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Chapitre 1: Equations différentielles ordinaires du premier ordre
Notions fondamentales et définitions.

e On appelle équation différentielle ordinaire une relation entre une variable
x,la fonction cherchée y (x) et ses derivées ¢/, 3", ........ ,y™ ie une relation
de la forme F (z,y,y,y", ....y(")) = 0.Comme par exemple: y' + zy =
0,y +y +x—cosz =0, (22 — y?) do + (z + y) dy = 0.

e Son ordre est I'ordre de la dérivée la plus élevée par exemple:

y' + xy = 0,s0on ordre est 1.

y +1y +x—cosz = 0,s0n ordre est
3. (2% —y?) dz + (= + y) dy = 0.son ordre est 1.

e Sa solution sur un intervalle I = [a, b] est une fonction y = ¢ (z) définie
anisi que toutes ses dérivées sur cet intervalle et verifie I’équation don-
née.Par exemple y = cos x +sin z est solution de I’équation vy +y = 0 sur
R.

e La courbe d’une solution s’appelle courbe intégrale .
e La forme générale de I’équation différentielle du premier ordre est :
F(z,y,y") =0.

e Si on parvient a résoudre 1’équation F (z,y,y’) = 0 par rapport a y’ on
obtient la forme y' = f (x,y).

e Le probléeme de Cauchy consiste a trouver une solution y = ¢ (x) de
Péquation y' = f (z,y) qui satisfait a la condition initiale y (zo) = yo

Théoréme d’existence et d’unicité.

Soit donnée une équation différentielle y' = f (x,y) o la fonction f (z,y) est
définie dans un certain domaine D du plan xoy contenant le point (xg,yo) .Si la
fonction f (x,y) satisfait aux deux conditions :

(a) f(z,y) est une fonction continue des deux variables x et y dans D.

(b) f (x,y) possede une dérivée partielle % bornée dans D.

Alors : Il existe un intervalle (zg — h, zg + h) sur lequel cette équation admet
une solution et une seule y = ¢ () satisfaisant a la condition de Cauchy y (xg) =
Yo -

Remarque : Le théoréme fournit des conditions suffisantes d’existence de
l'unique solution du probléme de Cauchy pour I'équation y’' = f (z,y) mais ne
sont pas nécessaires.En effet I'équation ¢y = f (x,y) peut posseder une solution
unique satisfaisant & la condition de Cauchy vy (z9) = yo sans que les deux
conditions (a) ou (b) ou les deux a la fois soient remplies au point (zg, yo)-

Exemples :



oy = y% Ona: f(z,y) = y%7 g—?’; = —y%. Aux points (g, 0) de laxe ox les

deux conditions du théoréme ne sont pas remplies car f (x,y) et g—ch sont
discontinues et ne sont pas bornées pour y — oo mais par chaque point

de T'axe oz il passe 'unique solution y (z) = /x — xp.

o yr=33y?ona f(z,y) = 33/y? est continue dans R? et 2—5 =L - 00
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quand y = 0,ie sur axe ox .De sorte que pour y = 0 la condition (b)
3

du théoreéme n’est pas remplie .On vérifie que y (z) = % est solution

de I'&quation donnée.D e plus y (z) = 0 pour tout x dans R est solution
aussi. Ainsi par chaque point de I’axe ox il passe au moins deux courbes
puis par recollement on en déduit une infinité .

Remarque : La condition % bornée peut étre affaiblie et remplacée par la
condtion suivante dite de Lipschitz.

Définition : On dit qu’une fonction f (z,y) définie dans un certain domaine
D satisfait & la condition de Lipschitz en y s’il existe une constante L telle que :

Yyi1,y2 € D et Vo € D on a:|f (z,y2) — f (z,y1)| < Ll|ya — y1]-

Remarque : L’existence dans D d’une dérivée bornée% est suffisante pour
que f vérifie dans D la condition de Lipschitz mais la réciproque est fausse
en général.ll suffit de prendre comme contre exemple la fonction f(z,y) =
2|y| cosx qui n’est pas dérivable par rapport & y aux points (x,0) avec xg #
5 + km, k € Z,mais la condition de Lipschitz est satisfaite au voisinage de ce
point .

En effet on a :

|f (@,y2) = f (@, 91)] = [2]y2|cosz — 2[y1[cosz| = |2cosa|.[[y2| — [1n]] <
2ly2 — 1.

Ainsi la condition de Lipschitz est satisfaite avecL = 2.

Théoréme : Si la fonction f (z,y) est continue et satisfait & une condition
de Lipschitz en y dans D ,alors le probleme de Cauchy vy = f(z,y) avec
y (z0) = yo & une solution unique.

Remarque :La condition de Lipschitz est essentielle pour 'unicité de la so-
lution du probléme de Cauchy.

Exemple : Considérons I’exemple

42y 4 2 0
I z, _ W&x +y -
y = f(z,y) Jsicey=0

. 422 (z*— .
f est continue et |f (z,y2) — f (z,y1)| = % (y2—y1). Siy1 =

ar? et yo = Ba? alors |f (z,y2) — f(z,11)] = m(yg —y1) et la
condition de Lipschitz n’est remplie dans aucune région contenant 1’origine parce
que le facteur de (y2 — y1) se trouve non bornée quand x — 0.Cette équation
admet une solution y (z)

= C?— /x4 + C4.0n déduit qu'il existe une infinité de solutions passant par
I'origine.

Définition :On appelle solution générale de I’équation 3y’ = f(z,y) une
fonction y = ¢ (z,C) dépendant de la seule constante C' et telle que :



(1) elle satisfait a ’équation y' = f (z,y) pour toute valeur admissible de la
constante C' .

(2) quelle que soit la condition initiale y (xg) = yo on peut choisir une telle
valeur Cy de C telle que la solution y = ¢ (z, Cy) satisfasse a la condition initiale
donnée.

Définition : On appelle solution particuliere de I’équation y/ = f (x,y) une
solution obtenue a partir de la solution générale y = ¢ (2, C)) pour une valeur
quelgonque de C.

Exemples :

(1) vérifier que y (z) = x + C est la solution générale de I’équation y’ = 1
puis trouver une solution particuliere qui vérifie y () = 0.En effet on a [y (z)]" =
(z+C) =1 donc y(x) = z + C est la solution générale.La condition y (0) = 0
donne C = 0 et la solution particuliére dans ce cas est donnée par y, (z) = .

(2) verifier que y (z) = Ce® est la solution générale de ’équation y' = y puis

trouver une solution particuliere qui vérifie y (0) = —1.En effet on a [y ()] =
(Ce®)' = Ce® = y(z) donc y(z) = Ce® est la solution générale .La condition
y (0) = —1 donne C = —1 et la solution particuliére dans ce cas est donnée par
yp () = —€”.

Exemples : En utilisant une condition suffisante quelconque d’unicité
déterminer des régions dans lesquelles la solution est unique.

1y =7

f(z,y) = i est continue pour y # 0 ie R? privé de 'axe des x.

g—g (z,y) = — & est bornée si —My? <2z < My2

(2)y' =22+y% On a f (z,y) = 2% +y? est continue sur R? et % (z,y) =2y
est bornée < |y| < a.

Meéthode des approximations successives : Picard.

Soit a chercher la solution y = y () d’une équation différentielle v’ = f (x,y)
avec y (o) = Yo

Supposons que dans un certain rectangle D = {|z — x| < a,|y — yo| < b}
de centre au point (zg,yo) équation ¢y = f (x,y) satisfait aux conditions du
théoréme d’existence et d’unicité.

Construisons la suite y,, (z) = yo + ffﬂ f (& yn_1 (t))dt avecn=1,2,..n.

Pour approximation d’ordre zéro yq () on peut prendre toute fonction con-
tinue au voisinage de zg en particulier yo () = yo.0On peut démontrer que
sous les hypothéses faites sur 'équation y' = f (x,y) les approximations suc-
cessives (y, (x)) convergent vers la solution exacte de I’équation donnée avec
la condition initiale y(z¢) = yo dans un certain intervalle o — h < z <
Zo + h ol h = min (a, 1\%) M = max(, ep |f (z,y)| et Perreur est donnée
par: |y («) = yn (2)] < MAT—h.

Exemple :

y =y avecy(0)=1.

Yo (z) =1

v (2) = 1+ S0 (Dt =1+ 2

y2 () =1+ [J 1 () dt =1+ x + 122,



Yn—1 (m)=1+fozyn 2 ( )dt—1+x+lm2—|— ...... +ﬁx"‘l

Yn () =14 [ yn-1( )dt—1+m+1m2+ ...... + Lan.
On a lim, o ¥n () = €* = y (x) et cette limite est une solution.

Exemple :

y =a?+y?;avecy (0) =0et D= {(z,y) eR?: -1 <z <1,-1<y<1}.

|f (z,9)] = |$2+y2| < 2donc M = 2,h = (1,%),N:mang£ =
maxp |2y| = 2. Les y,, (z) convergent dans —3 <z < i.et on a

yo( )=0

() = [y (8 +y3) dt = 327
(z) = [y (B +97)dt = ga° + gza”.
() = ogC (t2 + y2) dt = %553 '3" 6713'73 + 207993 T+ 9d3f9515

On a: |ys(z) — (%) = g = 0.16666666.

Remarque : La contmulte de la fonction f ne suffit pas pour la convergence
des approximations successives :

Osiz=0,yeR
. 2¢si0<ax < 1,y<0
Soit. f (,y) = 2m—%ysiO<m§l,0§y§x2
—2rsil0<x < 1,x2<y<+oo

Sur ensemble D = {(m,y) €ER?/0<z<1l,y€ R} ,la fonction est con-
tinue et bornée par le nombre 2.Pour le point initial (0,0) les approximations
pour 0 < x < 1 sont de la forme :

yo ( )
fo t,yo (1)) dt = 22,
= [y [ty (1) dt = 2.
yznq (x) = x2.

yon () = —2%;

Donc pour z # 0 la suite (y, (x)) n’a pas de limite, et méme les deux sous-
suites (Ya2n, (7)), (Y2n—1 (z)) ne convergent pas vers la solution.On a: y4, ; (z) =
2z # f (z,2%) = =2z et yh,, (z) = =2z # f (z, —2?) = 2.

Dans le cas ou les approximations successives convergent il se peut que la
solution obtenue ne soit pas unique .

Exemple :

y' = yety(0)=0ona: f(x,y) =,y avec yo (r) = 0.Puis on obtient
que :

1(x) = [y ftyo(t)dt=0
2 (@) = Ji f (toyn (1) de = 0.

Yn—1 (x) = 0.

yn () =0.

Donc y, - 0 qui est une solution du probléme mais elle n’est pas unique car
@) = (2)}

est aussi une solution pour z > 0.



Seriel

Exercice 1 : Etudier les exemples suivants en utilisant les conditions du
théoréme:

o (a)y =, y (z0) = 0.

<

o )y =3y yl(xo)=0.
Exercice 2 :Trouver les solutions communes aux deux équations suivantes:
oy =y> 42z — 2t ety = —y? —y+ 2z + 2%+ 24

Exercice 3 : Déterminer des régions dans lesquelles 'unicité est vérifiée:

/ /

oy =1+’ Y =vT—y y =1

Exercice 4 : Montrer que la solution n’est unique en aucun point de ’axe
(oz):
y' = VIl

Exercice 5 :Trouver la courbe intégrale passant par ’origine pour ’équation

y' = sinxy

Exercice 6 :Trouver par la méthode des approximations la solution du prob-
leme:

y =y avecy(0)=1

Exercice 7 :Trouver par la méthode des approximations une solution ap-
prochée pour :

y =22 +y? avec y(0)=0,-1<zx<1let-1<y<l1

Exercice 8 :Trouver les trois premiéres approximations pour les équations
suivantes:

oy =22 —y? avec: y(—1)=0
oy =x+y>? avec: y(0)=0

ey =x+y,avec: y(0)=1



Chapitre 2 : Etude de quelques équations du premier ordre 2
Equations a variables séparables et équations s’y ramenant.
o Sépartes : (y)dy =1 (z)dz = [¢(y)dy = [¢(x)dz

o separables : ¢, (@), (4) de = o, (2) ¥y (y) dy = [ 28 dw = [ 22 gy,

(py (z) 2y (y) = 0) & etudier a part.
ey =f(ax+by+c),a,bc,eR.

Onpose z=ar+by+c=2 =a+by =a+bf(z) = & =dxr,

atbf(z) —
c’est une équation séparée.
Exemple :
1 —
e tanyde + (2 — e%) .y dy =0
3e” _ 1
= Qjem dr = tanycoszdy
3e” _ 1
= Zfez dr = f tan y cos? ydy
= —3In|2 —e*|+Injtany| =C
tany| _ _C
= Texpp €
tany C __
= ey = +e* = K.

Ainsi on trouve:
tany — K (2 —e%)° =0

(tany =0=y =Fkm) et (2—e*=0= 2 =1In2) sont des solutions prtic-
uliéres obtenues pour K = 0 et K = oo.
(2) Equations homogenes et équations s’y ramenant :

e Une fonction f est dite homogene de degré n si f (tx, ty) = t"f (z,y).

e Une équation de la forme ' = f (x,y) est dite homogene si f est homogéne
de degré 0 ie f (tz,ty) = f (x,y).

e Une équation homogene est de la forme y' = ¢ (£) Eneffet ¢/ = f (z,y) =
Fle@) =114 =¢ ().

Onposeu=242=y=ur =y =vortu=vrt+tu=op =dr=
p(u)—u= mdu = %d:z: qui est une équation a variables séparées.Etudier
Le cas ¢ (u) —u = 0.51 ¢ (ug) = ug,alors ug ou y = ugz est une solution.On
peut poser directement y = ux.

Equations s’y ramenant .

/I _ az+by+c

<A) y =1 (a1$+bly+61> :

Si ¢ =c¢; =0, alors on a une équation homogéne.

Sicoucy est #de0:



DI

# 0,0n pose £ = £+ h et y = n+ k ,on remplace et on choisit

ap , b
Ldn at+fBn
h et k pour que : 7l = f <a1§+61n) .
a , b
(2) a by |~ 0,alors a = aag et b = aby desorte quey’ = f (1‘(531:?;1):6)

et en posant z = a1x + b1y , on obtient une équation différentielle & variables
séparables.

e (z+y—2)de+(x—y+4)dy=0=

1 1

L ‘:—2#0.

Onposez=¢(—lety=n+2

= (£+n)dE+ (£ —n)dn =0, qui est homogene .

On pose : 1 = p& = (§ +&p) d€ + (§ — Ep) (§dp + pd€) = 0
= (14+2p—p?)dé+&(1— p)dp=0.
édg—g+1+12;7f“2du:0.
:>ln|§\+%ln’1+2u—u2‘:1n0.
= &2 (1+2p—u2):C.

= &2 (1+2u—u2):C.

