 
rapport auquel on étudie le mouvement de la particule P, la position de ce point à un 

instant t quelconque est donnée par le vecteur position : 𝑟  =  𝑟 𝑃/(𝑅)   =  𝑂𝑃⃗⃗⃗⃗  ⃗ . 

Le vecteur position varie au cours du mouvement et l’ensemble des positions 
successives au cours du temps de son extrémité 𝑃 forme une courbe appelée trajectoire 
de la position 𝑃. 
En utilisant pour le repère d’espace les coordonnées cartésiennes de base orthogonale 

associée (𝑖  ⃗, 𝑗  , 𝑘⃗ ), le vecteur 𝑟  se décompose en: 𝑟 = 𝑥𝑖  + 𝑦𝑗   𝑧𝑘⃗  . 

La donnée des fonctions 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), 𝑧 = ℎ(𝑡) constitue les équations horaires du 
mouvement, celle-ci peuvent être obtenues par intégration des équations du 
mouvement. 
L’équation de la trajectoire s’obtient en éliminant le temps t entre les différentes 
équations horaires, ce qui n’est pas toujours en pratique possible. 
Il est intéressant d’introduire un repère spécifique appelé trièdre de Serret-Frenet 
(Repère de Frenet), il permet d’exprimer d’une façon intrinsèque la vitesse et 
l’accélération, (c'est-à-dire exprimer ces grandeurs 
cinématique indépendamment d’un système de 
coordonnées particulier). 
 
Il s’agit d’un repère mobile avec P(t) (position de la 
particule à un instant t) orthonormé de 

vecteurs de base (𝑇⃗ , 𝑁⃗⃗ , 𝐵⃗ ). 

𝑇⃗  : Tangente en 𝑃(𝑡), orienté dans le sens du 
mouvement. 

𝑁⃗⃗   : Normale à la trajectoire en 𝑃(𝑡) perpendiculaire à 𝑇⃗   , orienté vers le sens de 
courbure. 

𝐵⃗  : Binormale 𝐵⃗  = 𝑇⃗  ∧ 𝑁⃗⃗  . 
 
Vecteur Vitesse 
𝑃 position de la particule à l’instant 𝑡, 𝑃’ position de la particule à l’instant 𝑡’. 

La vitesse moyenne est égale à : 𝑣 𝑚𝑜𝑦 =
𝑃𝑃′⃗⃗ ⃗⃗ ⃗⃗  ⃗

∆𝑡
=
∆𝑟 

∆𝑡
   ,  ∆𝑡 = 𝑡 − 𝑡′ 

La vitesse instantanée est égale à : 𝑣 𝑖𝑛𝑠 = 𝑣 𝑃
𝑅⁄
= lim
∆𝑡→0

𝑃𝑃′⃗⃗ ⃗⃗ ⃗⃗  ⃗

∆𝑡
= (

𝑑𝑟 

𝑑𝑡
)
𝑅
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Il est facile de montrer que le sens de la vitesse 𝑣  est celui de la tangente à la trajectoire 
au 
point 𝑃, donc le sens de la vitesse est celui du mouvement de 𝑃 à 𝑃’ . 
En utilisant les coordonnées cartésiennes le vecteur vitesse se décompose en : 

𝑣 = 𝑥̇𝑖 + 𝑦̇𝑗 + 𝑧̇𝑘⃗  , où 𝑥̇ =
𝑑𝑥

𝑑𝑡
, 𝑦̇ =

𝑑𝑦

𝑑𝑡
, 𝑧̇ =

𝑑𝑧

𝑑𝑡
 

La notion d’abscisse curviligne peut être introduite pour donner une interprétation plus 
physique de 𝑣  : 𝑑𝑟 = 𝑣 . 𝑑𝑡 qui correspond au vecteur déplacement infinitésimale 
pendant dt 
sur la trajectoire de 𝑃. Sa norme 𝑑𝑠 = ‖𝑑𝑟 ‖ = ‖𝑣 ‖. 𝑑𝑡 = 𝑣. 𝑑𝑡, 
correspond donc à la distance 
parcourue pendant 𝑑𝑡 par la particule.  

On a 𝑑𝑠 = 𝑣. 𝑑𝑡 ⇒ 𝑣 =
𝑑𝑠

𝑑𝑡
 , en utilisant le repère de Frenet : 𝑣 = 𝑣𝑇⃗ =

𝑑𝑠

𝑑𝑡
𝑇⃗  

L’abscisse curviligne 𝑠(𝑡) correspond à la distance parcourue par la 

particule entre 𝑡0 et 𝑡 : 𝑠(𝑡) = ∫ 𝑣. 𝑑𝑡
𝑡

𝑡0
 

Vecteur accélération 
Par définition, le vecteur accélération et la dérivée du vecteur vitesse. 
 

𝑎 = 𝑎 𝑃 𝑅⁄ =
𝑑𝑣⃗ 

𝑑𝑡
=
𝑑2𝑟 

𝑑𝑡2
 , en coordonnées cartésiennes l’accélération se décompose en : 𝑎 =

𝑎 𝑃 𝑅⁄ = 𝑥̈𝑖 + 𝑦̈𝑗 + 𝑧̈𝑘⃗ , où 𝑥̈ =
𝑑2𝑥

𝑑𝑡2
 , 𝑦̈ =

𝑑2𝑦

𝑑𝑡2
 et 𝑧̈ =

𝑑2𝑧

𝑑𝑡2
 

Dans le repère de Frenet, nous avons :  

𝑣 = 𝑣𝑇⃗ =
𝑑𝑠

𝑑𝑡
𝑇⃗  et 𝑎 =

𝑑𝑣⃗ 

𝑑𝑡
   ⇒  𝑎 =

𝑑(𝑣𝑇⃗ )

𝑑𝑡
=
𝑑(𝑣)

𝑑𝑡
𝑇⃗ + 𝑣

𝑑(𝑇⃗ )

𝑑𝑡
=
𝑑𝑣

𝑑𝑡
𝑇⃗ + 𝑣

𝑑𝑠

𝑑𝑡

𝑑𝑇⃗ 

𝑑𝑠
=

𝑑𝑣

𝑑𝑡
𝑇⃗ + 𝑣2

𝑑𝑇⃗ 

𝑑𝑠
 

𝑎 =
𝑑𝑣

𝑑𝑡
𝑇⃗ + 𝑣2

𝑑𝑇⃗ 

𝑑𝑠
 ⇒ , pour trouver la relation finale de l’accélération il faut déterminer la 

direction et la valeur scalaire du vecteur 
𝑑𝑇⃗ 

𝑑𝑠
 dans le repère de Frenet. 

 

La direction de 
𝑑𝑇⃗ 

𝑑𝑠
 

On peut facilement vérifier que 
𝑑𝑇⃗ 

𝑑𝑠
 est perpendiculaire à (⊥ 𝑇⃗ ) donc parallèle à (∥ 𝑁⃗⃗  ) 

dans le repère de Frenet. 

𝑇⃗  est un vecteur unitaire (𝑇⃗ 2 = 1), 0 =
𝑑𝑇⃗ 2

𝑑𝑠
=
𝑑(𝑇⃗ .𝑇⃗ )

𝑑𝑠
=
𝑑𝑇⃗ 

𝑑𝑠
. 𝑇⃗ + 𝑇⃗ .

𝑑𝑇⃗ 

𝑑𝑠
= 2𝑇⃗ .

𝑑𝑇⃗ 

𝑑𝑠
 

⇒ 𝑇⃗ .
𝑑𝑇⃗ 

𝑑𝑠
= 0 ⇒ 𝑇⃗ ⊥

𝑑𝑇⃗ 

𝑑𝑠
 et donc 

𝑑𝑇⃗ 

𝑑𝑠
 ∥ 𝑁⃗⃗  

La valeur scalaire de 
𝑑𝑇⃗ 

𝑑𝑠
 

En utilisant toujours le repère de Frenet on peut aussi calculer 

facilement la valeur scalaire de 
𝑑𝑇⃗ 

𝑑𝑠
 : 

 𝑑𝑇⃗ = ‖𝑇⃗ ‖𝑑𝜃 et 𝑑𝑠 = 𝑅𝐶𝑑𝜃 ⇒ 
𝑑𝑇⃗ 

𝑑𝑠
=

1

𝑅𝐶
𝑁⃗⃗  

Et par conséquent : 𝑎 =
𝑑(𝑣)

𝑑𝑡
𝑇⃗ +

𝑣2

𝑅𝐶
𝑁⃗⃗  ⇒ 𝑎 =

𝑑2𝑠

𝑑𝑡2
𝑇⃗ +

1

𝑅𝐶
(
𝑑𝑠

𝑑𝑡
)
2

𝑁⃗⃗ = 𝑎 𝑇 +

𝑎 𝑁  
𝑎 𝑇  : Composante tangentielle (colinéaire à 𝑣 ⃗⃗⃗  ) 
𝑎 𝑁  : Composante normale (nulle pour 𝑅𝑐 =  ∞) 
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Coordonnées cylindriques (base mobile) 
Définition: Dans ce système la position du point est repérée par la donnée de la 
composante 𝑧(comme dans les coordonnées cartésiennes) et de 
ses coordonnées polaires qui permettent de repérer la position 
de la projection orthogonale m du point M sur le plan horizontale. 

D’après la figure précédente, on a donc  

{
 
 

 
 𝜌 = ‖𝑂𝑚⃗⃗⃗⃗ ⃗⃗ ‖       ,     0 ≤ 𝜌 < +∞               rayon polaire,

𝜑 = (𝑖 , 𝑂𝑚⃗⃗ ⃗⃗ ⃗⃗  )̂    , 0 ≤ 𝜑 ≤ 2𝜋             angle polaire

 𝑧 = ‖𝑚𝑀⃗⃗⃗⃗ ⃗⃗  ⃗‖ = ‖𝑂𝑚′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖             , −∞ < 𝑧 < +∞      cote.

  

𝑚 est la projection de M sur le plan (𝑥𝑂𝑦) et 

{
𝑥 = 𝜌𝑐𝑜𝑠𝜑
𝑦 = 𝜌𝑠𝑖𝑛𝜑
𝑧 = 𝑧

 Ou inversement {
ρ = √x2 + y2

φ = arctan
y

x
𝑧 = 𝑧

 

On associe la base orthonormée (𝑒 𝜌, 𝑒 𝜑, 𝑘⃗ )aux coordonnées cylindriques,  

{

𝑒 𝜌 = 𝑐𝑜𝑠𝜑. 𝑖 + 𝑠𝑖𝑛𝜑. 𝑗 

𝑒 𝜑 = −𝑠𝑖𝑛𝜑. 𝑖 + 𝑐𝑜𝑠𝜑. 𝑗 

𝑘⃗ = 𝑘⃗ 

  

Vecteur position: 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ = 𝜌𝑒 𝜌 + 𝑧𝑘⃗  

Vecteur déplacement élémentaire: 𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗  =  𝑑𝜌𝑒 𝜌 + 𝜌𝑑𝜑𝑒 𝜑 + 𝑑𝑧𝑘⃗  

 
Elément de volume: dV = ρ. dρ. dφ. dz 

Vecteur vitesse: 𝑉⃗ = 𝜌̇𝑒 𝜌 + 𝜌𝜑̇𝑒 𝜑 + 𝑧̇𝑘⃗  

Vecteur accélération: 𝑎 = (𝜌̈ − 𝜌𝜑̇2)𝑒 𝜌 + (2𝜌̇𝜑̇ + 𝜌𝜑̈)𝑒 𝜑 + 𝑧̈𝑘⃗  

 
 Coordonnées sphériques : (base sphérique est mobile) 

{
 
 

 
 𝑟 = ‖𝑂𝑀

⃗⃗⃗⃗ ⃗⃗ ‖,     0 ≤ 𝑟 ≤ +∞   𝑟𝑎𝑦𝑜𝑛 𝑣𝑒𝑐𝑡𝑒𝑢𝑟

𝜑 = (𝑖 , 𝑂𝑚⃗⃗ ⃗⃗ ⃗⃗  ̂) ,     0 ≤ 𝜑 ≤ 2𝜋             𝑎𝑧𝑖𝑚𝑢𝑡ℎ

𝜃 = (𝑘⃗ , 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  
̂

) ,      0 ≤ 𝜃 ≤ 𝜋          𝑐𝑜𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒

 

 

{
𝑥 = 𝑟. 𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜑
𝑦 = 𝑟. 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜑
𝑧 = 𝑟𝑐𝑜𝑠𝜃

 

