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Chapitre 1: Equations différentielles ordinaires du premier ordre

Notions fondamentales et définitions.

• On appelle équation différentielle ordinaire une relation entre une variable
x,la fonction cherchée y (x) et ses derivées y′, y′′, ........, y(n) ie une relation
de la forme F

(
x, y, y′, y′′, ....y(n)

)
= 0.Comme par exemple: y′ + xy =

0, y′′ + y′ + x− cosx = 0,
(
x2 − y2

)
dx+ (x+ y) dy = 0.

• Son ordre est l’ordre de la dérivée la plus élevée par exemple:

y′ + xy = 0,son ordre est 1.
y
′′′

+ y′ + x− cosx = 0,son ordre est
3.
(
x2 − y2

)
dx+ (x+ y) dy = 0.son ordre est 1.

• Sa solution sur un intervalle I = [a, b] est une fonction y = ϕ (x) définie
anisi que toutes ses dérivées sur cet intervalle et verifie l’équation don-
née.Par exemple y = cosx+ sinx est solution de l’équation y′′+ y = 0 sur
R.

• La courbe d’une solution s’appelle courbe intégrale .

• La forme générale de l’équation différentielle du premier ordre est :

F (x, y, y′) = 0.

• Si on parvient à résoudre l’équation F (x, y, y′) = 0 par rapport à y′ on
obtient la forme y′ = f (x, y) .

• Le problème de Cauchy consiste à trouver une solution y = ϕ (x) de
l’équation y′ = f (x, y) qui satisfait à la condition initiale y (x0) = y0

.

Théorème d’existence et d’unicité.
Soit donnée une équation différentielle y′ = f (x, y) où la fonction f (x, y) est

définie dans un certain domaine D du plan xoy contenant le point (x0, y0) .Si la
fonction f (x, y) satisfait aux deux conditions :

(a) f (x, y) est une fonction continue des deux variables x et y dans D.
(b) f (x, y) possède une dérivée partielle ∂f

∂y bornée dans D.
Alors : Il existe un intervalle (x0 − h, x0 + h) sur lequel cette équation admet

une solution et une seule y = ϕ (x) satisfaisant à la condition de Cauchy y (x0) =
y0 .
Remarque : Le théorème fournit des conditions suffi santes d’existence de

l’unique solution du problème de Cauchy pour l’équation y′ = f (x, y) mais ne
sont pas nécessaires.En effet l’équation y′ = f (x, y) peut posseder une solution
unique satisfaisant à la condition de Cauchy y (x0) = y0 sans que les deux
conditions (a) ou (b) ou les deux à la fois soient remplies au point (x0, y0).
Exemples :
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• y′ = 1
y2 . On a : f (x, y) = 1

y2 ,
∂f
∂y = − 2

y3 . Aux points (x0, 0) de l’axe ox les

deux conditions du théorème ne sont pas remplies car f (x, y) et ∂f
∂y sont

discontinues et ne sont pas bornées pour y → ∞ mais par chaque point
de l’axe ox il passe l’unique solution y (x) = 3

√
x− x0.

• y′ = 3
2

3
√
y2 on a f (x, y) = 3

2
3
√
y2 est continue dans R2 et ∂f∂y = 1

3
√
y →∞

quand y = 0, ie sur l’axe ox .De sorte que pour y = 0 la condition (b)

du théorème n’est pas remplie .On vérifie que y (x) = (x+c)3

8 est solution
de l’&quation donnée.D e plus y (x) = 0 pour tout x dans R est solution
aussi. Ainsi par chaque point de l’axe ox il passe au moins deux courbes
puis par recollement on en déduit une infinité .

Remarque : La condition ∂f
∂y bornée peut être affaiblie et remplacée par la

condtion suivante dite de Lipschitz.
Définition : On dit qu’une fonction f (x, y) définie dans un certain domaine

D satisfait à la condition de Lipschitz en y s’il existe une constante L telle que :
∀y1, y2 ∈ D et ∀x ∈ D on a :|f (x, y2)− f (x, y1)| ≤ L |y2 − y1| .
Remarque : L’existence dans D d’une dérivée bornée∂f∂y est suffi sante pour

que f vérifie dans D la condition de Lipschitz mais la réciproque est fausse
en général.Il suffi t de prendre comme contre exemple la fonction f (x, y) =
2 |y| cosx qui n’est pas dérivable par rapport à y aux points (x0, 0) avec x0 6=
π
2 + kπ, k ∈ Z,mais la condition de Lipschitz est satisfaite au voisinage de ce
point .
En effet on a :
|f (x, y2)− f (x, y1)| = |2 |y2| cosx− 2 |y1| cosx| = |2 cosx| . ||y2| − |y1|| ≤

2 |y2 − y1| .
Ainsi la condition de Lipschitz est satisfaite avecL = 2.
Théorème : Si la fonction f (x, y) est continue et satisfait à une condition

de Lipschitz en y dans D ,alors le problème de Cauchy y′ = f (x, y) avec
y (x0) = y0 à une solution unique.
Remarque :La condition de Lipschitz est essentielle pour l’unicité de la so-

lution du problème de Cauchy.
Exemple : Considérons l’exemple

y′ = f (x, y) =

{
4x2y
x4+y2 si x

4 + y2 � 0

0 si x = y = 0
.

f est continue et |f (x, y2)− f (x, y1)| =
4x2(x4−y1y2)

(x4+y22)(x4+y21)
(y2 − y1) . Si y1 =

αx2 et y2 = βx2 alors |f (x, y2)− f (x, y1)| = 4(1−αβ)
‖x‖(1+α2)(1+β2)

(y2 − y1) et la
condition de Lipschitz n’est remplie dans aucune région contenant l’origine parce
que le facteur de (y2 − y1) se trouve non bornée quand x → 0.Cette équation
admet une solution y (x)

= C2−
√
x4 + C4.On déduit qu’il existe une infinité de solutions passant par

l’origine.
Définition :On appelle solution générale de l’équation y′ = f (x, y) une

fonction y = ϕ (x,C) dépendant de la seule constante C et telle que :
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(1) elle satisfait à l’équation y′ = f (x, y) pour toute valeur admissible de la
constante C .

(2) quelle que soit la condition initiale y (x0) = y0 on peut choisir une telle
valeur C0 de C telle que la solution y = ϕ (x,C0) satisfasse à la condition initiale
donnée.
Définition : On appelle solution particulière de l’équation y′ = f (x, y) une

solution obtenue à partir de la solution générale y = ϕ (x,C) pour une valeur
quelqonque de C.
Exemples :
(1) vérifier que y (x) = x + C est la solution générale de l’équation y′ = 1

puis trouver une solution particulière qui vérifie y (x) = 0.En effet on a [y (x)]
′

=
(x+ C)

′
= 1 donc y (x) = x+ C est la solution générale.La condition y (0) = 0

donne C = 0 et la solution particulière dans ce cas est donnée par yp (x) = x.
(2) vérifier que y (x) = Cex est la solution générale de l’équation y′ = y puis

trouver une solution particulière qui vérifie y (0) = −1.En effet on a [y (x)]
′

=
(Cex)

′
= Cex = y (x) donc y (x) = Cex est la solution générale .La condition

y (0) = −1 donne C = −1 et la solution particulière dans ce cas est donnée par
yp (x) = −ex.
Exemples : En utilisant une condition suffi sante quelconque d’unicité

déterminer des régions dans lesquelles la solution est unique.
(1) y′ = x

y .

f (x, y) = x
y est continue pour y 6= 0 ie R2 privé de l’axe des x.

∂f
∂y (x, y) = − x

y2 est bornée si −My2 ≤ x ≤My2.

(2) y′ = x2 +y2. On a f (x, y) = x2 +y2 est continue sur R2 et ∂f∂y (x, y) = 2y

est bornée ⇔ |y| ≤ a.
Méthode des approximations successives : Picard.
Soit à chercher la solution y = y (x) d’une équation différentielle y′ = f (x, y)

avec y (x0) = y0.
Supposons que dans un certain rectangle D = {|x− x0| ≤ a, |y − y0| ≤ b}

de centre au point (x0, y0) l’équation y′ = f (x, y) satisfait aux conditions du
théorème d’existence et d’unicité.
Construisons la suite yn (x) = y0 +

∫ x
x0
f (t, yn−1 (t)) dt avec n = 1, 2, ...n.

Pour approximation d’ordre zéro y0 (x) on peut prendre toute fonction con-
tinue au voisinage de x0 en particulier y0 (x) = y0.On peut démontrer que
sous les hypothèses faites sur l’équation y′ = f (x, y) les approximations suc-
cessives (yn (x)) convergent vers la solution exacte de l’équation donnée avec
la condition initiale y (x0) = y0 dans un certain intervalle x0 − h ≤ x ≤
x0 + h où h = min

(
a, bM

)
,M = max(x,y)∈D |f (x, y)| et l’erreur est donnée

par: |y (x)− yn (x)| ≤ MNn−1

n! hn.
Exemple :
y′ = y avec y (0) = 1.
y0 (x) = 1
y1 (x) = 1 +

∫ x
0
y0 (t) dt = 1 + x

y2 (x) = 1 +
∫ x

0
y1 (t) dt = 1 + x+ 1

2x
2.
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.

.
yn−1 (x) = 1 +

∫ x
0
yn−2 (t) dt = 1 + x+ 1

2x
2 + ......+ 1

(n−1)!x
n−1

yn (x) = 1 +
∫ x

0
yn−1 (t) dt = 1 + x+ 1

2x
2 + ......+ 1

n!x
n.

On a limn→∞yn (x) = ex = y (x) et cette limite est une solution.
Exemple :
y′ = x2+y2 ; avec y (0) = 0 et D =

{
(x, y) ∈ R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1

}
.

|f (x, y)| =
∣∣x2 + y2

∣∣ ≤ 2 donc M = 2, h = min
(
1, 1

2

)
, N = maxD

∂f
∂y =

maxD |2y| = 2. Les yn (x) convergent dans − 1
2 ≤ x ≤

1
2 .et on a :

y0 (x) = 0
y1 (x) =

∫ x
0

(
t2 + y2

0

)
dt = 1

3x
3

y2 (x) =
∫ x

0

(
t2 + y2

1

)
dt = 1

3x
3 + 1

63x
7.

y3 (x) =
∫ x

0

(
t2 + y2

2

)
dt = 1

3x
3 + 1

63x
7 + 2

2079x
11 + 1

59535x
15.

On a : |y3 (x)− y (x)| ≤ 2
3!

(
1
2

)3
.22 = 1

6 = 0.16666666.
Remarque : La continuité de la fonction f ne suffi t pas pour la convergence

des approximations successives :

Soit f (x, y) =


0 si x = 0, y ∈ R

2x si 0l x ≤ 1, y l 0
2x− 4

xy si 0l x ≤ 1, 0 ≤ y ≤ x2

−2x si 0l x ≤ 1, x2 l y l+∞

∣∣∣∣∣∣∣∣
Sur l’ensemble D =

{
(x, y) ∈ R2 / 0 ≤ x ≤ 1, y ∈ R

}
,la fonction est con-

tinue et bornée par le nombre 2.Pour le point initial (0, 0) les approximations
pour 0 ≤ x ≤ 1 sont de la forme :

y0 (x) = 0.
y1 (x) =

∫ x
0
f (t, y0 (t)) dt = x2.

y2 (x) =
∫ x

0
f (t, y1 (t)) dt = −x2.

y2n−1 (x) = x2.
y2n (x) = −x2;
Donc pour x 6= 0 la suite (yn (x)) n’a pas de limite, et même les deux sous-

suites (y2n (x)) , (y2n−1 (x)) ne convergent pas vers la solution.On a : y′2n−1 (x) =
2x 6= f

(
x, x2

)
= −2x et y′2n (x) = −2x 6= f

(
x,−x2

)
= 2x.

Dans le cas où les approximations successives convergent il se peut que la
solution obtenue ne soit pas unique .
Exemple :
y′ =

√
y et y (0) = 0, on a : f (x, y) =

√
y avec y0 (x) = 0.Puis on obtient

que :
y1 (x) =

∫ x
0
f (t, y0 (t)) dt = 0

y2 (x) =
∫ x

0
f (t, y1 (t)) dt = 0.

yn−1 (x) = 0.
yn (x) = 0.
Donc yn → 0 qui est une solution du problème mais elle n’est pas unique car

y(x) =
(

2x
3

) 3
2

est aussi une solution pour x ≥ 0.
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Serie1

Exercice 1 : Etudier les exemples suivants en utilisant les conditions du
théorème:

• (a) y′ = 1
y2 , y (x0) = 0.

• (b) y′ = 3
2

3
√
y2, y (x0) = 0.

Exercice 2 :Trouver les solutions communes aux deux équations suivantes:

• y′ = y2 + 2x− x4 et y′ = −y2 − y + 2x+ x2 + x4

Exercice 3 : Déterminer des régions dans lesquelles l’unicité est vérifiée:

• y′ = x2 + y2 y′ =
√
x− y y′ = x

y

Exercice 4 : Montrer que la solution n’est unique en aucun point de l’axe
(ox):

y′ =
√
|y|

Exercice 5 :Trouver la courbe intégrale passant par l’origine pour l’équation
:

y′ = sinxy
Exercice 6 :Trouver par la méthode des approximations la solution du prob-

lème:
y′ = y avec y (0) = 1
Exercice 7 :Trouver par la méthode des approximations une solution ap-

prochée pour :
y′ = x2 + y2, avec y (0) = 0 , −1 ≤ x ≤ 1 et −1 ≤ y ≤ 1
Exercice 8 :Trouver les trois premières approximations pour les équations

suivantes:

• y′ = x2 − y2, avec : y (−1) = 0

• y′ = x+ y2, avec: y (0) = 0

• y′ = x+ y, avec : y (0) = 1
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Chapitre 2 : Etude de quelques équations du premier ordre 2

Equations à variables séparables et équations s’y ramenant.

• Séparées : ϕ (y) dy = ψ (x) dx ⇒
∫
ϕ (y) dy =

∫
ψ (x) dx

• séparables : ϕ1 (x)ψ1 (y) dx = ϕ2 (x)ψ2 (y) dy ⇒
∫ ϕ1(x)
ϕ2(x)dx =

∫ ψ2(y)
ψ1(y)dy,

(ϕ2 (x)ψ1 (y) = 0) à etudier à part.

• y′ = f (ax+ by + c) , a, b, c,∈ R.

On pose z = ax+ by + c⇒ z′ = a+ by′ = a+ bf (z) ⇒ dz
a+bf(z) = dx,

c’est une équation séparée.
Exemple :
3ex tan ydx+ (2− ex) . 1

cos2 ydy = 0

⇒ 3ex

2−ex dx = 1
tan y cos2 ydy

⇒
∫

3ex

2−ex dx =
∫

1
tan y cos2 ydy

⇒ −3 ln |2− ex|+ ln |tan y| = C

⇒ |tan y|
|2−ex|3 = eC

⇒ tan y
(2−ex)3

= ±eC = K.

Ainsi on trouve:
tan y −K (2− ex)

3
= 0

(tan y = 0⇒ y = kπ) et (2− ex = 0⇒ x = ln 2) sont des solutions prtic-
ulières obtenues pour K = 0 et K =∞.

(2) Equations homogènes et équations s’y ramenant :

• Une fonction f est dite homogène de degré n si f (tx, ty) = tnf (x, y) .

• Une équation de la forme y′ = f (x, y) est dite homogène si f est homogène
de degré 0 ie f (tx, ty) = f (x, y).

• Une équation homogène est de la forme y′ = ϕ
(
y
x

)
.En effet y′ = f (x, y) =

f
(
x
(
1, yx

))
= f

(
1, yx

)
= ϕ

(
y
x

)
.

On pose u = y
x ⇒ y = ux ⇒ y′ = u′x + u ⇒ u′x + u = ϕ (u) ⇒ u′x =

ϕ (u)− u⇒ 1
ϕ(u)−udu = 1

xdx qui est une équation à variables séparées.Etudier
Le cas ϕ (u) − u = 0.Si ϕ (u0) = u0,alors u0 ou y = u0x est une solution.On
peut poser directement y = ux.
Equations s’y ramenant .
(A) y′ = f

(
ax+by+c

a1x+b1y+c1

)
.

Si c = c1 = 0, alors on a une équation homogène.
Si c ou c1 est 6= de 0 :
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(1)

∣∣∣∣ a , b
a1 , b1

∣∣∣∣ 6= 0,on pose x = ξ + h et y = η+ k ,on remplace et on choisit

h et k pour que :dηdξ = f
(

αξ+βη
α1ξ+β1η

)
.

(2)

∣∣∣∣ a , b
a1 , b1

∣∣∣∣ = 0,alors a = αa1 et b = αb1 de sorte que y′ = f
(
α(a1x+b1y)+c
a1x+b1y+c1

)
et en posant z = a1x + b1y , on obtient une équation différentielle à variables
séparables.