2
= (z+1)° <1+25+§_(g_+‘;’> ):0.

o (z+y+1)de+ (2x+2y—1)dy=0

)

A:

1,1

= A= ’ 9.9

Onpose: z=x+y

= (z+1)(dx) + (22 — 1) (dz — dx) =0,

= (2z—-1)dz+ (-2 +2)dz =0,

= 2-Ldz+dz =0,

=z—2z—-3In|z-2|=C,

=z+2y+3hnjz+y-—2/=C.

(B) Parfois on utilise le changement y = z
I’équation donnée soit homogene.

Soit I’équation (m2y2 — 1) dy + 2xy3dx = 0,en faisant le changement y = 2,
on obtient ¢ = az®~ 12/ ,puis I'équation

(x2220‘ — 1) az tdz + 2223%dz = 0

= (m223a_1 — za_l) dz + 2z23%dx = 0.

Cette équation est homogénesi: 24+3a—1=a—-1=3a+1=a=—1letle
changement y = % donne comme équation homogene : (22 — 1:2) dz+2zzdx = 0.

Equations linéaires du premier ordre .

Ce sont les équations de la forme y' + p (z)y = ¢ (z) .Si ¢ (z) est identique-
ment nulle alors I’équation est dite linéaire homogéne a variables séparables
ayant pour solutions générales yp () = Ce~J P(@)dz,

-0

@ et oncherche « pour que



Recherche d’une solution générale de 1’équation non homogene :

Premiére méthode : Variation de la constante C' dans yy (x) et on a
ya (x) = C (z) e~ S pla)dr,

Exemple : ¢/ + 22y = 2ze~%

On ay' + 2zy =0 donc yy (z) = Ce™" et yg (z) = C (2) e = Yo (z) =
C' (z) e — 220 ,on remplace dans 1’équation on trouve C’ (z) = 2x puis
Cla)=2>+Ketyg(z)=C(z)e ™ = (2> + K) e =27 4 Ke @ =
yp +ym.

Deuxiéme méthode : yo = yg + yp.

Soit yp (x) une solution particuliére et yg la solution générale.On a les deux
équations yp (z)/+p (2) yp () = ¢ (2) et ye () + () ye (z) = q (z) .Fn retran-
chant les deux équations on trouve (yo (z) — yp () +p (2) (vo (z) — yp () =
0,de sorte que (yg (x) — yp (x)) est une solution de 1’équation de léquation ho-
mogene et par suite yg (x) — yp (x) = yy et on obtient a la fin que : yg =
YH +Yp.

Il se peut qu’une edo puisse étre aussi linéaire en x en tant que fonction de

y.
1

co) —
Exemple 1: ¢y’ = Toosp ey

‘;—i = xzcosy + sin2y = z’ — xcosy = sin2y = on a une équation linéaire
en x comme fonction de y,.Ainsi on trouve 2’ — zcosy = 0 = gy = Ce*™V et
rg = C(y)es™Y = C' (y) ™Y = sin 2y,et en intégrant par parties on trouve :
C (y) = —2¢M¥ (1 4+ siny) + K ce qui donne : z¢ (y) = Ce¥™¥ —2 (1 + siny) =
zu (y) +zp(y).

Troisiéme méthode . On pose y () = u (z) v (x) ,aprés dérivation on trouve
s vl + (pv +v') u = g (z) .On cherche une fonction v telle que pv+v" = 0 et on

obtient w/ = ZE;;

Exemple 2:z(z— 1)y +y=22(2z — 1) et y(2) = 4.

z(z—1)(Wv+uw)tuww =22 2r - 1) = z(z - Dvv+(z(z - 1)v +v)u=
2% (22 — 1) .On prend @ (z — 1) v’ +v par exemple v (z) = -2y et v/ =22 -1 =
u(z) = 22 — 2+ C et on obtient y5 = <% + 2%, C € R.La condition y (2) =
4=20+4=C=0etyp(z)=2>

Interprétation géométrique :

Soit C,, une famille de courbes intégrales de I’équation y'+p () y = g (x) .On
montre qu’en des points homologues les tangentes aux courbes se coupent en
ﬁ7 %). Points homologues ceux qui sont situés
sur une méme droite parallele a I’axe des ordonnées. L’élimination de x entre

E=x+ ﬁ,et n = % donne I’équation du lieu géométrique des point S :

f&mn) =0.
Equations de Bernoulli : ' + p (2)y = ¢ () y"™,ou n # (0,1).
Pour n = 0,0on a une équation linéaire.y’ + p (x)y = ¢ (x).
Pour n = 1,0n a une équation linéaire homogeéne y' + [p (z) — ¢ (z)]y = 0.
Pour n # (0, 1).
On pose : z =y~

un point unique S (£C+

n



=z =>01-n)yy ",

= &+ p@) e =q (@),

= s P (@) = ()

=2z +(1-n)p(z)z=(1—-n)q(x) qui est linéaire en z.

Equations aux différentielles totales

Léquation M (x,y) dz+ N (z,y) dy = 0 s’appelle aux différentielles totales si
son premier membre représente une différentielletotale d’une certaine fonction
u(x,y)ie M (z,y)der+ N (x,y)dy = %dm + %dy.

Théoréme : Pour que I'équation M (x,y)dx + N (z,y)dy = 0 soit une
équation aux différentielles totales il faut et il suffit que 24 — N

oy ~— Oz’
Exemple : (sinzy + zy coszy) dz + (:c2 cos xy) dy = 0.
%—J;f = xcosxy + rcosry — x2ysin vy = 22 cos xy — w2y sin xy,
%—Jl = r2x cos xy — x2y sin zy,
donc % = %—]X = on a une équation aux différentielles totales.
ou

2

{ o zasin Ty + TY COS TY
(U —
gy =’ cosay

g—;‘ =sinay + xycoszy = u(x,y) = zsinzy + ¢ (y),
Gy = a? cosay = AP = o2 coswy + ¢/ (y).

Ainsion a ¢’ (y) =0 :>y<p (y) = K et par suite u(z,y) = zsinzy + K et
I'intégrale générale est donnée par : zsinay = C.

Facteur intégrant : Si M (z,y)dx + N (z,y)dy = 0 n’est pas totale on
cherche une fonction p telle que [uM (z,y)]dz + [uN (z,y)]dy = 0 soit une
différentielle totale.

ouM __ OuN o o _ (M _ ON YAy -
oy Oz jNai M@y_ dy ox /.L,DOU.

N@lnu_M(?lnu_aM ON

ox dy Oy ox
dl oM _ N oM _ N
Sip=p(x)= gk =252 et p(x) existe & 252 ne dépend pas de
v g N _ M N _ oM
Sip=ply) = Gk =25 et p(y) existe & 52 ne dépend pas de
T..
Exemple : (x + y2) dxr — 2xydy = 0.
Ty~ _ 2yt2 2 :
Ona: M =z+y*, N =2y et L% = UL — 2 of par suite
d;’;“ = —% et p(x) = x%,donc I’équation devient: (% + z—z) dx — Q;y =0=
2
dm—r — [777’2“:22”@} =0=d (ln\m| — %2) =0=1Inl|z| - y—; =C=>z=e".

Equations du premier ordre non résolues par rapport a y’.

¢ Equations du premier ordre de degré n en 3/ :

Y+ (2, y) Y e pas (2,9) Y+ pa (2,y) = 0.
On cherche ¥ = f1 (Z,9) , eoveeerveennnn U = fr (z,y) avec k <n

10



Exemple 1: yy? + (z —y)y —2 = 0.
_ _ 2
Onay =Y vty (;y Yy o y =1lety = —4. Aprés intégration on

trouve : y =z + 1l et y? + 22 = C?,(C € R)
Exemple 2 : 2y? — 2zy’ — 2y + 22 =0
Ona:y=y?—=zy + 1a% posons y =p
=y =p°—ap+ 32°,
= dy = 2pdp — pdxr — xdp + xdx = pdx
= 2p—2)(dp—dx)=0
= soit 2p —x =0 soit dp —dx =0
=p=gsoup=x+C
=y(z) =Cx+C? + 22 ouy(m):x;.

e Equations de la forme f (y,y') =0 et f(x,y’) = 0.

Si les deux équations sont résolubles par rapport a 3" alors on obtient des ed
a variables séparables sinon on aura deux cas;
[A] f (y,y") = 0 résoluble par rapport a y ie y = ¢ (v') .

Posons y' = p,alors y = ¢ (p) et dy = pdx = ¢’ (p)dp = dx = % et

T = f % + C' ce qui donne finalement une solution paramétrée

w(p)=/¢(?dp+07y(p)=<ﬁ(p)

Exemple 1:. y = ay® + by’
Posons : 3y = p = dy = pdzx.
Ona: y(p) = ap® + bp®

= pdx = 2apdp + 3bp?dp

= dx = 2adp + 3bpdp

=

3
z(p) = 2ap+ §bp2 +C,
y(p) = ap®+bp°

[B] f(y,¥’) = 0 n’est pas résoluble par rapport a y et 3’ mais admet une
expression de y et y'par un certain parameétre t ie y = ¢ (¢),y’ = ¢ (¢).On a

dy =pdz =Y (t)de = ¢ (t)dt = z(t) = [ “o;fgft,ainsi on a une soluion sous
forme paramétrique
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Posons y (t) = cos®t et o/ (t) = p (t) = sin®¢t

= do = U = =Splestir = =Sty
=ax=[(3-35%)dt=3t+3(ctg)t+C
=
z(t) = 3t+3(ctg)t+C,
y(t) = cos’t.

[C] Si f(x,y") = 0 est résoluble par rapport & z.ie x = p (y').
On pose ' =p

= dy = pdz et © = ¢ (p)

= dz = ¢’ (p)dp

= dy = py' (p)dp

=

y = /W’(p)derC,
r = ¢(p)

Exemple 3 :. ay’ +by? = 2.0n pose y' = p .

= x = ap + bp?, dz = adp + 2bpdp et dy = pdx = apdp + 2bp*dp
=

a
2
Equations de Lagrange et Clairaut

2
r=ap+bp’y= p2+§bp3+C,C€R

e Equations de Lagrange : y =z¢ (v') + ¢ (v')

On pose y' = p et en dérivant par rapport a x et en remplagant dy par
pdx on rameéne cette équation & une équation linéaire par rapport & x en tant
que fonction de p.On cherche la solution x = r (p, C) et on obtient la solution
générale

= r(p0),
= 7(»C)e () +¢(p)

En outre I'équation de Lagrange peut posseder des solutions singulieres de
la forme y = zp (¢) + 9 (¢) ,ou ¢ est une racine de ’équation ¢ = ¢ (¢) .

Exemple 1: y =2zy’ + Iny’

y=p=y=2xp+np

= pdx = 2px + 2xdp + %,

RS

- c 1 2C

t(p)=—= - yp)=hpt+— -2
(») =T (p) »

¢ = ¢ (¢) donne 2¢ = ¢,donc ¢ = 0,y = ¢ (0)z + ¢ (0) qui est non définie

donc aucune solution singuliére.
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e Equations de Clairaut : y = a2y’ + ¢ (y') .C’est un particulier de
Lagrange.

y=zy +v¢(y) =zp+¢(p)

= dy = xdp + pdx + ' (p) dp

= pdx = xdp + pdx + ' (p) dp

= (¢ (p)+2)dp=0

=dp=0iep=Cety=Cx+ 1y (C) comme solution générale ou bien
Y (p) +x =0ety=axp+1(p) qui est la solution singuliére.
Exemple 1.y =zy + % =xp+ %

= dy = pdx = pdx + zd f;f—g

= (:c — p%) dp = 0 ce qui donne soit dp = 0,p = Ciet y = Cx + % comme
solution générale soit x — p% = 0,donc

T = p% ety=ap+ % = 1% et 42 = 4x comme solution singuliére.

Riccati equation

A Riccati equation is an ordinary differential equation of the form ¢y’ =
a(x)y*>+b(z)y+c(x) where a,b and c are three functions, often chosen contin-
uous on a common interval with real values. It bears this name in honor of Ja-
copo Francesco Riccati (1676 —1754) and his son Vincenzo Riccati (1707 —1775).
There is in general no method to solve by quadrature such an equation, never-
theless this is possible as soon as one knows a particular solution.

Resolution methods
e First method

If y; is a particular solution of the Riccati equation 3’ = a (z)y? +b(x)y +
¢ (z) then we put y = y; + %and we obtain a Bernoulli equation.

e Second method

If 1 and yoare two particular solutions of the Riccati equation ¢’ = a (z) y?+
b(z)y+ c(x), then we get the solution in the form :

Y=Y _ ool a@) @i
Y=Y

where C'is a real constant.

e Third method

We put y = —ﬁ and we get that 2" + A(z)2' + B(z)z=0.
e Fourth method

We put y = m and we choose A and B in such a way that the
Riccati equation is written in the form v’ = u? +v (x) and by applying the third
method by setting u = —%, we get the Sturm equation 2z’ + v (x) z = 0.
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Etablissement des équations différentielles des familles de courbes.

Soit y = ¢ (z,C) une famille de courbes dépendant d’un paramétre C.En
dérivant par rapport & x on obtient ¢y’ = ¢’ ((x, C)) .On élimine C entre ces deux
équations on obtient une équation différentielle de la forme F (z,y,y’) = 0.Si
une famille de courbes & un parametre est définie par une équation ¢ (z,y,C) =
0,I’équation différentielle de cette famille sera obtenue en éliminant C' entre les
deux équations @ (z,y,C) =0 et g—i + y"g—i =0.

Soit maintenant une relation ® (z,y, C1, Cs, .....Cy,) = 0.0n dérive n fois par
rapport & x et en éliminant C1,Cs, .....C,, entre cette équation et les dérivées
obtenues on trouve F (m, TR TR VA y(”)) = 0 qui est I’équation cherchée.

Exemple : 8—22 -4 =1

En dérivant par rapport a x on trouve 25 —2yy’ = 0,= yy' = & = ayy’ =
(‘%22 =1+ 1? et ’équation ainsi obtenue est donnée par : zyy = 1 + y2.

Problémes sur les trajectoires ¢ (z,y,C) = 0.

(1) Trajectoires orthogonales : On établie I’équation différentielle de la
famille donnée F (x,y,y’) = 0 . L’équation différentielle de la famille orthogo-

nale est donnée par F (x,y, —i) =0.
(2)Trajectoires isogonales faisant un angle « tel que tana =k
On établie équation différentielle de la famille donnée F (z,y,y’) = 0 .

L’équation différentielle de la famille isogonale est donnée par F’ (a:, Y, %;5,) =

0 .Si a = Falors k — oo et % — —i et on obtient les trajectoires orthogo-
nales.

Exemple 1 :Trouver les trajectoires orthogonales de la famille de lignes
y=kx

y =kx =y =k = y = zy ainsi 'équation de la famille est y—xy’ = 0,donc
F (z,y,y") = y — zy’ et équation de la famille orthogonale est F (x, v, 7%) =

0=y+ 5 = yy +2 = 0ie 22+ y?> = C?,donc on a une famille de cercles
centrés a l'origine et de rayon |C|.