La base orthonormée associée aux coordonnées 
sphériques est notée (𝑒 𝑟 , 𝑒 𝜃, 𝑒 𝜑). Cette base est reliée à la 

base des coordonnées cartésiennes par les relations: 

{

𝑒 𝑟 = sinθ. cosφ. 𝑖 + 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝜑. 𝑗 + 𝑐𝑜𝑠𝜃. 𝑘⃗ 

𝑒 𝜃 = 𝑐𝑜𝑠θ. cosφ. 𝑖 + 𝑐𝑜𝑠𝜃. 𝑠𝑖𝑛𝜑. 𝑗 − 𝑠𝑖𝑛𝜃. 𝑘⃗ 

𝑒 𝜑 = −sinφ. 𝑖 + 𝑐𝑜𝑠𝜑. 𝑗 

 

 

Vecteur position : 𝑂𝑀⃗⃗⃗⃗ ⃗⃗ = 𝑟𝑒 𝑟 

Déplacement élémentaire : 𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ = 𝑑𝑟. 𝑒 𝑟 + 𝑟𝑑𝜃𝑒 𝜃 + 𝑟. 𝑠𝑖𝑛𝜃. 𝑑𝜑. 𝑒 𝜑 

Volume élémentaire : 𝑑𝑉 =  𝑑𝑟. 𝑟𝑑𝜃𝑟. 𝑠𝑖𝑛𝜃. 𝑑𝜑 = 𝑟. 𝑑𝑟. 𝑠𝑖𝑛𝜃. 𝑑𝜃. 𝑑𝜑 
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Vecteur vitesse en coordonnées sphériques : 

𝑉⃗ (𝑀 𝑅⁄ ) =
𝑑𝑂𝑀⃗⃗⃗⃗ ⃗⃗ 

𝑑𝑡
=
𝑑(𝑟𝑒 𝑟)

𝑑𝑡
= 𝑟̇𝑒 𝑟 + 𝑟𝜃̇𝑒 𝜃 + 𝑟𝜑̇𝑠𝑖𝑛𝜃. 𝑒 𝜑  

Vecteur accélération en coordonnées sphériques: 

𝑎 (𝑀 𝑅⁄ ) = (𝑟 − 𝑟𝜃̇
2𝜑̇2𝑠𝑖𝑛2𝜃̈ ) 𝑒 𝑟 + (2𝑟̇𝜃̇ + 𝑟𝜃̈ − 𝑟𝜑̇

2𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜃)𝑒 𝜃

+ (2𝑟̇𝜑̇. 𝑠𝑖𝑛𝜃 + 2𝑟𝜃̇𝜑̇𝑐𝑜𝑠𝜃 + 𝑟𝜑̈𝑠𝑖𝑛𝜃)𝑒 𝜑 

 

Dynamique du point matériel 

Définition : La dynamique est une science qui étudie la cause de mouvement d’une 

particule (c.à.d. la force 𝐹 ). 

Quantité de mouvement : notée 𝑃⃗  
Pour une particule M de masse m en mouvement dans un référentiel R, la quantité de 

Mouvement est : 𝑃⃗  𝑀/(𝑅)  =  𝑚𝑣 𝑀/(𝑅)  

 
Lois de Newton 
 
1ere loi de Newton : Le Principe d’inertie : «Tout corps persévère dans l’état de repos 
ou l’état de mouvement uniforme en ligne droite dans lequel il se trouve, à moins que 
quelques forces n’agissent sur lui, et ne le contraigne à changer d’état» 

Pour le principe d’inertie, 𝑃⃗  𝑀/(𝑅) = 𝑐𝑡𝑒⃗⃗⃗⃗⃗⃗  donc 𝑣 𝑀/(𝑅) = 𝑐𝑡𝑒⃗⃗⃗⃗⃗⃗ . 

 Un référentiel 𝑅 où le principe d’Inertie est vérifié est appelé référentiel Galiléen. 
 Tout référentiel 𝑅1 en translation uniforme par rapport à un référentiel 

𝑅0Galiléen est considéré aussi Galiléen. 

L’inertie : Est le refus de l’objet de changer ses grandeurs cinématiques. 

2eme loi de Newton : Principe fondamental de la dynamique (P.F.D.)  

Par rapport à un 𝑅0 (Galiléen), le mouvement de la particule M de masse m soumis à une 

résultante de force 𝑓  ; 
La variation de la quantité de mouvement du point matériel pendant une 

intervalle de temps ∆𝑡 est  ∆𝑝 =  𝑓 . ∆𝑡. 

Pour ∆𝑡 très petit ; ∆𝑡 → 𝑑𝑡 ⇒ ∆𝑝 → 𝑑𝑝         ⇒    𝑓 =
𝑑𝑝 

𝑑𝑡
 

Dans le cas particulier où la masse est constante : 𝑑𝑝 = 𝑑(𝑚𝑣 ) = 𝑚𝑑𝑣  

⇒ 𝑓 =
𝑑𝑝 

𝑑𝑡
= 𝑚

𝑑𝑣⃗ 

𝑑𝑡
= 𝑚𝑎  

3eme loi de Newton : Principe des actions réciproques 
Pour une particule 𝑀1 de masse 𝑚1 et une particule 𝑀2 de masse 𝑚2, si 𝑀1 exerce une 
force 𝑓1→2  sur 𝑀2alors 𝑀2 exerce aussi une force 𝑓2→1 de telle sorte que 𝑓1→2 = −𝑓2→1. 
 
Travail et Energie : 

Travail 𝒘 : Le travail élémentaire réalisé par la force  𝑓  sur le point matériel lors d’un 

déplacement 𝑑𝑙   si le point matériel se déplace de point 𝐴 au point 𝐵 sur une trajectoire : 
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𝑤𝐴𝐵 = ∫𝑓  .

𝐵

𝐴

𝑑𝑙 = ∫ 𝑓 .

𝐵

𝐴

𝑑𝑙. 𝑐𝑜𝑠 (𝑓 , 𝑑𝑙 ̂) 

L’énergie cinétique : Nous nous proposons de calculer le travail fournis par la 

résultante des forces 𝐹  sur un point matériel lors d’un déplacement 𝑑𝑙  sur une 

trajectoire de A à 𝐵 ; 

𝑤𝐴𝐵 = ∫ 𝑓  .

𝐵

𝐴

𝑑𝑙 = ∫
𝑑𝑝 

𝑑𝑡
. 𝑑𝑙 

𝐵

𝐴

= ∫ 𝑑𝑝 .
𝑑𝑙 

𝑑𝑡

𝐵

𝐴

 

Si 𝑚 = 𝑐𝑡𝑒 ⇒ 𝑤𝐴𝐵 = 𝑚∫ 𝑣 . 𝑑𝑣 
𝐵

𝐴
=
1

2
𝑚(𝑣 𝐵

2
− 𝑣 𝐴

2
) 

⇒ 𝑤𝐴𝐵 =
1

2
𝑚𝑣 𝐵

2
−
1

2
𝑚𝑣 𝐴

2
         ⇒ 𝑤𝐴𝐵 = ∆𝐸𝐶  . 

On appelle la quantité 
1

2
𝑚𝑣 2 énergie cinétique du point matériel au point 𝐶 de la 

trajectoire. 

Théorème de l’énergie cinétique Dans un référentiel galiléen, la variation d’énergie 

cinétique entre deux positions est égale au travail de la force résultante appliquée entre 

ces deux positions. 

∆𝐸𝑐 = 𝑊12(𝐹 𝑒𝑥𝑡) 
 
L’énergie potentielle : Nous nous proposons de calculer le travail fourni par une force 

gravitationnelle    𝑓 = −
𝐺𝑀𝑚

𝑟2
𝑢⃗ 𝑟  ⇒  𝑤𝐴𝐵 = −𝐺𝑀𝑚∫

𝑢⃗⃗ 𝑟

𝑟2
. 𝑑𝑟 . 

où 𝑑𝑟 = 𝑟𝑑𝜃𝑢⃗ 𝜃 + 𝑑𝑟𝑢⃗ 𝑟. 

⇒ 𝑤𝐴𝐵 = −𝐺𝑀𝑚∫
𝑢⃗⃗ 𝑟

𝑟2
. (𝑟𝑑𝜃𝑢⃗ 𝜃 + 𝑑𝑟𝑢⃗ 𝑟) = −𝐺𝑀𝑚∫

1

𝑟2
. (𝑟𝑑𝜃𝑢⃗ 𝑟 . 𝑢⃗ 𝜃 + 𝑑𝑟𝑢⃗ 𝑟 . 𝑢⃗ 𝑟) 

Or {𝑢⃗ 𝑟 , 𝑢⃗ 𝜃} est une base orthonormée ⇒ {
𝑢⃗ 𝑟 ⊥ 𝑢⃗ 𝜃  ⇒  𝑢⃗ 𝑟 . 𝑢⃗ 𝜃 = 0

𝑢⃗ 𝑟 . 𝑢⃗ 𝑟 = 1
   

                                                                                               ⇓ 

𝑤𝐴𝐵 = −𝐺𝑀𝑚 ∫ 𝑟−2𝑑𝑟

𝑟𝐵

𝑟𝐴

= −𝐺𝑀𝑚(−
1

𝑟
)
𝑟𝐴

𝑟𝐵

=
𝐺𝑀𝑚

𝑟𝐵
−
𝐺𝑀𝑚

𝑟𝐴
 

⇒ 𝑤𝐴𝐵 = (−
𝐺𝑀𝑚

𝑟𝐴
) − (−

𝐺𝑀𝑚

𝑟𝐵
) = 𝐸𝑃(𝐴) − 𝐸𝑃(𝐵) = −∆𝐸𝑃  

∆𝐸𝑃  est la variation de l’énergie potentiel entre les points 𝐴 et 𝐵. 

Si la particule part du point 𝐴 pour acquérir une vitesse 𝑣 𝐵 en 𝐵, son énergie cinétique 

passe de 𝐸𝐶(𝐴) à l’énergie 𝐸𝐶(𝐵), on dit que cette énergie est la transformation d’une 

énergie emmagasinée dans la particule en 𝐴 qui se transforme en énergie cinétique. On 

appelle cette énergie emmagasinée énergie potentielle et on écrit :  ∆𝐸𝑃 = −∆𝐸𝐶 . 
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D’autre part, ∆𝐸𝑃 = −𝑤𝐴𝐵(𝑓 ) ⇒ ∆𝐸𝑃 = −∫𝑓 . 𝑑𝑟  ⇒ ∫ 𝑑𝐸𝑃
𝐵

𝐴
= −∫ 𝑓 . 𝑑𝑟 

𝐵

𝐴
 

Donc 𝑑𝐸𝑃 = −𝑓 . 𝑑𝑟  ⇒ 𝑓 = −
𝑑𝐸𝑃

𝑑𝑟 
= −∇⃗⃗ 𝐸𝑃  

On peu déduire que 𝐸𝑃 = −𝑓 . 𝑑𝑟  

On dit que 𝐸𝑃  est primitive de 𝑓 , 𝑓  est une dérivée de l’énergie potentielle ⇒ 𝑓  dérive 

d’un potentiel. 

Energie mécanique totale 𝑬𝒎 : Le théorème de l’énergie cinétique peut être écrit de 

façon équivalente en décomposant la somme des les forces en trois groupes: 

 Forces qui dérivent d’un potentiel (conservatives)𝐹 𝐶. 

 Forces qui ne travaillent pas (𝐹 ⊥ au déplacement ). 

 Forces non-conservatives (dissipatives) 𝐹 𝑁𝐶 . 

∆𝐸𝑐 = 𝑊𝐹 𝐶
+𝑊𝐹 𝑁𝐶

,  avec∆𝐸𝑃 = −𝑊𝐹 𝐶
 , 

∆𝐸𝑚 = ∆𝐸𝑐 + ∆𝐸𝑃 = 𝑊𝐹 𝐶
+𝑊𝐹 𝑁𝐶

−𝑊𝐹 𝐶
= 𝑊𝐹 𝑁𝐶

⇒∆𝐸𝑚 = 𝑊𝐹 𝑁𝐶
 

D’où le théorème d’énergie mécanique : La variation de l’énergie mécanique est égale au 
travail des forces non conservatives. L’énergie totale est conservée si le système est 
soumit uniquement à des forces conservatives. 

 

Système à N particules et forces extérieures 
Soit un système de N particules dont les interactions mutuelles sont régies par la 

3ème loi de Newton (principe de l’action et de la réaction). 
Le centre de masse 𝐺 est défini par: 

𝑂𝐺⃗⃗ ⃗⃗  ⃗ =
∑ 𝑚𝑖.𝑂𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑁
𝑖=1

∑ 𝑚𝑖
𝑁
𝑖=1

=
∑ 𝑚𝑖.𝑂𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑁
𝑖=1

𝑀
, 

𝑀 = ∑ 𝑚𝑖
𝑁
𝑖=1  est la masse totale du système de points 

matériels. 