• (x+ y − 2) dx+ (x− y + 4) dy = 0⇒

∆ =

∣∣∣∣ 1 , 1
1 , − 1

∣∣∣∣ = −2 6= 0.

On pose x = ξ − 1 et y = η + 2
⇒ (ξ + η) dξ + (ξ − η) dη = 0, qui est homogène .
On pose : η = µξ ⇒ (ξ + ξµ) dξ + (ξ − ξµ) (ξdµ+ µdξ) = 0
⇒
(
1 + 2µ− µ2

)
dξ + ξ (1− µ) dµ = 0.

⇒ dξ
ξ + 1−µ

1+2µ−µ2 dµ = 0.

⇒ ln |ξ|+ 1
2 ln

∣∣1 + 2µ− µ2
∣∣ = lnC.

⇒ ξ2
(
1 + 2µ− µ2

)
= C.

⇒ ξ2
(
1 + 2µ− µ2

)
= C.

⇒ (x+ 1)
2

(
1 + 2 y−2

x+1 −
(
y−2
x+1

)2
)

= C.

• (x+ y + 1) dx+ (2x+ 2y − 1) dy = 0

⇒ ∆ =

∣∣∣∣ 1 , 1
2 , 2

∣∣∣∣ = 0.

On pose : z = x+ y
⇒ (z + 1) (dx) + (2z − 1) (dz − dx) = 0,
⇒ (2z − 1) dz + (−z + 2) dx = 0,
⇒ 2z−1
−z+2dz + dx = 0,

⇒ x− 2z − 3 ln |z − 2| = C,
⇒ x+ 2y + 3 ln |x+ y − 2| = C.
(B) Parfois on utilise le changement y = zα et oncherche α pour que

l’équation donnée soit homogène.
Soit l’équation

(
x2y2 − 1

)
dy+ 2xy3dx = 0,en faisant le changement y = zα,

on obtient y′ = αzα−1z′,puis l’équation(
x2z2α − 1

)
αzα−1dz + 2xz3αdx = 0

⇒ α
(
x2z3α−1 − zα−1

)
dz + 2xz3αdx = 0.

Cette équation est homogène si : 2+3α−1 = α−1 = 3α+1⇒ α = −1,et le
changement y = 1

z donne comme équation homogène :
(
z2 − x2

)
dz+2xzdx = 0.

Equations linéaires du premier ordre .
Ce sont les équations de la forme y′ + p (x) y = q (x) .Si q (x) est identique-

ment nulle alors l’équation est dite linéaire homogène à variables séparables
ayant pour solutions générales yH (x) = Ce−

∫
p(x)dx.
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Recherche d’une solution générale de l’équation non homogène :
Première méthode : Variation de la constante C dans yH (x) et on a

yG (x) = C (x) e−
∫
p(x)dx.

Exemple : y′ + 2xy = 2xe−x
2

On a y′ + 2xy = 0 donc yH (x) = Ce−x
2

et yG (x) = C (x) e−x
2 ⇒ y′G (x) =

C ′ (x) e−x
2 − 2xCe−x

2

,on remplace dans l’équation on trouve C ′ (x) = 2x puis
C (x) = x2 + K et yG (x) = C (x) e−x

2

=
(
x2 +K

)
e−x

2

= x2e−x
2

+ Ke−x
2

=
yP + yH .
Deuxième méthode : yG = yH + yP .
Soit yP (x) une solution particulière et yG la solution générale.On a les deux

équations yP (x)
′
+p (x) yP (x) = q (x) et yG (x)

′
+p (x) yG (x) = q (x) .En retran-

chant les deux équations on trouve (yG (x)− yP (x))
′
+p (x) (yG (x)− yP (x)) =

0,de sorte que (yG (x)− yP (x)) est une solution de l’équation de léquation ho-
mogène et par suite yG (x) − yP (x) = yH et on obtient à la fin que : yG =
yH + yP .
Il se peut qu’une edo puisse être aussi linéaire en x en tant que fonction de

y.
Exemple 1 : y′ = 1

x cos y+sin 2y .
dx
dy = x cos y + sin 2y ⇒ x′ − x cos y = sin 2y ⇒ on a une équation linéaire

en x comme fonction de y, .Ainsi on trouve x′ − x cos y = 0 ⇒ xH = Cesin y et
xG = C (y) esin y ⇒ C ′ (y) esin y = sin 2y,et en intégrant par parties on trouve :
C (y) = −2esin y (1 + sin y) +K ce qui donne : xG (y) = Cesin y − 2 (1 + sin y) =
xH (y) + xP (y) .
Troisième méthode . On pose y (x) = u (x) v (x) ,après dérivation on trouve

: vu′+ (pv + v′)u = q (x) .On cherche une fonction v telle que pv+ v′ = 0 et on
obtient u′ = q(x)

v(x) .

Exemple 2 : x (x− 1) y′ + y = x2 (2x− 1) et y (2) = 4.
x (x− 1) (u′v + uv′)+uv = x2 (2x− 1)⇒ x (x− 1)u′v+(x (x− 1) v′ + v)u =

x2 (2x− 1) .On prend x (x− 1) v′+ v par exemple v (x) = x
x−1 et u

′ = 2x−1⇒
u (x) = x2 − x + C et on obtient yG = Cx

x−1 + x2, C ∈ R.La condition y (2) =

4 = 2C + 4⇒ C = 0 et yP (x) = x2.
Interprétation géométrique :
Soit Cα une famille de courbes intégrales de l’équation y′+p (x) y = q (x) .On

montre qu’en des points homologues les tangentes aux courbes se coupent en

un point unique S
(
x+ 1

p(x) ,
q(x)
p(x)

)
. Points homologues ceux qui sont situés

sur une même droite parallèle à l’axe des ordonnées. L’élimination de x entre
ξ = x + 1

p(x) ,et η = q(x)
p(x) donne l’équation du lieu géométrique des point S :

f (ξ, η) = 0.
Equations de Bernoulli : y′ + p (x) y = q (x) yn,où n 6= (0, 1) .
Pour n = 0,on a une équation linéaire.y′ + p (x) y = q (x) .
Pour n = 1,on a une équation linéaire homogène y′ + [p (x)− q (x)] y = 0.
Pour n 6= (0, 1).
On pose : z = y1−n
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⇒ z′ = (1− n) y′y−n,

⇒ y′

yn + p (x) 1
yn−1 = q (x) ,

⇒ z′

(1−n) + p (x) z = q (x)

⇒ z′ + (1− n) p (x) z = (1− n) q (x) qui est linéaire en z.
Equations aux différentielles totales
LéquationM (x, y) dx+N (x, y) dy = 0 s’appelle aux différentielles totales si

son premier membre représente une différentielletotale d’une certaine fonction
u (x, y) ie M (x, y) dx+N (x, y) dy = ∂u

∂xdx+ ∂u
∂y dy.

Théorème : Pour que l’équation M (x, y) dx + N (x, y) dy = 0 soit une
équation aux différentielles totales il faut et il suffi t que ∂M

∂y = ∂N
∂x .

Exemple : (sinxy + xy cosxy) dx+
(
x2 cosxy

)
dy = 0.

∂M
∂y = x cosxy + x cosxy − x2y sinxy = 2x cosxy − x2y sinxy,
∂N
∂x = 2x cosxy − x2y sinxy,

donc ∂M
∂y = ∂N

∂x ⇒ on a une équation aux différentielles totales.{ ∂u
∂x = sinxy + xy cosxy

∂u
∂y = x2 cosxy

.

∂u
∂x = sinxy + xy cosxy ⇒ u (x, y) = x sinxy + ϕ (y) ,
∂u
∂y = x2 cosxy = ∂(x sin xy+ϕ(y))

∂y = x2 cosxy + ϕ′ (y) ,

Ainsi on a ϕ′ (y) = 0 ⇒ ϕ (y) = K et par suite u (x, y) = x sinxy + K et
l’intégrale générale est donnée par : x sinxy = C.

Facteur intégrant : Si M (x, y) dx + N (x, y) dy = 0 n’est pas totale on
cherche une fonction µ telle que [µM (x, y)] dx + [µN (x, y)] dy = 0 soit une
différentielle totale.

∂µM
∂y = ∂µN

∂x ⇒ N ∂µ
∂x −M

∂µ
∂y =

(
∂M
∂y −

∂N
∂x

)
µ,D’où :

N
∂ lnµ

∂x
−M ∂ lnµ

∂y
=
∂M

∂y
− ∂N

∂x

Si µ = µ (x)⇒ d lnµ
dx =

∂M
∂y −

∂N
∂x

N et µ (x) existe ⇔
∂M
∂y −

∂N
∂x

N ne dépend pas de
y.

Si µ = µ (y)⇒ d lnµ
dy =

∂N
∂x −

∂M
∂y

M et µ (y) existe ⇔
∂N
∂x −

∂M
∂y

M ne dépend pas de
x..
Exemple :

(
x+ y2

)
dx− 2xydy = 0.

On a : M = x + y2 , N = −2yx et
∂M
∂y −

∂N
∂x

N = 2y+2y
−2xu = − 2

x et par suite
d lnµ
dy = − 2

x et µ (x) = 1
x2 ,donc l’équation devient:

(
1
x + y2

x2

)
dx − 2y

x = 0 ⇒
dx
x −

[
−y2dx+2xydy

x2

]
= 0⇒ d

(
ln |x| − y2

x

)
= 0⇒ ln |x| − y2

x = C ⇒ x = e
y2

x .

Equations du premier ordre non résolues par rapport à y′.

• Equations du premier ordre de degré n en y′ :

y′n + p1 (x, y) y′(n−1) + ....+ pn−1 (x, y) y′ + pn (x, y) = 0.
On cherche y′1 = f1 (x, y) , ................., y′k = fk (x, y) avec k ≤ n
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Exemple 1 : yy′2 + (x− y) y′ − x = 0.

On a y′ =
y−x±

√
(x−y)2+4xy

2y et y′ = 1 et y′ = −xy . Après intégration on
trouve : y = x+ 1 et y2 + x2 = C2, (C ∈ R)

Exemple 2 : 2y′2 − 2xy′ − 2y + x2 = 0
On a : y = y′2 − xy′ + 1

2x
2,posons y′ = p

⇒ y = p2 − xp+ 1
2x

2,
⇒ dy = 2pdp− pdx− xdp+ xdx = pdx
⇒ (2p− x) (dp− dx) = 0
⇒ soit 2p− x = 0 soit dp− dx = 0
⇒ p = x

2ou p = x+ C

⇒ y (x) = Cx+ C2 + x2 ou y (x) = x2

4 .

• Equations de la forme f (y, y′) = 0 et f (x, y′) = 0.

Si les deux équations sont résolubles par rapport à y′ alors on obtient des ed
à variables séparables sinon on aura deux cas;

[A] f (y, y′) = 0 résoluble par rapport à y ie y = ϕ (y′) .

Posons y′ = p,alors y = ϕ (p) et dy = pdx = ϕ′ (p) dp ⇒ dx = ϕ′(p)dp
p et

x =
∫ ϕ′(p)dp

p + C ce qui donne finalement une solution paramétrée

x (p) =

∫
ϕ′ (p) dp

p
+ C, y (p) = ϕ (p)

Exemple 1 :. y = ay′2 + by′3

Posons : y′ = p⇒ dy = pdx.
On a : y (p) = ap2 + bp3

⇒ pdx = 2apdp+ 3bp2dp
⇒ dx = 2adp+ 3bpdp
⇒

x (p) = 2ap+
3

2
bp2 + C,

y (p) = ap2 + bp3

[B] f (y, y′) = 0 n’est pas résoluble par rapport à y et y′ mais admet une
expression de y et y′par un certain paramètre t ie y = ϕ (t) , y′ = ψ (t) .On a
dy = pdx = ψ (t) dx = ϕ′ (t) dt ⇒ x (t) =

∫ ϕ′(t)dt
ψ(t) ,ainsi on a une soluion sous

forme paramétrique

x (t) =

∫
ϕ′ (t) dt

ψ (t)
,

y = ϕ (t) .

Exemple 2 :.y
2
3 + y′

2
3 = 1

On a :
(
y
1
3

)2

+
(
y′

1
3

)2

= 1.
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Posons y (t) = cos3 t et y′ (t) = p (t) = sin3 t

⇒ dx = dy
p = −3 sin t cos2 t

sin3 t
dt = −3 cos2 t

sin2 t
dt

⇒ x =
∫ (

3− 3 1
sin2 t

)
dt = 3t+ 3 (ctg) t+ C

⇒

x (t) = 3t+ 3 (ctg) t+ C,

y (t) = cos3 t.

[C] Si f (x, y′) = 0 est résoluble par rapport à x.ie x = ϕ (y′) .
On pose y′ = p
⇒ dy = pdx et x = ϕ (p)
⇒ dx = ϕ′ (p) dp
⇒ dy = pϕ′ (p) dp
⇒

y =

∫
pϕ′ (p) dp+ C,

x = ϕ (p)

Exemple 3 :. ay′ + by′2 = x.On pose y′ = p .
⇒ x = ap+ bp2, dx = adp+ 2bpdp et dy = pdx = apdp+ 2bp2dp
⇒

x = ap+ bp2, y =
a

2
p2 +

2

3
bp3 + C,C ∈ R

Equations de Lagrange et Clairaut

• Equations de Lagrange : y = xϕ (y′) + ψ (y′)

On pose y′ = p et en dérivant par rapport à x et en remplaçant dy par
pdx on ramène cette équation à une équation linéaire par rapport à x en tant
que fonction de p.On cherche la solution x = r (p, C) et on obtient la solution
générale

x = r (p, C) ,

y = r (p, C)ϕ (p) + ψ (p)

En outre l’équation de Lagrange peut posseder des solutions singulières de
la forme y = xϕ (c) + ψ (c) ,où c est une racine de l’équation c = ϕ (c) .
Exemple 1 : y = 2xy′ + ln y′

y′ = p⇒ y = 2xp+ ln p
⇒ pdx = 2px+ 2xdp+ dp

p ,

⇒ pdxdp + 2
px = − 1

p2 ,
⇒

x (p) =
C

p2
− 1

p
, y (p) = ln p+

2C

p
− 2

c = ϕ (c) donne 2c = c,donc c = 0, y = ϕ (0)x + ψ (0) qui est non définie
donc aucune solution singulière.
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• Equations de Clairaut : y = xy′ + ψ (y′) .C’est un particulier de
Lagrange.

y = xy′ + ψ (y) = xp+ ψ (p)
⇒ dy = xdp+ pdx+ ψ′ (p) dp
⇒ pdx = xdp+ pdx+ ψ′ (p) dp
⇒
(
ψ′ (p) + x

)
dp = 0

⇒ dp = 0 ie p = C et y = Cx+ ψ (C) comme solution générale ou bien
ψ′ (p) + x = 0 et y = xp+ ψ (p) qui est la solution singulière.
Exemple 1 :.y = xy′ + 1

y′ = xp+ 1
p

⇒ dy = pdx = pdx+ xdp− dp
p2

⇒
(
x− 1

p2

)
dp = 0 ce qui donne soit dp = 0, p = C,et y = Cx + 1

C comme

solution générale soit x− 1
p2 = 0,donc

x = 1
p2 et y = xp+ 1

p = 2
p et y

2 = 4x comme solution singulière.
Riccati equation
A Riccati equation is an ordinary differential equation of the form y′ =

a (x) y2 +b (x) y+c (x) where a, b and c are three functions, often chosen contin-
uous on a common interval with real values. It bears this name in honor of Ja-
copo Francesco Riccati (1676−1754) and his son Vincenzo Riccati (1707−1775).
There is in general no method to solve by quadrature such an equation, never-
theless this is possible as soon as one knows a particular solution.
Resolution methods

• First method

If y1 is a particular solution of the Riccati equation y′ = a (x) y2 + b (x) y +
c (x) then we put y = y1 + 1

zand we obtain a Bernoulli equation.

• Second method

If y1 and y2are two particular solutions of the Riccati equation y′ = a (x) y2+
b (x) y + c (x) , then we get the solution in the form :

y − y1

y − y2
= Ce

∫
a(x)(y2−y1)dx

where C is a real constant.

• Third method

We put y = − z′

a(x)z and we get that z′′ +A (x) z′ +B (x) z = 0.