Exemple 2 : 22 4 y2 = 2az, (z — 1)° + 3% = a2,

204+ 2yy’ —2a =0 =z+yy —a=0=22+y* =2x(z+yy) =
z? — y? + 2zyy’ = 0.

On remplace y' par —i =y = 2

z2—y2)
solution est 22 4+ y? = Cy qui sont exactement des cercles dont les centres sont
sur Paxe (oy) et qui sont tangents a l’axe (ox) .

Solutions maximales et globales : ¢ = f (x,y) avec z € R,y € R.

Si (y1,11), (y2, I2) sont deux solutions de I’équation,on dit que (y2,I3) est
un prolongement de (y1,11) si [1 C Iz et Vo € I1,on a y1 () = y2 (2) .

c’est une équation homogeéneet sa

e On dit que que la solution (y, I) est maximale si elle n’admet pas de
prolongement.

e On dit que que la solution (y, I) est une solution globale sielleest définie
dans I tout entier.
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e Remarque : globale = maximale mais la réciproque est fausse en générale.

Exemple : 3 = > = y(z) = =, et y (z) =0,

C—z)
On a donc
y1 () = 0 est globale et par conséquent maximale.

Y2 (z) = & sur ]C, 400[ est maximale mais non globale

y3 (z) = z= sur |00, C[, est maximale mais non globale .

Solutions singuliéres

Soit F (z,y,y’) = 0 .On dit que que la solution y = ¢ () est singuliére s’il
n’y a d’unicité en aucun de ses points ie si par chacun de ses points (xq,yo) il
passe en plus de cette solution encore une autre solution qui a au point (xg, yo)
la méme tangente que la que la solution y = ¢ (x) mais qui ne coincide pas avec
cette solution dans un voisinage aussi petit que 1'on veut du point (xg,yo) .Le
graphique de cette solution s’appelle courbe intégrale singuliére.

Meéthodes pour trouver les solutions singuliéres

e Toute solution singuliére vérifie aussi I’équation 25, = 0, donc pour trouver
la solution singuliére il faut éliminer y’ entre les équations :F (z,y,y") =0

et 25 = 0,et ’équation ainsi obtenue est ¢ (z,y) = 0.

e Interprétation géométrique : La courbe intégrale s’appelle enveloppe.L’unicité

n’est verifiée en aucun point de cette courbe.Si @ (z,y, C') = 0 est 'intégrale
générale de I’équation donnée ,I’enveloppe de la famille de courbes si elle
existe sera une courbe intégrale singuliére de cette équation.Pour trou-

ver ’enveloppe on élimine C' dans les deux équations ® (z,y,C) = 0,et
9P _

oc —

Exemple : 2/ +y? —y =0
(1) F(z.y,9) =2y +y? -y
2

= 35, =z+2) =0=y =—-Fety(x)=—-7.

p 2
(2) yG(fE)=C$+02:>%LCG:$+2CZO?CZ_%éys(x):—%.
Soit (o, yo) et y1 (z) = Cx+C?, ya (x) = —%-.De la définition d’une solution

singuliére on a le systéme :

{ Y1 (z0) = 2 (z0) :>{ Cx0+02:f§

= on a une identité.

y1 (o) = 3 (o) C=—2
Ainsi en tout point de la courbe y (z) = —% il existe une autre courbe

2
y1 () = =% + Z2qui lui est tangente
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Serie 2

Exercice 1: Equations a variables séparables et équations s’y ramenant :

e (3e"tany)dr + (2—€*) —H-dy =0
o (1+e”)yy =e® avecy(0) =1
e yY'sinz=ylny avecy(%)zepuisy(g)zl

o 23y'siny =2 avecy — 5 quand T — 00

e Trouver I’équation d’une courbe passant par le point (0, —2) et telle que
la pente de la tangente

en chaque point soit égale a 'ordonné de ce point augmentéé de 3.
Exercice 2 : Equations homogeénes et équations s’y ramenant :

o 2y = /22—y +y

o (x+y—2)de+(x—y+4)dy=0

e (z+y+1)de+(2x+2y—1)dy=0

° (:c2y271) dy + 2zy3dx = 0.0n pose : y = 2
Exercice 3 : Edo linéaires

Y + 22y = 2z~

!/ 1
* Y =5

ex(z—1)y +y=2a212z—1) avec y(2) =4

Trouver la solution générale de ' + p () y = ¢ (x) connaissant deux solu-
tions particulieres y; (x) et y2 () .

Exercice 4 : Edo de Bernoulli

oy —ay=—ay’
o 2y +y+y’lnz
oz [fy(t)dt=(z+1) [ ty(t)dt

o y(z)=e"+ [} y(t)dt.
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Exercice 5 : Equations aux différentielles totales:
o (2 +ay?)dx + (y* +ya?) dy = 0.
o z (227 +9%) +yy (29° +2%) = 0.

o (Sx + 2y + y2) dr + (m + dxy + 5y2) dy = 0. Trouver un facteur intégrant
de la forme p = ¢ (x + y2)

Exercice 6 : Edo non résolues par rapport a la dérivée:

oyt +(z-yy =2
o 2y2 — 2xy — 2y + 22 =0.

cy=y?+y".
o yi +y'5 =1.
ez=y +y".
o y=1y’e.

oz =922y +2.
[ ] ylze%

Exercice 7 : Edo de Lagrange et Clairaut:

o y=2xy +Iny'.

_ / 1

o Yy=2xy er/.
12 1

o Y=y -
1
."E:yi/—’—y@

Exercice 8 : Edo de Riccati:

oy —y? +2ye” = e2* +e* avec y; (z) = € solution particuliére .

oy = 9714 —y? avec y; (z) = %—i— m% et y1 (z) = %— I% solutions particulieres.
o 2’y =a%y? +ay+1 avec y; (r) = —1 solution particuliére.

Exercice 9: Etablissement des Edo pour les courbes suivantes :

e y=ar’+br+c
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o 32 =2ax +a?
e y=asin(xz+b)
e Former I’équation différentielle de la famille de droite passant &

une distance égale a I'unité de 'origine.
Exercice 10 :Trajectoires orthogonales pour les familles:

o y="Fkx .

o 22+ y? = 2ax.

o y = ax”.

Exercice 11 : Solutions singuliéres pour les equations :
e xy +y?—y=0

o 2% — 2yy’ + 4z = 0, avec (z(0)

°2y(y +2)—ay? =0

o y'? =42

o y?(2-3y’ =4(1—y)

o 3y =2zy — 2y?

18



Chapitre 3 : Equations différentielles ordinaires d’ordre 2 et plus
Notions fondamentales et définitions

e Une équation différentielle d’ordre n est de la forme F’ (ZE, Uy, e, y(")) =
0,0u si elle est résolue par rapport a 3™ : y(") = f (m, Yy s eeeny y("_l)) .

e Le probléme de Cauchy consiste a trouver une solution y = ¢ (z) qui
n—1

vérifie y (zo) = yo, ¥’ (¥0) = Yp, -+ Ly (z0) = Yo,
e Théoréeme d’existence et d’unicité:

Si la fonction f :

(a) est continue par rapport & x,y,y, .....,y™ Y dans D.
(b) possede dans D des dérivées partielles %’ g 5,, ...... , %,

Alors il existe un intervalle xop — h < x < ¢ + h dans lequel I’équation une
solution unique vérifiant :

y (o) =0, ¥ (T0) = yb - ¥V (w0) = 4"

e Pourn=2ona: y” = [(z,y,¥') et y (xo) = o, ¥ (20) = yé,-

e Exemple : ¢y’ =siny’ + e_r2y,et Y (zo) = yo, ¥ (z0) = yo.-
f(z,y,y) =siny + e~*"¥ est une fonction définie et continue pour toutes
les valeurs de z,y, 1y .Ses dérivées % = —g%e7%"Y et SJ, = cosy’ sont partout

continues et bornées par suite il existe une solution unique qui satisfait a ces
conditions.

e On appelle solution générale y = ¢ (z, Cy, C1, ..., Cy,) = 0.5 on donne des
valeurs pour C, (1, ..., Cy, on obtient une solution particuliére.

o &(x,y,C1,Ch,...,Cp,) = 0 s’appelle intégrale générale de cette équation
et son graphique s’appelle courbe intégrale.

Exemple 1 : y(z) = Ciz + C5 est solution de ’équation différentielle du
second ordre : y” = 0,y (z0) = yo, ¥' (z0) = Yo, = Yo = Ci1zo + Ca2 et C; =
Yo, = C1 = yp.et C2 = —yp xo + Yo

=

Yy (x) = yor — =Yy, %o + Yo

géométriquement :Par chaque point donné My (xo,yo),du plan xoy il ne
passe qu’une seule courbe dont la pente de la tangente a la méme valeur donnée
Yo,-

Exemple 2: 3" = 2,/y possede deux solutions y; (z) = 0,et y2 (z) = =
qui vérifient toutes les deux y (z) =y’ (0) = 0.

Pourquoi ce résultat n’est-il pas en contradiction avec le théoréme d’existence
et d’unicité?.

2
3
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of
ona g \F qui n’est pas continue en 0.

Equations différentielles admettant un abaissement de 1’ordre
(1) : y™ = f (). On intégre n fois et on obtient :;y = [ [ ... [ f (z) dvdzdz+
n—1 n—2
C, (f‘;il)! + Cy (272)! + ...+ C(n,l)x + C,.
(2) : Lorsque I’équation ne contient ni y ni ses dérivées jusqu’a
I’ordre (k — 1) y compris : F (a:,y(k),y(’““), ..... ,y(”)) = 0.Dans ce cas l'ordre

peut étre réduit de k unités par la substitution y*) = p.et ’équation s’écrit
: F(m,p,p’, ..... ,p("_k)) = 0,on déduit : p = f(x,C’l,C’l,...,C(n,k)’), et on
intégre k fois pour obtenir : y*) = f (z,C1,Ch, ..., Clupy,) -

(3) Léquation ne contient pas la variable z : F (y, Yy, y(”)) = 0.Dans

ce cas on pose : y':ﬂ—pdoncdy—pdacety/—p,y =2 = 2220 —

2
pEy" = ik (pdy) = (%) 4 p2Lr zp(di) +pP k.

(4) L’équation F (y,y/, ....., y(")) = 0 est homogéne ie F (z, ty, ty/, ....., ty("))
thr (x,y,y’, ..... ,y(”)) )

Dans ce cas 'ordre d’une telle équation peut étre abaissé d’une unité par la
sibstitution : y = el 24z o1 z est une nouvelle fonction inconnue de x.

(5) Léquation écrite en différentielle F’ (w, y, dz, dy.d%y, .., d”y) = 0,avec
F une fonction homogéne par rapport a x,ydz,dy,....d"y.

Si on considére que x et dz sont du premier degré et y, dy.d?y, .., d"y,sont de
degré m ,alors dy sera de degré (m —1), ¢ %% de degré (m — 2) , etc.Pour abaisser
I'ordre on pose z = ef,y = uemt7 ainsi on obtient une équation différentielle
entre u et ¢t qui ne contient pas tsous forme explicite .

Exemple 1: 4" =sinz + cosx

y" = —cosz +sinz + Cy

y = —sinz — cosz + Ciz + Co

Yy = CosST — sinx—f— Clx + Cox + Cs.

Exemple 2y 1;12”, y( )=0,y(1)=1,9"(1) =2.

Y = [Bgdp— s _1 ¢

y’— 1ln2x—lnx+01x+02,

y(z) = —LIn’ 2 + Ga? + Chx + Cs,

Les condltlons 1n1t1ales donnent : Cl +Cy+C3 =0,C1 +Cy =1,—-1+
Ci=2=C; =3,Cy =203 = et la solution est donnée par : y, (x) =

—2n*z+ 222 - 20+ 3.
Exemple 3 :y" = /1 +y"2.
On pose : y”:pé%:\/lerQ

(z+C1) _ _ ,—(z+Cq)
:> p — (5 25
(24+C1) { —(=+C1)
= y/ =£ - +26 ! + 027
(2+C1)__ ,—(a+C1) .
=y(z)=¢ : 5 : + Cazx + C5 = sinh (z 4+ C1) + Coz + Cs.

Exemple 4 : zy(V) — V) = 0.
Elle ne contient pas de fonction cherchée y ni ses dérivées ', y", "
On pose : yUV) =p=ap —p=0=p=Cyx.
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y(IV) = Cl.’L'

:>y///: %x2+02

=y =22+ Cox+ O

=y =S ot + 222+ O3z + Oy

=y (z) = Sba® + L2413 + La? 4 Cyx + Cs,
=

5 3 2
y(x) =a12° + agx® + azx” + aux + ap, a1, aa, a3, aq, a5, € R

Exemple 5 : " + ¢y'2 = 2e7Y.

L’équation ne contient pas x,on pose : y = p,y” = p%’,et on trouve une
équation de Bernoulli pg—z +p? =2e7V.

On pose z = p?,et on obtient une équation linéaire g—; + 2z = 4e7Y,dont la

solution générale est z = 4e™Y + Cre™2Y.
En remplacant z par p? = y? = % = +Vde ¥V +Cre 2. = .+ Cy =
i%\/éley + C1,et on trouve a la fin que :

Ey +C~’1 = (1‘+02)2

Exemple 6 : 22yy” = (y — acy’)z.

L’équation est homogéne par rapport a y,3’ et y”,L’ordre se trouve réduit
d’une unité en posant :

y = efzdz = yl _ Zefzdz et yl/ — (Z/ +22) efzdm.

, , , , 2
En remplacant ’équation devient : 2 (ej de) . (z’ + 22) (ej de) = (ef zdr_ goel Zdz) .

Apres simplification on trouve 1’équation linéaire :
222 4 2wz = z% =
($2z)/:1:>:c2z:3:+01:>22%+%
= [zde=[(1+D)de=In|z|- < +InCy
=
C C C
y(m) = efzdw = elnlx‘_Tl‘HnC? = (Y ‘xl e_Tl = CQxe_Tl
Exemples 7 : 23y" = (y — xy/ )2 .C’est une équation homogene généralisée.
En considérant xz,y,y’ et y”comme étant de degré 1,m,m — 1,m — 2, on
trouve
34+m—2=2m = m = 1. On pose alors x = e’ et y = ue’ et on obtient :

% e a
de — % - et T dt ’
L (d d?u | du
PN 1CONN - 15 Sy
dg? —  dz T et - dt? dt )
e) 1 t 5s simplification ¢u 1+ du _ (du 2 7 ’_
n remplace ,on trouve aprés simplification Tz + 57 = (E) ouy’' +vy =
2
y-. )
En posant p = ‘é—’t‘,% = p%,on obtient p% +p=p*dou: p=0et
dp —
mT1l=p
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L’intégrationde(%—i—lzpépz1+C’16“:%:1+Cle“:>u:

t

ln m .