En termes de coordonnées, 

𝑂𝐺⃗⃗ ⃗⃗  ⃗ =
1

𝑀
∑ 𝑚𝑖. 𝑂𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑁
𝑖=1 ⇒

{
 
 

 
 𝑥𝐺 =

1

𝑀
∑ 𝑚𝑖 . 𝑥𝑖
𝑁
𝑖=1

𝑦𝐺 =
1

𝑀
∑ 𝑚𝑖 . 𝑦𝑖
𝑁
𝑖=1

𝑧𝐺 =
1

𝑀
∑ 𝑚𝑖 . 𝑧𝑖
𝑁
𝑖=1

,                (pour un système discret). 

𝑂𝐺⃗⃗ ⃗⃗  ⃗ =
1

𝑀
∫
𝑆
𝑑𝑚. 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ ⇒

{
 
 

 
 𝑥𝐺 =

1

𝑀
∫
𝑠𝑦𝑠𝑡

𝑑𝑚. 𝑥(𝑑𝑚)

𝑦𝐺 =
1

𝑀
∫
𝑠𝑦𝑠𝑡

𝑑𝑚. 𝑦(𝑑𝑚)

𝑧𝐺 =
1

𝑀
∫
𝑠𝑦𝑠𝑡

𝑑𝑚. 𝑧(𝑑𝑚)

,             (pour un système continu). 
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La quantité de mouvement d’un système de N points matériels: La quantité de 

mouvement totale du système est: 𝑃⃗ 𝑡𝑜𝑡 = ∑ 𝑝𝑖⃗⃗⃗  =
𝑁
𝑖=1 ∑ 𝑚𝑖𝑣𝑖⃗⃗⃗  

𝑁
𝑖=1 = 𝑀. 𝑉𝐺⃗⃗⃗⃗  ; on dit que le 

point 𝐺 résume le système point de vue cinématique. 

Théorème de centre de masse: Appliquant le P.F.D à chacun des points du système: 

𝑚𝑖

𝑑𝑣 𝑖
𝑑𝑡

= 𝑓 𝑒𝑥𝑡→𝑖 +∑𝑓 𝑗→𝑖
𝑗≠𝑖

 

 𝑓 𝑒𝑥𝑡→𝑖  : la force extérieur qui s’exerce sur la particule 𝑖. 

 ∑ 𝑓 𝑗→𝑖𝑖≠𝑗  : la force interne qui s’exerce par chaque particule 𝑗 du systèmesur la 

particule 𝑖. 

Par l’additionner des équations précédentes sur toutes les particules 𝑖 du système: 

∑ 𝑚𝒊
𝑵
𝑖=1 .

𝑑𝑣⃗ 𝑖

𝑑𝑡
= ∑ (𝑓 𝑒𝑥𝑡→𝑖 +∑ 𝑓 𝑗→𝑖𝑗≠𝑖 )𝑵

𝑖=1 = ∑ 𝑓 𝑒𝑥𝑡→𝑖
𝑵
𝑖=1 + ∑ ∑ 𝑓 𝑗→𝑖𝑗≠𝑖

𝑁
𝑖=1 ; 

∑ 𝑓 𝑒𝑥𝑡→𝑖
𝑵
𝑖=1 = 𝑓 𝑒𝑥𝑡→𝑠𝑦𝑠𝑡: est la somme vectorielle des forces extérieures qui s’appliquent 

sur tout le système où n’importe où s’appliquent ces forces; et   ∑ ∑ 𝑓 𝑗→𝑖𝑗≠𝑖
𝑁
𝑖=1 =

∑ (𝑓 𝑗→𝑖 + 𝑓 𝑖→𝑗)
𝑁
1≤𝑖≤𝑗 = 0⃗ : grâce à la troisième loi du Newton. 

Tel que: ∑ 𝑚𝒊
𝑵
𝑖=1 .

𝑑𝑣⃗ 𝑖

𝑑𝑡
=

𝑑

𝑑𝑡
(∑ 𝑚𝒊

𝑵
𝑖=1 . 𝑣 𝑖) =

𝑑

𝑑𝑡
(𝑀.𝑉𝐺⃗⃗⃗⃗ ) = 𝑀.

𝑑𝑉𝐺⃗⃗ ⃗⃗  ⃗

𝑑𝑡
 

Alors le théorème de centre de masse est par conséquent: 𝑀.
𝑑𝑉𝐺⃗⃗ ⃗⃗  ⃗

𝑑𝑡
= 𝑓 𝑒𝑥𝑡→𝑠𝑦𝑠𝑡   Ou    

𝑑𝑃⃗ 𝑡𝑜𝑡

𝑑𝑡
=

𝑓 𝑒𝑥𝑡→𝑠𝑦𝑠𝑡  

On dit que le point 𝐺 résume le système point de vue dynamique et comporte 
comme n’importe  quel point matériel obéit au P.F.D. Le théorème de centre de masse 
permet de traiter la mécanique macroscopique sans occuper d’autre chose que de point 
𝐺. 

Le moment cinétique d’un système de N points matériels: 𝜎 𝑡𝑜𝑡/𝑂 = ∑ 𝜎 𝑖/𝑂 =
𝑁
𝑖=1

∑ (𝑂𝑀𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⋀𝑝𝑖⃗⃗⃗  )
𝑁
𝑖=1  

L’énergie cinétique d’un système de N points matériels: 𝐸𝐶𝑡𝑜𝑡 = ∑
1

2
𝑚𝑖𝑣𝑖⃗⃗⃗  

2𝑁
𝑖=1  

Le nombre de degrés de liberté 
Un système physique à 1,2,3,4,…… , 𝑁 degrés de liberté.  
Le degré de liberté est la généralisation du nombre de directions indépendantes selon 
lesquelles une particule peut se déplacer dans l’espace physique. 
Ainsi, une particule pouvant se déplacer dans une direction possède un degré de liberté. 
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Une particule est libre de se déplacer dans un espace à deux dimensions, elle possède 
deux degrés de liberté. 

 

 

 

 
Une particule est libre de se déplacer dans un espace à trois dimensions, elle possède 
trois degrés de liberté. 

 

 

 

 
La contrainte où la liaison peut réduire ou supprimer au moins un degré de liberté. 
Exemple : Particule libre sur un axe (𝑜𝑥) : 
Si une force 𝐹 = −𝑘. 𝑥 agit sur la particule, 
⇒ le degré de liberté est réduit de –x0 à +x0 

Si le ressort est remplacé par une tige, la 
particule perd son degré de liberté. 
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Chapitre 2 : Formalisme de Lagrange 

Introduction : La méthode de Newton utilise les vecteurs pour décrire les systèmes 
physiques, cette méthode devient difficile si les systèmes physiques deviennent 
complexe. 

Lagrange propose une méthode analytique pour étudier le mouvement des 
systèmes physiques. Le Lagrangien permet d’étudier une vaste gamme de problèmes en 
mécanique. En se sens il est équivalent au formalisme de newton mais, il a sur se dernier 
un certain nombre d’avantages, d’abord il est fondé sur un principe théorique 
fondamental et élégant. Il utilise des quantités scalaires plutôt que vectorielles et en ce 
sens, sa forme est indépendante des coordonnées utilisées. 

Les liaisons : Un mobile est dit lié s’il subit des contraintes de la part du milieu dans 
lequel il est en mouvement. 

Liaison géométriques : C’est la liaison qui impose des conditions sur les coordonnées 
du mobile. 

Exemple 1 : Deux masses reliées par une tige. 

𝑚1 {

𝑥1
𝑦1
𝑧1

 ; 𝑚2 {

𝑥2
𝑦2
𝑧2

, or : 𝑙 = √(𝑥2 − 𝑥1)2+(𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2 

                   ⇒ (𝑥2 − 𝑥1)
2+(𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 − 𝑙2 = 0 

Exemple 2 : Une bille qui se déplace dans un tube circulaire de rayon 𝑅, si le tube est 
posé sur un plan horizontal : 𝑥2 + 𝑦2 = 𝑅2, 𝑧 = 𝑐𝑡𝑒. 

On peut écrire : {𝑓
(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑅2 = 0

𝑧 = 𝑐𝑡𝑒
 

Exemple 3 : Une bille se déplace à l’intérieur d’une sphère de rayon 𝑅 ; 𝑥2 + 𝑦2 + 𝑧2 ≤
𝑅2  et on écrit 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 𝑅2 ≤ 0. Où 𝑥, 𝑦 et 𝑧 sont mesurées par rapport 
au centre de la sphère. 

Liaison cinématique : C’est la liaison qui impose des conditions sur la vitesse du 
mobile. 

Exemple : La vitesse d’un parachute diminue jusqu’à atteindre une vitesse limite ; 

𝑣 = √𝑥̇2 + 𝑦̇2 + 𝑧̇2 = 𝑣𝑙  ⇒ 𝑓(𝑥̇, 𝑦̇, 𝑧̇) = √𝑥̇2 + 𝑦̇2 + 𝑧̇2 − 𝑣𝑙 = 0. 

 On appelle liaison stable toute liaison dont l’expression est donnée par une 
équation:  

{
𝑓(𝑥, 𝑦, 𝑧) = 0

𝑓(𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇, 𝑧̇) = 0
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 On appelle liaison instable toute liaison dont l’expression est donnée par une 
inégalité. 

 La liaison idéale est la liaison dont le travail de ses réactions est nul.   

La liaison holonome : C’est la liaison géométrique ou cinétique intégrable stable. 

Un système soumit à des liaisons holonomes est dit système holonome. 

Travail virtuel : 

Déplacement réel: L’hors d’un déplacement réel, on a besoin de suivre la variation de la 
position de la particule dans le temps. D’une façon générale, le déplacement infinitésimal 
est due à une variation explicite dans le temps: le temps 𝑡 apparait explicitement dans 
l’expression du vecteur position: 𝑟 = 𝑣 𝑡. L’expression du déplacement possible ne peut 
être extraite qu’à partir de l’expression de la liaison  c.à.d. à partir de 

                        𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑟 , 𝑡) = 𝑜   et   𝑑𝑓 =
𝜕𝑓

𝜕𝑟 
𝑑𝑟 +

𝜕𝑓

𝜕𝑡
𝑑𝑡 = 0  

Déplacement virtuel: Nous allons intéresser aux systèmes holonomes seulement.  

A chaque fois on applique une force efficace on obtient du déplacement possible. 

𝑑𝑓 =
𝜕𝑓

𝜕𝑟 
𝑑𝑟 +

𝜕𝑓

𝜕𝑡
𝑑𝑡 = 0…… . . . (1)

𝑑𝑓 =
𝜕𝑓

𝜕𝑟 
𝑑𝑟 ′ +

𝜕𝑓

𝜕𝑡
𝑑𝑡 = 0…… . . (2)

}  ….(2) – (1) ⇒ 
𝜕𝑓

𝜕𝑟 
(𝑑𝑟 − 𝑑𝑟 ′) = 0 

On appelle 𝛿𝑟 = 𝑑𝑟 − 𝑑𝑟 ′ le déplacement virtuel. 𝛿𝑟  représente donc un glissement de la 

trajectoire possible (1) vers la trajectoire possible (2). 

Le déplacement virtuel est un déplacement infinitésimal atemporel (théorique ou 

mathématique et non-physique) qui ne nécessite pas de temps. Ce déplacement décrit le 

passage d’une configuration d’équilibre du système à une autre configuration d’équilibre 

sans pour autant considérer le temps de passage: C’est un déplacement dans l’espace de 

configuration. 

Le nombre de degré de liberté: 

Définition: Le nombre de degrés de liberté d’un système est le nombre de variables 

indépendantes (dites coordonnées généralisées) nécessaires et suffisantes pour décrire 

son évolution d’une façon unique et complète. 

Le nombre de degrés de liberté (𝑛) = 

                         le nombre de paramètres de configuration – le nombre de contrainte 

(liaisons) (𝑘) 

 Un point matériel: le nombre de paramètres de configuration est 3; 

𝑑𝑑𝑙 = 3 − 𝑘 
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 Un système de 𝑁 points matériels: le nombre de paramètres de configuration est 

3𝑁;  

𝑑𝑑𝑙 = 3𝑁 − 𝑘 

Exemple : pendule simple 

Pour déterminer le mouvement de la masse 𝑚 il faut calculer 

(𝑥𝑚(𝑡), 𝑦𝑚(𝑡)). Mais dans ce cas on peut juste calculer une coordonnée 

et déduire l’autre à partir de l’équation de la liaison. Le système est dit 

système a ‘’un’’ degré de liberté ;  

Le nombre de paramètres de configuration est 𝑛 = 2 (mouvement dans 

le plan). 