• Fourth method

We put y = 1
A(x)u(x)+B(x) and we choose A and B in such a way that the

Riccati equation is written in the form u′ = u2 +v (x) and by applying the third
method by setting u = − z′z , we get the Sturm equation z′′ + v (x) z = 0.
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Etablissement des équations différentielles des familles de courbes.
Soit y = ϕ (x,C) une famille de courbes dépendant d’un paramétre C.En

dérivant par rapport à x on obtient y′ = ϕ′ ((x,C)) .On élimine C entre ces deux
équations on obtient une équation différentielle de la forme F (x, y, y′) = 0.Si
une famille de courbes à un parametre est définie par une équation Φ (x, y, C) =
0,l’équation différentielle de cette famille sera obtenue en éliminant C entre les
deux équations Φ (x, y, C) = 0 et ∂Φ

∂x + y′ ∂Φ
∂y = 0.

Soit maintenant une relation Φ (x, y, C1, C2, .....Cn) = 0.On dérive n fois par
rapport à x et en éliminant C1, C2, .....Cn entre cette équation et les dérivées
obtenues on trouve F

(
x, y, y′, y′′, ...., y(n)

)
= 0 qui est l’équation cherchée.

Exemple : x2

C2 − y2

1 = 1.
En dérivant par rapport à x on trouve 2x

C2 − 2yy′ = 0,⇒ yy′ = x
C2 ⇒ xyy′ =

x2

C2 = 1 + y2 et l’équation ainsi obtenue est donnée par : xyy′ = 1 + y2.
Problèmes sur les trajectoires Φ (x, y, C) = 0.
(1) Trajectoires orthogonales : On établie l’équation différentielle de la

famille donnée F (x, y, y′) = 0 . L’équation différentielle de la famille orthogo-

nale est donnée par F
(
x, y,− 1

y′

)
= 0 .

(2)Trajectoires isogonales faisant un angle α tel que tanα = k
On établie l’équation différentielle de la famille donnée F (x, y, y′) = 0 .

L’équation différentielle de la famille isogonale est donnée par F
(
x, y, y

′−k
1+ky′

)
=

0 .Si α = π
2 alors k →∞ et y′−k

1+ky′ → −
1
y′ et on obtient les trajectoires orthogo-

nales.
Exemple 1 :Trouver les trajectoires orthogonales de la famille de lignes

y = kx
y = kx⇒ y′ = k ⇒ y = xy′,ainsi l’équation de la famille est y−xy′ = 0,donc

F (x, y, y′) = y− xy′ et l’équation de la famille orthogonale est F
(
x, y,− 1

y′

)
=

0 = y + x
y′ ⇒ yy′ + x = 0,ie x2 + y2 = C2,donc on a une famille de cercles

centrés à l’origine et de rayon |C| .
Exemple 2 : x2 + y2 = 2ax, (x− 1)

2
+ y2 = a2,

2x + 2yy′ − 2a = 0 ⇒ x + yy′ − a = 0 ⇒ x2 + y2 = 2x (x+ yy′) ⇒
x2 − y2 + 2xyy′ = 0.
On remplace y′ par − 1

y′ ⇒ y′ = 2xy
x2−y2 , c’est une équation homogèneet sa

solution est x2 + y2 = Cy qui sont exactement des cercles dont les centres sont
sur l’axe (oy) et qui sont tangents à l’axe (ox) .

Solutions maximales et globales : y′ = f (x, y) avec x ∈ R, y ∈ R.
Si (y1, I1) , (y2, I2) sont deux solutions de l’équation,on dit que (y2, I2) est

un prolongement de (y1, I1) si I1 ⊂ I2 et ∀x ∈ I1,on a y1 (x) = y2 (x) .

• On dit que que la solution (y, I) est maximale si elle n’admet pas de
prolongement.

• On dit que que la solution (y, I) est une solution globale sielleest définie
dans I tout entier.
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• Remarque : globale⇒ maximale mais la réciproque est fausse en générale.

Exemple : y′ = y2 ⇒ y (x) = 1
C−x , et y (x) = 0,

On a donc
y1 (x) = 0 est globale et par conséquent maximale.
y2 (x) = 1

C−x sur ]C,+∞[ est maximale mais non globale
y3 (x) = 1

C−x sur ]−∞, C[ , est maximale mais non globale .
Solutions singulières
Soit F (x, y, y′) = 0 .On dit que que la solution y = ϕ (x) est singulière s’il

n’y a d’unicité en aucun de ses points ie si par chacun de ses points (x0, y0) il
passe en plus de cette solution encore une autre solution qui a au point (x0, y0)
la même tangente que la que la solution y = ϕ (x) mais qui ne coincide pas avec
cette solution dans un voisinage aussi petit que l’on veut du point (x0, y0) .Le
graphique de cette solution s’appelle courbe intégrale singulière.
Méthodes pour trouver les solutions singulières

• Toute solution singulière vérifie aussi l’équation ∂F
∂y′ = 0, donc pour trouver

la solution singulière il faut éliminer y′ entre les équations :F (x, y, y′) = 0
et ∂F

∂y′ = 0,et l’équation ainsi obtenue est ϕ (x, y) = 0.

• Interprétation géométrique : La courbe intégrale s’appelle enveloppe.L’unicité
n’est verifiée en aucun point de cette courbe.Si Φ (x, y, C) = 0 est l’intégrale
générale de l’équation donnée ,l’enveloppe de la famille de courbes si elle
existe sera une courbe intégrale singulière de cette équation.Pour trou-
ver l’enveloppe on élimine C dans les deux équations Φ (x, y, C) = 0,et
∂Φ
∂C = 0.

Exemple : xy′ + y′2 − y = 0
(1) F (x, y, y′) = xy′ + y′2 − y
⇒ ∂F

∂y′ = x+ 2y′ = 0⇒ y′ = −x2 ,et y (x) = −x24 .
(2) yG (x) = Cx+ C2 ⇒ ∂yG

∂C = x+ 2C = 0⇒ C = −x2 ⇒ yS (x) = −x24 .
Soit (x0, y0) et y1 (x) = Cx+C2, y2 (x) = −x24 .De la définition d’une solution

singulière on a le système :{
y1 (x0) = y2 (x0)
y′1 (x0) = y′2 (x0)

⇒
{

Cx0 + C2 = −x
2
0

4
C = −x02

⇒ on a une identité.

Ainsi en tout point de la courbe y (x) = −x24 il existe une autre courbe

y1 (x) = −x02 x+
x20
4 qui lui est tangente
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Serie 2

Exercice 1: Equations à variables séparables et équations s’y ramenant :

• (3ex tan y) dx+ (2− ex) 1
cos2 xdy = 0

• (1 + ex) yy′ = ex avec y (0) = 1

• y′ sinx = y ln y avec y
(
π
2

)
= e puis y

(
π
2

)
= 1

• x3y′ sin y = 2 avec y → π
2 quand x→∞

• Trouver l’équation d’une courbe passant par le point (0,−2) et telle que
la pente de la tangente

en chaque point soit égale à l’ordonné de ce point augmentéé de 3.
Exercice 2 : Equations homogènes et équations s’y ramenant :

• xy′ =
√
x2 − y2 + y

• (x+ y − 2) dx+ (x− y + 4) dy = 0

• (x+ y + 1) dx+ (2x+ 2y − 1) dy = 0

•
(
x2y2 − 1

)
dy + 2xy3dx = 0.On pose : y = zα

Exercice 3 : Edo linéaires

• y′ + 2xy = 2xe−x
2

• y′ = 1
2x−y2

• x (x− 1) y′ + y = x2 (2x− 1) avec y (2) = 4

• Trouver la solution générale de y′ + p (x) y = q (x) connaissant deux solu-
tions particulières y1 (x) et y2 (x) .

Exercice 4 : Edo de Bernoulli

• y′ − xy = −xy3

• xy′ + y + y2 lnx

• x
∫ x

0
y (t) dt = (x+ 1)

∫ x
0
ty (t) dt

• y (x) = ex +
∫ x

0
y (t) dt.

16



Exercice 5 : Equations aux différentielles totales:

•
(
x3 + xy2

)
dx+

(
y3 + yx2

)
dy = 0.

• x
(
2x2 + y2

)
+ yy′

(
2y2 + x2

)
= 0.

•
(
3x+ 2y + y2

)
dx+

(
x+ 4xy + 5y2

)
dy = 0. Trouver un facteur intégrant

de la forme µ = φ
(
x+ y2

)
Exercice 6 : Edo non résolues par rapport à la dérivée:

• yy′2 + (x− y) y′ = x.

• 2y′2 − 2xy′ − 2y + x2 = 0.

• y = y′2 + y′
3

.

• y 2
3 + y′

2
3 = 1.

• x = y′ + y′
2

.

• y = y′2ey
′
.

• x = y′2 − 2y′ + 2.

• y′ = e
y′
y

Exercice 7 : Edo de Lagrange et Clairaut:

• y = 2xy′ + ln y′.

• y = xy′ + 1
y′ .

• y = xy′2 − 1
y′ .

• x = y
y′ + 1

y′2

Exercice 8 : Edo de Riccati:

• y′ − y2 + 2yex = e2x + ex avec y1 (x) = ex solution particulière .

• y′ = 1
x4 −y

2 avec y1 (x) = 1
x + 1

x2 et y1 (x) = 1
x−

1
x2 solutions particulières.

• x2y = x2y2 + xy + 1 avec y1 (x) = − 1
x solution particulière.

Exercice 9: Etablissement des Edo pour les courbes suivantes :

• x2

a2 − y
2 = 1.

• y = a
(
1− e− xa

)
• y = ax2 + bx+ c
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• y2 = 2ax+ a2

• y = a sin (x+ b)

• Former l’équation différentielle de la famille de droite passant à

une distance égale à l’unité de l’origine.
Exercice 10 :Trajectoires orthogonales pour les familles:

• y = kx .

• x2 + y2 = 2ax.

• y = ax2.

Exercice 11 : Solutions singulières pour les equations :

• xy′ + y′2 − y = 0

• xy′2 − 2yy′ + 4x = 0, avec (x〈0)

• 2y (y′ + 2)− xy′2 = 0

• y′2 = 4x2

• y′2 (2− 3y)
2

= 4 (1− y)

• 3y = 2xy′ − 2
xy
′2
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Chapitre 3 : Equations différentielles ordinaires d’ordre 2 et plus

Notions fondamentales et définitions

• Une équation différentielle d’ordre n est de la forme F
(
x, y, y′, ....., y(n)

)
=

0,ou si elle est résolue par rapport à y(n) : y(n) = f
(
x, y, y′, ....., y(n−1)

)
.

• Le problème de Cauchy consiste à trouver une solution y = ϕ (x) qui
vérifie y (x0) = y0, y

′ (x0) = y′0,....., y
(n−1) (x0) = yn−1

0, .

• Théorème d’existence et d’unicité:

Si la fonction f :
(a) est continue par rapport à x, y, y′, ....., y(n−1) dans D.
(b) possède dans D des dérivées partielles ∂f∂y ,

∂f
∂y′ , ......,

∂f
∂y(n−1)

,

Alors il existe un intervalle x0 − h ≤ x ≤ x0 + h dans lequel l’équation une
solution unique vérifiant :

y (x0) = y0, y
′ (x0) = y′0,....., y

(n−1) (x0) = yn−1
0, .

• Pour n = 2 on a : y
′′

= f (x, y, y′) et y (x0) = y0, y
′ (x0) = y′0,.

• Exemple : y′′ = sin y′ + e−x
2y,et y (x0) = y0, y

′ (x0) = y′0,.

f (x, y, y′) = sin y′ + e−x
2y est une fonction définie et continue pour toutes

les valeurs de x, y, y′.Ses dérivées ∂f
∂y = −x2e−x

2y et ∂f
∂y′ = cos y′ sont partout

continues et bornées par suite il existe une solution unique qui satisfait à ces
conditions.

• On appelle solution générale y = ϕ (x,C1, C1, ..., Cn,) = 0.Si on donne des
valeurs pour C1, C1, ..., Cn, on obtient une solution particulière.

• Φ (x, y, C1, C1, ..., Cn,) = 0 s’appelle intégrale générale de cette équation
et son graphique s’appelle courbe intégrale.

Exemple 1 : y (x) = C1x + C2 est solution de l’équation différentielle du
second ordre : y′′ = 0, y (x0) = y0, y

′ (x0) = y′0, ⇒ y0 = C1x0 + C2 et C1 =
y′0, ⇒ C1 = y′0,et C2 = −y′0,x0 + y0

⇒
y (x) = y′0x−−y′0,x0 + y0

géométriquement :Par chaque point donné M0 (x0, y0) ,du plan xoy il ne
passe qu’une seule courbe dont la pente de la tangente a la même valeur donnée
y′0,.

Exemple 2 : y′′ = 2
√
y′ possède deux solutions y1 (x) = 0,et y2 (x) = x

2
3

qui vérifient toutes les deux y (x) = y′ (0) = 0.
Pourquoi ce résultat n’est-il pas en contradiction avec le théorème d’existence

et d’unicité?.
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on a ∂f
∂y′ = 1√

y′
qui n’est pas continue en 0.

Equations différentielles admettant un abaissement de l’ordre
(1) : y(n) = f (x) .On intégre n fois et on obtient :y =

∫ ∫
....
∫
f (x) dxdxdx+

C1
xn−1

(n−1)! + C2
xn−2

(n−2)! + ...+ C(n−1)x+ Cn.

(2) : Lorsque l’équation ne contient ni y ni ses dérivées jusqu’à
l’ordre (k − 1) y compris : F

(
x, y(k), y(k+1), ....., y(n)

)
= 0.Dans ce cas l’ordre

peut être réduit de k unités par la substitution y(k) = p,et l’équation s’écrit
: F

(
x, p, p′, ....., p(n−k)

)
= 0,on déduit : p = f

(
x,C1, C1, ..., C(n−k),

)
, et on

intègre k fois pour obtenir : y(k) = f
(
x,C1, C1, ..., C(n−k),

)
.

(3) Léquation ne contient pas la variable x : F
(
y, y′, ....., y(n)

)
= 0.Dans

ce cas on pose : y′ = dy
dx = p,donc dy = pdx et y′ = p, y′′ = dp

dx = dp
dy

dy
dx =

p dpdy , y
′′′ = d

dx

(
p dpdy

)
=
(
dp
dy

)2
dy
dx + p2 d

2p
dy2 = p

(
dp
dy

)2

+ p2 d
2p
dy2 .

(4) L’équation F
(
y, y′, ....., y(n)

)
= 0 est homogène ie F

(
x, ty, ty′, ....., ty(n)

)
=

tkF
(
x, y, y′, ....., y(n)

)
.

Dans ce cas l’ordre d’une telle équation peut être abaissé d’une unité par la
sibstitution : y = e

∫
zdx,où z est une nouvelle fonction inconnue de x.

(5) Léquation écrite en différentielle F
(
x, y, dx, dy.d2y, .., dny

)
= 0,avec

F une fonction homogène par rapport à x, ydx, dy, ....dny.
Si on considère que x et dx sont du premier degré et y, dy.d2y, .., dny,sont de

degré m ,alors dydx sera de degré (m− 1) , d
2y
dx2 de degré (m− 2) , etc.Pour abaisser

l’ordre on pose x = et, y = uemt, ainsi on obtient une équation différentielle
entre u et t qui ne contient pas tsous forme explicite .
Exemple 1 : y′′′ = sinx+ cosx
y′′ = − cosx+ sinx+ C1

y′ = − sinx− cosx+ C1x+ C2

y = cosx− sinx+ C1
2 x

2 + C2x+ C3.

Exemple 2 : y′′′ = ln x
x2 , y (1) = 0, y′ (1) = 1, y′′ (1) = 2.

y′′ =
∫

ln x
x2 dx = − ln x

x −
1
x + C1,

y′ = − 1
2 ln2 x− lnx+ C1x+ C2,

y (x) = −x2 ln2 x+ C1
2 x

2 + C2x+ C3,

Les conditions initiales donnent : C1
2 + C2 + C3 = 0, C1 + C2 = 1,−1 +

C1 = 2 ⇒ C1 = 3, C2 = −2, C3 = 1
2 ,et la solution est donnée par : yp (x) =

−x2 ln2 x+ 3
2x

2 − 2x+ 1
2 .

Exemple 3 : y′′′ =
√

1 + y′′2.

On pose : y′′ = p⇒ dp
dx =

√
1 + p2

⇒ p = e(x+C1)−−e−(x+C1)
2

⇒ y′ = e(x+C1)+e−(x+C1)

2 + C2,

⇒ y (x) = e(x+C1)−−e−(x+C1)
2 + C2x+ C3 = sinh (x+ C1) + C2x+ C3.