En revenant aux variables z et y, on obtient y () = z1n oot

Le cas p = 0 donne uw = C ou y = Cx qui est une solution particuliére
obtenue pour C; = e ¢ et Cy = 0.

Remarque : En résolvant le probléme de Cauchy pour les équations d’ordre
supérieur il est raisonable de déterminer les constantes.

Exemple 8 : y” = 2y3,4(0) = 1,9 (0) = 1,

Y =p=>p® =23 pdp=2Pdy =15 =% +C

=>p=y'+C = %1“; =yl + G
= Co==+ [ ——d
SR vt
qui est impossible de intégrer mais si on on utilise y (0) = 1,3 (0) = 1,
=1=+14C; = C; = 0,et on aura : dy +y2,0n obtient : % = +dux,et

dx
aprés intégration on trouve:

y1 (x) = ﬁet ya (x) = 14%30

De plus on a :

ni(@) =5 = v = iy = v (@) = o5 = 2° avee 41 (0) =
Ly (0)=1

Y2 (2) = 115 = ya(z) = ﬁ =y, (z) = ﬁ = 2y3 avec yo (0) =
Lyb (0) = —1

qui ne convient pas .

Equations différentielles linéaires d’ordre n

Indépendance linéaire : Soit donné un systéme fini de n fonctions y1, ,, , , Yn-

Ces fonctions sont linéairement dépendants sur I'intervalle [a, b] s’il existe des
costantes a1, ,,,,a, non toutes nulles et telles que Vx € [a,b] on ait I'identité
QY1 + eeeeen + any, = 0.

Si cette identité n’est vérifiée que pour a; = .. = a,, = 0 alors les fonctions
sont linéairement indépendantes sur 'intervalle [a, b] .

Exemple 1 : 1, z, 22, 23 sont linéairement indépendants sur R.Soit 1’équation
a1 + ast + asx? + aux® = 0.

Posons x = 0 = a1 = 0, dérivons par rapport a = et posons z = 0 on trouve
ag = 0,dérivons par rapport & x et posons = = 0 on trouve as = 0,dérivons par
rapport a x et posons z = 0 on trouve ay = 0,donc a1 = s = azg = a4 =0 et
les fonctions 1, z, 22, 2% sont linéairement indépendantes sur R.

Exemple 2 : e, e?*, 37, sont linéairement indépendants sur R.

Soit I’équation a1e® 4+ cpe?® + a3e3® = 0.0n a : a; + aze® + aze?® =
0.Dérivons par rapport & £ = age® + 2a3e?® = 0 = ag + 2aze® = 0,Dérivons
par rapport & x = 2aze® = 0 = a; = ap = az = 0.et les fonctions e”, €2, 3®
sont linéairement indépendantes sur R.

Exemple 3 : e”sinx, e” cos z sont linéairement indépendants sur R.

Soit I'équation aqe® sinz + age” sinx = 0. = «q sinx + ag sinz = 0.0n pose
z=0pusz =75 = az =0et a; =0 et les fonctions e”sinx, e® cosx sont
linéairement indépendantes sur R.

<
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Exemple 4 : sinz,sin (ac + g) ,sin (x — %) ,sont linéairement indépendants
sur R.

Soit ’équation «q sinz + as sin (J; + %) + a3 sin (x — %) =0.0n pose £ =0
,T=7 puisx =7 =

assint —agsinZ =0
S 3n 8 x ay = az
f—&—agsm——l—agsmf—o = .
i a; = —2agcos g
a1 + agsin 2F + agsin 2 =0
= une une mﬁmte de solutlons par exemple as = a3z = 1 et ay = —2cos §,ainsi

les trois fonctions sont linéairement dépendantes.
Remarque : Deux fonctions y; et yo sont linéairement indépendantes si le
rapport ﬂn’est pas constant.

ﬂ,l’l T

Exemple 5: = tan?  n’est pas constant sur 0 < x < 5. = les fonction

"cotx
tan x et cot x sont linéairement indépendantes sur R.
Exemple 6 :- —Si2e_ _ 2sinzcosz _ 9 - Jeg fonctions sin 2z et sin x cos

. ! SINn x COsS ™ S1in T Cos T
sont linéairement dépendantes sur R.
- s i Ty — T g i s
Exemple 7 : - sin (z+ 8) + sin (:c 8) = 2cos gsinz = sin (er 8) +
. ” o 0 . . N Sy s
sin (m.f §.) — 2cos gsinz = 0 = les fonctions sin (z + 8) ,sin (:1: 8) ,sinx
sont linéairement dépendantes sur R.
Définition: Soient y1,,,,,y, n fonctions possédant des dérivées d’ordre

(n — 1) .Le déterminant :

Y1y5555Yn
y/17 1599 Y'n
W(y17 IER 7yn) = ! SjappCHC Wronskien.
/
ygnil)a 39 72/5:171)
ex 62“” 631:
Exemple 1 : €%, 2% 3% = W (y1,92,93) = | €%, 2623:,36336 = 2¢67

e, 4e 9e3®
Exemple 2 :-sinz,sin (a: + E) sin (ac — g)
sin z, sin (m+ ) (;C— 7)
= W (y1,y2,y3) = COS T, COS ( ) ( %) =0.
—sinz, —sin (a: + E) —sin (z — %)
Théoréme :
Si un systéme de fonctions 1, , , , , Yn est linéairement dépendant sur 'intervalle
[a, b] alors le Wronskien est isdentiquement nul.
- Cette condition est nécessaire mais non suffisante.

Exemple : . . ,

n)={ ", _ye fy oo cp me={ Y RIE

Ce systéme est linéairement indépendant car ajy; + asys = 0= a1 = ay =
" Pourtant : 2

Sur [0, 3] W (y1,92) = ’ 06,(926;_5% =0.
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Sur [%,1] W(yl,yg) =

Ainsi W (y1,y2) = 0 sur R.
Définition : Soit donné un systéme de fonctions (y1,,,,,y,) définies sur
l'intervalle [a, b] .

(Z_%)Q’O ‘:0,
2¢x — 1,0

Posons : (yi,y;) f yi ( () dz pour i,5 =1,2,3,,,,,,n.

(y17 yl) ) (ylv y2) IR (yh yn)
(y27 yl) 9 (y27 y2) 999 (y27 yn)
Le déterminant T (Y1, ,,Yn) = | = cveerveerrieeerieeennee, ,

s’appelle déterminant de Gram.
e Théoréme :

Le systéme de fonctions (y1,,,,,¥,,) est linéairement indépendant si et seule-
ment si I' est non nul.
Exemple : y; =z,y, = 22.
1
(y1,91) = [y 2%dz = 3

(y1,y2) = foi 20%dx = 2
(yg,y1> = fol 2.’E2d$ = %
(y2,92) = [, 4adz = 3

(m7 x) ) (x7 2$)

I'(z,2z) =

12
(2z,x), (2, 22) % g
Par conséquent les fonctions y; = z,y5 = 2x,sont linéairement dépendantes

Y2 2X. _ 9
‘Y1 x L. N N A .
Equations linéaires homogénes a coéfficients constants.

Considérons I'équation agy™ + a1y~ + ...... +agp-1)y +any =0,a; € R.

- Cherchons son équation caractéristique P (A) = ag\™ + a1 \" " + ... +
a(n_l))\ + ay.
- Cherchons les racines A1, Aa, .....\,.

- D’apres la nature des racines écrivant la solution particuliére .

(a) A chaque racine réelle simple \,correspond la solution : e**.

(b) A chaque couple de racines conjuguées simples \y = a + 5, \a = a — i3
correspondent les solutions: e** cos Sz, e** sin Szx.

(¢) A chaque racine réelle A de multiplicité s correspondent les s solutions:
e et L (3T

(d) A chaque couple de racines conjuguées A\; = a + i3, Ao = a — i3, de
multiplicité s correspondent 2s solutions:

€™ cos fx, xe™™ cos B, ....... , 257 cos Bz,

€™ ¢in B, xe*” sin Sz, ....... , 25D sin Bz
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Le nombre de solutions particuliéres ainsi construites est égal a l'ordre de
cette équation.Toutes les solutions contruites sont linéairement indépendantes
et forment un systéme fondamental de solutions.

Exemple 1:9" —2y" -3y =0 =X -2 =3\ =0= X\ = 0,\y =
—].7 )\3 =3

= = 1711/2 :e—:v7y3 =e€

=

3z

Yg.h = Ci+Cye™™ + 0363z

Exemple 2: ¢ +2y +y =0= N 4+2X 24X =0= X =0, Xy = A3 = —1

=Y = 1ay2 = e_way?) =ge "

=

Yg.h = C1 +Coe™ " + Cyxe™™

Exemple 3 : ¢ +4y" +13y = 0= X +4\2 + 130 =0= A\ =0, )\ =
213 A= -2 30

=y = 1,92 = cos 3ze™ 2%, y3 = sin 3ze >

=

T

Ygh = C1 + Ca cos 3ze 2* + C5 sin 3xe 2"

Exemple 4 : y®) — 2y 4 29" — 4y 44/ — 2y =0 = X5 — 20 +2)3 —
AN +A-2=0 ,
S A=2)(N+1) =0= =2 =XA=0 =X =—i
= y; = e>, Yy = COST, Y3 = TLCOST, Yy = SINT, Y5 = Tsinz
=
Ygn = C1e** + (Cy + C3x) cosz + (Cy + Csx) sinz

Exemple 5 : y®) + 4y +8y" + 8y +4y = 0,= M +4X3 + 8 248\ +4 =0
S (4220427 =02 A = A= —1—d, Ay = Ay = —1+14,
=y =e "cosz,ys = e Fxrcosz,ys =e Tsinzx,ys = e Txsinz,
=
Ygr =€ °(C1 4+ Coz)cosz + e % (C3 + Cyx)sinx

Equations linéaires non homogeénes a coéfficients constants
Considérons équation agy™ + ajy™=Y + ... +am_1)y +any = f(z).
Théoréme :

La solution générale de cette équation yg est égale a la somme de la solution
générale de I'équation homogene y 5, et d’une solution particuliere de I’équation
avec second membre y,, :

YG = Ygh + Ypn

Probléme : Comment chercher une solution particuliere ? .On a deux
méthodes

- (1)Variation des constantes.

- (2)Pour les seconds membres de forme spéciale la solution particuliére peut
étre obtenue plus simplement par la méthode des coéfficients indéterminés.La
forme générale pour laquelle on peut appliquer cette méthode est :

f(x) = e (P (x) cos fx + @y, (x) sin Bx)
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avec P, polynome de degré [, Q,, polyndome de degré m.

Dans ce cas on cherche yy,, sous la forme :

Ypn = 2°€*® (ﬁk () cos Bz + Qy, () sin Baj) ot k = max (I,m), Py et Qp, des
polynémes de degré k et s est la multiplicité de la racine A = a+:8 de ’équation
caractéristique .Si v £ i85 n’est pas racine alors s = 0.

Exemple 1: ¢y — ¢/ +y —y=a242=X - A2 +1-1=0

=XNA-D+A-1)=0=N+1)A=-1) =X\ =1, =iA=—i

=y =e "cosz,ys = e Fxrcosx,ys =e Tsinzx,ys = e Txsinz,

= ygn = C1e7™¥ 4+ Cycosx 4 Czsinx

= Ypn = A0I2 + Alx + AQ, y[/)n = 2A0{E + A17y1/7/n = 2A0

Apres avoir remplacé dans 'équation donnée on trouve :y,, = —2?2 -3z -1

et

yo=—a>—3x—1+Cre ®+Cycosz + Cssinz

Exemple 2 : y/ —y”" = 1222+ 62 = N> — A2 = N> (A-1)=0= )\ =
A=0,A3=1

=y =1y =z,y3 =€,

= Ygh = Cq1 + Cox + Cse®

Le nombre 0 = a+if est solution de I’équation caractéristique donc : y,, =
Z‘2 (1402172 -+ A1$ + AQ) = AQIIT4 -+ A1£L’3 -+ A2$2

= Ypp = 4Ag23 +3A12% +2A02, y;n = 124022 +6A12+2A,, y];/;I = 24Agz+
6A;1.

D°(y" —y"y=sup(n—2,n—3)=n—-2=2=n=4,

En introduisant dans I’équation donnée on trouve ¥y, = —z4 — 53 — 1522

et

yo = —at — 523 — 152 + C1 + Coz + C3e®

Exemple 3 : 3" + o = 4z2¢”.
SANEA=AD+D=0=2 A, h=—1=y =1Lyp=c?=>

Yygh = C1 + Cae™",

et puisque @ = 1,n’est pas racine de ’équation caractéristique la solu-
tion particuliere y,, de I’équation non homogeéne sera de la forme : yp,, =
(Al.’L'Q + Aox + Ag) er.

En dérivant et en remplagant dans I’équation donnée on trouve :

A1 =2,4=-6,A3=T7 = yp, = (2x2 —6a:+7) e’ =

Yo = (2x2 — 6z + 7) e’ +C1+Che™™

Exemple 4 : y” + 10y + 25y = 4e 5% = N2+ 10A+25 =0= A\, = Ay = —5
=y = e 7, Yy = ze 5 = yg, = (C1 + Caz) €757,
et puisque @ = —5 est racine de multiplicité s = 2 de ’équation caractéris-

tique la solution ¥y, sera cherchée sous la forme :y,, = Ba?e5®
= Y, = B (20 —52?) e,y = B (2 — 20z + 252%) e 5.
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En remplagant dans 1’équation on trouve :y,, = 2z%e 5"
=

ya = 22%e75% 4+ (O + Cyx) e~

Exemple 5: 5/ +3y/ 42y = xsine = N 4+3A+2=0= X\ = —1,\y = —2

= U = e_m7y2 = e_Qza = Ygh = Cle_m + 026_21.’