Le nombre de contrainte (liaisons) est 𝑘 = 1 ;  𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑙2 = 0 

⇒ 𝑛 − 𝑘 = 2 − 1 = 1   

⇒ Une manière plus élégante d’étudier le mouvement de la masse serait de choisir 

l’angle 𝜃 que fait la tige avec la verticale comme variable de mouvement; nommée par 

coordonnée généralisée, notée par 𝑞1 = 𝜃. 

Les coordonnées généralisées : Ce sont les coordonnées que nous devons calculer 

pour déterminer les équations de mouvement du système physique. La coordonnée 

généralisée est définie d’une manière générale ; elle peut être mesurée en ‘’mètre, 

radian, courant…’’. 

 Le nombre de coordonnées généralisées est égale au nombre de degrés de liberté.  

On paramétrise un système par « les coordonnées généralisées » supposées 
indépendantes, notés 𝑞𝑖  et par leurs dérivées temporelles 𝑞̇𝑖  pour 𝑖 ∈  1, … , 𝑛 , appelées 
« vitesse généralisées ». 
L’espace qui caractérise l’état du système à un instant t donné est « l’espace de 
configuration » de coordonnées (𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛; 𝑞̇1, 𝑞̇2, 𝑞̇3, … , 𝑞̇𝑛) 
Exemple : Une particule, en coordonnées cartésiennes : 
(𝑞1, 𝑞2, 𝑞3) = (r, θ,φ)  et (𝑞̇1, 𝑞̇2, 𝑞̇3) = (ṙ, θ̇, φ̇) 

Il est possible d’exprimer le vecteur position 𝑟  =  𝑜 𝑀⃗⃗⃗⃗⃗⃗  ⃗ de la particule en fonction de la 
coordonnée généralisée 𝑞 par : 𝑟 = 𝑟  (𝑞). 

Soit 𝐹  la résultante de toutes les forces agissant sur la particule. Le principe fondamental 

de la dynamique nous donne: 𝐹 = 𝑚
𝑑2𝑟 

𝑑𝑡2
= 𝑚

𝑑𝑣⃗ 

𝑑𝑡
 , où 𝑣 =

𝑑𝑟 

𝑑𝑡
  est vitesse de la particule. 

 
C’est le principe du travail virtuel, et il est exprimé par la condition: 

𝛿𝑊 = ∑ 𝐹 𝑖
𝑁
𝑖=1 . 𝛿𝑟 = 0 avec 𝛿𝑟 = ∑

𝜕𝑟 𝑗

𝜕𝑞𝑖
𝛿𝑛

𝑖=1 𝑞𝑖 

Le travail virtuel prend la forme : 

(𝐹 −
𝑑𝑃⃗ 

𝑑𝑡
) . 𝛿𝑟 = 0⇒∑ [(𝐹 −

𝑑𝑃⃗ 

𝑑𝑡
) .

𝜕𝑟 

𝜕𝑞𝑖
𝛿𝑞𝑖]

𝑛
𝑖=1 = 0 ; 

𝑑𝑃⃗ 

𝑑𝑡
= 𝑚𝑎 = 𝑚.

𝑑𝑣⃗ 

𝑑𝑡
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                                       ⇒ ∑ 𝐹 𝑛
𝑖=1 .

𝜕𝑟 

𝜕𝑞𝑖
𝛿𝑞𝑖 = ∑ 𝑚.

𝑑𝑣⃗ 

𝑑𝑡

𝑛
𝑖=1 .

𝜕𝑟 

𝜕𝑞𝑖
𝛿𝑞𝑖 

Le premier terme: 𝐹 .
𝜕𝑟 

𝜕𝑞𝑖
= 𝑄𝑖  est la 𝑖𝑒𝑚𝑒 composante de la force généralisée. (Peut être 

une force ou un moment de force). 

S’il y a 𝑛 coordonnées généralisées il ya 𝑛𝑄𝑖. 𝐹 𝛼 Ici est la force sur la composante 𝛼 du 

système, qui par les lois newtoniennes est 𝑚𝑎 𝛼 = 𝑚𝑟̈ 𝛼.  

𝑄𝑖 = ∑𝐹 𝛼
𝜕𝑟 𝛼
𝜕𝑞𝑖

3

𝛼=1

= 𝐹 1
𝜕𝑟 1
𝜕𝑞𝑖

+ 𝐹 2
𝜕𝑟 2
𝜕𝑞𝑖

+ 𝐹 3
𝜕𝑟 3
𝜕𝑞𝑖

 

Le deuxième terme:  
𝑑𝑣⃗ 

𝑑𝑡
.
𝜕𝑟 

𝜕𝑞𝑖
 

On a : 
𝜕𝑣⃗ 

𝜕𝑞̇𝑖
=
𝜕𝑟 

𝜕𝑞
 ; alors: 

𝑑

𝑑𝑡
(
𝜕𝑣⃗ 

𝜕𝑞̇𝑖
) =

𝑑

𝑑𝑡
(
𝜕𝑟 

𝜕𝑞𝑖
) =

𝜕

𝜕𝑞𝑖
(
𝑑𝑟 

𝑑𝑡
) =

𝜕𝑣⃗ 

𝜕𝑞𝑖
 

Or, 
𝑑

𝑑𝑡
(𝑣 .

𝜕𝑟 

𝜕𝑞𝑖
) =

𝑑𝑣⃗ 

𝑑𝑡
.
𝜕𝑟 

𝜕𝑞𝑖
+ 𝑣 .

𝑑

𝑑𝑡
(
𝜕𝑟 

𝜕𝑞𝑖
) =

𝑑𝑣⃗ 

𝑑𝑡
.
𝜕𝑟 

𝜕𝑞𝑖
+ 𝑣 .

𝜕

𝜕𝑞𝑖
(
𝑑𝑟 

𝑑𝑡
) 

⇒
𝑑𝑣⃗ 

𝑑𝑡
.
𝜕𝑟 

𝜕𝑞𝑖
=

𝑑

𝑑𝑡
(𝑣 .

𝜕𝑟 

𝜕𝑞𝑖
) − 𝑣 .

𝜕

𝜕𝑞𝑖
(
𝑑𝑟 

𝑑𝑡
) =

𝑑

𝑑𝑡
(𝑣 .

𝜕𝑣⃗ 

𝜕𝑞̇𝑖
) − 𝑣 .

𝜕𝑣⃗ 

𝜕𝑞𝑖
 

Le terme  𝑣 .
𝜕𝑣⃗ 

𝜕𝑞̇𝑖
  peut s’écrire sous la forme:    𝑣 .

𝜕𝑣⃗ 

𝜕𝑞̇𝑖
=
1

2

𝜕𝑣⃗ 2

𝜕𝑞̇𝑖
 

De même pour le terme:    𝑣 .
𝜕𝑣⃗ 

𝜕𝑞𝑖
=
1

2

𝜕𝑣⃗ 2

𝜕𝑞𝑖
     ⇒     

𝑑𝑣⃗ 

𝑑𝑡
.
𝜕𝑟 

𝜕𝑞𝑖
=

1

2

𝜕𝑣⃗ 2

𝜕𝑞̇𝑖
−
1

2

𝜕𝑣⃗ 2

𝜕𝑞𝑖
 

Remplaçons par ces expressions dans le deuxième terme, on obtient: 

∑ 𝑚.
𝑑𝑣⃗ 

𝑑𝑡

𝑛
𝑖=1 .

𝜕𝑟 

𝜕𝑞𝑖
𝛿𝑞𝑖 = ∑ 𝑚.𝑛

𝑖=1 (
1

2

𝜕𝑣⃗ 2

𝜕𝑞̇𝑖
−
1

2

𝜕𝑣⃗ 2

𝜕𝑞𝑖
) 𝛿𝑞𝑖  ⇒ 

∑𝑚.
𝑑𝑣 

𝑑𝑡

𝑛

𝑖=1

.
𝜕𝑟 

𝜕𝑞𝑖
𝛿𝑞𝑖 =∑(

1

2
𝑚.
𝜕𝑣 2

𝜕𝑞̇𝑖
−
1

2
𝑚.
𝜕𝑣 2

𝜕𝑞𝑖
)

𝑛

𝑖=1

𝛿𝑞𝑖  

Or  
1

2
𝑚.

𝜕𝑣⃗ 2

𝜕𝑞̇𝑖
=
𝜕𝐸𝐶

𝜕𝑞̇𝑖
   et   

1

2
𝑚.

𝜕𝑣⃗ 2

𝜕𝑞𝑖
=
𝜕𝐸𝐶

𝜕𝑞𝑖
 ; on obtient: ∑ 𝑄𝑖  .

𝑛
𝑖=1 𝛿𝑞𝑖 = ∑ (

𝑑

𝑑𝑡
(
𝜕𝐸𝐶

𝜕𝑞̇𝑖
) −

𝜕𝐸𝐶

𝜕𝑞𝑖
) 𝛿𝑞𝑖

𝑛
𝑖=1  

                                                ⇒    ∑ [(
𝑑

𝑑𝑡
(
𝜕𝐸𝐶

𝜕𝑞̇𝑖
) −

𝜕𝐸𝐶

𝜕𝑞𝑖
) − 𝑄𝑖] 𝛿𝑞𝑖 = 0

𝑛
𝑖=1  

Les coordonnées généralisées sont indépendantes, alors que  les 𝛿𝑞𝑖 sont aussi 

indépendantes; 

𝑑

𝑑𝑡
(
𝜕𝐸𝐶
𝜕𝑞̇𝑖

) −
𝜕𝐸𝐶
𝜕𝑞𝑖

= 𝑄𝑖  

Cette dernière équation est l’équation de Lagrange en termes de l’énergie cinétique. 
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Pour une force conservatrice: 𝐹 𝛼 = −∇⃗⃗ 𝛼𝐸𝑃(𝑟 1, 𝑟 2, … , 𝑟 𝛼) = −
𝜕

𝜕𝑟 𝛼
𝐸𝑃(𝑟 1, 𝑟 2, … , 𝑟 𝛼) 

notation: (𝐹𝛼)𝑘 = −
𝜕

𝑟𝛼,𝑘
𝐸𝑃(𝑟 1, 𝑟 2, … , 𝑟 𝛼 ); 𝑘 = 1, 2, 3 et 𝛼 = 1, 2,… , 𝑁 

Le travail effectué pour changer l'état du système de 𝑟 𝛼 à 𝑟 ′𝛼  est: 𝐸𝑃(𝑟 𝛼) − 𝐸𝑃(𝑟 
′
𝛼) 

La dérivée du potentiel par rapport à 𝑞𝑖  peut se faire de la manière suivante: 

𝜕𝐸𝑃
𝜕𝑞𝑖 

= ∑
𝜕𝐸𝑃
𝜕𝑟 𝛼

𝑁

𝛼=1

.
𝜕𝑟 𝛼
𝜕𝑞𝑖 

+
𝜕𝐸𝑃
𝜕𝑟 𝛼

𝜕𝑟 𝛼
𝜕𝑡

=  −∑𝐹 𝛼

𝑁

𝛼=1

.
𝜕𝑟 𝛼
𝜕𝑞𝑖 

 =  −𝑄𝑖𝑐  

On suppose dans ce cas que parmi  les forces extérieures qui s’exercent sur chacune des 

particules  il y a des forces dérivent d’un potentiel 𝐸𝑃 , et que ce potentiel ne dépend que 

des coordonnées généralisées 𝐸𝑃(𝑞𝑖). Les composantes de la force généralisée peuvent 

se mettre sous la forme: 

𝑄𝑖 = ∑ 𝐹 𝛼 .
𝜕𝑟 𝛼

𝜕𝑞𝑖

𝑁
𝛼 = ∑ (𝐹 𝑐→𝛼 + 𝐹 𝑁𝑐→𝛼)

𝜕𝑟 𝛼

𝜕𝑞𝑖

𝑁
𝛼   ⇒  𝑄𝑖 = ∑ 𝐹 𝑐→𝛼 .

𝜕𝑟 𝛼

𝜕𝑞𝑖

𝑁
𝛼 + ∑ 𝐹 𝑁𝑐→𝛼 .