Exemple 4 : xy(V ) − y(IV ) = 0.
Elle ne contient pas de fonction cherchée y ni ses dérivées y′, y′′, y′′′.
On pose : y(IV ) = p⇒ xp′ − p = 0⇒ p = C1x.
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y(IV ) = C1x
⇒ y′′′ = C1

2 x
2 + C2

⇒ y′′ = C1
6 x

3 + C2x+ C3

⇒ y′ = C1
24 x

4 + C2
2 x

2 + C3x+ C4

⇒ y (x) = C1
120x

5 + C2
6 x

3 + C3
2 x

2 + C4x+ C5,
⇒

y (x) = α1x
5 + α2x

3 + α3x
2 + α4x+ α5, α1, α2, α3, α4, α5,∈ R

Exemple 5 : y′′ + y′2 = 2e−y.
L’équation ne contient pas x,on pose : y′ = p, y′′ = p dpdy ,et on trouve une

équation de Bernoulli p dpdy + p2 = 2e−y.

On pose z = p2,et on obtient une équation linéaire dz
dy + 2z = 4e−y,dont la

solution générale est z = 4e−y + C1e
−2y.

En remplaçant z par p2 = y′2 ⇒ dy
dx = ±

√
4e−y + C1e−2y. ⇒ x + C2 =

± 1
2

√
4ey + C1,et on trouve à la fin que :

ey + C̃1 = (x+ C2)
2

Exemple 6 : x2yy′′ = (y − xy′)2
.

L’équation est homogène par rapport à y, y′ et y′′,L’ordre se trouve réduit
d’une unité en posant :

y = e
∫
zdx ⇒ y′ = ze

∫
zdx et y′′ =

(
z′ + z2

)
e
∫
zdx.

En remplaçant l’équation devient : x2
(
e
∫
zdx
)
.
(
z′ + z2

) (
e
∫
zdx
)

=
(
e
∫
zdx − xze

∫
zdx
)2

.

Après simplification on trouve l’équation linéaire :
x2z′ + 2xz = 1

x2 ⇒(
x2z
)′

= 1⇒ x2z = x+ C1 ⇒ z = 1
x + C1

x2

⇒
∫
zdz =

∫ (
1
x + C1

x2

)
dx = ln |x| − C1

x + lnC2

⇒
y (x) = e

∫
zdx = eln|x|−C1x +lnC2 = C2 |x| e−

C1
x = C2xe

−C1x

Exemples 7 : x3y′′ = (y − xy′)2
.C’est une équation homogène généralisée.

En considérant x, y, y′ et y′′comme étant de degré 1,m,m − 1,m − 2, on
trouve

3 +m− 2 = 2m⇒ m = 1. On pose alors x = et et y = uet et on obtient :
dy
dx =

dy
dt
dx
dt

=
( dudt +u)et

et = du
dt + u,

d2y
dx2 =

d
dt (

dy
dt )

dx
dt

=
d2u
dt2

+ du
dt

et = e−t
(
d2u
dt2 + du

dt

)
,

On remplace ,on trouve après simplification d2u
dt2 + du

dt =
(
du
dt

)2
ou y′′ + y′ =

y′2.

En posant p = du
dt ,

d2u
dt2 = p dpdu ,on obtient p

dp
du + p = p2,d’où : p = 0 et

dp
du + 1 = p.
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L’intégration de dp
du + 1 = p ⇒ p = 1 + C1e

u ⇒ du
dt = 1 + C1e

u ⇒ u =

ln et

C2+C1et
.

En revenant aux variables x et y, on obtient y (x) = x ln x
C2+C1x

.
Le cas p = 0 donne u = C ou y = Cx qui est une solution particulière

obtenue pour C1 = e−C et C2 = 0.
Remarque : En résolvant le problème de Cauchy pour les équations d’ordre

supérieur il est raisonable de déterminer les constantes.
Exemple 8 : y′′ = 2y3, y (0) = 1, y′ (0) = 1,

y′ = p⇒ p dpdy = 2y3 ⇒ pdp = 2y3dy ⇒ p2

2 = y4

2 + C

⇒ p2 = y4 + C1 ⇒ dy
dx =

√
y4 + C1

⇒ x+ C2 = ±
∫

1√
y4+C1

dy,

qui est impossible de intégrer mais si on on utilise y (0) = 1, y′ (0) = 1,
⇒ 1 =

√
1 + C1 ⇒ C1 = 0,et on aura : dy

dx = ±y2,on obtient : dy
y2 = ±dx,et

aprés intégration on trouve:
y1 (x) = 1

1−xet y2 (x) = 1
1+x .

De plus on a :
y1 (x) = 1

1−x ⇒ y′1 (x) = 1
(1−x)2

⇒ y
′′

1 (x) = 2
(1−x)3

= 2y3 avec y1 (0) =

1, y′1 (0) = 1
y2 (x) = 1

1+x ⇒ y′2 (x) = −1
(1+x)2

⇒ y
′′

2 (x) = 2
(1+x)3

= 2y3 avec y2 (0) =

1, y′2 (0) = −1
qui ne convient pas .
Equations différentielles linéaires d’ordre n
Indépendance linéaire : Soit donné un système fini de n fonctions y1, , , , , yn.
Ces fonctions sont linéairement dépendants sur l’intervalle [a, b] s’il existe des

costantes α1, , , , , αn non toutes nulles et telles que ∀x ∈ [a, b] on ait l’identité
α1y1 + .......+ αnyn = 0.

Si cette identité n’est vérifiée que pour α1 = .. = αn = 0 alors les fonctions
sont linéairement indépendantes sur l’intervalle [a, b] .
Exemple 1 : 1, x, x2, x3 sont linéairement indépendants sur R.Soit l’équation

α1 + α2x+ α3x
2 + α4x

3 = 0.
Posons x = 0⇒ α1 = 0, dérivons par rapport à x et posons x = 0 on trouve

α2 = 0,dérivons par rapport à x et posons x = 0 on trouve α3 = 0,dérivons par
rapport à x et posons x = 0 on trouve α4 = 0,donc α1 = α2 = α3 = α4 = 0 et
les fonctions 1, x, x2, x3 sont linéairement indépendantes sur R.
Exemple 2 : ex, e2x, e3x, sont linéairement indépendants sur R.
Soit l’équation α1e

x + α2e
2x + α3e

3x = 0.On a : α1 + α2e
x + α3e

2x =
0.Dérivons par rapport à x ⇒ α2e

x + 2α3e
2x = 0 ⇒ α2 + 2α3e

x = 0,Dérivons
par rapport à x ⇒ 2α3e

x = 0 ⇒ α1 = α2 = α3 = 0.et les fonctions ex, e2x, e3x

sont linéairement indépendantes sur R.
Exemple 3 : ex sinx, ex cosx sont linéairement indépendants sur R.
Soit l’équation α1e

x sinx+α2e
x sinx = 0.⇒ α1 sinx+α2 sinx = 0.On pose

x = 0 puis x = π
2 ⇒ α2 = 0 et α1 = 0 et les fonctions ex sinx, ex cosx sont

linéairement indépendantes sur R.
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Exemple 4 : sinx, sin
(
x+ π

8

)
, sin

(
x− π

8

)
,sont linéairement indépendants

sur R.
Soit l’équation α1 sinx+ α2 sin

(
x+ π

8

)
+ α3 sin

(
x− π

8

)
= 0.On pose x = 0

, x = π
4 puis x = π

4 ⇒
α2 sin π

8 − α3 sin π
8 = 0,

α1√
2

+ α2 sin 3π
8 + α3 sin π

8 = 0,

α1 + α2 sin 5π
8 + α3 sin 3π

8 = 0

⇒
{

α2 = α3

α1 = −2α3 cos π8

⇒ une une infinité de solutions par exemple α2 = α3 = 1 et α1 = −2 cos π8 ,ainsi
les trois fonctions sont linéairement dépendantes.
Remarque : Deux fonctions y1 et y2 sont linéairement indépendantes si le

rapport y1y2 n’est pas constant.
Exemple 5 :· tan x

cot x = tan2 x n’est pas constant sur 0 ≺ x ≺ π
2 .⇒ les fonction

tanx et cotx sont linéairement indépendantes sur R.
Exemple 6 : · sin 2x

sin x cos x = 2 sin x cos x
sin x cos x = 2⇒ les fonctions sin 2x et sinx cosx

sont linéairement dépendantes sur R.
Exemple 7 : · sin

(
x+ π

8

)
+ sin

(
x− π

8

)
= 2 cos π8 sinx ⇒ sin

(
x+ π

8

)
+

sin
(
x− π

8

)
− 2 cos π8 sinx = 0 ⇒ les fonctions sin

(
x+ π

8

)
, sin

(
x− π

8

)
, sinx

sont linéairement dépendantes sur R.
Définition: Soient y1, , , , , yn n fonctions possédant des dérivées d’ordre

(n− 1) .Le déterminant :

W(y1, , , , , yn) =

∣∣∣∣∣∣∣∣∣∣
y1, , , , , yn
y′1, , , , , y′n

′
′

y
(n−1)
1 , , , , , y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
s’appelle Wronskien.

Exemple 1 :· ex, e2x, e3x ⇒W (y1, y2, y3) =

∣∣∣∣∣∣
ex, e2x, e3x

ex, 2e2x, 3e3x

ex, 4e2x, 9e3x

∣∣∣∣∣∣ = 2e6x

Exemple 2 : · sinx, sin
(
x+ π

8

)
, sin

(
x− π

8

)
⇒W (y1, y2, y3) =

∣∣∣∣∣∣
sinx, sin

(
x+ π

8

)
, sin

(
x− π

8

)
cosx, cos

(
x+ π

8

)
, cos

(
x− π

8

)
− sinx,− sin

(
x+ π

8

)
,− sin

(
x− π

8

)
∣∣∣∣∣∣ = 0.

Théorème :
Si un systéme de fonctions y1, , , , , yn est linéairement dépendant sur l’intervalle

[a,b] alors le Wronskien est isdentiquement nul.
· Cette condition est nécessaire mais non suffi sante.
Exemple :

y1 (x) =

{
0 si 0 ≤ x ≤ 1

2(
x− 1

2

)2
si 1

2 ≤ x ≤ 1
, y2 (x) =

{ (
x− 1

2

)2
si 0 ≤ x ≤ 1

2
0 si 1

2 ≤ x ≤ 1
Ce systéme est linéairement indépendant car α1y1 +α2y2 = 0⇒ α1 = α2 =

0.
Pourtant :

Sur
[
0, 1

2

]
W (y1, y2) =

∣∣∣∣ 0,
(
x− 1

2

)2
0, 2x− 1

∣∣∣∣ = 0 .
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Sur
[

1
2 , 1
]
W (y1, y2) =

∣∣∣∣ (x− 1
2

)2
, 0

2x− 1, 0

∣∣∣∣ = 0 .

Ainsi W (y1, y2) = 0 sur R.
Définition : Soit donné un systéme de fonctions (y1, , , , , yn) définies sur

l’intervalle [a, b] .

Posons : (yi, yj) =
∫ b
a
yi (x) yj (x) dx pour i, j = 1, 2, 3, , , , , , n.

Le déterminant Γ (y1, , , yn) =

∣∣∣∣∣∣∣∣∣∣
(y1, y1) , (y1, y2) , , , (y1, yn)
(y2, y1) , (y2, y2) , , , (y2, yn)

............................

............................
(yn, y1) , (yn, y2) , , , (yn, yn)

∣∣∣∣∣∣∣∣∣∣
,

s’appelle déterminant de Gram.

• Théorème :

Le systéme de fonctions (y1, , , , ,yn) est linéairement indépendant si et seule-
ment si Γ est non nul.
Exemple : y1 = x,y2 = 2x.

(y1, y1) =
∫ 1

0
x2dx = 1

3

(y1, y2) =
∫ 1

0
2x2dx = 2

3

(y2, y1) =
∫ 1

0
2x2dx = 2

3

(y2, y2) =
∫ 1

0
4x2dx = 4

3

Γ (x, 2x) =

∣∣∣∣ (x, x) , (x, 2x)
(2x, x) , (2x, 2x)

∣∣∣∣ =

∣∣∣∣ 1
3 ,

2
3

2
3 ,

4
3

∣∣∣∣ = 0,

Par conséquent les fonctions y1 = x,y2 = 2x,sont linéairement dépendantes
:y2.y1 = 2x.

x = 2.
Equations linéaires homogènes à coêffi cients constants.
Considérons l’équation a0y

(n) +a1y
(n−1) + ......+a(n−1)y

′+any = 0, ai ∈ R.
· Cherchons son équation caractéristique P (λ) = a0λ

n; + a1λ
n−1 + ...... +

a(n−1)λ+ an.
· Cherchons les racines λ1, λ2, .....λn.
· D’après la nature des racines écrivant la solution particulière .
(a) A chaque racine réelle simple λ,correspond la solution : eλx.
(b) A chaque couple de racines conjuguées simples λ1 = α+ iβ, λ2 = α− iβ

correspondent les solutions: eαx cosβx, eαx sinβx.
(c) A chaque racine réelle λ de multiplicité s correspondent les s solutions:

eλx, xeλx, ....., x(s−1)eλx.
(d) A chaque couple de racines conjuguées λ1 = α + iβ, λ2 = α − iβ, de

multiplicité s correspondent 2s solutions:

eαx cosβx, xeαx cosβx, ......., x(s−1)eαx cosβx,

eαx sinβx, xeαx sinβx, ......., x(s−1)eαx sinβx
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Le nombre de solutions particulières ainsi construites est égal à l’ordre de
cette équation.Toutes les solutions contruites sont linéairement indépendantes
et forment un systéme fondamental de solutions.
Exemple 1 : y′′′ − 2y′′ − 3y′ = 0 ⇒ λ3 − 2λ2 − 3λ = 0 ⇒ λ1 = 0, λ2 =

−1, λ3 = 3
⇒ y1 = 1, y2 = e−x, y3 = e3x

⇒
yg.h = C1 + C2e

−x + C3e
3x

Exemple 2 : y′′′+2y′′+y′ = 0⇒ λ3 +2λ2 +λ = 0⇒ λ1 = 0, λ2 = λ3 = −1
⇒ y1 = 1, y2 = e−x, y3 = xe−x

⇒
yg.h = C1 + C2e

−x + C3xe
−x

Exemple 3 : y′′′ + 4y′′ + 13y′ = 0 ⇒ λ3 + 4λ2 + 13λ = 0 ⇒ λ1 = 0, λ2 =
−2 + 3i, λ3 = −2− 3i
⇒ y1 = 1, y2 = cos 3xe−2x, y3 = sin 3xe−2x

⇒
ygh = C1 + C2 cos 3xe−2x + C3 sin 3xe−2x

Exemple 4 : y(5) − 2y(4) + 2y′′′ − 4y′′ + y′ − 2y = 0 ⇒ λ5 − 2λ4 + 2λ3 −
4λ2 + λ− 2 = 0
⇒ (λ− 2)

(
λ2 + 1

)2
= 0⇒ λ1 = 2, λ2 = λ3 = i, λ4 = λ5 = −i

⇒ y1 = e2x, y2 = cosx, y3 = x cosx, y4 = sinx, y5 = x sinx
⇒

ygh = C1e
2x + (C2 + C3x) cosx+ (C4 + C5x) sinx

Exemple 5 : y(4) + 4y′′′+ 8y′′+ 8y′+ 4y = 0,⇒ λ4 + 4λ3 + 8λ2 + 8λ+ 4 = 0

⇒
(
λ2 + 2λ+ 2

)2
= 0⇒ λ1 = λ2 = −1− i, λ3 = λ4 = −1 + i,

⇒ y1 = e−x cosx, y2 = e−xx cosx, y3 = e−x sinx, y4 = e−xx sinx,
⇒

ygh = e−x (C1 + C2x) cosx+ e−x (C3 + C4x) sinx

Equations linéaires non homogènes à coêffi cients constants
Considérons l’équation a0y

(n) + a1y
(n−1) + ......+ a(n−1)y

′ + any = f (x) .
Théorème :
La solution générale de cette équation yG est égale à la somme de la solution

générale de l’équation homogène ygh et d’une solution particulière de l’équation
avec second membre ypn :

yG = ygh + ypn

Problème : Comment chercher une solution particulière ? .On a deux
méthodes
· (1)Variation des constantes.
· (2)Pour les seconds membres de forme spéciale la solution particulière peut

être obtenue plus simplement par la méthode des coêffi cients indéterminés.La
forme générale pour laquelle on peut appliquer cette méthode est :

f (x) = eαx (Pl (x) cosβx+Qm (x) sinβx)
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avec Pl polynôme de degré l, Qm polynôme de degré m.
Dans ce cas on cherche ypn sous la forme :

ypn = xseαx
(
P̃k (x) cosβx+ Q̃k (x) sinβx

)
,où k = max (l,m) , P̃k et Q̃k des

polynômes de degré k et s est la multiplicité de la racine λ = α+iβ de l’équation
caractéristique .Si α± iβ n’est pas racine alors s = 0.
Exemple 1 : y′′′ − y′′ + y′ − y = x2 + x⇒ λ3 − λ2 + λ− 1 = 0
⇒ λ2 (λ− 1) + (λ− 1) = 0⇒

(
λ2 + 1

)
(λ− 1)⇒ λ1 = 1, λ2 = i, λ3 = −i

⇒ y1 = e−x cosx, y2 = e−xx cosx, y3 = e−x sinx, y4 = e−xx sinx,
⇒ ygh = C1e

−x + C2 cosx+ C3 sinx
⇒ ypn = A0x

2 +A1x+A2, y
′
pn = 2A0x+A1, y

′′
pn = 2A0.