Puisque 7 n’est pas racine de I’équation caractéristique la solution y,, sera
cherchée sous la forme : y,,, = (A1z + As) cosz + (Bix + Ba) sinz,apres iden-
tification on trouve :

Ypn = (;—gx + %) cos X + (%x + %) sinx, et on trouve enfin :

-3 17 3
Yyg = <10x + 30> cosx + (mm + 25) sinz + Cre™" + Coe 27,
Exemple 6 : 3/ +4y =sin2z = N2 +4=0= A, = —2i, Ay = 2i
= Y1 = €05 2%,y = sin 2z, = ygn = Cq cos 2z + Ca sin 2z,
Pour y,, on pose y,, = z (asin2z + bcos 2z) ,apreés dérivation et identifica-
tion on trouve :

Ypn = — 1 CO8 22 =

1
Yo = —Tcos 2z + C cos 2 + Cy sin 2z

Tableau récapitulatif de formes des solutions particuliéres

pour les différentes formes des seconds membres

Second Racine de Forme de la
N° membre I’équation solution
caractéristique particuliere
7 P, (x) (1),0 n’est pas racine (1) P’E (x)
" (2),0 racine de multiplicité s (2)x° P, (x)
- (1), @ n’est pas racine (1) P, (z)e>*™
I P (z)e (2), « racine de multiplicité s (2) 5P, (x) e™*
(1) Py, (z) cos Bz
177 P, (x) cos Sz (1), £48 n’est pas racine +Q (z) sin fz
+Qum () sin fx (2), £40 racine de multiplicité s (2) 2° Py, (x) cos Sz
2*Qy (x) sin fx
(1) e** Py, (z) cos fa
v e** P, (x) cos fx (1), + 8 n’est pas racine +ea‘“Qk~(x) sin fx
+e**Q,, (x) sin fx (2), @+ 4B racine de multiplicité s (2) 2%e“* P, (x) cos Bz

+z°e** Q) (z) sin Sz
- Les cas (I),(II) et (I1I) sont des cas particuliers de (V)
Principe de superposition
Si yp est une solution particuliére de ’équation ag (x) y™ + ay (z)y™=1 +
...... +an (2)y = fr,k=1,2,...n,alors y; +y2 +......Yyn, est solution de ’équation
ao () y™ +ay (z)y Y + ... t+a,(@)y=fi+fi+ ... Frs -
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Exemple 1: 3" — 6y + 9y = 4e* — 16e3"

S A —6A4+9=A—3) =0=>X\ =X =3

= ygn = C13® + Coxe®® = (C) + Caz) €37,

Pour trouver une solution particuliére on cherche une solutions particuliére
pour chacune des équations suivantes:

(1) y" —6y+9y =4e” = y; = ae® = y; =e*

(2) ¥y — 6y + 9y = —16€3% = yo = bz?e3* = yy = —8x2e3?

= Ypn = Y1 + Yo = €% — 8z

= yg = €% — 8x2e3% + (O + Cax) 3%,

Equations d’Euler

Pour degré n : apz™y™ + a;z Dy 4 + a(n_l)xy’ + apy = 0.

Pour degré 2 : aoxzy” + ayzy’ + azy = 0.

On pose x = €, et on trouve I’équation

Pour degré n : boy™ (t) + byy™ =D (t) 4 ...... +bn—1)y (t) + buy (t) = 0. =
équation d’Euler d’ordre n.

Pour degré 2 : boy  (t) + b1y’ (t) + bay (£) = 0. = équation d’Buler d’ordre 2.

Exemple : 22y"” 4+ 2zy’ — 6y = 0.0n pose : = = ef

dy ’
d qt t —
— y/ — gy % _ ye(t) —e ty/ (t)

&
o =8

’
Y

Sy = W= e et ety (1) ety (1) = e (—y (1) + 0 (1)
0.

at
On remlace et trouve la nouvelle équation : y” (¢t) + ' (t) — 6y (¢) =

SAMFEA-6=(A4+3)(A=2)=0=> X\ = -3, =2
= ygn = Cre 3 + Che?t =

ya = C1 (et)_g +Cs (et)2 =C1a7% + Cha® = % + Cyz?

Equations linéaires a coéfficients variables

y" 4 p1 (@) y" ) 4+ () y = 0.

Si on connait une solution y; () on cherche une deuxiéme y2 (z) = C (x) y1 (x)

Pour I’équation d’ordre deux : ¢’ + p1 (z)y' + p2 (x) y = 0.

Ona: ys(z) =C () (2) ., .

= 4 (z) = C' () 11 (9)+C (2) ¥ (=) ety (2) = C" (&) 1 (2)42C" (1), (w)+
C(z)yl (v,

OH remplace dans I’équation on trouve :

C (z)y1 (x) + C" (x) (2y; (2) + p1y1 () =0

c’ _ 2yitpiny C" . [ 241 tPin
o=t = [ arde = [ R,
et on cherche un C et une fonction y, () qui soit linéairement indépendante
avec y1 ().

Méthode de Lagrange pour 1’équation y” +p; (z)y' +p2 (z)y = f (x).

On a: yon = Crys (@) + Cap (1),

Pour trouver yg on utilise la méthode de Lagrange (variation des constantes)
qui suppose les deux constantes sont des fonctions ie yo = Ci(x)y:1 (z) +
Cy (x) y2 () ,et on trouve le systéme :

28



{ Ci(z)yi (z) + O3 (z)y2 () =0
C1 (@) vy (z) + C3 (2) 5 (z) = f (2)

On cherche Cf (z) et C% () ,puis C; (z) et Co (x) et on les remplace dans yg
et trouve ainsi la solution générale.

Exemple 1: zy” + 2y’ + zy = 0.

On a une solution y; (z) = 2Z cherchons une deuxiéme sous la forme :

Y2 () = 2 () 2. =y (2) = 2/ (2) y1 (2) + 2 (2) 9} (2) et
ys () = 2" () y1 (2) + 22 (2) ¥ (2) + 2 () y{ (@)

En remplacant dans ’équation on trouve I’équation

2 @)y (@) + 2 (2) (207 (2) + prys (2)) = 0,

v (2) = 32 = yf () = cor g

-~ Tz z 2
=z (x)sinz + 22 (z)cosz =0 = £, = —28982 = [ 2 gy = [ o2y
= (In|z| +2In|sinz|)’ = 0 = In|z| + 2Insinz| = InC = 2'sin’z = C; =

r_
- sin%w
= z=—Cicotz+ Oy,
et par suite y» () = z (x) 2% = (—=Cicotx + Cy) *2F = —C’l%—l—‘Cg%,
on prend par exemple C; = —1 et C2 = 0 et on aura ys (z) = 2% et la
solution générale est :

sinx CcosST
+ Cs

Ygh = Cl

Exemple 2: 3" + 2y +y =1,
La solution générale de I’équation homogene est y,; = C1*5% + C 2=,

sin cosx

y1 = FE ys = €2F est un systeme fondamental.
ona: { GG+ GlmE =0
Ci (@) s (@) + Ch (2) 5 (2) = ¢
= O (z) = cosz,Ch (x) = —sinz = C) (z) =sinz+Cy,Cy (z) = cosz+Co
=

sinx cosz 1
ya = C1 +Cs + =
x x
Etablissement d’une équation différentielle
Soient y1, Y2, -.... ,Un, linéairement indépendantes sur [a, b] alors I’équation :
Y15Y2y ceveveennnnns sUYns Y
YL Yy e Ty
........................ —0
g g8y ™
est une équation différentielle linéaire dont le systéme fondamental est ex-
actement y1, Y2, ...... » YUn.-
Exemple 1: y; =e%,ys = e~ *.
x —T
W (y1,y2) = ’ Sz’iez = —2 # 0,donc y1,y2 sont linéairement indépen-

dantes.
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ex?eiz7y ]‘3 17y
_ 1,1 1,1 1,-1
eﬁ’_e w’y/ — 1’_17y/ _‘17_1 //_‘171 /+ il ‘y_
ey 1,1,y ’ ’ ’
) ) ) )
29" + 2y’ =0,
est ’équation est :
y/l _ y — 0
Exemple 2 : y; = e”z,yg = e,
( ) ezQ 671‘2
W (y1,92) = 2’ o | =—4z # 0, pour x # 0.
2xe” |, —2xe™ "
2 2
em 9 eiw ) Yy 1 ,17 Yy
2ze” —2ze=", = 2x ,—2x, Y =
(2 + 4902) e’ (4332 — 2) e“"Q7 y” (2 + 4962) , (4x2 — 2) Y

et on obtient I’équation : 2y” —y’ — 42?2y = 0, ou bien y” — y;' —4zy = 0.
Intégration par les séries

Soit ’équation ¢y’ +p (z)y' + ¢ (z)y = 0.

y' 4+ (ap+arz+....+an)y + (bo+brz+ ...+ by)y = 0.

On cherche y (z) sous la forme :

y(z) = Ziaroo cxrt =y (z) = Zj_oo kepzh—1 =

Y (@) = XI5k (k= 1) cpat .

On remplace dans I’équation et on obtient :

ok (k= 1) a2 4 (Zk oo kxk) ( n=ree kckmkfl) +

( Ic+oobk )( Z;Sroockx):0:>

(2.1.02 + apcy + boCO) 0+ (3.263 + 2agce + agea + bocy + blco) '+ () 2+
....... + (.)a™ =0,

En pratique on cherche y; et ys en choisissant ¢g = 1 et ¢; = 0 pour y; ()
et cg =0 et

c¢1 = 1 pour ys (x) ,ce qui est équivalent aux conditions initiales suivantes
y1 (0) =1,47(0) =0 et y2 (0) = 0,94 (0) = 1,et toute solution sera combinaison
de y; et ys.

Si les conditions initiales sont de la forme y (0) = A, 3y’ (0) = B,il est évident
que :

y(x) = Ayy (2) + Bya ().

Exemple 1:y" — a2y — 2y =0.

k= , k= - k=
g (@) = Y000 T ena® =y (2) = 0T ket T = (0) = 3055 Tk (k-
= Zk Tk k(k—1)cpak=2 — k +°° kepak — QZk oo ceak = 0.
Onpose: p=k—2=
p=+o0

p—0 (@+1)(p+2)cpraa? — k ~1 kepat —2Zk ooz = 0.
FEO (k4 1) (K + 2) cpyont — ’“ = kepat — 231 oo Ckxk:o.

(1 2 Cy — 200) + Zk oo [(k + ].) (k + 2) Ck+2 — kck — QCk] =0
Posons : y; (0) =1 et Y1 (0)=0=cy=1et c; =0, et on obtient :
(1.2.co — 2.c) 2% + (2.3.c3 —c1 — 2.c1) @t + v =0=
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1.2.co —2cg =0=co =c¢co = 1.

23.c3—c1—2.c1=>c3=0

k+D)(k+2)cpr2— (E+2)ck=0= (k+1)cri2 = = Chi2 = (kc-:-cl)'
= copy1 =0, et co = éi’%f),pour k=1,2,,,,n

AiH8101163: ....... :02k+1:Oet00:1,62:1704:%2:%,06:

@
\

Gl

=

1 1
yl(m):1+x2+§m4+l—5x6+ ......

De facon analogue en prenant
ya (x) = Zk 0 epxh avec Y2 (0) =0 et yh (0) =1 =co=0et c; = 1,

et on obtient aprés dérivation et remplacement :

PO (k) (k= 1) cpah2 — := *(k+2) cpa® =0

FEO (k4 2) (k+ 1) chyar® — 525 (K +2) cpah = 0

S (k4 s - ex] ok =0
1.2.co —2cg =0=co=¢cp=0=
(k—|—1)ck+2—ck =0= ckq2 = (k:chl)7
Donc cg = ¢4 = ....... =cyr=0¢etc; =1,c3=
et on obtient :

pour k =0,1,.....

1

3:C5 =

z? k
k=+o0 (7 ) 2
=X E ez

yo (0) = 2+ 20° + o+ . o :
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et la solution générale est y (x) = Ayp (z) + By2 (z) o y1 (z),y2 (),
sont données par les formules trouvées et y (0) = A,y (0) = B.
Exemple 2:y" +y=0,y(0) =1,3 (0) =0.

On a: y( )_ (O)+yl(0) +y (O)Z' L4 = Zn ooym)(o)xn

n!
y// +y=0= y/// _ =0 = y//// — _y =1 = y(2k+1)( ) =0 et
Y9 (0) = (-1)"

Exemple 3:3" =¢e*¥ y(0)=1et ¢y (0) =0=
V' (0)= Ly = () = (g + ) e = 4" (0) =1
y" =y +ay) e = +y +ay’) e +(y+ay)’ e =y (0) =1 =
1 1 1
y()71+5$ +§$ +4 + ......
Exemple 4 : v —xy’ — 2y = 0.
Posons: y (z) = > p, cka® =
(1.2.¢5 — 2¢0) + Y4 = +°°(l<;+2) [(k+1) chpo — cx] 2® =0 =
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c
Coy = CO,C]C+2 = rfl.
<o
= et

On trouve : ¢y, c1,c9 = cg,c3 = %1’04 = %2 =3

B 2,4 3,% 4, A 5
@) =cotarter+ pattpat 4 Tat 4
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Série 3 : Edo d’ordre 2 et plus
Exercice 1 : On donne I’équation y" = 2/y/'.
e Montrer qu’elle posséde deux solutions qui vérifient y (0) = ¢’ (0) = 0.
e Pourquoi ce résultat n’est il pas en contradiction avec le théoréme d’existence
et d’unicité .
Exercice 2 : Intégrer les équations suivantes : Abaissement de l'ordre .
° yl// — 0'
oy =12 avecy(1) =0,y (1) = Let y" (1) =2,
. y/// =./1+ y//Q.
oy +9y2 =27V,

2
o 2y’ = (y—xy')”.

o Py =(y—ay)’.

o v/ =2ylavecy(0)=1et 3 (0)=1

Exercice 3 : Etudier 'indépendance linéaire pour les familles suivantes:
N {ew’ €27 6317} _

{1,x,x2,x3} .

{sinx, sin (m — %) ,sin (:L' + %)} .

{e®sinz, e® cosz}

{z, |2}

0 si0<z<i ($_1)2510<x<;
= t = 2 =t =3
* u o) { (e siterct 00 {0

o y1 () =z et ya () = 2z sur [0,1] .Utiliser le déterminant de Gram.
Exercice 4 : Edo linéaires homogeénes a coefficients constants.

oy — 2 3y =0

oy +2y" +y' =0

oy +4y" +13y =0
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o y(V) —2yUV) Loy 4y 4 of —2y =0
o yUV) 44y + 8y + 8y +4y =0
Exercice 5 :Edo linéaires non homogeénes a coefficients constants.
oy —y'+y —y=z+a?

o oy — o =6z + 1222

oy +y =4x%e”

o v/ + 10y + 25y = 4e=>"

o v/ +3y +2y=uzxsinz

e y' +y=u=xcosx

oy + 4y =sin2x

o Yy — 6y + 9y = 4e” — 16e3*.

Exercice 6 : Edo d’Euler

o 2%y + 22y — 6y =0.

o 2y —xy +2y=0.
Exercice 7 : Edo linéaires a coefficients variables.

o zy + 2y +ay=1.

1
cosx

oy +y=

(1—Inz)?

——siy (z) =z et y2 (z) = Inz sont deux

e 2(1—Inz)y" +ay —y =
solutions particuliéres.
Exercice 8 : Etablir ’équation différentielle linéaire homogéne & partir du
systéme fondamental .
oy (z) =€, ya(x) =€ ™.