𝜕𝑟 𝛼

𝜕𝑞𝑖

𝑁
𝛼 = −

𝜕𝐸𝑃

𝜕𝑞𝑖
+

𝑄𝑖𝑁𝑐  

Revenons à l’équation de Lagrange précédente; 
𝑑

𝑑𝑡
(
𝜕𝐸𝐶

𝜕𝑞̇𝑖
) −

𝜕𝐸𝐶

𝜕𝑞𝑖
= −

𝜕𝐸𝑃

𝜕𝑞𝑖
+𝑄𝑖𝑁𝑐  

Et comme 
𝜕𝐸𝑃

𝜕𝑞̇𝑖
= 0 , on peut écrire: 

𝑑

𝑑𝑡
(
𝜕(𝐸𝐶−𝐸𝑃)

𝜕𝑞̇𝑖
) −

𝜕(𝐸𝐶−𝐸𝑃)

𝜕𝑞𝑖
= 𝑄𝑖𝑁𝑐  

Par définition : 𝐸𝐶 − 𝐸𝑃 ≡ ℒ est appelé le lagrangien du système, et les équations 

d’Euler-Lagrange devient : 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑞̇𝑖
) −

𝜕ℒ

𝜕𝑞𝑖
= 𝑄𝑖𝑁𝑐  

Pour un système qui possède 𝑛 degrés de liberté,  on a un ensemble de 𝑛 équations 

différentielle de 2𝑒𝑚𝑒 ordre. 

Exemples: 

1. Pendule simple: 

Les équations de Lagrange: 
𝑑

𝑑𝑡
(
𝜕𝐸𝐶

𝜕𝑞̇𝑖
) −

𝜕𝐸𝐶

𝜕𝑞𝑖
= 𝑄𝑖  

La force généralisée 𝑄𝑖: 𝑄𝑖 = ∑ 𝐹 𝑒𝑥𝑡.
𝜕𝑟 

𝜕𝑞𝑖

𝑛
𝑖=1  ; avec : 𝑞1 = 𝜃 (𝑛 = 1). 

Le vecteur position en fonction de la  coordonnée généralisée est: 𝑟 = 𝑙𝑐𝑜𝑠𝜃𝑖 + 𝑙𝑠𝑖𝑛𝜃𝑗  

Considérons un déplacement virtuel 𝛿𝑟 : 𝛿𝑟 =
𝜕𝑟 

𝜕𝜃
𝛿𝜃 = (−𝑙𝑠𝑖𝑛𝜃. 𝑖 + 𝑙𝑐𝑜𝑠𝜃𝑗 )𝛿𝜃 = 𝑙𝛿𝜃. 𝑢⃗ 𝜃  

Le travail virtuel est donné par:  
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𝛿𝑊 = 𝑚𝑔 . 𝛿𝑟 = (𝑚𝑔𝑐𝑜𝑠𝜃 𝑢⃗ 𝑟 −𝑚𝑔𝑠𝑖𝑛𝜃 𝑢⃗ 𝜃). 𝑙𝛿𝜃. 𝑢⃗ 𝜃 = −𝑚𝑔𝑙𝛿𝜃𝑠𝑖𝑛𝜃 

La seule force qui travail est le poids, (𝑇⃗ ⊥ 𝛿𝑟 ).  

Et comme: 𝛿𝑊 = 𝑄𝜃. 𝛿𝜃⇒𝑄𝜃 = −𝑚𝑔𝑙𝑠𝑖𝑛𝜃. 

L’énergie cinétique 𝐸𝐶 : 𝐸𝐶 =
1

2
𝑚𝑣 2 ;  

𝑣 =
𝑑𝑟 

𝑑𝑡
=

𝑑𝑟 

𝑑𝜃
.
𝑑𝜃

𝑑𝑡
⇒𝑣 =  𝜃̇(−𝑙𝑠𝑖𝑛𝜃. 𝑖 + 𝑙𝑐𝑜𝑠𝜃𝑗 )⇒ 𝑣 2 = 𝑙2𝜃̇2 

⇒ 𝐸𝐶 =
1

2
𝑚𝑙2𝜃̇2 ⇒ {

𝜕𝐸𝐶

𝜕𝜃̇
=  𝑚𝑙2𝜃̇  ⇒  

𝑑

𝑑𝑡
(
𝜕𝐸𝐶

𝜕𝜃̇
) = 𝑚𝑙2𝜃̈

𝜕𝐸𝐶

𝜕𝜃
= 0

 

Donc l’équation de Lagrange s’écrit: 
𝑑

𝑑𝑡
(
𝜕𝐸𝐶

𝜕𝜃̇
) −

𝜕𝐸𝐶

𝜕𝜃
= 𝑄𝜃  ⇒ 𝑚𝑙2𝜃̈ =  −𝑚𝑔𝑙𝑠𝑖𝑛𝜃 

Et l’équation du mouvement est: 𝜃̈ +
𝑔

𝑙
𝑠𝑖𝑛𝜃 = 0 

𝜃̈ + 𝜔2𝑠𝑖𝑛𝜃 = 0 ; 𝜔 = √
𝑔

𝑙
 

2. Un plan incliné, en mouvement: 

Nous choisirons des variables dynamiques pour 

décrire le système 𝑚1(𝑥1 𝑦1 𝑧1) et 

𝑚2(𝑥2 𝑦2 𝑧2). Les contraintes: 

 Le mouvement a lieu dans un plan, donc 

𝑧1 = 𝑧2 = 𝑐𝑡𝑒. 

 𝑦2 = 𝑐𝑡𝑒. 

 {
𝑥1 = 𝑑2 + 𝑑1𝑠𝑖𝑛𝜃
𝑦1 = ℎ − 𝑑1𝑐𝑜𝑠𝜃

⇒𝑡𝑔𝜃 =
𝑦1

𝑑2−𝑥1
 

On a 4 contraintes ⇒𝑑𝑑𝑙 = 6 − 4 = 2 

On choisit comme coordonnées généralisées: 𝑞1 = 𝑑1  et  𝑞2 = 𝑑2. 

L’énergie cinétique du système: 𝑇 = 𝑇1 + 𝑇2 

{
𝑇1 =  

1

2
𝑚1𝑣 1

2
= 

1

2
𝑚1 (𝑑1̇

2
+ 𝑑2̇

2
+ 2𝑑1̇𝑑2 𝑠𝑖𝑛𝜃̇ )

𝑇2 = 
1

2
𝑚2𝑣 2

2
=  

1

2
𝑚2𝑑2̇

2   

⇒  𝑇 =
1

2
𝑚2𝑑2̇

2
+
1

2
𝑚1 (𝑑1̇

2
+ 𝑑2̇

2
+ 2𝑑1̇𝑑2 𝑠𝑖𝑛𝜃̇ ) 

L’énergie potentielle du système: 𝑉 = 𝑉1 + 𝑉2  

{
𝑉1 =  𝑚𝑔(ℎ − 𝑑1𝑐𝑜𝑠𝜃)

𝑉2 =  0
⇒ 𝑉 = 𝑚𝑔(ℎ − 𝑑1𝑐𝑜𝑠𝜃) 
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Le lagrangien du système:𝐿 = 𝑇 − 𝑉 

⇒ 𝐿 =  
1

2
𝑚2𝑑2̇

2
+
1

2
𝑚1 (𝑑1̇

2
+ 𝑑2̇

2
+ 2𝑑1̇𝑑2 𝑠𝑖𝑛𝜃̇ ) −  𝑚𝑔(ℎ − 𝑑1𝑐𝑜𝑠𝜃) 

Dans l’expression du lagrangien en tenant pas les termes qui sont constants (𝑚𝑔ℎ =

𝑐𝑡𝑒), donc le lagrangien peut s’écrire: 

𝐿 =  
1

2
𝑚2𝑑2̇

2
+
1

2
𝑚1 (𝑑1̇

2
+ 𝑑2̇

2
+ 2𝑑1̇𝑑2 𝑠𝑖𝑛𝜃̇ ) +  𝑚𝑔𝑑1𝑐𝑜𝑠𝜃 

Les équations de Lagrange sont: {

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑑1̇
) −

𝜕𝐿

𝜕𝑑1
= 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑑2̇
) −

𝜕𝐿

𝜕𝑑2
= 0

 

{
𝑚1𝑑1̈ +𝑚1𝑑2̇𝑠𝑖𝑛𝜃 −  𝑚𝑔𝑠𝑖𝑛𝜃 = 0

(𝑚1 +𝑚2)𝑑2̈ − 𝑚1𝑑1̇ 𝑠𝑖𝑛𝜃̇ = 0
 

Moment Conjugué: 

Considérons un système mécanique à 𝑛 𝑑𝑑𝑙, décrit par le Lagrangien ℒ(𝑞𝑖 , 𝑞̇𝑖 , 𝑡). On 

définit le moment conjugué 𝑝𝑖  comme: 𝒑𝒊 ≡  
𝝏𝓛

𝝏𝒒̇𝒊
 

L’équation d’Euler-Lagrange est donnée par: 
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑞𝑖̇
) =

𝜕ℒ

𝜕𝑞𝑖
. 

Si  𝐿 est indépendant de 𝑞𝑖  cela signifie que le moment correspondant 𝑝𝑖  doit être une 

constante au cours du temps ou dans d'autres mots est conservé. 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑞𝑖̇
) =

𝜕𝐿

𝜕𝑞𝑖
⇔{

𝑑𝑝 

𝑑𝑡
= 𝑓 

𝑑𝜎⃗⃗ /𝑂

𝑑𝑡
= 𝜏 /𝑂(𝑓

 )
 

Coordonnée Cyclique : Dans le cas d’un système qui ne subit que des forces 

conservative, et si le lagrangien du system ne dépend pas de la coordonnée généralisée 

𝑞𝑖  ⇒ 
𝜕ℒ

𝜕𝑞𝑖
= 0, alors ; 𝑝𝑖 = 𝑐𝑡𝑒 

𝑝𝑖  est dit constante du mouvement ou une intégrale première, et la coordonnée𝑞𝑖  est 

appelée une coordonnée cyclique. 

Exemple 1: 

Mouvement d’une masse 𝑚 subit à une force 𝐹 =  −𝑘𝑟  sur la surface 

latérale d’un cylindre de rayon 𝑅. 

Les cordonnées généralisées 𝜑 et 𝑧. 
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L’énergie cinétique: 𝑇 = 
1

2
𝑚 𝑣 2 

𝑣 = 𝜌̇𝑒 𝜌 + 𝜌 𝜑̇𝑒 𝜑 + 𝑧̇𝑘⃗  ; 𝜌 = 𝑅 = 𝑐𝑡𝑒 ⇒ 𝜌̇ = 0   ⇒   𝑇 =  
1

2
𝑚 (𝜌2𝜑̇2 + 𝑧̇2) 

L’énergie potentielle: 𝐹 =  −𝑘𝑟 = −∇⃗⃗  𝑉   ⇒  ∇⃗⃗  𝑉 =  
𝑑𝑉

𝑑𝑟
𝑒 𝑟 = 𝑘 𝑟𝑒 𝑟  

𝑑𝑉 = 𝑘 𝑟 𝑑𝑟 ⇒ 𝑉(𝑟) =
1

2
𝑘 𝑟2 =

1

2
𝑘(𝑅2 + 𝑧2) 

Le lagrangien est: 𝐿 = 𝑇 − 𝑉⇒𝐿 =
1

2
𝑚 (𝜌2𝜑̇2 + 𝑧̇2) −

1

2
𝑘(𝑅2 + 𝑧2) 

Les moments conjugués aux coordonnées généralisées 𝜑 et 𝑧 sont: 

{
 

 𝑝𝜑 =
𝜕𝐿

𝜕𝜑̇
= 𝑚𝜌2𝜑̇

𝑝𝑧 =
𝜕𝐿

𝜕𝑧̇
= 𝑚𝑧̇

 

Nous interprétons 𝑝𝜑 = 𝑚𝜌
2𝜑̇ comme le moment angulaire, et 𝑝𝑧 = 𝑚𝑧̇ le moment 

linéaire (la quantité du mouvement) de la masse ponctuelle 𝑚. 

𝑝𝜑 et 𝑝𝑧  sont les moments généralisés conjugués aux coordonnées 𝜑 et 𝑧 

respectivement, (𝑝𝜑 et 𝑝𝑧  sont appelés aussi les moments canoniques). 

Les équations d’Euler-Lagrange:  

{

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜑̇
) −

𝜕𝐿

𝜕𝜑
= 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑧̇
) −

𝜕𝐿

𝜕𝑧
= 0

⇒{

𝑑

𝑑𝑡
(𝑚𝜌2𝜑̇) = 0… . . (1)

𝑧̈ +
𝑘

𝑚
𝑧 = 0…… . . . (2)

 

(1) : Le moment angulaire est conservé. 