Après avoir remplacé dans l’équation donnée on trouve :ypn = −x2 − 3x− 1
et

yG = −x2 − 3x− 1 + C1e
−x + C2 cosx+ C3 sinx

Exemple 2 : y′′′ − y′′ = 12x2 + 6x ⇒ λ3 − λ2 = λ2 (λ− 1) = 0 ⇒ λ1 =
λ2 = 0, λ3 = 1
⇒ y1 = 1, y2 = x, y3 = ex,
⇒ ygh = C1 + C2x+ C3e

x

Le nombre 0 = α+ iβ est solution de l’équation caractéristique donc : ypn =
x2
(
A0x

2 +A1x+A2

)
= A0x

4 +A1x
3 +A2x

2

⇒ y′pn = 4A0x
3 +3A1x

2 +2A2x, y
′′

pn = 12A0x
2 +6A1x+2A2, y

′′′

pn = 24A0x+
6A1.

D◦ (y′′′ − y′′) = sup (n− 2, n− 3) = n− 2 = 2⇒ n = 4,
En introduisant dans l’équation donnée on trouve ypn = −x4 − 5x3 − 15x2

et

yG = −x4 − 5x3 − 15x2 + C1 + C2x+ C3e
x

Exemple 3 : y′′ + y′ = 4x2ex.
⇒ λ2 + λ = λ (λ+ 1) = 0⇒ λ1, λ2 = −1⇒ y1 = 1, y2 = e−x,⇒

ygh = C1 + C2e
−x,

et puisque α = 1,n’est pas racine de l’équation caractéristique la solu-
tion particulière ypn de l’équation non homogène sera de la forme : ypn =(
A1x

2 +A2x+A3

)
ex.

En dérivant et en remplaçant dans l’équation donnée on trouve :
A1 = 2, A2 = −6, A3 = 7.⇒ ypn =

(
2x2 − 6x+ 7

)
ex ⇒

yG =
(
2x2 − 6x+ 7

)
ex + C1 + C2e

−x

Exemple 4 : y′′+ 10y′+ 25y = 4e−5x ⇒ λ2 + 10λ+ 25 = 0⇒ λ1 = λ2 = −5
⇒ y1 = e−5x, y2 = xe−5x ⇒ ygh = (C1 + C2x) e−5x,
et puisque α = −5 est racine de multiplicité s = 2 de l’équation caractéris-

tique la solution ypn sera cherchée sous la forme :ypn = Bx2e−5x

⇒ y′pn = B
(
2x− 5x2

)
e−5x, y′′pn = B

(
2− 20x+ 25x2

)
e−5x.
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En remplaçant dans l’équation on trouve :ypn = 2x2e−5x

⇒
yG = 2x2e−5x + (C1 + C2x) e−5x

Exemple 5 : y′′+ 3y′+ 2y = x sinx⇒ λ2 + 3λ+ 2 = 0⇒ λ1 = −1, λ2 = −2
⇒ y1 = e−x, y2 = e−2x,⇒ ygh = C1e

−x + C2e
−2x,

Puisque i n’est pas racine de l’équation caractéristique la solution ypn sera
cherchée sous la forme : ypn = (A1x+A2) cosx + (B1x+B2) sinx,après iden-
tification on trouve :

ypn =
(−3

10 x+ 17
30

)
cosx+

(
1
10x+ 3

25

)
sinx, et on trouve enfin :

yG =

(
−3

10
x+

17

30

)
cosx+

(
1

10
x+

3

25

)
sinx+ C1e

−x + C2e
−2x.

Exemple 6 : y′′ + 4y = sin 2x⇒ λ2 + 4 = 0⇒ λ1 = −2i, λ2 = 2i
⇒ y1 = cos 2x, y2 = sin 2x,⇒ ygh = C1 cos 2x+ C2 sin 2x,
Pour ypn on pose ypn = x (a sin 2x+ b cos 2x) ,après dérivation et identifica-

tion on trouve :
ypn = − 1

4x cos 2x⇒

yG = −1

4
x cos 2x+ C1 cos 2x+ C2 sin 2x

Tableau récapitulatif de formes des solutions particulières
pour les différentes formes des seconds membres

N◦
Second
membre

Racine de
l’équation

caractéristique

Forme de la
solution
particulière

I Pn (x)
(1) , 0 n’est pas racine

(2) , 0 racine de multiplicité s
(1) P̃n (x)

(2)xsP̃n (x)

II Pn (x) eαx
(1) , α n’est pas racine

(2) , α racine de multiplicité s
(1) P̃n (x) eαx

(2)xsP̃n (x) eαx

III
Pn (x) cosβx

+Qm (x) sinβx
(1) ,±iβ n’est pas racine

(2) ,±iβ racine de multiplicité s

(1) P̃k (x) cosβx
+Qk (x) sinβx

(2)xsP̃k (x) cosβx
xsQk (x) sinβx

IV
eαxPn (x) cosβx

+eαxQm (x) sinβx
(1) , α+ iβ n’est pas racine

(2) , α+ iβ racine de multiplicité s

(1) eαxP̃k (x) cosβx

+eαxQ̃k (x) sinβx

(2)xseαxP̃k (x) cosβx

+xseαxQ̃k (x) sinβx
· Les cas (I) , (II) et (III) sont des cas particuliers de (IV )
Principe de superposition
Si yk est une solution particulière de l’équation a0 (x) y(n) + a1 (x) y(n−1) +

......+an (x) y = fk, k = 1, 2, ....n,alors y1 +y2 +......yn, est solution de l’équation
a0 (x) y(n) + a1 (x) y(n−1) + ......+ an (x) y = f1 + f1 + ......fn, .
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Exemple 1 : y′′ − 6y + 9y = 4ex − 16e3x

⇒ λ2 − 6λ+ 9 = (λ− 3)
2

= 0⇒ λ1 = λ2 = 3
⇒ ygh = C1e

3x + C2xe
3x = (C1 + C2x) e3x,

Pour trouver une solution particulière on cherche une solutions particulière
pour chacune des équations suivantes:

(1) y′′ − 6y + 9y = 4ex ⇒ y1 = aex ⇒ y1 = ex

(2) y′′ − 6y + 9y = −16e3x ⇒ y2 = bx2e3x ⇒ y2 = −8x2e3x

⇒ ypn = y1 + y2 = ex − 8x2e3x

⇒ yG = ex − 8x2e3x + (C1 + C2x) e3x.
Equations d’Euler
Pour degré n : a0x

ny(n) + a1x
(n−1)y(n−1) + ......+ a(n−1)xy

′ + a0y = 0.

Pour degré 2 : a0x
2y
′′

+ a1xy
′ + a2y = 0.

On pose x = et, et on trouve l’équation
Pour degré n : b0y

(n) (t) + b1y
(n−1) (t) + ......+ b(n−1)y

′ (t) + bny (t) = 0.⇒
équation d’Euler d’ordre n.
Pour degré 2 : b0y

′′
(t) + b1y

′ (t) + b2y (t) = 0.⇒ équation d’Euler d’ordre 2.
Exemple : x2y′′ + 2xy′ − 6y = 0.On pose : x = et

⇒ y′ = dy
dx =

dy
dt
dx
dt

= y′(t)
et = e−ty′ (t)

⇒ y′′ = dy′

dx =
dy′
dt
dx
dt

= e−t (−e−ty′ (t) + e−ty′′ (t)) = e−2t (−y′ (t) + y′′ (t))

On remlace et trouve la nouvelle équation : y′′ (t) + y′ (t)− 6y (t) = 0.
⇒ λ2 + λ− 6 = (λ+ 3) (λ− 2) = 0⇒ λ1 = −3, λ2 = 2
⇒ ygh = C1e

−3t + C2e
2t ⇒

yG = C1

(
et
)−3

+ C2

(
et
)2

= C1x
−3 + C2x

2 =
C1

x3
+ C2x

2

Equations linéaires à coëffi cients variables
y(n) + p1 (x) y(n−1) + ......+ pn (x) y = 0.
Si on connait une solution y1 (x) on cherche une deuxième y2 (x) = C (x) y1 (x)
Pour l’équation d’ordre deux : y′′ + p1 (x) y′ + p2 (x) y = 0.
On a : y2 (x) = C (x) y1 (x)
⇒ y′2 (x) = C ′ (x) y1 (x)+C (x) y′1 (x) et y

′′

2 (x) = C
′′

(x) y1 (x)+2C ′ (x) y′1 (x)+
C (x) y′′1 (x) ,
On remplace dans l’équation on trouve :
C
′′

(x) y1 (x) + C ′ (x) (2y′1 (x) + p1y1 (x)) = 0

⇒ C′′

C′ =
2y′1+p1y1

y1
⇒
∫
C′′

C′ dx =
∫ 2y′1+p1y1

y1
dx,

et on cherche un C et une fonction y2 (x) qui soit linéairement indépendante
avec y1 (x) .
Méthode de Lagrange pour l’équation y′′+ p1 (x) y′+ p2 (x) y = f (x) .
On a : ygh = C1y1 (x) + C2y2 (x) ,
Pour trouver yG on utilise la méthode de Lagrange (variation des constantes)

qui suppose les deux constantes sont des fonctions ie yG = C1 (x) y1 (x) +
C2 (x) y2 (x) ,et on trouve le système :
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{
C ′1 (x) y1 (x) + C ′2 (x) y2 (x) = 0

C ′1 (x) y′1 (x) + C ′2 (x) y′2 (x) = f (x)

On cherche C ′1 (x) et C ′2 (x) ,puis C1 (x) et C2 (x) et on les remplace dans yG
et trouve ainsi la solution générale.
Exemple 1 : xy′′ + 2y′ + xy = 0.
On a une solution y1 (x) = sin x

x ,cherchons une deuxième sous la forme :
y2 (x) = z (x) sin x

x . ⇒ y′2 (x) = z′ (x) y1 (x) + z (x) y′1 (x) et
y
′′

2 (x) = z
′′

(x) y1 (x) + 2z′ (x) y′1 (x) + z (x) y′′1 (x) .
En remplaçant dans l’équation on trouve l’équation
z
′′

(x) y1 (x) + z′ (x) (2y′1 (x) + p1y1 (x)) = 0,
y1 (x) = sin x

x ⇒ y′1 (x) = cos x
x − sin x

x2

⇒ z
′′

(x) sinx+ 2z′ (x) cosx = 0⇒ z′′

z′ = −2 cos x
sin x ⇒

∫
z′′

z′ dx =
∫
−2 cos x

sin x dx

⇒ (ln |z|+ 2 ln |sinx|)′ = 0 ⇒ ln |z| + 2 ln |sinx| = lnC ⇒ z′ sin2 x = C1 ⇒
z′ = C1

sin2 x
⇒ z = −C1 cotx+ C2,
et par suite y2 (x) = z (x) sin x

x = (−C1 cotx+ C2) sin x
x = −C1

cos x
x +C2

sin x
x ,

on prend par exemple C1 = −1 et C2 = 0 et on aura y2 (x) = cos x
x et la

solution générale est :

ygh = C1
sinx

x
+ C2

cosx

x

Exemple 2 : y′′ + 2
xy
′ + y = 1

x .

La solution générale de l’équation homogène est ygh = C1
sin x
x + C2

cos x
x .

y1 = sin x
x , y2 = cos x

x est un système fondamental.

On a :
{

C ′1 (x) y1 (x) + C ′2 (x) y2 (x) = 0
C ′1 (x) y′1 (x) + C ′2 (x) y′2 (x) = 1

x

⇒ C ′1 (x) = cosx,C ′2 (x) = − sinx⇒ C1 (x) = sinx+C̃1, C2 (x) = cosx+C̃2

⇒
yG = C1

sinx

x
+ C2

cosx

x
+

1

x

Etablissement d’une équation différentielle
Soient y1, y2, ......, yn linéairement indépendantes sur [a, b] alors l’équation :∣∣∣∣∣∣∣∣∣∣∣∣

y1, y2, .............., yn, y
y′1, y

′
2, ............., y

′
n, y
′

........................
..........................
........................

y
(n)
1 , y

(n)
2 , ......, y

(n)
n , y(n)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

est une équation différentielle linéaire dont le système fondamental est ex-
actement y1, y2, ......, yn.
Exemple 1 : y1 = ex, y2 = e−x.

·W (y1, y2) =

∣∣∣∣ ex, e−xex,−ex
∣∣∣∣ = −2 6= 0,donc y1, y2 sont linéairement indépen-

dantes.
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·

∣∣∣∣∣∣
ex, e−x, y
ex,−e−x, y′
ex, e−x, y

′′

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1, 1, y

1,−1, y′

1, 1, y
′′

∣∣∣∣∣∣ =

∣∣∣∣ 1, 1
1,−1

∣∣∣∣ y′′ − ∣∣∣∣ 1, 1
1, 1

∣∣∣∣ y′ +

∣∣∣∣ 1,−1
1, 1

∣∣∣∣ y =

−2y′′ + 2y′ = 0,
est l’équation est :

y′′ − y = 0

Exemple 2 : y1 = ex
2

, y2 = e−x
2

.

·W (y1, y2) =

∣∣∣∣∣ ex
2

, e−x
2

2xex
2

,−2xe−x
2

∣∣∣∣∣ = −4x 6= 0, pour x 6= 0.

·

∣∣∣∣∣∣∣
ex

2

, e−x
2

, y

2xex
2

, − 2xe−x
2

, y′(
2 + 4x2

)
ex

(
4x2 − 2

)
e−x

2

, y
′′

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 , 1, y

2x ,−2x, y′(
2 + 4x2

)
,
(
4x2 − 2

)
, y
′′

∣∣∣∣∣∣ =

0
et on obtient l’équation : xy′′ − y′ − 4x2y = 0, ou bien y′′ − y′

x − 4xy = 0.
Intégration par les séries
Soit l’équation y′′ + p (x) y′ + q (x) y = 0.
y′′ + (a0 + a1x+ ....+ an) y′ + (b0 + b1x+ ....+ bn) y = 0.
On cherche y (x) sous la forme :
y (x) =

∑k=+∞
k=0 ckx

k ⇒ y′ (x) =
∑k=+∞
k=1 kckx

k−1 ⇒
y′′ (x) =

∑k=+∞
k=2 k (k − 1) ckx

k−2.
On remplace dans l’équation et on obtient :∑k=+∞
k=2 k (k − 1) ckx

k−2 +
(∑k=+∞

k=0 akx
k
)(∑k=+∞

k=1 kckx
k−1
)

+(∑k=+∞
k=0 bkx

k
)(∑k=+∞

k=0 ckx
k
)

= 0⇒
(2.1.c2 + a0c1 + b0c0)x0 +(3.2c3 + 2a0c2 + a0c2 + b0c1 + b1c0)x1 +(...)x2 +

.......+ (....)xn = 0,
En pratique on cherche y1 et y2 en choisissant c0 = 1 et c1 = 0 pour y1 (x)

et c0 = 0 et
c1 = 1 pour y2 (x) ,ce qui est équivalent aux conditions initiales suivantes

y1 (0) = 1, y′1 (0) = 0 et y2 (0) = 0, y′2 (0) = 1,et toute solution sera combinaison
de y1 et y2.
Si les conditions initiales sont de la forme y (0) = A, y′ (0) = B,il est évident

que :
y (x) = Ay1 (x) +By2 (x) .
Exemple 1 : y′′ − xy′ − 2y = 0.
· y1 (x) =

∑k=+∞
k=0 ckx

k ⇒ y′1 (x) =
∑k=+∞
k=1 kckx

k−1 ⇒ y′′1 (x) =
∑k=+∞
k=2 k (k − 1) ckx

k−2

⇒
∑k=+∞
k=2 k (k − 1) ckx

k−2 −
∑k=+∞
k=1 kckx

k − 2
∑k=+∞
k=0 ckx

k = 0.
On pose : p = k − 2⇒∑p=+∞
p=0 (p+ 1) (p+ 2) cp+2x

p −
∑k=+∞
k=1 kckx

k − 2
∑k=+∞
k=0 ckx

k = 0.∑k=+∞
k=0 (k + 1) (k + 2) ck+2x

k −
∑k=+∞
k=1 kckx

k − 2
∑k=+∞
k=0 ckx

k = 0.