2

X $2

o yi(z) =€, ya(a) =e”
o y1(z) =c” 2 () =€, y3(x) =€

Exercice 9 : Etablir 'équation différentielle linéaire homogéne connaissant
son équation caractéristique et écrire leurs solutions générales:

o (M41)=0

e =0
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e AN +1)" =0

Exercice 10 : Etablir I’équation différentielle linéaire homogéne connaissant
les racines de I’équation caractéristique et écrire leurs solutions générales:

e M =1 =3+iA3=3—1

e\ =X=1A3=3

e M =X=3+ 3= \=3—1¢
Exercice 11 : Intégrer en utilisant les séries.
oy —xy — 2y =0.

oy =¢" avecy(0)=1lety (0)=0

e vy +y=0,avec y(0) =1et 3 (0) =0.

Exercice 12 : Déterminer la forme de la solution particuliere de 1’équation
différentielle linéaire non homogéne connaissant les racines de son équation car-
actéristique et son second membre:

e \Mi=1,) =2 et f(z)=ar’+br+c

e \1=0,X2=1 et f(z)=ar’+br+c

e\ =X=0 et f(z)=az®+br+c

e Mi=—1 ) =1let f(z)=(ax+b)e ™

e My =1 =2et f(z)=(ax+b)e™

e A\ =i, =—i,A3=1et f(z) =sinx + cosx

e \i=X=X3=1 et f(z)=ar?+bx+c
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Chapitre 4 : Systémes linéaires

On appelle systéme linéaire a coefficients constants d’ordre deux le systéme
suivant :
¥ =azrz+bhy+a
y' = axx + bay + c2
fonctions de la variable t,et = (¢),y (t) les deux fonctions & chercher.
Méthode des éliminations successives.

,avec ai, by, as, by des contantes réelles , cq1,co deux

A
Exemple 1: Z,;iii .Onay=a2'-1=y =z"=2"-2-1=0=
z(t) = Cie'+Che™t —1,
y(t) = Cre' —Coe ' —1.

f 2 =3zx+8y+1
Exemple 2 : { Y = —z— 3y
Ona:z=—y —-3y=12"=—y" -3y
=y —y=0=x(t) = —4C1e' —2Cse !,y (t) = Cre' + Coe™".
Les conditionsz (0) = 6,y (0) = —2. = —4C; —2Cy =6 et C; + Cy = —2
=C=0=-1=

,avec z (0) = 6,y (0) = —2.

z(t) = 4de'+2e7,
y(t) = —e' —e
Exemple 3 :
te' = —x+ty
2y = =22 + ty

’

t2 (m” %_t%) =2z +t(z + %)
=t22" =0=2"(t) =0 = pour t # 0

Ona:y=a'+{=y =2"+% - 5et

x (t) = (1 + Caqt,
Ch
Yy (t) = 202 + T

Intégration des systémes linéaires homogénes a coefficients con-
stants par la méthode d’Euler.
Dimension deux :

' = a1z + by ' '\ _ (a b T
{y'—azﬂﬂrbzy @(y’ e d y | <
/
X’:AX,avecX:<x>,A:<a b),X’:<z,).
Yy c d Yy

- On cherche les valeurs propres de la matrice A.

- Si la matrice a deux valeurs propres réelles distinctes A; et Ason cherche
deux vecteurs propres Vi, V5 linéairement indépendants et la solution est donnée
par :
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Dimension trois:

' =a1x + by +ciz z/ ap b ¢ T
Y =ax+bytcz |y |=| a2 b y | &
2 = azx + b3y + c3z 2 as by c3 z
x a1 b1 ¢ z’
X =AXavec X =| y |, A= a2 by o | .X' =| ¢
z as by c3 z

(A) Supposons que les valeurs propres A1, Ay et A3z sont réelles et dis-
tinctes.On cherche trois vecteurs propres linéairement indépendants Vi, V5 et
V3.La solution est donnée par :

x (t)
y(t) | = C1VieM! + CoVhett + C3Vzets!
z(t)
r=3z—-y+=z 3 -1 1
Exemple1:{ ¢y =—2+5y—2 =A=| -1 5 -1
Z=x—y+3z 1 -1 3
3—-)—-1,1
=P\ =|-1,0-X\—-1|=X—11A*+36A—36
1,-1,3—-X
:>)\1:2,)\2:3€t)\3:6.
T—y+z2=0 1
AL =2= —2+3y—2=0 =y=0r=—2,=>V, = 0
r—y+z2z=0 -1
—y+2=0 1
AL =3= —2+2y—2=0 =szr=y=z=VW= 1
z—y=0 1
—3r—y+2=0 1
A =6=> —x—y—2=0 =2zrx=zy=-2z,=>Vy=| -2
r—y—3z2=0 1
La solution esr donc donnée par :
x (t)
y(t) | = CiVieMt + CoVhett + C3Vzetst =
z(t)
1 1 1
(&) 0 et + Cy 1 et + Cs —2 et
-1 1 1
/!
Exemple 2 : Z’;;x_—f)z :>A—<; :i)>:>
P(A)—‘ ;,__i’__i ‘—A2+39:>)\1—3i, Ny = —3i .
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o (1—3i)a—5y=0 (5
A1_31;‘{2x+(—1—3z')y=0 “Vi={1-3 )

_a (1+3i))x—5y=0 B 5
Az = 3Z:>{2m+(—1+3i)y:0 “V2=1ts )
La solution est donnée par :

x(t) _ At Aot
< y(t) ) = (C1Vie + CoVse

=C ( 1—532' >e3it+02 ( 1—532' )e—3it:
x (t) = 5C1e3 + 5Cohe 3
y(t) = (1 —3i) C1e%" + (1 + 3i) Cae 3"
x (t) = 5C (cos 3t + isin3t) + 5C5 (cos 3t — i sin 3t)
y (t) = (1 — 3i) Cy (cos 3t + isin3t) + (1 + 3i) Ca (cos 3t — i sin 3t)
(t) = (5Cy + 5C5) cos 3t + i (5C1 — 5Cs) sin 3t
(t) = (C1 + Cy) cos 3t43 (Cy + Cy) sin 3t4i ((Cy — Cy) sin 3t + 3 (Cy — Cy) cos 3t)

<< R AN

x (t) = 5A cos 3t + i5B sin 3t
y (t) = [Acos 3t + 3Asin 3t] + 4 [B sin 3t + 3B cos 3t

’_/H‘U

z(t) =C1Rex + Colmx = Cy cos 3t + Co sin 3t
y(t) =C Rey + Csy Imy = (Cl — 3CQ)C083t+ (301 + CQ)SiHSt

Cas de racines multiples:

=224y B 2 1 ol 2=X01 |
Exemple1°{y’:4y—x :>A—<_1 4>:>P()\)_‘_1,4_)\‘_
(A—3)

Ol’la)\lz)\gz?).

On cherche la solution sous la forme : = (t) = (a + bt) e3',y (t) = (c + dt) e*
On dérive et on remplace dans les deux équations ainsi on obtient :

x (t) = (Cl —Cy+ Cgt) e3t
y(t) = (Ci+Cot)e™

' =8y 0 8 0
Exemple 2 : y = -2z =A=10 0 -2

2 =2x 48y —2z 2 8 -2
- 8 0
=P\ =| 0 —>\ -2 [=-(A+2) (N +16) =0
2 —2—-A
2x+8y—0 —4
2—22=0 =2zx=—-4dyetz=y=V, = 1
2048y =0 1
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—4diz 4+ 8y =0
X = 4i = —4iy —22 =0 =>x = -2y et z = -2y =
2e+8y+(—2—-4i)2=0

2
Vo= i
2
diz 4+ 8y =0
Ay =—4i = 4iy — 22 =0 >z =2yet z =2y = Vs =
20 +8y+(—2+4i)z=0
2
—1i
2
Donc la solution est donnée par :
x (t)
y(t) | = CiVie " 4+ CoVoelt 4+ CyVe 4
z(t)
—4 2 2
=C4 1 et + Cy ) ettt Cs —1 e~ 4t
1 2 2

MBS

Sl.??(O) = —4,y(0) ZO,Z(O) =1=0,= 1,02 = %,03 = —
x(t) = —4e™?" — 2sindty, (t) = e= 2 — cos4dt, 2 (t) = e~2! — 2sin 4t
Meéthodes de résolution des systémes linéaires non homogénes a

coeflicients constants.
t' = a1+ by +c1z+ fi(t)
Soit le systeme ¢y = asx + bay + c2z + fo (1)
2 = azz + b3y + c3z + f3 (1)
(A) Variationdes constantes :
o =-2x—4y+1+4t
[Fo e e s T sae (3
Ona:y=—-zx+y=c=y—y ==y -y’ =y +y —-6y=0
= )\2 +A—=6=0= A =2et \y = —3,ainsi YH (t) = 0162t + 61267315 et
zy (t) = —Cre? + 4Cye 3.
On suppose que C; et Co sont des fonctions de ¢,en dérivant yg (t)et g (¢) ,on
obtient que :
—C1e*t +4Che ™3t =1 + 4t
Cith + Cée_?’t — %t2
2_ _ _ 2 _ ~
o = bt 254t 1,2t _ Cy = 732t5+t6 2t +~C1
Cy = 3 JggtJrZ 3t Cy=t 1+02t63t 16
Ainsi on obtient

o =—-2x—4y -2 —4 )

=

zg(t) = —Che®t +4Ce 3+t + 12,
~ ~ 1
ya (t) = Cre* + Coe 3" — §t2.

(B) Méthode des coefficients indéterminés.
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A t I
{xz 2y +e :>(SH)Z{$_I 2y

v =z +4y+ et y =z + 4y
;»A_G ‘f);»p(x)_‘lﬁ 4—_2 ‘_ 2 5a46

-)\223:>—233—2y:0:>x:y:>v2:<

(i )=a(37)erea(h)

On cherche une solution particuliere sous la forme :
TPN (t) = Ke! + (Lt + M)th
ypn (t) = Ne' + (Pt + Q) e*
aprés dérivation et remplacement on trouve :
zpy (1) = —3e! + 2te?
ypn (t) = 2et — (t+1) e

)
(g )=a (7 )eee (R (e )

o Exemnlo - =2z —4dy+1+4t
emple : Y = —z+y+ 32

On a donc :

42
On cherche une solution particuliére sous la forme : ( rpN (1) = ait” 4+ bit + e, )

YPN (t) = a2t2 + bgﬁ + C2
Aprés dérivation et remplacement dans le systéme donnée on trouve :
_ 42
ren (1) =1 1’_;’ .est la solution générale est donnée par :
ypn (t) = —5t

rg(t) = — C1e® +4Ce 3 + 12 +1,
1
ya (t) = Cre®' + Cre 3t — 5252

Methode de D’Alembert :

¥ =ax+ by + f1(t)
Y = axx +bay + f2 ()
'+ Ny = d%(x—l—)\y) = (a1 +Xap)x+ (b1 + Ab1)y + f1 + A fa.
240y = (@1 +dan) [+ 8] 4 4.

Donnons au nombre A une valeur telle que % =\

L’équation devient L (z + Ay) = (a1 + Aa1) (z + Ay) + f1 + Afa.

Soit le systéme : .On a :

Si abiii‘gll = ) a deux valeurs réelles distinctes A et Az,on tire la solution.
2 =br+4y+et . oaisa 2
Exemple 1 : { Y = Az + 5y + 1 .On doit avoir 7535 = A = A" =1 =
A==+l
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Pour A\=1ona: (z4+%) =9 +y)+e +1
Pour A\=—-lona: (z—y) =9(x—y)+e —1.
Posons x + y = z et intégrant I'équation 2’ = 9z + €' + 1,on obtient z (t) =
féet — % + Ke.
Posons & — y = z et intégrant 'équation 2’ = z + e! — 1,on obtient z (¢) =
tet + 1+ Kyel.
On a donc :
Tty = —%et—%—i—Klegt et x —y =tet + 1+ Kyel
Apres addition et soustractions on obtient :

4 t 1
x(t) = 3 (2— 16) el + K€% + Kye!,
10 t 1
y(t) = 73 <28> 6t+K169t+K2€t
|t =24+ 2y+1t
Exemple 2 : { ty = —z — By + £2

drdr _ ldz ¢ dy _ dydr _ 1dy

drdat = tart G = Gra; = taroct le systéme

C 4 dv _
Onpose: t=e" = 5 =
devient ;
= —2 2 T 1.
ac/ T2y ST .On utilise la méthode de D’Alembert on trouve :
Yy =-x—-95y+e

2C; Oy 3 1 5
t) = =t —t
z(®) T TR
C: Oy 1 2,
t) = —— 4 — —t+ -t
y () RTINS TURT
Meéthode exponentielle
Le calcul d’une exponentielle de matrice n’est pas & priori un probléme
facile.Cependant dans certains cas et notamment ceux d’une matrice diagonale
et d’une matrice nilpotente il ne présent aucune difficulté.Le cas général peut

se traiter en se ramenant aux deux cas précédents.

ai 0 O e 0
(a) Sila matrice est diagonale A = 0 a O = et = 0 e*
0 0 a3 0 0 e*

b) Si la matrice est diagonalisable ie A = PDP~! avec D diagonale = e# =
g g

PeP Pt

(c) Si la matrice est nilpotente ie il existe (k € N) tel que : A*F = 0 =
er=T+A+ A%+ ... +ﬁAq—1

(d) Méthode de Dunfort : Lorsque le polynome minimal de la matrice A est
scindé alors A peut s’écrire sous la forme A = D 4+ N,avec D diagonalisable, N
nilpotente et ND = DN, et dans ce cas on a : e = ePelV.

(e) Méthode de Jordan : J = Jy, @ Jr, @I, & 5, D ... ®Jy, = el =
e @ ® elrn

Chaque bloc est de la forme J = Al + N,ou N est la matrice nilpotente

spéciale et dans ce cas on aura : eMtN = eMeN = reN et ¢4 = Pe/ P
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21 17 6

Exemple 1: A=| -5 -1 —6 | =P\ =\-16)>(\—14).
4 4 16
6 1 0
= la forme de Jordan est J = 0 16 0
0 0 4
( -1 1 2
= La matrice de passage est P = 1 -1 —%
0 2 0

( .
(0 ) [ (o0)] (0]
o2 — o 0 16 — e 0 0 _ o6, 0160 =
1 0 0 1 11 e e
16 _ 16 _
(o 1)+(80))==(5 1)=-(% &)
ez — o4
Ainsi
11 2 el® e 0 -1 1 3
e = Pe’ P! 1 -1 -3 0 €% 0 1 -1 -3
0 2 0 0 0 e 0 2 0
5et —el6  5et —5el6  —2e!6
:% —etfel6 et 4 5el6 916
0 0 4e'6
Quelques propriétes
V=1
. e@AbA — e(a-‘rb)A
ceteA =T

-Si A et B commutent ie AB = BA = A8 = 4B
. ePAP_ _ €6AP71
t
N — (eA) = Si A est symétrique alors e” Iest aussi.
- Si A est antisymetrique A* = —A = (eA)t =t =4 = (eA)_l =
(eA)t e~4 =1, donc la matrice e? est orthogonale.
. %6“‘ — AetA

Si on a une équation différentielle X' (t) = A

. 13 10
SlA_(o 2>_D+N_<o 2)*(

ce cas la décomposition de Dunford est A = < (1) g ) =Det N = < 8 8 ) .