(2) : Équation différentielle de 2è𝑚𝑒 ordre qui a la forme standard de l’équation d’un 

simple oscillateur harmonique.  

Le mouvement de 𝑚: la particule orbite autour d'un cylindre en constante vitesse 

angulaire où verticalement le mouvement est ce d’un oscillateur harmonique simple. 

Question: Y a-t-il une coordonnée cyclique et par conséquent une intégrale première? 

On a {

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝜑̇
) −

𝜕𝐿

𝜕𝜑
= 0

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝑧̇
) −

𝜕𝐿

𝜕𝑧
= 0

         ⇒        {

𝑑

𝑑𝑡
(𝑚𝜌2𝜑̇) = 0 ,           

𝜕𝐿

𝜕𝜑
= 0

𝑑

𝑑𝑡
(𝑚𝑧̇) + 𝑘𝑧 = 0,        

𝜕𝐿

𝜕𝑧
= −𝑘𝑧

 

⇒   {

𝑑

𝑑𝑡
(𝑝𝜑) = 0 ,           

𝜕𝐿

𝜕𝜑
= 0

𝑑

𝑑𝑡
(𝑝𝑧) ≠ 0,        

𝜕𝐿

𝜕𝑧
= −𝑘𝑧
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⇒ {
𝑝𝜑 = 𝑐𝑡𝑒  𝜑  𝑒𝑠𝑡 𝑢𝑛𝑒 𝑐𝑜𝑜𝑟𝑑𝑜𝑛𝑛é𝑒 𝑐𝑦𝑐𝑙𝑖𝑞𝑢𝑒

𝑝𝑧 ≠ 𝑐𝑡𝑒     𝑧  𝑛
′𝑒𝑠𝑡  𝑝𝑎𝑠 𝑢𝑛𝑒 𝑐𝑜𝑜𝑟𝑑𝑜𝑛𝑛é𝑒 𝑐𝑦𝑐𝑙𝑖𝑞𝑢𝑒

 

⇒ 𝑝𝜑 est constant, on dit que 𝑝𝜑 est une intégrale première.  

Exemple 2: Le pendule sphérique: 

Nous avons 3 paramètres de configuration, mais nous avons aussi une 

contrainte𝑙 = 𝑐𝑡𝑒. 

⇒ diminuer les degrés de la liberté à deux. 

𝑑𝑑𝑙 = 3 − 1 = 2⇒ (𝑞1, 𝑞2) ≡  (𝜃, 𝜑) 

Écrire l'énergie cinétique en fonction des coordonnées généralisées (𝜃, 𝜑): 

𝑇 =
1

2
𝑚𝑣 2 = 

1

2
𝑚 (𝑥̇2 + 𝑦̇2 + 𝑧̇2)⇒𝑇 =

1

2
𝑚( 𝑙⏟̇

=0

𝑒 𝑟 + 𝑙 𝜃̇𝑒 𝜃 + 𝑙. 𝜑̇. 𝑠𝑖𝑛𝜃 𝑒 𝜑)

2

 

⇒ 𝑇 =
1

2
𝑚 (𝑙2𝜃̇2 + 𝑙2. 𝜑̇2. 𝑠𝑖𝑛2𝜃) 

L’énergie potentielle: 𝑉 = 𝑚𝑔𝑙 (1 − 𝑐𝑜𝑠𝜃). Nous pouvons éliminer le terme 𝑚𝑔𝑙 

d’expression du lagrangien parce qu’il est un constant. 

Le lagrangien sera: ℒ = 𝑇 − 𝑉 =
1

2
𝑚 (𝑙2𝜃̇2 + 𝑙2. 𝜑̇2. 𝑠𝑖𝑛2𝜃) +  𝑚𝑔𝑙𝑐𝑜𝑠𝜃  

Question: Y a-t-il une coordonnée cyclique? 

Réponse: Oui, 𝜑 est une coordonnée cyclique, d’où 
𝜕𝐿

𝜕𝜑
= 0, nous pouvons 

immédiatement obtenir que: 𝑝𝜑 =  
𝜕𝐿

𝜕𝜑̇
= 𝑚𝑙2 𝜑̇𝑠𝑖𝑛2𝜃⏟    

=𝑆

= 𝑐𝑡𝑒 ⇒ 𝑝𝜑 = 𝑚𝑙
2 ; 𝑆: Est le spin. 

𝜃: N’est pas une coordonnée cyclique; 
𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝜃̇
)  −

𝜕ℒ

𝜕𝜃
= 0  

⇒ 𝑚𝑙2𝜑̇2𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜃 − 𝑚𝑔𝑙 𝑠𝑖𝑛𝜃 −𝑚𝑙2𝜃̈ = 0 ⇒ 𝜃̈ + 
𝑔

𝑙
 𝑠𝑖𝑛𝜃 − 𝜑̇2𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝜃 = 0  

Or, 𝜑̇𝑠𝑖𝑛2𝜃 = 𝑐𝑡𝑒 = 𝑆 ⇒ 𝜃̈ + 
𝑔

𝑙
𝑠𝑖𝑛𝜃 − 𝑆2

𝑐𝑜𝑠𝜃

𝑠𝑖𝑛3𝜃
= 0 

 

Mécanique de Hamilton; (Formalisme de Hamilton) 
 

1- Fonction de Hamilton (L’hamiltonien d’un système): 
On considère un système dynamique avec un nombre de  degrés de liberté égal à 

𝑛, imaginons que la dynamique est gouverné par le Lagrangien ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡). La dérivation 
de lagrangien ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡) par rapport au temps: 
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𝑑ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡)

𝑑𝑡
=  ∑(

𝜕ℒ

𝜕𝑞𝑖
𝑞̇𝑖 +

𝜕ℒ

𝜕𝑞̇𝑖
𝑞̈𝑖)

𝑛

𝑖=1

+
𝜕ℒ

𝜕𝑡
 

Or, 
𝜕ℒ

𝜕𝑞̇𝑖
= 𝑝𝑖  , et  

𝜕ℒ

𝜕𝑞𝑖
= 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑞̇𝑖
) =

𝑑𝑝𝑖

𝑑𝑡
= 𝑝̇𝑖  

Donc,  

𝑑ℒ(𝑞𝑖, 𝑞̇𝑖 , 𝑡)

𝑑𝑡
=  ∑(𝑝̇𝑖𝑞̇𝑖 + 𝑝𝑖𝑞̈𝑖)

𝑛

𝑖=1

+
𝜕ℒ

𝜕𝑡
 

Et comme: 
𝑑

𝑑𝑡
(𝑝𝑖. 𝑞̇𝑖) = 𝑝̇𝑖𝑞̇𝑖 + 𝑝𝑖𝑞̈𝑖, alors: 

 
𝑑ℒ(𝑞𝑖,𝑞̇𝑖,𝑡)

𝑑𝑡
=  ∑

𝑑

𝑑𝑡
(𝑝𝑖. 𝑞̇𝑖)

𝑛
𝑖=1 +

𝜕ℒ

𝜕𝑡
⇒−

𝜕ℒ

𝜕𝑡
= 

𝑑

𝑑𝑡
[∑ (𝑝𝑖 . 𝑞̇𝑖)

𝑛
𝑖=1 − ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡)] 

Si le lagrangien ne dépend pas explicitement du temps; c.-à-d.: 
𝝏𝓛

𝝏𝒕
= 𝟎, donc: 

 

𝑑

𝑑𝑡
[∑(𝑝𝑖 . 𝑞̇𝑖)

𝑛

𝑖=1

− ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡)] = 0 

 
Dans ce cas la quantité ∑ (𝑝𝑖 . 𝑞̇𝑖)

𝑛
𝑖=1 − ℒ(𝑞𝑖 , 𝑞̇𝑖 , 𝑡) est conservée. 

Nous définissons le hamiltonien de ce système:  

𝐻 = ∑(𝑝𝑖 . 𝑞̇𝑖)

𝑛

𝑖=1

− ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡) ≡ 𝐻(𝑞𝑖, 𝑞̇𝑖; 𝑝𝑖; 𝑡) 

Si  
𝜕ℒ

𝜕𝑡
= 0  ⇒ le hamiltonien est conservé; 

𝑑𝐻

𝑑𝑡
= 0 

 
Si 𝑟 𝑖 ne dépend que des 𝑞𝑖 , mais pas en temps 𝑡 c.-à-d.: 𝑟 = 𝑟 (𝑞𝑖), alors: 

𝑣 𝑖 =
𝑑𝑟 𝑖
𝑑𝑡
=  ∑

𝜕𝑟 𝑖
𝜕𝑞𝑗

𝑛

𝑗=1

𝑞̇𝑗  

Et l’énergie cinétique du système sera:  

𝑇 =
1

2
∑𝑚𝑖𝑣 𝑖

2

𝑛

𝑖=1

=
1

2
∑𝑚𝑖𝑥̇𝑖

2

𝑛

𝑖=1

=
1

2
∑ 𝑚

𝑛

𝑗,𝑘=1

(
𝜕𝑥𝑖
𝜕𝑞𝑗

)(
𝜕𝑥𝑖
𝜕𝑞𝑘

)
⏟        

𝑝𝑘

𝑞̇𝑗𝑞̇𝑘  

𝑇 =
1

2
∑𝑝𝑖𝑞̇𝑖

𝑛

𝑖

 

𝐻 = ∑ (𝑝𝑖 . 𝑞̇𝑖)
𝑛
𝑖=1 − ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡) =  2𝑇 − (𝑇 − 𝑉) ⇒   𝐻 =  𝑇 + 𝑉 

 
Les équations canoniques; les équations de Hamilton: 
𝐻 dépend des variables 𝑞𝑖 , 𝑞̇𝑖 , 𝑝𝑖et 𝑡, donc la différentielle totale de la fonction 
𝐻(𝑞𝑖, 𝑞̇𝑖; 𝑝𝑖; 𝑡) est: 

  

𝑑𝐻(𝑞𝑖, 𝑞̇𝑖; 𝑝𝑖; 𝑡) =  ∑
𝜕𝐻

𝜕𝑞𝑖

𝑛

𝑖=1

𝑑𝑞𝑖 +∑
𝜕𝐻

𝜕𝑞̇𝑖

𝑛

𝑖=1

𝑑𝑞̇𝑖 + ∑
𝜕𝐻

𝜕𝑝

𝑛

𝑖=1

𝑑𝑝𝑖 + 
𝜕𝐻

𝜕𝑡
 

Et à partir de la définition du l’hamiltonien: 𝐻 =  ∑ (𝑝𝑖 . 𝑞̇𝑖)
𝑛
𝑖=1 − ℒ(𝑞𝑖 , 𝑞̇𝑖 , 𝑡), on peut écrire 

aussi: 
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𝑑𝐻(𝑞𝑖 , 𝑞̇𝑖; 𝑝𝑖; 𝑡) =∑𝑑𝑝𝑖 . 𝑞̇𝑖

𝑛

𝑖=1

+∑𝑝𝑖 . 𝑑𝑞̇𝑖

𝑛

𝑖=1

− 𝑑ℒ(𝑞𝑖 , 𝑞̇𝑖 , 𝑡) 

Or, 𝑑ℒ(𝑞𝑖, 𝑞̇𝑖, 𝑡) = ∑
𝜕ℒ

𝜕𝑞𝑖

𝑛
𝑖=1 𝑑𝑞𝑖 + ∑

𝜕ℒ

𝜕𝑞̇𝑖

𝑛
𝑖=1 𝑑𝑞̇𝑖 + 

𝜕ℒ

𝜕𝑡
, donc: 

 

𝑑𝐻(𝑞𝑖 , 𝑞̇𝑖; 𝑝𝑖; 𝑡) =  ∑
𝜕𝐻

𝜕𝑞𝑖

𝑛

𝑖=1

𝑑𝑞𝑖 +∑
𝜕𝐻

𝜕𝑞̇𝑖

𝑛

𝑖=1

𝑑𝑞̇𝑖 + ∑
𝜕𝐻

𝜕𝑝

𝑛

𝑖=1

𝑑𝑝𝑖 + 
𝜕𝐻

𝜕𝑡

= ∑𝑞̇𝑖  𝑑𝑝𝑖

𝑛

𝑖=1

+∑𝑝𝑖  𝑑𝑞̇𝑖

𝑛

𝑖=1

−∑
𝜕ℒ

𝜕𝑞𝑖

𝑛

𝑖=1

𝑑𝑞𝑖 −∑
𝜕ℒ

𝜕𝑞̇𝑖

𝑛

𝑖=1

𝑑𝑞̇𝑖 − 
𝜕ℒ

𝜕𝑡
 

Or, 
𝜕ℒ

𝜕𝑞𝑖
= 𝑝̇𝑖  et 

𝜕ℒ

𝜕𝑞̇𝑖
= 𝑝𝑖 ,  

 