(1.2.c2 − 2c0) +
∑k=+∞
k=1 [(k + 1) (k + 2) ck+2 − kck − 2ck]xk = 0

Posons : y1 (0) = 1 et y′1 (0) = 0 ⇒ c0 = 1 et c1 = 0, et on obtient :
(1.2.c2 − 2.c0)x0 + (2.3.c3 − c1 − 2.c1)x1 + .............. = 0⇒
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1.2.c2 − 2c0 = 0⇒ c2 = c0 = 1.
2.3.c3 − c1 − 2.c1 ⇒ c3 = 0
(k + 1) (k + 2) ck+2 − (k + 2) ck = 0⇒ (k + 1) ck+2 = ck ⇒ ck+2 = ck

(k+1) .

⇒ c2k+1 = 0, et c2k = c2k−2
(2k−1) ,pour k = 1, 2, , , , n.

Ainsi c1 = c3 = ....... = c2k+1 = 0 et c0 = 1, c2 = 1, c4 = c2
3 = 1

3 , c6 = c4
5 =

1
15
⇒

y1 (x) = 1 + x2 +
1

3
x4 +

1

15
x6 + ......

De façon analogue en prenant
· y2 (x) =

∑k=+∞
k=0 ckx

k avec y2 (0) = 0 et y′2 (0) = 1 ⇒ c0 = 0 et c1 = 1,
et on obtient après dérivation et remplacement :∑k=+∞
k=2 (k) (k − 1) ckx

k−2 −
∑k=+∞
k=0 (k + 2) ckx

k = 0∑k=+∞
k=0 (k + 2) (k + 1) ck+2x

k −
∑k=+∞
k=0 (k + 2) ckx

k = 0∑k=+∞
k=0 [(k + 1) ck+2 − ck]xk = 0⇒

1.2.c2 − 2c0 = 0⇒ c2 = c0 = 0⇒
(k + 1) ck+2 − ck = 0⇒ ck+2 = ck

(k+1) ,pour k = 0, 1, .....

Donc c2 = c4 = ....... = c2k = 0 et c1 = 1, c3 = 1
2 , c5 = 1

2.4 ,
et on obtient :

y2 (x) = x+
1

2
x3 +

1

2.4
x5 + .. = x

k=+∞∑
k=0

(
x2

2

)k
k!

= xe
x2

2 ,

et la solution générale est y (x) = Ay1 (x) +By2 (x) où y1 (x),y2 (x) ,
sont données par les formules trouvées et y (0) = A, y′ (0) = B.
Exemple 2 : y′′ + y = 0, y (0) = 1, y′ (0) = 0.

On a : y (x) = y (0) + y′ (0)x+ y′′(0)
2 x2 + .+ =

∑n=∞
n=0

y(n)(0)
n! xn.

y′′ + y = 0 ⇒ y′′′ = −y′ = 0 ⇒ y′′′′ = −y′′ = 1 ⇒ y(2k+1) (0) = 0 et
y(2k) (0) = (−1)

k

⇒

y (x) = 1− 1

2!
x2 +

1

4!
x4 − .....+ (−1)

k

(2k)!
x2k = cosx

Exemple 3 : y′′ = exy, y (0) = 1 et y′ (0) = 0⇒
y′′ (0) = 1, y′′′ = (exy)

′
= (y + xy′) exy ⇒ y′′′ (0) = 1

y′′′′ = [(y + xy′) exy]
′

= (y′ + y′ + xy′′) exy+(y + xy′)
2
exy ⇒ y′′′′ (0) = 1⇒

y (x) = 1 +
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ......

Exemple 4 : y′′ − xy′ − 2y = 0.
Posons: y (x) =

∑∞
k=0 ckx

k ⇒
(1.2.c2 − 2c0) +

∑k=+∞
k=1 (k + 2) [(k + 1) ck+2 − ck]xk = 0⇒
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c2 = c0, ck+2 = ck
k+1 .

On trouve : c0, c1, c2 = c0, c3 = c1
2 , c4 = c2

3 = c0
3 et

y (x) = c0 + c1x+ c0x
2 +

c1
2
x3 +

c0
3
x4 +

c1
4.2

x5 + .....·
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Série 3 : Edo d’ordre 2 et plus

Exercice 1 : On donne l’équation y′′ = 2
√
y′.

• Montrer qu’elle possède deux solutions qui vérifient y (0) = y′ (0) = 0.

• Pourquoi ce résultat n’est il pas en contradiction avec le théorème d’existence
et d’unicité .

Exercice 2 : Intégrer les équations suivantes : Abaissement de l’ordre .

• y′′′ = 0.

• y′′′ = ln x
x2 , avec y (1) = 0 , y′ (1) = 1 et y′′ (1) = 2.

• y′′′ =
√

1 + y′′2.

• xy(V ) − y(IV ) = 0.

• y′′ + y′2 = 2e−y.

• x2yy′′ = (y − xy′)2
.

• x3y′′ = (y − xy′)2
.

• y′′ = 2y3,avec y (0) = 1 et y′ (0) = 1

Exercice 3 : Etudier l’indépendance linéaire pour les familles suivantes:

•
{
ex, e2x, e3x

}
.

•
{

1, x, x2, x3
}
.

•
{

sinx, sin
(
x− π

8

)
, sin

(
x+ π

8

)}
.

• {ex sinx, ex cosx}

• {x, | x |} .

• y1 (x) =

{
0 si 0 ≤ x ≤ 1

2(
x− 1

2

)2
si 1

2 ≤ x ≤ 1
et y2 (x) =

{ (
x− 1

2

)2
si 0 ≤ x ≤ 1

2
0 si 1

2 ≤ x ≤ 1

• y1 (x) = x et y2 (x) = 2x sur [0, 1] .Utiliser le déterminant de Gram.

Exercice 4 : Edo linéaires homogènes à coeffi cients constants.

• y′′′ − 2y′′ − 3y′ = 0

• y′′′ + 2y′′ + y′ = 0

• y′′′ + 4y′′ + 13y′ = 0
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• y(V ) − 2y(IV ) + 2y′′′ − 4y′′ + y′ − 2y = 0

• y(IV ) + 4y′′′ + 8y′′ + 8y′ + 4y = 0

Exercice 5 :Edo linéaires non homogènes à coeffi cients constants.

• y′′′ − y′′ + y′ − y = x+ x2

• y′′′ − y′′ = 6x+ 12x2

• y′′ + y′ = 4x2ex

• y′′ + 10y′ + 25y = 4e−5x

• y′′ + 3y′ + 2y = x sinx

• y′′ + y = x cosx

• y′′ + 4y = sin 2x

• y′′ − 6y′ + 9y = 4ex − 16e3x.

Exercice 6 : Edo d’Euler

• x2y′′ + 2xy′ − 6y = 0 .

• x2y′′ − xy′ + 2y = 0.

Exercice 7 : Edo linéaires à coeffi cients variables.

• xy′′ + 2y′ + xy = 1.

• y′′ + y = 1
cos x

• x2 (1− lnx) y′′+xy′−y = (1−ln x)2

x ,si y1 (x) = x et y2 (x) = lnx sont deux
solutions particulières.

Exercice 8 : Etablir l’équation différentielle linéaire homogène à partir du
système fondamental .

• y1 (x) = ex, y2 (x) = e−x.

• y1 (x) = ex
2

, y2 (x) = e−x
2

• y1 (x) = ex, y2 (x) = e2x, y3 (x) = e3x.

Exercice 9 : Etablir l’équation différentielle linéaire homogène connaissant
son équation caractéristique et écrire leurs solutions générales:

•
(
λ2 + 1

)2
= 0

• λ3 = 0
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• λ
(
λ2 + 1

)2
= 0

Exercice 10 : Etablir l’équation différentielle linéaire homogène connaissant
les racines de l’équation caractéristique et écrire leurs solutions générales:

• λ1 = 1, λ2 = 3 + i, λ3 = 3− i

• λ1 = λ2 = 1, λ3 = 3

• λ1 = λ2 = 3 + i, λ3 = λ4 = 3− i

Exercice 11 : Intégrer en utilisant les séries.

• y′′ − xy′ − 2y = 0.

• y′′ = exy, avec y (0) = 1 et y′ (0) = 0

• y′′ + y = 0, avec y (0) = 1 et y′ (0) = 0..

Exercice 12 : Déterminer la forme de la solution particulière de l’équation
différentielle linéaire non homogène connaissant les racines de son équation car-
actéristique et son second membre:

• λ1 = 1, λ2 = 2 et f (x) = ax2 + bx+ c

• λ1 = 0, λ2 = 1 et f (x) = ax2 + bx+ c

• λ1 = λ2 = 0 et f (x) = ax2 + bx+ c

• λ1 = −1, λ2 = 1 et f (x) = (ax+ b) e−x

• λ1 = 1, λ2 = 2 et f (x) = (ax+ b) e−x

• λ1 = i, λ2 = −i ,λ3 = 1,et f (x) = sinx+ cosx

• λ1 = λ2 = λ3 = 1 et f (x) = ax2 + bx+ c
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Chapitre 4 : Systèmes linéaires

On appelle système linéaire à coeffi cients constants d’ordre deux le système
suivant :{

x′ = a1x+ b1y + c1
y′ = a2x+ b2y + c2

,avec a1, b1, a2, b2 des contantes réelles , c1, c2 deux

fonctions de la variable t,et x (t) , y (t) les deux fonctions à chercher.
Méthode des éliminations successives.

Exemple 1 :

{
x′ = y + 1
y′ = x+ 1

. On a y = x′−1⇒ y′ = x′′ ⇒ x′′−x−1 = 0⇒

x (t) = C1e
t + C2e

−t − 1,

y (t) = C1e
t − C2e

−t − 1.

Exemple 2 :

{
x′ = 3x+ 8y + 1
y′ = −x− 3y

,avec x (0) = 6, y (0) = −2.

On a : x = −y′ − 3y ⇒ x′ = −y′′ − 3y′

⇒ y′′ − y = 0⇒ x (t) = −4C1e
t − 2C2e

−t, y (t) = C1e
t + C2e

−t.
Les conditionsx (0) = 6, y (0) = −2.⇒ −4C1 − 2C2 = 6 et C1 + C2 = −2
⇒ C1 = C2 = −1⇒

x (t) = 4et + 2e−t,

y (t) = −et − e−t

Exemple 3 :{
tx′ = −x+ ty
t2y′ = −2x+ ty

.On a : y = x′ + x
t ⇒ y′ = x′′ + x′

t −
x
t2 et

t2
(
x′′ + x′

t −
x
t2

)
= −2x+ t

(
x′ + x

t

)
⇒ t2x′′ = 0⇒ x′′ (t) = 0 ⇒ pour t 6= 0

x (t) = C1 + C2t,

y (t) = 2C2 +
C1

t

Intégration des systèmes linéaires homogènes à coeffi cients con-
stants par la méthode d’Euler.
Dimension deux :{
x′ = a1x+ b1y
y′ = a2x+ b2y

⇔
(
x′

y′

)
=

(
a b
c d

)(
x
y

)
⇔

X ′ = AX,avec X =

(
x
y

)
, A =

(
a b
c d

)
, X ′ =

(
x′

y′

)
.

· On cherche les valeurs propres de la matrice A.
· Si la matrice a deux valeurs propres réelles distinctes λ1 et λ2on cherche

deux vecteurs propres V1, V2 linéairement indépendants et la solution est donnée
par :
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(
x (t)
y (t)

)
= C1V1e

λ1t + C2V2e
λ2t.

Dimension trois: x′ = a1x+ b1y + c1z
y′ = a2x+ b2y + c2z
z′ = a3x+ b3y + c3z

⇔

 x′

y′

z′

 =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 x
y
z

⇔
X ′ = AX,avec X =

 x
y
z

 , A =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 , X
′

=

 x′

y′

z′

 .

(A) Supposons que les valeurs propres λ1, λ2 et λ3 sont réelles et dis-
tinctes.On cherche trois vecteurs propres linéairement indépendants V1, V2 et
V3.La solution est donnée par : x (t)

y (t)
z (t)

 = C1V1e
λ1t + C2V2e

λ2t + C3V3e
λ3t

Exemple 1 :

 x′ = 3x− y + z
y′ = −x+ 5y − z
z′ = x− y + 3z

⇒ A =

 3 −1 1
−1 5 −1
1 −1 3


⇒ P (λ) =

∣∣∣∣∣∣
3− λ,−1, 1
−1, 5− λ,−1
1,−1, 3− λ

∣∣∣∣∣∣ = λ3 − 11λ2 + 36λ− 36

⇒ λ1 = 2, λ2 = 3 et λ3 = 6.

· λ1 = 2⇒

 x− y + z = 0
−x+ 3y − z = 0
x− y + z = 0

⇒ y = 0, x = −z,⇒ V1 =

 1
0
−1

 .

· λ1 = 3⇒

 −y + z = 0
−x+ 2y − z = 0

x− y = 0
⇒ x = y = z,⇒ V2 =

 1
1
1

 .

· λ1 = 6⇒

 −3x− y + z = 0
−x− y − z = 0
x− y − 3z = 0

⇒ x = z, y = −2z,⇒ V3 =

 1
−2
1

 .

La solution esr donc donnée par : x (t)
y (t)
z (t)

 = C1V1e
λ1t + C2V2e

λ2t + C3V3e
λ3t =

C1

 1
0
−1

 e2t + C2

 1
1
1

 e3t + C3

 1
−2
1

 e6t

Exemple 2 :

{
x′ = x− 5y
y′ = 2x− y ⇒ A =

(
1 −5
2 −1

)
⇒

P (λ) =

∣∣∣∣ 1− λ,−5
2,−1− λ

∣∣∣∣ = λ2 + 39⇒ λ1 = 3i, λ2 = −3i .
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· λ1 = 3i⇒
{

(1− 3i)x− 5y = 0
2x+ (−1− 3i) y = 0

⇒ V1 =

(
5

1− 3i

)
.

· λ2 = −3i⇒
{

(1 + 3i)x− 5y = 0
2x+ (−1 + 3i) y = 0

⇒ V2 =

(
5

1 + 3i

)
.

La solution est donnée par :(
x (t)
y (t)

)
= C1V1e

λ1t + C2V2e
λ2t

= C1

(
5

1− 3i

)
e3it + C2

(
5

1 + 3i

)
e−3it ={

x (t) = 5C1e
3it + 5C2e

−3it

y (t) = (1− 3i)C1e
3it + (1 + 3i)C2e

−3it ⇒{
x (t) = 5C1 (cos 3t+ i sin 3t) + 5C2 (cos 3t− i sin 3t)

y (t) = (1− 3i)C1 (cos 3t+ i sin 3t) + (1 + 3i)C2 (cos 3t− i sin 3t)
⇒

x (t) = (5C1 + 5C2) cos 3t+ i (5C1 − 5C2) sin 3t
y (t) = (C1 + C2) cos 3t+3 (C1 + C2) sin 3t+i ((C1 − C2) sin 3t+ 3 (C2 − C1) cos 3t)
⇒{

x (t) = 5A cos 3t+ i5B sin 3t
y (t) = [A cos 3t+ 3A sin 3t] + i [B sin 3t+ 3B cos 3t]

⇒

x (t) = C1 Rex+ C2 Imx = C1 cos 3t+ C2 sin 3t
y (t) = C1 Re y + C2 Im y = (C1 − 3C2) cos 3t+ (3C1 + C2) sin 3t

Cas de racines multiples:

Exemple 1:
{
x′ = 2x+ y
y′ = 4y − x ⇒ A =

(
2 1
−1 4

)
⇒ P (λ) =

∣∣∣∣ 2− λ, 1
−1, 4− λ

∣∣∣∣ =

(λ− 3)
2

On a λ1 = λ2 = 3.
On cherche la solution sous la forme : x (t) = (a+ bt) e3t, y (t) = (c+ dt) e3t.
On dérive et on remplace dans les deux équations ainsi on obtient :

x (t) = (C1 − C2 + C2t) e
3t,

y (t) = (C1 + C2t) e
3t.

Exemple 2 :

 x′ = 8y
y′ = −2z

z′ = 2x+ 8y − 2z
⇒ A =

 0 8 0
0 0 −2
2 8 −2


⇒ P (λ) =

∣∣∣∣∣∣
−λ 8 0
0 −λ −2
2 8 −2− λ

∣∣∣∣∣∣ = − (λ+ 2)
(
λ2 + 16

)
= 0

· λ1 = −2⇒

 2x+ 8y = 0
2y − 2z = 0
2x+ 8y = 0

⇒ x = −4y,et z = y ⇒ V1 =

 −4
1
1


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· λ2 = 4i ⇒

 −4ix+ 8y = 0
−4iy − 2z = 0

2x+ 8y + (−2− 4i) z = 0
⇒ x = −2iy et z = −2iy ⇒

V2 =

 2
i
2


· λ2 = −4i ⇒

 4ix+ 8y = 0
4iy − 2z = 0

2x+ 8y + (−2 + 4i) z = 0
⇒ x = 2iy et z = 2iy ⇒ V3 = 2

−i
2


Donc la solution est donnée par : x (t)

y (t)
z (t)

 = C1V1e
−2t + C2V2e

4it + C3V3e
−4it

= C1

 −4
1
1

 e−2t + C2

 2
i
2

 e4it + C3

 2
−i
2

 e−4it

Si x (0) = −4, y (0) = 0, z (0) = 1⇒ C1 = 1, C2 = i
2 , C3 = − i

2
x (t) = −4e−2t − 2 sin 4ty, (t) = e−2t − cos 4t, z (t) = e−2t − 2 sin 4t
Méthodes de résolution des systèmes linéaires non homogènes à

coeffi cients constants.