(t) alors X (t) = et4 < gi ) .
3
0

OON

) ;mais D.N # N.D, dans

Pratique:

(1) Calculer le polynome caractéristique P (X),il doit étre scindé,on calcul
les valeurs propres.

(2) Pour chaque valeur A valeur propre de multiplicité m on note Ny =
ker f (A — AI)™ qui est un espace vectoriel de dimension m.On détermine ainsi
m vecteurs formant une base de Nyet on obtient enfin une base 8 = (vy, ...... ,Un,)
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(3) On définit endomorphisme d définie par : d(v;) = A\;v;.La matrice d
est donc diagonale A la matrice de d dans la base canonique 8, = (e;) ie les
colonnes de A sont les coordonnées des d (v;) exprimés dans la base 8, = (e;) .

(4) Onpose N = A—A = A est diagonalisable, N est nilpotente, NA = AN
et A=PDpP~1L.

1 1 1
Exemple1: A= 0 1 1
0 0 2

On a:
10

(e}
—_

1 11 0 0 1 1
A=10 1 1 | = 0O |+ 0 0 1 | =D+ Nmais DN #
0 0 2 2 0 0 0

o
(en)

Ona: PA)=—A-12MA=2)= A =X =1letA3=2.

Pour A\; = Ao = 1,det |A — )\|2 = 0 et pour A3 = 2,det |[A —2X| =0
= v (1,0,0),v2 (0,1,0),v5 (2,
Cherchons d tel que : d(vl) 1,

Q. \./
—~
<

1Y)
~—
|
<
g
QU
—~
<
w
~

= la matrice de d est : D =

1 0 2 1 0 -2
P = 01 1 =Pl = o1 -1 |,
0 0 1 0 0 1
P étant la matrice de passage de 5, (e;) a (3 (v;)
1 0 0
On peut si besoin diagonalise A: A = P"'DPouD=PAP'=[ 0 1 0
0 0 2
2 1 -1
Exemple 2: A=1| 3 3 -4
3 -2

1
PO =—( 1) (A—2)2
- Les valeurs propres sont \; = —1, Ao = A3 = 2.

-Pour Ay =—-lona: v =(0,1,1),
-Pour da =A3=2o0na: vy =(1,1,1),v3 = (1,0,1).
- La matrice de passage de S, = (e;) & 8 = (v;) s’obtient en écrivant :

(0, 1, 1) = e + €3

1,1,1) —61+62+€3
vg =(1,0,1)

0 1 1
Donc P = 1 1 0 Jet P7l= 1 1 -1
1 1 1
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o O
o NN O
N OO

. d(Ul) = —U1,d(U2) = 2’U1,d(1)3) =23 =D =

2 0 0
-A=PDP'=1| 3 2 -3
3 0 -1
2 1 -1 2 0 O 01 -1
-N=A-A=(33 4 |-13 2 -3 |]=|101 -1
3 1 =2 3 0 -1 01 -1

La décompositionde Dunford est A = A 4+ N ou A est diagonalisable N

nilpotente (N? =0), et AN = NA.
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Série 4 : Systémes linéaires

Exercice 1 : Résoudre les systémes par la méthode des éliminations succes-
sives.

—
.{x'=y+l ;,__32+§Z { te' = —x +yt
! _ - T4 2,0 _
et e =sy@ = LTV T TEEY

Exercice 2 : Résoudre les systémes par la méthode d’Euler.

¥=3cx—-y+=z x’ =8y
o Yy =—x+by—2z2 Yy =—-2z
Z=z—y+3z 2 =2z + 8y — 2z
° =z -5y o' =2r+y
y =2z —vy =4y —=z

Exercice 3 : Résoudre par la méthode de la variation des constantes .

. { =2z —4y+1+4t
_ 3
Yy =—z+y+3t?

Exercice 4: Résoudre par la méthode des coefficients indéterminées
2= —2x — 4y + 1+ 4¢ =z —2y+et
L d r_ 342 ’_ 2t
Yy =—-z+y+s5t Y =x+4y+e
Exercice 5 : Résoudre par la méthode de D’Alembert.

. x' = 5z + 4y + €t to' = -2z + 2y +t
y' =4x +5y+1 t2y = —x — by + t2

Exercice 6 : Résoudre en utilisant L’exponentielle d’une matrice .

o=yl x::2x+y+z
'{ =41 Y =x+2y+=z
y=z Z=r+y+2z
' =2x+z2 ' = ax + by + c28y
o Y =—a+ty—=z y = ay+ bz
2= —x+2y+22 7 =az
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Chapitre 4 : Introduction a la stabilité

Notions fondamentales et définitions

Soit I’équation différentielle ' = f (x,y).

- Une solution ¢ (z) satisfaisant & la condition initiale ¢ (z9) = yo est dite
stable au sens de Liapounov pour x — 400 si :

(Ve > 0),(30 = 0) tel que toute solution y (x) dont la valeur initiale y (xo)
satisfait a la condition |y (o) — yo| < d,l’on ait |y () — ¢ (z)] < e ¥V x > xo.

- La solution ¢ (z) est dite instable si V§ = 0 aussi petit que l'on veut
I'négalité |y (x) — ¢ (x)| < € n’est pas vérifiée pour au moins une solution y (x)
ie il existe un € > 0 tel que |y (z) — ¢ (z)| = ¢

- Sion a en plus lim, ;. |y (x) — ¢ (2)| = 0 alors la solution ¢ (x) est dite
asymptotiquement stable.

- L’étude de la stabilité de ¢ () peut étre ramenée a celle de la fonction
nulle ¢ () = 0 d’une certaine équation analogue & I’équation y' = F (x,y) ou
F (z,0) = 0.Dans ce cas le point y = 0 est le point de repos de 1’équation.

- Le point de repos y = 0 est stable au sens de Liapounov si: (Ve > 0), (3 > 0)
tel que toute solution y (z) dont la valeur initiale y (z9) = yo satisfait a la con-
dition |yo| < &,l’on ait |y (z)| < & V x > x¢.Si de plus lim, .1 |y (x)] = 0 alors
le point de repos y = 0 est asymptotiquement stable.

Exemple 1:¢y = —y+1+z,9(0) =0.

On a: y(z) = Ce * +z, et la condition y (0) = 0 donne ¢ (z) = x.

La condition initiale y (0) = yo donne y (x) = yoe™* + x.

Si[yo — 0] < g,alors [y (z) — ¢ ()] = [yoe™ + 2 — 2| = |yoe ™| = |(yo — 0) ™| <
6 =c¢,

pour z > 0.Ainsi la solution ¢ (z) = z.est stable au sens de Liaponouv .

Onalim, 1o |y (z) — ¢ ()] = limg 00 [yoe ™ + 2 — | = lim, 4 o |yoe
0,0n déduit que ¢ (z) = z est asymptotiquement stable .De plus ¢ (z) = =, n’est
pas bornée pour x — +00.0n déduit que la stabilité de la solution n’entraine
pas que cette solution est bornée.

Exemple 2 : y/ = sin?y.

On a des solutions évidentes y (v) = k7 avec k € Z

L’intégration de ’équation donne y (z) = arccot (C' — z) .La condition y (0) =
yo donne y (x) = arccot (cot yo — ) ,pour y # k. Toutes les solutions y (z) = kn
pour k € Z et y (z) = arccot (— cot yg — ) pour y # km,sont bornées sur R pour-
tant la solution y (x) = 0 est instable lorsque x — +o00 car pour tout yo € 10, 7|
on a lim, 4y (z) = 7.Par suite le fait que les solutions d’une équation dif-
férentielle sont bornées n’implique pas en général que ces solutions sont stables.

Critére de Routh et Hurwitz

Soit I’équation différentielle agy™ +a;y" "V +......... +a,y =0, avec ag > 0.

- La solution y (z) = 0 est asymptotiquement stable si les racines de ’équation
caractéristique

f) =ap\" + a A 4 + a, = 0 ont leur partie réelle négative.

—:v‘ —
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Pour que toutes les racines de 1’équation caractéristique aient leurs parties
réelles négatives il faut et il suffit que tous les mineurs diagonaux principaux de
la matrice de Hurwitz soient positifs:

al,a070,0 ......... ,,,,,,,,,O
a3,a2,a1,,0ao,.......... yysr395950
a5,04,03,,02,,01,,00,,5,5,,,0 |. Les mineurs diagonaux sont de la forme :
0,0,0, ceeieeeieeeieee. p,
al,ao,0,0 ......... 77,,,,,7,0
ay. g a1,a0,0, as3,a2,a1,,0o,............. 513939550
Al = aLAg = a3’a2’ ,A3 = | a3 a2 a1, ,An = a57a4,a37,a27,a1,,a0,,,,,,,,()
T A5,04,03, | |
0,0,0, ccceeeeieiiiiiiie. Qp,

Ainsi la condition de Hurwitz s’énonce : pour que la solution y = 0 soit stable
il faut et il suffit que tous les A; (1 < i < n) ,soient strictement positifs.De plus
on a A, = a,Ag,—1),ainsi la condition A,, = 0 peut étre remplacée par a, > 0

Exemple 1: y"" + 5y"" + 13y" + 19y’ + 10y = 0.

Son équation caractéristique est f (A) = M 4503 1302 + 190+ 10 = 0.

Dans ce cas on a ag = 1,a1 = 5,a2 = 13,a3 = 19,a4 = 10

5,1,0,0 o
Ag—| 191351 ol 0.A5 = | 19.13.5 424A2‘ 51 ‘
0,10,19, 13 ) ot ) 19,13
0,0,0, 10 10,
46,7, = 5.

On a donc Ay > 0,A3 >0 = Ag = 0,A1 > 0 et la solution triviale y (z) =0
est asymptotiquement stable.

Théoréme : Les solutions de 'équation y' = a (z) y + b (x) sont toutes soit
stables soit instables.

Remarque : Cette assertion n’est plus vraie pour des équations linéaires.

Contre exemple : 3y =1 — ¢

Cette équation a deux solutions évidentes ¢ (z) = 1 et 9 (z) = —1.La
solution ¢ (x) = —1 est instable par contre la solution ¢ (z) = 1 est as-
ymptotiquement stable.En effet lorsque x — +o00 toutes les solutions y (z) =
(14y0)e* " 70) —(1—yqo
(1+yo)e2==20) 4 (1-yo
la solution ¢ () = 1 est asymptotiquement stable.

Stabilité par rapport a la variation des seconds membres des équa-

tions. ) ( )
.1, , . (T2 . Yy = f x,y
Considérons des équations différentielles :
d { v =f(z,y)+0(z,y)
f

ou lez fonctions f , © et gT, sont continues dans un domaine fermé G du plan

;, (yo # —1) tendent vers +1.Par définition cela signifie que

z0y et |0 (z,y)| < e et M = max(, ,cq ‘%‘.Si y = p(x) et y = ¢ (x) sont
solutions des deux équations respectivement avec la méme condition ¢ (zg) =
¥ (o) = yo alors | (z) — 1 (z)| < & (eMUz=2eD) —1) De cette estimation il est
immédiat de voir si O (x,y) est suffisamment petite dans G alors la différence
des deux solutions sera petite en valeur absolue .
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solution approchée de I’équation ¢y’ = sinzy avec la condition initiale y (0) =
%et évaluons lerreur.
Remplagons I’équation donnée par : y' = zy avec y (0) = 11—0.La solution sous

22
ces conditions est 9 (z) = 1—106'7.
1

De plus elle est dans ) .La premiere équation y' = sinxy avec y (0) = 15
possede la solution unique y = ¢ () si bien que pour une solution approchée on

Exemple : Dans le carré @ = {_71 <z< %, _71 <y< %} trouvons une
/

peut prendre ¢ (z) = {5e7 .

Evaluons Perreur A = | (z) — ¢ (z)] ,avec 5+ <z < 3.

. — of
Ona 7f(m7y) =2y, aiy
On prend € = zi; et obtient : A = | (z) — ¢ (z)| < 155 (e% - 1) < 55

. 3
= o < 3 et [sinay — oy < § oyl < g5 = o

Equations a petit paramétre de la dérivé

Considérons une équation différentielle y' = F' (x,y,€) ol € est un parame-
tre .Si dans un certain domaine fermé de variation de x,y, e la fonction F est
lipschitzienne en y ie |F (x,y2,&) —| F (z,y1,€) < N |y2 — y1] alors la solution
dépend contintiement de € .Dans de nombreux problémes de physique on con-
sidére des équations de la forme ey’ = f (z,y) ou y’ = 1 f (z,y) avec € un petit
parametre.

Question : A quelles conditions , les valeurs de |e| étant petites,peut-on
rejeter dans léquation ey’ = f(z,y) le terme ey’ et prendre pour solution
approchée de cette équation la solution d’une équation dite "dégénérée" : f (x,y)

Supposons que € = 0 et que ’équation dégénérée posséde une solution y =
® (z) . Suivant le comportement de f (z,y) au voisinage de y = ¢ (z) ,la solution
y (z,¢) de I'équation ey’ = f (z,y) tend vers la solution y = ¢ (x) lorsque € — 0.
ou bien s’en éloigne rapidement.

La solution y = ¢ () est dite stable dans le premier cas et instable dans le
second.

A savoir si en passant par la courbe solution y = ¢ (x) la fonction f (z,y)
change le signe + en — lorsque y croit alors la solution y = ¢ (x) est stable et
donc peut remplacer de fagon approchée la solution y (z,€). Au contraire si en
passant par la courbe solution y = ¢ (z) la fonction f (z,y) change le signe —
en + lorsque y croit alors la solution y = ¢ (z) est instable et donc ne peut pas
remplacer de fagon approchée la solution y (z,¢) .

Les conditions suffisantes de stabilité ou d’intabilité s’expriment par la propo-
sition suivante .

Proposition

(1) Si %‘Z’y) =< 0 pour y = ¢ (z) ,alors la solution y = ¢ (z) est stable.

(2) Si %ﬁl’y) >~ 0 pour y = ¢ (z) ,alors la solution y = ¢ () est instable.

Remarque :

(1) Dans le cas ou I’équation f (z,y) = 0 posséde plusieures solutions on doit
étudier la stabilité de chaque solution.

(2) Un cas semi-stable aura lieu si la fonction f (x,y) ne change pas de signe
par exemple si y = ¢ (z) est une racine de multiplicité paire.Dans ce cas lorsque
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¢ est petit les courbes tendent vers y = ¢ () d’un coté de cette courbe et s’en
éloigne de 'autre coteé.