∑
𝜕𝐻

𝜕𝑞𝑖

𝑛

𝑖=1

𝑑𝑞𝑖 +∑
𝜕𝐻

𝜕𝑞̇𝑖

𝑛

𝑖=1

𝑑𝑞̇𝑖 + ∑
𝜕𝐻

𝜕𝑝

𝑛

𝑖=1

𝑑𝑝𝑖 + 
𝜕𝐻

𝜕𝑡

=∑𝑞̇𝑖  𝑑𝑝𝑖

𝑛

𝑖=1

+ (∑𝑝𝑖  𝑑𝑞̇𝑖

𝑛

𝑖=1

) −∑𝑝̇𝑖

𝑛

𝑖=1

𝑑𝑞𝑖 − (∑𝑝𝑖

𝑛

𝑖=1

𝑑𝑞̇𝑖) − 
𝜕ℒ

𝜕𝑡

=∑𝑞̇𝑖  𝑑𝑝𝑖

𝑛

𝑖=1

−∑𝑝̇𝑖

𝑛

𝑖=1

𝑑𝑞𝑖 − 
𝜕ℒ

𝜕𝑡
 

∑
𝜕𝐻

𝜕𝑞𝑖

𝑛

𝑖=1

𝑑𝑞𝑖 +∑
𝜕𝐻

𝜕𝑞̇𝑖

𝑛

𝑖=1

𝑑𝑞̇𝑖 + ∑
𝜕𝐻

𝜕𝑝

𝑛

𝑖=1

𝑑𝑝𝑖 + 
𝜕𝐻

𝜕𝑡

=∑𝑞̇𝑖  𝑑𝑝𝑖

𝑛

𝑖=1

−∑𝑝̇𝑖

𝑛

𝑖=1

𝑑𝑞𝑖 − 
𝜕ℒ

𝜕𝑡
+ 0. 𝑑𝑞̇𝑖  

Identifié une correspondance (par rapport aux termes), nous obtenons: 
 

{

𝜕𝐻

𝜕𝑞𝑖
= −𝑝̇𝑖

𝜕𝐻

𝜕𝑝𝑖
= 𝑞̇𝑖

      Et     {

𝜕𝐻

𝜕𝑞̇𝑖
= 0

𝜕𝐻

𝜕𝑡
= − 

𝜕ℒ

𝜕𝑡

 

L’ensemble de 2𝑛 équations {
𝜕𝐻

𝜕𝑞𝑖
= −𝑝̇𝑖;  

𝜕𝐻

𝜕𝑝𝑖
= 𝑞̇𝑖} sont appelées les équations du 

mouvement de Hamilton ou les équations canoniques. Ces équations sont équivalentes 
aux équations de Lagrange. 

 
 Pour le formalisme d’Euler-Lagrange: il y a 𝑛 équations différentielles de 

mouvement de 2è𝑚𝑒 ordre. 
 Pour le formalisme de Hamilton: il y a 2𝑛 équations différentielles de mouvement 

de 1𝑒𝑟  ordre. 
Et en particulier, il y a exactement les mêmes conditions initiales (données) 
requises pour spécifier une solution. 
 

Exemple 1: Pendule Sphérique 

 L’énergie cinétique est donnée par: 𝑇 =
1

2
𝑚 (𝑙2𝜃̇2 + 𝑙2. 𝜑̇2. 𝑠𝑖𝑛2𝜃), 

 L’énergie potentielle est donnée par: 𝑉 = 𝑚𝑔𝑙 (1 − 𝑐𝑜𝑠𝜃) 
 Le Lagrangien sera: 
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ℒ = 𝑇 − 𝑉 =
1

2
𝑚 (𝑙2𝜃̇2 + 𝑙2. 𝜑̇2. 𝑠𝑖𝑛2𝜃) +  𝑚𝑔𝑙𝑐𝑜𝑠𝜃, 

 Les moments conjugués: 𝑝𝑖 = 
𝜕ℒ

𝜕𝑞̇𝑖
 ; 𝑞̇𝑖 = 𝜃̇, 𝜑̇ 

⇒{
𝑝𝜃 =

𝜕ℒ

𝜕𝜃̇
= 𝑚𝑙2𝜃̇

𝑝𝜑 =
𝜕ℒ

𝜕𝜑̇
= 𝑚𝑙2𝜑̇𝑠𝑖𝑛2𝜃

 

 Le temps 𝑡 est ignorable⇒ L’hamiltonien est l’énergie totale du système: 

𝐻 =∑(𝑝𝑖 . 𝑞̇𝑖)

2

𝑖=1

− ℒ(𝑞𝑖, 𝑞̇𝑖 , 𝑡)

= 𝑝𝜃𝜃̇ + 𝑝𝜑𝜑̇ − 
1

2
𝑚 (𝑙2𝜃̇2 + 𝑙2. 𝜑̇2. 𝑠𝑖𝑛2𝜃) −𝑚𝑔𝑙𝑐𝑜𝑠𝜃 

⇒𝐻 =
𝑝𝜃

2

2𝑚𝑙2
+

𝑝𝜑
2

2𝑚𝑙2𝑠𝑖𝑛2𝜃
–𝑚𝑔𝑙𝑐𝑜𝑠𝜃 

On aura donc 2𝑛 = 2.2 = 4 équations de Hamilton: 

{
𝜃̇ =

𝜕𝐻

𝜕𝑝𝜃
=

𝑝𝜃

𝑚𝑙2

𝑝̇𝜃 = −
𝜕𝐻

𝜕𝜃
=

𝑝𝜑
2𝑐𝑜𝑠𝜃

𝑚𝑙2𝑠𝑖𝑛3𝜃
–𝑚𝑔𝑙𝑠𝑖𝑛𝜃

   ; {
𝜑̇ =

𝜕𝐻

𝜕𝑝𝜑
=

𝑝𝜃

𝑚𝑙2𝑠𝑖𝑛2𝜃

𝑝̇𝜑 = −
𝜕𝐻

𝜕𝜑
= 0    

⇒  𝑝𝜑 = 𝑐𝑡𝑒 

Donc l’équation du mouvement: 

𝑝̇𝜃 = 𝑚𝑙
2𝜃̈ ⇒ 𝑚𝑙2𝜃̈ = 

𝑝𝜑
2𝑐𝑜𝑠𝜃

𝑚𝑙2𝑠𝑖𝑛3𝜃
–𝑚𝑔𝑙𝑠𝑖𝑛𝜃 

⇒ 𝜃̈ +
𝑔

𝑙
𝑠𝑖𝑛𝜃 − 

𝑝𝜑
2𝑐𝑜𝑠𝜃

𝑚2𝑙4𝑠𝑖𝑛3𝜃
 = 0 

Exemple 2: Mouvement d’un Projectile 
L’énergie cinétique et potentielle sont: 

𝑇 =
𝑝𝑥
2

2𝑚
+
𝑝𝑦
2

2𝑚
 et 𝑉 = 𝑚𝑔𝑦 

t est ignorable ⇒ 𝐻 = 𝑇 + 𝑉  

⇒𝐻 =
𝑝𝑥
2

2𝑚
+
𝑝𝑦

2

2𝑚
+𝑚𝑔𝑦 

Les équations du mouvement sont:  
 

{
𝑥̇ =

𝜕𝐻

𝜕𝑝𝑥
=
𝑝𝑥

𝑚

𝑝̇𝑥 = −
𝜕𝐻

𝜕𝑥
= 0

 ⇒ {
𝑝𝑥 = 𝑚𝑥̇

𝑝̇𝑥 = 𝑚𝑥̈ = 0
 ⇒ {

𝑝𝑥 = 𝑚𝑥̇
𝑥̈ = 0

 ⇒ 𝑝𝑥 = 𝑚𝑥̇ = 𝑐𝑡𝑒 

 
… Mouvement rectiligne uniforme suivant l’axe (𝑂𝑥).  

{
𝑦̇ =

𝜕𝐻

𝜕𝑝𝑦
=
𝑝𝑦

𝑚

𝑝̇𝑦 = −
𝜕𝐻

𝜕𝑦
= 0

 ⇒ {
𝑝𝑦 = 𝑚𝑦̇

𝑝̇𝑦 = −𝑚𝑔 = 𝑚𝑦̈
 ⇒ {

𝑝𝑦 = 𝑚𝑦̇

𝑦̈ = −𝑔
 ⇒ 𝑝𝑦 = 𝑚𝑦̇ ≠ 𝑐𝑡𝑒 

…Mouvement rectiligne changeant régulièrement suivant l’axe (𝑂𝑦).  
 
L’espace de phases et le portrait de phase: 
Dans la formulation Hamiltonienne est l'espace (𝑞𝑖 , 𝑝𝑖) de 2𝑛-dimension, connu comme 
l'espace de phase du système; une précise d'un point dans l'espace de phase peut 
spécifier un état du système, 
Exemple 1: Problème à 1-dimension, dont l’hamiltonien est donné par: 

𝐻 =
1

2
(𝑝2 + 𝑞2)⇒

𝑑𝐻

𝑑𝑡
= 0 ⇒ 𝐻 = 𝑐𝑡𝑒 

Nous imaginons un espace de phase de 2. 𝑑𝑖𝑚; (𝑞, 𝑝). 

https://context.reverso.net/الترجمة/الفرنسية-العربية/projectile
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𝑝2 + 𝑞2 = 2𝐻 : Un cercle de rayon √2𝐻 dans 
l’espace de phase. 
Alors le mouvement du système se trouve en 
voyant (𝑞̇, 𝑝̇) qui sont des points dans la 
direction du vecteur perpendiculaire au vecteur 

∇⃗⃗ 𝐻. 

(𝑞̇, 𝑝̇) =  (
𝜕𝐻

𝜕𝑝
, −

𝜕𝐻

𝜕𝑞
) = (𝑝, −𝑞)est le flux 

hamiltonien ; 
 La dynamique est un flux sur l'espace 
de phase. 
 

Les Crochets de Poisson:  
 

Considérons deux fonctions de l'espace de phase:𝑓(𝑝𝑖, 𝑞𝑖) et 𝑔(𝑝𝑖 , 𝑞𝑖), on définit 
les crochets de Poisson par: 

{𝑓, 𝑔} =  ∑(
𝜕𝑓

𝜕𝑞𝑖
.
𝜕𝑔

𝜕𝑝𝑖
−
𝜕𝑓

𝜕𝑝𝑖
.
𝜕𝑔

𝜕𝑞𝑖
)

𝑛

𝑖=1

 

Propriétés: Soient 𝛼 ,𝛽sont des constantes, 𝑓, 𝑔 et ℎ sont des fonctions de l’espace de 
phase ; alors : 

 {𝑓, 𝑔} = − {𝑔, 𝑓} : les crochets de Poisson sont antisymétriques. 
 {𝛼𝑓 + 𝛽𝑔, ℎ} = 𝛼{𝑓, ℎ} + 𝛽{𝑔, ℎ} : les crochets de Poisson sont linéaires. 
 {𝑓. 𝑔, ℎ} = 𝑓{𝑔, ℎ} + {𝑓, ℎ}𝑔 ; Règle de Leibnitz. 
 {{𝑓, 𝑔}, ℎ} + {{ℎ, 𝑓}, 𝑔} + {{𝑔, ℎ}, 𝑓} = 0 ; L'identité de Jacobi. 

 
Les crochets fondamentaux de Poisson : 

 

 {𝑞𝑖 , 𝑞𝑗} =  ∑ (
𝜕𝑞𝑖

𝜕𝑞𝑘
.
𝜕𝑞𝑗

𝜕𝑝𝑘
−

𝜕𝑞𝑖

𝜕𝑝𝑘
.
𝜕𝑞𝑗

𝜕𝑞𝑘
)𝑛

𝑘=1 = ∑ (𝛿𝑖𝑘. 0 − 0. 𝛿𝑗𝑘)
𝑛
𝑘=1 = 0 

 {𝑝𝑖 , 𝑝𝑗} =  ∑ (
𝜕𝑝𝑖

𝜕𝑞𝑘
.
𝜕𝑝𝑗

𝜕𝑝𝑘
−
𝜕𝑝𝑖

𝜕𝑝𝑘
.
𝜕𝑝𝑗

𝜕𝑞𝑘
)𝑛

𝑘=1 = ∑ (0. 𝛿𝑗𝑘 − 𝛿𝑖𝑘. 0)
𝑛
𝑘=1 = 0 

 {𝑞𝑖 , 𝑝𝑗} = 𝛿𝑖𝑗 = {
1 , 𝑠𝑖   𝑖 = 𝑗
0 , 𝑠𝑖   𝑖 ≠ 𝑗

 , 𝛿𝑖𝑗  est le symbole de Kronicker. 