Soit le système

 x′ = a1x+ b1y + c1z + f1 (t)
y′ = a2x+ b2y + c2z + f2 (t)
z′ = a3x+ b3y + c3z + f3 (t)

(A) Variationdes constantes :{
x′ = −2x− 4y + 1 + 4t
y′ = −x+ y + 3

2 t
2 ⇒ (SH) :

x′ = −2x− 4y
y′ = −x+ y

⇒ A =

(
−2 −4
−1 1

)
On a : y′ = −x+ y ⇒ x = y − y′ ⇒ x′ = y′ − y′′ ⇒ y′′ + y′ − 6y = 0
⇒ λ2 + λ − 6 = 0 ⇒ λ1 = 2 et λ2 = −3,ainsi yH (t) = C1e

2t + C2e
−3t et

xH (t) = −C1e
2t + 4C2e

−3t.
On suppose que C1 et C2 sont des fonctions de t,en dérivant yH (t)et xH (t) ,on

obtient que :{
−C ′1e2t + 4C ′2e

−3t = 1 + 4t
C ′1e

2t + C ′2e
−3t = 3

2 t
2

⇒
{

C ′1 = 6t2−4t−1
5 e−2t

C ′2 = 3t2+8t+2
10 e3t

⇒
{

C1 = − 3t2+t
5 e−2t + C̃1

C2 = t2+2t
10 e3t + C̃2

Ainsi on obtient

xG (t) = −C̃1e
2t + 4C̃2e

−3t + t+ t2,

yG (t) = C̃1e
2t + C̃2e

−3t − 1

2
t2.

(B) Méthode des coeffi cients indéterminés.
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{
x′ = x− 2y + et

y′ = x+ 4y + e2t ⇒ (SH) :

{
x′ = x− 2y
y′ = x+ 4y

⇒ A =

(
1 −2
1 4

)
⇒ P (λ) =

∣∣∣∣ 1− λ −2
1 4− λ

∣∣∣∣ = λ2 − 5λ+ 6

·λ1 = 2⇒ −x− 2y = 0⇒ x = −2y ⇒ V1 =

(
−2
1

)
.

·λ2 = 3⇒ −2x− 2y = 0⇒ x = y ⇒ V2 =

(
1
1

)
.

On a donc : (
xH (t)
yH (t)

)
= C1

(
−2
1

)
e2t + C2

(
1
1

)
e3t.

On cherche une solution particulière sous la forme :
xPN (t) = Ket + (Lt+M) e2t

yPN (t) = Net + (Pt+Q) e2t ⇒
après dérivation et remplacement on trouve :
xPN (t) = − 3

2e
t + 2te2t

yPN (t) = 1
2e
t − (t+ 1) e2t ⇒(

xH (t)
yH (t)

)
= C1

(
−2
1

)
e2t + C2

(
1
1

)
e3t +

(
− 3

2e
t + 2te2t

1
2e
t − (t+ 1) e2t

)

• Exemple :
{
x′ = −2x− 4y + 1 + 4t
y′ = −x+ y + 3

2 t
2 .

On cherche une solution particulière sous la forme :
(
xPN (t) = a1t

2 + b1t+ c1,
yPN (t) = a2t

2 + b2t+ c2

)
.

Aprés dérivation et remplacement dans le système donnée on trouve :(
xPN (t) = t2 + t,
yPN (t) = − 1

2 t
2

)
.est la solution générale est donnée par :

xG (t) = − C1e
2t + 4C2e

−3t + t2 + t,

yG (t) = C1e
2t + C2e

−3t − 1

2
t2

Methode de D’Alembert :

Soit le système :
{
x′ = a1x+ b1y + f1 (t)
y′ = a2x+ b2y + f2 (t)

.On a :

x′ + λy′ = d
dx (x+ λy) = (a1 + λa1)x+ (b1 + λb1) y + f1 + λf2.

x′ + λy′ = (a1 + λa1)
[
x+ b1+λb1

a1+λa1
y
]

+ f1 + λf2.

Donnons au nombre λ une valeur telle que b1+λb1
a1+λa1

= λ.

L’équation devient d
dx (x+ λy) = (a1 + λa1) (x+ λy) + f1 + λf2.

Si b1+λb1
a1+λa1

= λ a deux valeurs réelles distinctes λ1,et λ2,on tire la solution.

Exemple 1 :

{
x′ = 5x+ 4y + et

y′ = 4x+ 5y + 1
.On doit avoir 4+5λ

5+4λ = λ ⇒ λ2 = 1 ⇒
λ = ±1.
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Pour λ = 1 on a : (x+ y)
′

= 9 (x+ y) + et + 1
Pour λ = −1 on a : (x− y)

′
= 9 (x− y) + et − 1.

Posons x+ y = z et intégrant l’équation z′ = 9z + et + 1,on obtient z (t) =
− 1

8e
t − 1

9 +K1e
9t.

Posons x − y = z et intégrant l’équation z′ = z + et − 1,on obtient z (t) =
tet + 1 +K2e

t.
On a donc :
x+ y = − 1

8e
t − 1

9 +K1e
9t et x− y = tet + 1 +K2e

t

Après addition et soustractions on obtient :

x (t) =
4

9
+

(
t

2
− 1

16

)
et +K1e

9t +K2e
t,

y (t) = −10

9
+

(
− t

2
− 1

8

)
et +K1e

9t +K2e
t

Exemple 2 :

{
tx′ = −2x+ 2y + t
ty′ = −x− 5y + t2

:

On pose : t = eτ ⇒ dx
dt = dx

dτ
dτ
dt = 1

t
dx
dτ ,et

dy
dt = dy

dτ
dτ
dt = 1

t
dy
dτ ,et le système

devient :{
x′ = −2x+ 2y + eτ

y′ = −x− 5y + e2τ .On utilise la méthode de D’Alembert on trouve :

x (t) =
2C1

t3
− C2

t4
+

3

10
t+

1

15
t2

y (t) = −C1

t3
+
C2

t4
− 1

20
t+

2

15
t2

Méthode exponentielle
Le calcul d’une exponentielle de matrice n’est pas à priori un problème

facile.Cependant dans certains cas et notamment ceux d’une matrice diagonale
et d’une matrice nilpotente il ne présent aucune diffi culté.Le cas général peut
se traiter en se ramenant aux deux cas précédents.

(a) Si la matrice est diagonaleA =

 a1 0 0
0 a2 0
0 0 a3

⇒ eA =

 ea1 0 0
0 ea2 0
0 0 ea3


(b) Si la matrice est diagonalisable ie A = PDP−1 avec D diagonale⇒ eA =

PeDP−1.
(c) Si la matrice est nilpotente ie il existe (k ∈ N) tel que : Ak = 0 ⇒

eA = I +A+ 1
2!A

2 + .....+ 1
(q−1)!A

q−1

(d) Méthode de Dunfort : Lorsque le polynome minimal de la matrice A est
scindé alors A peut s’écrire sous la forme A = D +N ,avec D diagonalisable,N
nilpotente et ND = DN, et dans ce cas on a : eA = eDeN .

(e) Méthode de Jordan : J = Jλ1 ⊕ Jλ2 ⊕ Jλ3 ⊕ Jλ4 ⊕ ....... ⊕ Jλn ⇒ eJ =
eJλ1 ⊕ .....⊕ eJλn

Chaque bloc est de la forme J = λI + N,où N est la matrice nilpotente
spéciale et dans ce cas on aura : eλI+N = eλIeN = eλeN , et eA = PeJP−1.
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Exemple 1 : A =

 21 17 6
−5 −1 −6
4 4 16

⇒ P (λ) = (λ− 16)
2

(λ− 4) .

⇒ la forme de Jordan est J =

 16 1 0
0 16 0
0 0 4

 .

⇒ La matrice de passage est P =

 −1 1 5
8

1 −1 − 1
8

0 2 0


Maintenant on a : J = J2 (16)⊕ J1 (4) , et eA = PeJP−1.

eJ2 = e

 16 1
0 16


= e

16I+

 0 1
0 0


= e16I .e

 0 1
0 0


=

e16

((
1 0
0 1

)
+

(
0 1
0 0

))
= e16

(
1 1
0 1

)
=

(
e16 e16

0 e16

)
.

eJ2 = e4

Ainsi

eA = PeJP−1 =

 −1 1 5
8

1 −1 − 1
8

0 2 0

 e16 e16 0
0 e16 0
0 0 e4

 −1 1 5
8

1 −1 − 1
8

0 2 0


= 1

4

 5e4 − e16 5e4 − 5e16 −2e16

−e4 + e16 −e4 + 5e16 2e16

0 0 4e16


Quelques propriétes
· e0 = I
· eaAebA = e(a+b)A

· eAe−A = I
· Si A et B commutent ie AB = BA⇒ eA+B = eAeB

· ePAP−1 = PeAP−1

· eAt =
(
eA
)t ⇒ Si A est symétrique alors eA l’est aussi.

· Si A est antisymetrique At = −A ⇒
(
eA
)t

= eA
t

= e−A =
(
eA
)−1 ⇒(

eA
)t
e−A = I, donc la matrice eA est orthogonale.

· ddte
tA = AetA

Si on a une équation différentielleX ′ (t) = AX (t) alorsX (t) = etA
(
C1

C1

)
.

Si A =

(
1 3
0 2

)
= D+N =

(
1 0
0 2

)
+

(
0 3
0 0

)
,maisD.N 6= N.D,dans

ce cas la décomposition de Dunford est A =

(
1 3
0 2

)
= D et N =

(
0 0
0 0

)
.

Pratique:
(1) Calculer le polynome caractéristique P (λ) ,il doit être scindé,on calcul

les valeurs propres.
(2) Pour chaque valeur λ valeur propre de multiplicité m on note Nλ =

ker f (A− λI)
m qui est un espace vectoriel de dimension m.On détermine ainsi

m vecteurs formant une base deNλet on obtient enfin une base β = (v1, ......, vn,)
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(3) On définit l’endomorphisme d définie par : d (vi) = λivi.La matrice d
est donc diagonale ∆ la matrice de d dans la base canonique β0 = (ei) ie les
colonnes de ∆ sont les coordonnées des d (vi) exprimés dans la base β0 = (ei) .

(4) On poseN = A−∆⇒ ∆ est diagonalisable, N est nilpotente, N∆ = ∆N
et ∆ = PDP−1.

Exemple 1 : A =

 1 1 1
0 1 1
0 0 2


On a :

A =

 1 1 1
0 1 1
0 0 2

 =

 1 0 0
0 1 0
0 0 2

+

 0 1 1
0 0 1
0 0 0

 = D+N,mais DN 6=

ND
On a : P (λ) = − (λ− 1)

2
(λ− 2)⇒ λ1 = λ2 = 1 et λ3 = 2.

Pour λ1 = λ2 = 1,det |A− λ|2 = 0 et pour λ3 = 2,det |A− 2λ| = 0
⇒ v1 (1, 0, 0) , v2 (0, 1, 0) , v3 (2, 1, 1) .
Cherchons d tel que : d (v1) = v1, d (v2) = v2, d (v3) = 2v3

⇒ la matrice de d est : D =

 1 0 0
0 1 0
0 0 2

 et ∆ =

 0 1 2
0 1 1
0 0 2


⇒ N = A−∆ =

 0 1 −1
0 0 0
0 0 0

 .

P =

 1 0 2
0 1 1
0 0 1

⇒ P−1 =

 1 0 −2
0 1 −1
0 0 1

 ,

P étant la matrice de passage de β0 (ei) à β (vi)

On peut si besoin diagonalise∆ : ∆ = P−1DP ouD = P∆P−1 =

 1 0 0
0 1 0
0 0 2

 .

Exemple 2 : A =

 2 1 −1
3 3 −4
3 1 −2


· P (λ) = − (λ+ 1) (λ− 2)

2
.

· Les valeurs propres sont λ1 = −1, λ2 = λ3 = 2.
· Pour λ1 = −1 on a : v1 = (0, 1, 1) ,
· Pour λ2 = λ3 = 2 on a : v2 = (1, 1, 1) , v3 = (1, 0, 1) .
· La matrice de passage de β0 = (ei) à β = (vi) s’obtient en écrivant :
v1 = (0, 1, 1) = e2 + e3

v2 = (1, 1, 1) = e1 + e2 + e3

v3 = (1, 0, 1) = e1 + e3

Donc P =

 0 1 1
1 1 0
1 1 1

et P−1 =

 −1 0 1
1 1 −1
0 −1 1


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· d (v1) = −v1, d (v2) = 2v1, d (v3) = 2v3 ⇒ D =

 −1 0 0
0 2 0
0 0 2


· ∆ = PDP−1 =

 2 0 0
3 2 −3
3 0 −1


· N = A−∆ =

 2 1 −1
3 3 −4
3 1 −2

−
 2 0 0

3 2 −3
3 0 −1

 =

 0 1 −1
0 1 −1
0 1 −1

 .

La décompositionde Dunford est A = ∆ + N où ∆ est diagonalisable N
nilpotente

(
N2 = 0

)
, et ∆N = N∆.
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Série 4 : Systèmes linéaires

Exercice 1 : Résoudre les systèmes par la méthode des éliminations succes-
sives.

•
{
x′ = y + 1
y′ = x+ 1

 x′ = 3x+ 8y
y′ = −x− 3y

x (0) = 6, y (0) = −2

{
tx′ = −x+ yt
t2y′ = −2x+ yt

Exercice 2 : Résoudre les systèmes par la méthode d’Euler.

•

 x′ = 3x− y + z
y′ = −x+ 5y − z
z′ = x− y + 3z

 x′ = 8y
y′ = −2z

z′ = 2x+ 8y − 2z

•
{
x′ = x− 5y
y′ = 2x− y

{
x′ = 2x+ y
y′ = 4y − x

Exercice 3 : Résoudre par la méthode de la variation des constantes .

•
{
x′ = −2x− 4y + 1 + 4t
y′ = −x+ y + 3

2 t
2

Exercice 4: Résoudre par la méthode des coeffi cients indéterminées

•
{
x′ = −2x− 4y + 1 + 4t
y′ = −x+ y + 3

2 t
2

{
x′ = x− 2y + et

y′ = x+ 4y + e2t

Exercice 5 : Résoudre par la méthode de D’Alembert.

•
{
x′ = 5x+ 4y + et

y′ = 4x+ 5y + 1

{
tx′ = −2x+ 2y + t
t2y′ = −x− 5y + t2

Exercice 6 : Résoudre en utilisant L’exponentielle d’une matrice .