Exemple : Etablir si la solution y (z, ) de I'équation ey’ = 2% —y,e = 0 et
y (o) = yo tend vers la solution y = x? pour = = .

a(z*—
On a afg;,y) = (way W) _ —1 =y = z? est stable et y (z,g)__, — 2%
En effet y (x,¢) = (yo — 13 + 2exg — 262) e s +a2—2ex+22etona pour

x > xo on tire que : lim. gy (z,¢)

z—xq
€

= lim._o {(90 — x4 2ewp — 2¢%) e~ +2% —2ex + 252} = 2

Stabilité des systémes :
!/

Soit le systéme l”y/—_—xy avec z (0) = y (0) = 0.La solution du systéme
est z(t) =y (¢t) =0.

Toute autre solution avec les conditions x (0) = zg,y (0) = yo est donnée par
s x(t) =xzpcost —yosint et y (t) = xpsint + yo cost.

Prenons un £ > 0 et montrons qu’il existe 6 > tel que pour |zo — 0| <
57 ‘yO - 0‘ <9

on ’ait pour tous les ¢t > 0.les inégalités :

|2 (t) — 0] = |zgcost — ypsint| < &,

ly (t) — 0] = |zgsint + yocost| < e

On a évidemment

|z (t) — 0] = |zo cost — yosint| < |zg cost| + [yosint| < |zo| + |yol.

ly (t) = 0] = |zosint + yo cost| < |zosint| + |yo cost| < [zo| + [yo| -

Si |xg| + |yo] < e on a: |xgcost —ypsint| < e et |zpsint + yogcost| < e

On prend donc § = § alors pour |zg| < J,|yo| < ¢ on aura pour ¢ > 0.les
inégalités :

|z cost — yosint| < e et |zgsint 4 yo cost| < e.

Ainsi la solution nulle z (t) = y (¢) = 0 est stable au sens de Liapounov mais
cette stabilité n’est pas asymptotique .

Types les plus simples de points de repos:

/!
Soit le systéme { x, = oud + a1y et A = | G112
Y = a1 + azy az1, 422

x =y = 0 s’appelle point de repos du systéme. Pour étudier le point de repos
ail — /\, @12
a1, a22 — A
deux racines.Les cas suivants peuvent se présenter :

(1) Les racines sont réelles et distinctes:

(a) Les deux racines sont strictement négatives alors le point de repos est
asymptotiquement stable (noeud stable) .

(b) Les deux racines sont strictement positives alors le point de repos est
instable (noeud instable) .

(c) Si les racines sont de signes opposés alors le point de repos est instable

# 0.La solution

on cherche I’équation caractéristique : # 0, et soient A1, Ag,ses

a) p < 0,q # 0le point de repos est asymptotiquement stable (foyer stable) .

)
(2) Les racines sont complexes et conjuguées : A\ = p +1iq, \a = p — iq.
(
() p > 0,q # 0 le point de repos est instable (foyer instable).
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(¢) p=0,q # 0 le point de repos est stable (centre) .

(3) Les racines sont multiples.

(a) Si elles sont strictement négatives le point de repos est asymptotiquement
stable (noeud stable) .

(b) Si elles sont strictement positives le point de repos est instable (noeud stable) .

Théoréme : Soit le systéme X' = AX ou A est une matrice (n,n) avec
(n>2).

Si toutes les racines de 1’équation caractéristique du systéme possédent une
partie réelle négative,alors le point de repos (0,0) est asymptotiquement sta-
ble.Si au moins une racine de I’équation caractéristique du systéme posséde une
partie réelle positive ,alors le point de repos (0,0) est instable.

[ —
Exemple 1 : { z, ; ;i Jrz .Son équation caractéristique est donnée par
I h=A-1] 2 _
‘ 21—\ =N —6A+T7=0,

Ainsi les valeurs propres A\ = 3 + V2 et Ao =3 — V/2.sont réelles positives
et distinctes .Par suite le point de repos (0,0) est un noeud instable.

= —x+z
Exemple 2: y = —2y — 2z . Son équation caractéristique est donnée
Z=y—z

—1-X,0,1

par:| 0,—2— )\, —1

0,1,—1—2A
= (/\2 + 3\ + 3) (14 X) = 0.Ainsi les valeurs propres \y = =1, Ay = —% +
z? et A\3 = —% + z§ ont des parties réelles négatives .Par suite le point de

repos (0,0) est asymptotiquement stable .

Stabilité en premiére approximation

Soit le systéme 'g‘g = fi(y1,Y2,.-Yn) 4 = 1,2,,,,,,n et soit y; = 07 =
1,2,,,,,,n un point de repos du systéme ie f; (0,0,....0) = 0.

Nous supposerons que les fonctions coordonnées de f sont suffisament dériv-
ables a lorigine.

Développent les foinctions coordonées de f en série de Taylor suivant x au
voisinage de 0.

j= . df£:(0,0,....0
On aura f; (y1,¥2,-.--Yn) = Zi:? aijyi+Ri (Y1, Y2, -...yn) Icia;; = “Tj)
et R; sont des termes du second ordre. 4
Ainsi le systéme initiale prend la forme : Cflyw" = ji? aijYi+R: (Y1,Y2,-Yn) -
dy; _ \~J=n

Le systeme linéaire 2t =
. . T
proximation .

On peut énoncer le théoréme suivant :
(a11 — A), a13,..., Q1n,
(1217 (a22 — )\) g ey agm
An1,An2,, - (ann - )\)
du systéme en premiére approximation.

=1 Gijy; est appelé systéme en premiere ap-

Théoréme : Soit = 0 I’équation caractéristique
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(1) Si toutes les racines possédent des parties réelles négatives les solutions
nulles y; = 0,des deux systémes sont asymptotiquement stables.

(2) Si au moins une racine posséde une partie réelle positive les solutions
nulles y; = 0, des deux systémes sont instables.Dans les deux cas on dit qu’il
est possible d’étudier la stabilité en premiére approximation.

Exemple :Etudier la stabilité en premiére approximation du point de repos

l:2 _52
(0,0) du systeme : x/ Tty wys
Yy =3zr+y+5

Le systéme en premiére approximation est o' =2z +y
y P pp Y = 32+ y
. . . 2-A1 2
L’équation caractéristique est 31 |= 0=X—-3\x—-1=0,
Les racines de ’équation A\ = % et Ay = 3%@ sont réelles et A\; = 0

.Par suite la solution nulle x = 0,y = 0 est instable.

Méthodes des fonctions de Liapounov

La méthode des fonctions de Liapounov consiste a étudier directement la
stabilité de la position d’équilibre du systéme : djg = fi(t,x1, 20, ... Ty) i =
17 27 1999 n

avec une fonction convenablement choisie F'(t,y1,¥2,....yn) qu’on appelle
fonction de Liapounov sans chercher les solutions.On se borne aux systémes
autonomes d{z‘/" = fi (21,2, ....2,) ,pour lesquels z; = 0 est un point de repos.

- Définition 1 : On dit qu’'une fonction V (x4, za, ...z, ) définie dans un cer-
tain voisinage de 'origine est de signe défini (définie positive ou définie négative )
si dans un certain domaine |z;| < h avec h positif et suffisamment petit elle ne
peut prendre que des valeurs de signe défini et ne s’annule que pour x7 = 9 =
=z, =0

Exemple 1 : Pour n = 3 les fonctions suivantes sont définies positives :

V (21, 22,73) = 23 + 23 + 23 et V (21, T2, x3) = 2% + 22179 + 223 + 23

- Définition 2 : On dit qu’une fonction V (y1,ys,....4y,) définie dans un
certain voisinage de l'origine est de signe constant ( positive ou négative ) si
dans un certain domaine |z;| < h avec h positif et suffisamment petit elle ne
peut prendre que des valeurs d’un seul signe déterminé mais peut s’annuler aussi
pour z% + 23 + ..+ z2 # 0.

Exemple 2 : La fonction V (21, x2, ¥3) = 23 +22 1200 +23+23 = (21 + 332)2—1—
x3. est de signe constant positif et elle s’annule méme pour z1 = 3 = x3 = 0
1 suffit de prendre z1 = —x9 et z3 =0

Définition 3 : Soit V (z1, za, ....x, ) une fonction dérivable et soient 1, 3, ...z,
des fonctions du temps ¢ et solutions du systéme dﬁ' = fi (1, 22, ....2,) ,alors
la dérivée totale de V' par rapport au temps ¢ a pour expression :

oV _ ROV Om ROV
dt _izl ox; Ot — ozt 1502, oenTyy

Théoréme 1 ( théoréme de Liapounov de la stabilité ) : Si pour le systéme

dgﬁ" = fi (z1, 2, ....x,) il existe une fonction V' de signe constant
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( fonction de Liapounov) dont la dérivé totale % est de signe constant in-

verse de V' ou est identiquement nulle alors le point de repos x; = 0 est stable.
=y
Exemple 1 : { Y =1
Prenons pour V (z,y) = 2% + y?,elle est définie positive et ‘fl—‘t/ = 2x% +
2y% = 2zy — 2yxz = 0 , il résulte que le point de repos (0,0) est stable.
Théoréme 2 ( théoréme de Liapounov de la stabilité asymptotique ) : Si

pour le systéme dci"' = fi (z1, 22, ....x,) il existe une fonction V' de signe défini

( fonction de Liapounov) dont la dérivé totale % est de signe défini inverse
de V alors le point de repos x; = 0 est asymptotiquement stable.La stabilité
n’est pas asymptotique car les trajectoires qui sont des circonférences ne tendent
pas vers (0,0) lorsque t — +00

) =y —a>
Exemple 2 : { Y = — 3y
Prenons V (z,y) = 22 + y?,on trouve % = 2$‘Zl—f + 2y% =2z (y—a%) +

2y (—z — 3y3) = —2 (2" 4+ ¢°) .Ainsi ¥ est une fonction définie négative et le

poit de repos (0, 0) est asymptotiquement stable.

Indication : On a pas de méthode générale pour chercher la fonction de
Liapounov V.Dans les cas les plus simples on cherche V sous la forme : V (z,y) =
ax? +by?, V (x,y) = ax* + by?,

V (z,y) = ax® + by*, V (z,y) = ax* + by* avec a = 0,b = 0.

v = —x — 2y + x?y?
Exemple 3 :{ , yy wsyy
y=r—5—- 73

Prenons V (z,y) = az? + by?,on trouve :
3
4V = 2az9%% + 2by% = 2ax (—x — 2y + x%y?) + 2by (m -y ITy)

= — (2a2? + by?) + (b — 2a) (2zy — 23y?) .

On prend b = 2a et on trouve %/ = —2a (3:2 + y2) .

Ainsi V (z,y) = az? + 2ay? sera une fonction définie positive et sa dérivée
% = —2a (x2 + yz) sera une fonction définie négative et par suite on déduit

que le point de repos (0,0) est asymptotiquement stable.
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Série 5 : Introduction a la stabilité

e Exercice 1 : En partant de la définition de la stabilité au sens de Liapounov
, étudier la stabilité d’une solution de I’équation : y' = 142 —y,y (0) = 0.

La solution est elle asymptotiquement stable.

e Exercice 2 : En partant de la définition de la stabilité au sens de Liapounov
,etudier la stabilité de la solution y = 0 de I'équation : 3’ = sin®y

e Exercice 3 : Etudier la stabilité de la solution triviale y = 0 de ’équation
. yll// + 5y/// + 13y// + 19y/ + 10y — 0

e Exercice 4 : Etudier la stabilité de la solution de I’équation dégénérée

2
ey =yle =2) ey =(y—a) ey =y  —dy -5 ey =y —a”

e Exercice 5 : Etablir la différence entre les solutions des équations sur [0, 1]
avec y (0) = 0.1

1‘2

{ o =+ a? { ¢/ = 1 arctanzy
y = y

= Hiw + 332 + 0.0lsinx r—1 arctan Ty -+ O’ 001e—

3

e Exercice 6 : En partant de la définition de la stabilité au sens de Lia-
[——
pounov , montrer qu’une solution du systéme : { xyf_ my qui satisfait

aux conditions z (0) = 0,y (0) = 0 est stable mais non asymptotiquement

e Exercice 7 : Définir la nature du point de repos (0, 0) des systémes suivants:

{x’:5x—y { ¥ =3x+y {x’:?)x

=24y Y o= 2wy T Y — 3y
=—-x+z2 '=—-x+y+52 =z
Yy =-2y—=z Yy =-2y+z Yy =2x—y
"=y —=z 2 =3—-z Y=x+y—=z
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e Exercice 8 : Pour quelles valeurs de « le point de repos (0,0) est il stable
pour les systémes :

P =-3z+ay ' =3x+ ay
Yy =2z+y Yy =-2z+y

e Exercice 9 : Définir la nature du point de repos (0,0) pour I’équation :
-~y 4 20y’ + %y = 0. avec a > 0

e Exercice 10: Etudier la stabilité en premiére approximation de la solution
nulle z =0,y = 0.

.9
. @l = w42y —siny [ 2 =—z+3y+a?siny
V=—z-3yto(eT 1) Y = —z—dy+1—cos’y

e Exercice 11 : Etudier la stabilité de la solution (0,0) par la méthode des
fonctions de Liapounov .

o= =3y 228 J = —xy* . =z +2y°
y' =2z -3y’ y' =ya! y' =2y + dya®

e Exercice 12 : Etudier la stabilité en premiére approximation de la solution
nulle.

. 2
. x’:x+2yfsl§2y ' m’:7m+3y+xzsiny
y’:7m73y+x(e%fl> Yy =—x—4y+1—cos’y

o4



Département de mathématiques

Faculté des sciences

Université Ferhat Abbas .Sétif

3éme Année licence maths .ED0.2023-2024.

Exercices de révision

e Intégrer les équations suivantes:

cosy' = y'=e
~ey,:1. .yy//:y/+y/2.
'(1+y'2)yz—4yy’—4m:- Y = e,y (0) =0,y (0) = V2.
Yy —yy' +et =0. Yy =0,y(0) —y(m) =1Ly (0) +y' (7) =
Y=y '+ 2025 = 4,/(0) —y () = 1,y (0) +¢/ (m) = 0.

W=vrty -y =yl -y =ly-1

e Dans les problémes suivants trouver les trois premiers termes du développe-
ment en série :

-y =1lay,y(0) =0.- ¢y =sinzy,y (0) = 1.- y +x siny,y (0) = %,y (0) = 0.
e Intégrer a I'aide de séries les équation suivantes :
Y =20y =0,y(0) =1 -y —xy+y—1=0,y(0) =y (0)=0.

e Intégrer les systémes suivants :

.{x':&y—x { r=y+z+1
y=xz+y ’ =—2:1:+4y—|—t
x’:—y+2x+z ¥ =—-y+2r+2
y=x+z Yy =—c+2y+z
2 =y—2z—-2zx Z=—y+22+zx

e Etudier la stabilité des systémes et des équations .

ylzl_yQ.
Yy =1+x—yavecy(0)=0
-y =sin’y

x’:x—|—2y—sin2y { x’:_x+3y+xzsiny

e Etudier la stabilité en premiére approximation de la solution nulle.
{ y =—x—4y+1—cos’y

y’:—x—By—i—x(e%—l)
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