Tel que: 

{𝑞𝑖 , 𝑝𝑗} = ∑(
𝜕𝑞𝑖
𝜕𝑞𝑘

.
𝜕𝑝𝑗
𝜕𝑝𝑘

−
𝜕𝑞𝑖
𝜕𝑝𝑘

.
𝜕𝑝𝑗
𝜕𝑞𝑘

)

𝑛

𝑘=1

= ∑(𝛿𝑖𝑘. 𝛿𝑗𝑘 − 0. 0)

𝑛

𝑘=1

= 𝛿𝑖𝑗  

 
Imaginons que nous avons une certaine fonction 𝐹(𝑞, 𝑝, 𝑡) dans l'espace de phase, 

comment cette fonction changer dans le temps? 
On calcule la différentielle totale de cette fonction, alors: 

𝑑𝐹 =  (∑
𝜕𝐹

𝜕𝑞𝑖
𝑑𝑞𝑖 +

𝜕𝐹

𝜕𝑝𝑖
𝑑𝑝𝑖

𝑛

𝑖=1

+
𝜕𝐹

𝜕𝑡
)𝑑𝑡 

 

⇒ 
𝑑𝐹

𝑑𝑡
=  ∑ (

𝜕𝐹

𝜕𝑞𝑖
.
𝑑𝑞𝑖

𝑑𝑡
+

𝜕𝐹

𝜕𝑝𝑖
.
𝑑𝑝𝑖

𝑑𝑡
)𝑛

𝑖=1 +
𝜕𝐹

𝜕𝑡

𝑑𝑡

𝑑𝑡
 

 

⇒
𝑑𝐹

𝑑𝑡
= ∑ (

𝜕𝐹

𝜕𝑞𝑖
. 𝑞̇𝑖 +

𝜕𝐹

𝜕𝑝𝑖
. 𝑝̇𝑖)

𝑛
𝑖=1 +

𝜕𝐹

𝜕𝑡
 ; Or, 𝑞̇𝑖 =

𝜕𝐻

𝜕𝑝𝑖
 et  𝑝̇𝑖 = −

𝜕𝐻

𝜕𝑞𝑖
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On trouve que : 
𝑑𝐹

𝑑𝑡
=  ∑ (

𝜕𝐹

𝜕𝑞𝑖
.
𝜕𝐻

𝜕𝑝𝑖
−

𝜕𝐹

𝜕𝑝𝑖
.
𝜕𝐻

𝜕𝑞𝑖
)𝑛

𝑖=1 +
𝜕𝐹

𝜕𝑡
 

 

∑(
𝜕𝐹

𝜕𝑞𝑖
.
𝜕𝐻

𝜕𝑝𝑖
−
𝜕𝐹

𝜕𝑝𝑖
.
𝜕𝐻

𝜕𝑞𝑖
)

𝑛

𝑖=1

≡ {𝐹, 𝐻} 

𝑑𝐹

𝑑𝑡
= {𝐹, 𝐻} +

𝜕𝐹

𝜕𝑡
 

 

Donc, 𝐹 est une constante de mouvement; c.-à-d. 
𝑑𝑓

𝑑𝑡
= 0 ⇒ {

{𝐹,𝐻} = 0
𝜕𝐹

𝜕𝑡
= 0

 

 

Transformations canoniques: 
 

Une transformation canonique est un changement de coordonnées (nouveau choix) : 

 {
𝑞𝑖   →   𝑄𝑖(𝑞𝑖 , 𝑝𝑖)

𝑝𝑖   →   𝑃𝑖(𝑞𝑖, 𝑝𝑖)
 

qui préserve les crochets de Poisson entre 𝑝 et 𝑞: {𝑄𝑖, 𝑃𝑗}𝑞,𝑝 = 𝛿𝑖𝑗  

Exemple: la transformation canonique la plus simple: 

{
𝑞𝑖  → 𝑄𝑖(𝑞𝑖)

𝑝𝑖  → 𝑃𝑖(𝑞𝑖, 𝑝𝑖)
 

Ainsi; {𝑄𝑖 , 𝑃𝑗}𝑞,𝑝 =
∑ (

𝜕𝑄𝑖

𝜕𝑞𝑘

𝜕𝑃𝑗

𝜕𝑝𝑘
− 

𝜕𝑄𝑖

𝜕𝑝𝑘⏟
=0

𝜕𝑃𝑗

𝜕𝑞𝑘
)𝑛

𝑘=1 = ∑ (𝛿𝑖𝑘𝛿𝑗𝑘)
𝑛
𝑘=1 = 𝛿𝑖𝑗  

 
Remarque: 

{𝑄𝑖 , 𝑃𝑗}𝑞,𝑝 =∑ (
𝜕𝑄𝑖
𝜕𝑞𝑘

)
⏟  
𝑚𝑎𝑡𝑟𝑖𝑐𝑒

(
𝜕𝑃𝑗
𝜕𝑝𝑘

)
⏟  
𝑚𝑎𝑡𝑟𝑖𝑐𝑒

𝑛

𝑘=1

= 𝛿𝑖𝑗⏟
𝑖𝑑𝑒𝑛𝑡𝑖𝑡é

 

 

⇒ (
𝜕𝑃𝑗

𝜕𝑝𝑘
) = (

𝜕𝑄𝑖

𝜕𝑞𝑘
)
𝑗

−1

⇒𝑃𝑗 = (
𝜕𝑄𝑖

𝜕𝑞𝑘
)
𝑗 𝑘

−1

𝑝𝑘 + 𝑓𝑗(𝑞)⏟  
𝑐𝑡𝑒 𝑖𝑛 𝑝

 

⇒ 𝑃𝑗 =  𝑃𝑗(𝑞, 𝑝)n'est pas seulement une fonction de 𝑝, il a une certaine indépendance de 

𝑞 ainsi. 
 

Exemple: Une autre transformation canonique 

{
𝑞 → 𝑄 = 𝑝
𝑝 → 𝑃 = −𝑞

 

{𝑄, 𝑃 } = {𝑝,−𝑞 } =  −{𝑝, 𝑞 } =  {𝑞, 𝑝 } = 1 
 
 

Fonction Génératrice: 
 

Il existe une méthode systématique de construire une transformation canonique, 
appelée la fonction génératrice. 
Nous pouvons générer des transformations canoniques de types : 

 𝐹(𝑞,𝑄) ⇒ 
𝜕𝐹

𝜕𝑞
= p et −

𝜕𝐹

𝜕𝑄
= P 
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 𝐹(𝑞, 𝑃) ⇒ 
𝜕𝐹

𝜕𝑞
= 𝑝  et  

𝜕𝐹

𝜕𝑃
= 𝑄 

 𝐹(𝑝,𝑄) ⇒ −
𝜕𝐹

𝜕𝑝
= 𝑞  et  −

𝜕𝐹

𝜕𝑄
= 𝑃 

 𝐹(𝑝, 𝑃) ⇒ −
𝜕𝐹

𝜕𝑝
= 𝑞  et  

𝜕𝐹

𝜕𝑃
= 𝑄 

Ces différentes transformations sont connues les fonctions génératrices de 1𝑒𝑟 , 2è𝑚𝑒, 
3è𝑚𝑒 et 4è𝑚𝑒 type respectivement, utiles dans la construction de transformations 
canoniques. 
 


	,𝑂𝐺.=,,𝑖=1-𝑁-,𝑚-𝑖..,𝑂,𝑀-𝑖...-,𝑖=1-𝑁-,𝑚-𝑖...=,,𝑖=1-𝑁-,𝑚-𝑖..,𝑂,𝑀-𝑖...-𝑀.,
	𝑀=,𝑖=1-𝑁-,𝑚-𝑖.. est la masse totale du système de points matériels.
	En termes de coordonnées,
	,𝑂𝐺.=,1-𝑀.,𝑖=1-𝑁-,𝑚-𝑖..,𝑂,𝑀-𝑖...⇒,,,𝑥-𝐺.=,1-𝑀.,𝑖=1-𝑁-,𝑚-𝑖..,𝑥-𝑖..-,𝑦-𝐺.=,1-𝑀.,𝑖=1-𝑁-,𝑚-𝑖..,𝑦-𝑖..-,𝑧-𝐺.=,1-𝑀.,𝑖=1-𝑁-,𝑚-𝑖..,𝑧-𝑖....,                (pour un système discret).
	,𝑂𝐺.=,1-𝑀.,∫-𝑆.𝑑𝑚.,𝑂𝑀.⇒,,,𝑥-𝐺.=,1-𝑀.,∫-𝑠𝑦𝑠𝑡.𝑑𝑚.,𝑥-,𝑑𝑚..-,𝑦-𝐺.=,1-𝑀.,∫-𝑠𝑦𝑠𝑡.𝑑𝑚.,𝑦-,𝑑𝑚..-,𝑧-𝐺.=,1-𝑀.,∫-𝑠𝑦𝑠𝑡.𝑑𝑚.,𝑧-,𝑑𝑚....,             (pour un système continu).
	La quantité de mouvement d’un système de N points matériels: La quantité de mouvement totale du système est: ,,𝑃.-𝑡𝑜𝑡.=,𝑖=1-𝑁-,,𝑝-𝑖..=.,𝑖=1-𝑁-,𝑚-𝑖.,,𝑣-𝑖...=𝑀.,,𝑉-𝐺.. ; on dit que le point 𝐺 résume le système point de vue cinématique.
	Théorème de centre de masse: Appliquant le P.F.D à chacun des points du système:
	,𝑚-𝑖.,𝑑,,𝑣.-𝑖.-𝑑𝑡.=,,𝑓.-𝑒𝑥𝑡→𝑖.+,𝑗≠𝑖-,,𝑓.-𝑗→𝑖..
	 ,,𝑓.-𝑒𝑥𝑡→𝑖. : la force extérieur qui s’exerce sur la particule 𝑖.
	 ,𝑖≠𝑗-,,𝑓.-𝑗→𝑖.. : la force interne qui s’exerce par chaque particule 𝑗 du systèmesur la particule 𝑖.
	Par l’additionner des équations précédentes sur toutes les particules 𝑖 du système:
	,𝑖=1-𝑵-,𝑚-𝒊...,𝑑,,𝑣.-𝑖.-𝑑𝑡.=,𝑖=1-𝑵-,,,𝑓.-𝑒𝑥𝑡→𝑖.+,𝑗≠𝑖-,,𝑓.-𝑗→𝑖....=,𝑖=1-𝑵-,,𝑓.-𝑒𝑥𝑡→𝑖..+,𝑖=1-𝑁-,𝑗≠𝑖-,,𝑓.-𝑗→𝑖...;
	,𝑖=1-𝑵-,,𝑓.-𝑒𝑥𝑡→𝑖..=,,𝑓.-𝑒𝑥𝑡→𝑠𝑦𝑠𝑡.: est la somme vectorielle des forces extérieures qui s’appliquent sur tout le système où n’importe où s’appliquent ces forces; et   ,𝑖=1-𝑁-,𝑗≠𝑖-,,𝑓.-𝑗→𝑖...=,1≤𝑖≤𝑗-𝑁-,,,𝑓.-𝑗→𝑖.+,,𝑓.-𝑖→𝑗....
	Tel que: ,𝑖=1-𝑵-,𝑚-𝒊...,𝑑,,𝑣.-𝑖.-𝑑𝑡.=,𝑑-𝑑𝑡.,,𝑖=1-𝑵-,𝑚-𝒊...,,𝑣.-𝑖..=,𝑑-𝑑𝑡.,𝑀.,,𝑉-𝐺...=𝑀.,𝑑,,𝑉-𝐺..-𝑑𝑡.
	Alors le théorème de centre de masse est par conséquent: 𝑀.,𝑑,,𝑉-𝐺..-𝑑𝑡.=,,𝑓.-𝑒𝑥𝑡→𝑠𝑦𝑠𝑡.  Ou    ,𝑑,,𝑃.-𝑡𝑜𝑡.-𝑑𝑡.=,,𝑓.-𝑒𝑥𝑡→𝑠𝑦𝑠𝑡.
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