•
{
x′ = y + 1
y′ = x+ 1

 x′ = 2x+ y + z
y′ = x+ 2y + z
z′ = x+ y + 2z

•

 x′ = 2x+ z
y′ = −x+ y − z
z′ = −x+ 2y + 2z

 x′ = ax+ by + cz8y
y′ = ay + bz
z′ = az
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Chapitre 4 : Introduction à la stabilité

Notions fondamentales et définitions
Soit l’équation différentielle y′ = f (x, y) .
· Une solution ϕ (x) satisfaisant à la condition initiale ϕ (x0) = y0 est dite

stable au sens de Liapounov pour x→ +∞ si :
(∀ε � 0) , (∃δ � 0) tel que toute solution y (x) dont la valeur initiale y (x0)

satisfait à la condition |y (x0)− y0| ≺ δ,l’on ait |y (x)− ϕ (x)| ≺ ε ∀ x ≥ x0.
· La solution ϕ (x) est dite instable si ∀δ � 0 aussi petit que l’on veut

l’négalité |y (x)− ϕ (x)| ≺ ε n’est pas vérifiée pour au moins une solution y (x)
ie il existe un ε � 0 tel que |y (x)− ϕ (x)| � ε
· Si on a en plus limx→+∞ |y (x)− ϕ (x)| = 0 alors la solution ϕ (x) est dite

asymptotiquement stable.
· L’étude de la stabilité de ϕ (x) peut être ramenée à celle de la fonction

nulle ϕ (x) = 0 d’une certaine équation analogue à l’équation y′ = F (x, y) où
F (x, 0) = 0.Dans ce cas le point y = 0 est le point de repos de l’équation.
· Le point de repos y = 0 est stable au sens de Liapounov si : (∀ε � 0) , (∃δ � 0)

tel que toute solution y (x) dont la valeur initiale y (x0) = y0 satisfait à la con-
dition |y0| ≺ δ,l’on ait |y (x)| ≺ ε ∀ x ≥ x0.Si de plus limx→+∞ |y (x)| = 0 alors
le point de repos y = 0 est asymptotiquement stable.
Exemple 1 : y′ = −y + 1 + x, y (0) = 0.
On a : y (x) = Ce−x + x, et la condition y (0) = 0 donne ϕ (x) = x.
La condition initiale y (0) = y0 donne y (x) = y0e

−x + x.
Si |y0 − 0| ≺ ε,alors |y (x)− ϕ (x)| = |y0e

−x + x− x| = |y0e
−x| = |(y0 − 0) e−x| ≺

δ = ε,
pour x ≥ 0.Ainsi la solution ϕ (x) = x.est stable au sens de Liaponouv .
On a limx→+∞ |y (x)− ϕ (x)| = limx→+∞ |y0e

−x + x− x| = limx→+∞ |y0e
−x| =

0,on déduit que ϕ (x) = x est asymptotiquement stable .De plus ϕ (x) = x , n’est
pas bornée pour x → +∞.On déduit que la stabilité de la solution n’entraine
pas que cette solution est bornée.
Exemple 2 : y′ = sin2 y.
On a des solutions évidentes y (x) = kπ avec k ∈ Z
L’intégration de l’équation donne y (x) = arccot (C − x) .La condition y (0) =

y0 donne y (x) = arccot (cot y0 − x) ,pour y 6= kπ.Toutes les solutions y (x) = kπ
pour k ∈ Z et y (x) = arccot (− cot y0 − x) pour y 6= kπ,sont bornées sur R pour-
tant la solution y (x) = 0 est instable lorsque x→ +∞ car pour tout y0 ∈ ]0, π[
on a limx→+∞ y (x) = π.Par suite le fait que les solutions d’une équation dif-
férentielle sont bornées n’implique pas en général que ces solutions sont stables.
Critère de Routh et Hurwitz
Soit l’équation différentielle a0y

(n)+a1y
(n−1)+.........+any = 0, avec a0 � 0.

· La solution y (x) = 0 est asymptotiquement stable si les racines de l’équation
caractéristique

f (λ) = a0λ
n + a1λ

(n−1) + .........+ an = 0 ont leur partie réelle négative.
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Pour que toutes les racines de l’équation caractéristique aient leurs parties
réelles négatives il faut et il suffi t que tous les mineurs diagonaux principaux de
la matrice de Hurwitz soient positifs:∣∣∣∣∣∣∣∣∣∣

a1,a0,0, 0........., , , , , , , , , 0
a3,a2,a1,, a0,............., , , , , , , , , 0
a5,a4,a3,, a2,, a1,, a0,, , , , , , , 0

.............................
0, 0, 0, .........................an,

∣∣∣∣∣∣∣∣∣∣
. Les mineurs diagonaux sont de la forme :

∆1 = a1,∆2 =

∣∣∣∣ a1,a0,

a3,a2,

∣∣∣∣ ,∆3 =

∣∣∣∣∣∣
a1,a0,0,
a3,a2,a1,

a5,a4,a3,

∣∣∣∣∣∣ ,∆n =

∣∣∣∣∣∣∣∣∣∣
a1,a0,0, 0........., , , , , , , , , 0

a3,a2,a1,, a0,............., , , , , , , , , 0
a5,a4,a3,, a2,, a1,, a0,, , , , , , , 0

............................
0, 0, 0, .........................an,

∣∣∣∣∣∣∣∣∣∣
.

Ainsi la condition de Hurwitz s’énonce : pour que la solution y = 0 soit stable
il faut et il suffi t que tous les ∆i, (1 ≤ i ≤ n) ,soient strictement positifs.De plus
on a ∆n = an∆(n−1),ainsi la condition ∆n � 0 peut être remplacée par an � 0

Exemple 1 : y′′′′ + 5y′′′ + 13y′′ + 19y′ + 10y = 0.
Son équation caractéristique est f (λ) = λ4 + 5λ3 + 13λ2 + 19λ+ 10 = 0.
Dans ce cas on a a0 = 1, a1 = 5, a2 = 13, a3 = 19, a4 = 10

∆4 =

∣∣∣∣∣∣∣∣
5, 1, 0, 0

19, 13, 5, 1
0, 10, 19, 13
0, 0, 0, 10

∣∣∣∣∣∣∣∣ = 4240 � 0,∆3 =

∣∣∣∣∣∣
5, 1, 0

19, 13, 5
0, 10, 19

∣∣∣∣∣∣ = 424,∆2 =

∣∣∣∣ 5, 1
19, 13

∣∣∣∣ =

46,∆1 = 5.
On a donc ∆4 � 0,∆3 � 0 � ∆2 � 0,∆1 � 0 et la solution triviale y (x) = 0

est asymptotiquement stable.
Théorème : Les solutions de l’équation y′ = a (x) y+ b (x) sont toutes soit

stables soit instables.
Remarque : Cette assertion n’est plus vraie pour des équations linéaires.
Contre exemple : y′ = 1− y2

Cette équation a deux solutions évidentes ϕ (x) = 1 et ψ (x) = −1.La
solution ψ (x) = −1 est instable par contre la solution ϕ (x) = 1 est as-
ymptotiquement stable.En effet lorsque x → +∞ toutes les solutions y (x) =
(1+y0)e2(x−x0)−(1−y0)

(1+y0)e2(x−x0)+(1−y0)
, (y0 6= −1) tendent vers +1.Par définition cela signifie que

la solution ϕ (x) = 1 est asymptotiquement stable.
Stabilité par rapport à la variation des seconds membres des équa-

tions.

Considérons des équations différentielles :
{

y′ = f (x, y)
y′ = f (x, y) + Θ (x, y)

où lez fonctions f , Θ et ∂f∂y sont continues dans un domaine fermé Ḡ du plan

xOy et |Θ (x, y)| ≤ ε et M = max(x,y)∈Ḡ

∣∣∣∂f∂y ∣∣∣.Si y = ϕ (x) et y = ψ (x) sont

solutions des deux équations respectivement avec la même condition ϕ (x0) =
ψ (x0) = y0 alors |ϕ (x)− ψ (x)| ≤ ε

M

(
eM(|x−x0|) − 1

)
.De cette estimation il est

immédiat de voir si Θ (x, y) est suffi samment petite dans Ḡ alors la différence
des deux solutions sera petite en valeur absolue .
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Exemple : Dans le carré Q =
{−1

2 ≤ x ≤
1
2 ,
−1
2 ≤ y ≤

1
2

}
trouvons une

solution approchée de l’équation y′ = sinxy avec la condition initiale y (0) =
1
10et évaluons l’erreur.
Remplaçons l’équation donnée par : y′ = xy avec y (0) = 1

10 .La solution sous

ces conditions est ψ (x) = 1
10e

x2

2 .
De plus elle est dans Q .La première équation y′ = sinxy avec y (0) = 1

10
possède la solution unique y = ϕ (x) si bien que pour une solution approchée on

peut prendre ψ (x) = 1
10e

x2

2 .
Evaluons l’erreur ∆ = |ϕ (x)− ψ (x)| ,avec −1

2 ≤ x ≤
1
2 .

On a ; f (x, y) = xy ,
∣∣∣∂f∂y ∣∣∣ = |x| ≤ 1

2 , et |sinxy − xy| ≤
1
6 |xy|

3 ≤ 1
43.6 = 1

384 .

On prend ε = 1
384 et obtient : ∆ = |ϕ (x)− ψ (x)| ≤ 1

192

(
e
|x|
2 − 1

)
≺ 1

650 .

Equations à petit paramètre de la dérivé
Considérons une équation différentielle y′ = F (x, y, ε) où ε est un parame-

tre .Si dans un certain domaine fermé de variation de x, y, ε la fonction F est
lipschitzienne en y ie |F (x, y2, ε)−|F (x, y1, ε) ≤ N |y2 − y1| alors la solution
dépend continûement de ε .Dans de nombreux problèmes de physique on con-
sidère des équations de la forme εy′ = f (x, y) ou y′ = 1

εf (x, y) avec ε un petit
paramètre.
Question : A quelles conditions , les valeurs de |ε| étant petites,peut-on

rejeter dans l’équation εy′ = f (x, y) le terme εy′ et prendre pour solution
approchée de cette équation la solution d’une équation dite "dégénérée" : f (x, y)
Supposons que ε � 0 et que l’équation dégénérée possède une solution y =

ϕ (x) . Suivant le comportement de f (x, y) au voisinage de y = ϕ (x) ,la solution
y (x, ε) de l’équation εy′ = f (x, y) tend vers la solution y = ϕ (x) lorsque ε→ 0.
ou bien s’en éloigne rapidement.
La solution y = ϕ (x) est dite stable dans le premier cas et instable dans le

second.
A savoir si en passant par la courbe solution y = ϕ (x) la fonction f (x, y)

change le signe + en − lorsque y croît alors la solution y = ϕ (x) est stable et
donc peut remplacer de façon approchée la solution y (x, ε) . Au contraire si en
passant par la courbe solution y = ϕ (x) la fonction f (x, y) change le signe −
en + lorsque y croît alors la solution y = ϕ (x) est instable et donc ne peut pas
remplacer de façon approchée la solution y (x, ε) .

Les conditions suffi santes de stabilité ou d’intabilité s’expriment par la propo-
sition suivante .
Proposition
(1) Si ∂f(x,y)

∂y ≺ 0 pour y = ϕ (x) ,alors la solution y = ϕ (x) est stable.

(2) Si ∂f(x,y)
∂y � 0 pour y = ϕ (x) ,alors la solution y = ϕ (x) est instable.

Remarque :
(1) Dans le cas où l’équation f (x, y) = 0 possède plusieures solutions on doit

étudier la stabilité de chaque solution.
(2) Un cas semi-stable aura lieu si la fonction f (x, y) ne change pas de signe

par exemple si y = ϕ (x) est une racine de multiplicité paire.Dans ce cas lorsque
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ε est petit les courbes tendent vers y = ϕ (x) d’un côté de cette courbe et s’en
éloigne de l’autre côté.
Exemple : Etablir si la solution y (x, ε) de l’équation εy′ = x2 − y, ε � 0 et

y (x0) = y0 tend vers la solution y = x2 pour x � x0.

On a ∂f(x,y)
∂y =

∂(x2−y)
∂y = −1⇒ y = x2 est stable et y (x, ε)ε→0 → x2.

En effet y (x, ε) =
(
y0 − x2

0 + 2εx0 − 2e2
)
e
x−x0
ε +x2−2εx+2ε2,et on a pour

x � x0 on tire que : limε→0 y (x, ε)

= limε→0

[(
y0 − x2

0 + 2εx0 − 2e2
)
e−

x−x0
ε + x2 − 2εx+ 2ε2

]
= x2

Stabilité des systèmes :

Soit le système
{
x′ = −y
y′ = x

avec x (0) = y (0) = 0.La solution du système

est x (t) = y (t) = 0.
Toute autre solution avec les conditions x (0) = x0, y (0) = y0 est donnée par

: x (t) = x0 cos t− y0 sin t et y (t) = x0 sin t+ y0 cos t.
Prenons un ε � 0 et montrons qu’il existe δ � tel que pour |x0 − 0| ≺

δ, |y0 − 0| ≺ δ
on l’ait pour tous les t ≥ 0.les inégalités :
|x (t)− 0| = |x0 cos t− y0 sin t| ≺ ε ,
|y (t)− 0| = |x0 sin t+ y0 cos t| ≺ ε
On a évidemment
|x (t)− 0| = |x0 cos t− y0 sin t| ≤ |x0 cos t|+ |y0 sin t| ≤ |x0|+ |y0| .
|y (t)− 0| = |x0 sin t+ y0 cos t| ≤ |x0 sin t|+ |y0 cos t| ≤ |x0|+ |y0| .
Si |x0|+ |y0| ≤ ε on a: |x0 cos t− y0 sin t| ≤ ε et |x0 sin t+ y0 cos t| ≤ ε
On prend donc δ = ε

2 alors pour |x0| ≺ δ, |y0| ≺ δ on aura pour t ≥ 0.les
inégalités :
|x0 cos t− y0 sin t| ≤ ε et |x0 sin t+ y0 cos t| ≤ ε.
Ainsi la solution nulle x (t) = y (t) = 0 est stable au sens de Liapounov mais

cette stabilité n’est pas asymptotique .
Types les plus simples de points de repos:

Soit le système
{
x′ = a11x+ a12y
y′ = a21x+ a22y

et ∆ =

∣∣∣∣ a11, a12

a21, a22

∣∣∣∣ 6= 0.La solution

x = y = 0 s’appelle point de repos du système. Pour étudier le point de repos

on cherche l’équation caractéristique :

∣∣∣∣ a11 − λ, a12

a21, a22 − λ

∣∣∣∣ 6= 0, et soient λ1, λ2,ses

deux racines.Les cas suivants peuvent se présenter :
(1) Les racines sont réelles et distinctes:
(a) Les deux racines sont strictement négatives alors le point de repos est

asymptotiquement stable (noeud stable) .
(b) Les deux racines sont strictement positives alors le point de repos est

instable (noeud instable) .
(c) Si les racines sont de signes opposés alors le point de repos est instable

(col) .
(2) Les racines sont complexes et conjuguées : λ1 = p+ iq, λ2 = p− iq.
(a) p ≺ 0, q 6= 0 le point de repos est asymptotiquement stable (foyer stable) .
(b) p � 0, q 6= 0 le point de repos est instable (foyer instable) .
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(c) p = 0, q 6= 0 le point de repos est stable (centre) .
(3) Les racines sont multiples.
(a) Si elles sont strictement négatives le point de repos est asymptotiquement

stable (noeud stable) .
(b) Si elles sont strictement positives le point de repos est instable (noeud stable) .
Théorème : Soit le système X ′ = AX où A est une matrice (n, n) avec

(n ≥ 2) .
Si toutes les racines de l’équation caractéristique du système possèdent une

partie réelle négative,alors le point de repos (0, 0) est asymptotiquement sta-
ble.Si au moins une racine de l’équation caractéristique du système possède une
partie réelle positive ,alors le point de repos (0, 0) est instable.

Exemple 1 :

{
x′ = 5x− y
y′ = 2x+ y

.Son équation caractéristique est donnée par

:

∣∣∣∣ 5− λ,−1
2, 1− λ

∣∣∣∣ = λ2 − 6λ+ 7 = 0,

Ainsi les valeurs propres λ1 = 3 +
√

2 et λ2 = 3 −
√

2.sont réelles positives
et distinctes .Par suite le point de repos (0, 0) est un noeud instable.

Exemple 2 :

 x′ = −x+ z
y′ = −2y − z
z′ = y − z

. Son équation caractéristique est donnée

par :

∣∣∣∣∣∣
−1− λ, 0, 1

0,−2− λ,−1
0, 1,−1− λ

∣∣∣∣∣∣
=
(
λ2 + 3λ+ 3

)
(1 + λ) = 0.Ainsi les valeurs propres λ1 = −1 , λ2 = − 3

2 +

i
√

3
2 et λ3 = − 3

2 + i
√

3
2 ont des parties réelles négatives .Par suite le point de

repos (0, 0) est asymptotiquement stable .
Stabilité en première approximation
Soit le système dyi

dx = fi (y1, y2, ....yn) ,i = 1, 2, , , , , , n et soit yi = 0 i =
1, 2, , , , , , n un point de repos du système ie fi (0, 0, ....0) = 0.
Nous supposerons que les fonctions coordonnées de f sont suffi sament dériv-

ables à l’origine.
Développent les foinctions coordonées de f en série de Taylor suivant x au

voisinage de 0.

On aura fi (y1, y2, ....yn) =
∑j=n
j=1 aijyj+Ri (y1, y2, ....yn) .Ici aij = ∂fi(0,0,....0)

∂xj

et Ri sont des termes du second ordre.
Ainsi le système initiale prend la forme : dyidx =

∑j=n
j=1 aijyj+Ri (y1, y2, ....yn) .

Le système linéaire dyi
dx =

∑j=n
j=1 aijyj est appelé système en première ap-

proximation .
On peut énoncer le théorème suivant :

Théorème : Soit

∣∣∣∣∣∣∣∣
(a11 − λ) , a13,..., a1n,

a21, (a22 − λ) , .., a2n,

......................
an1,an2,, ..., (ann − λ)

∣∣∣∣∣∣∣∣ = 0 l’équation caractéristique

du système en première approximation.
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(1) Si toutes les racines possèdent des parties réelles négatives les solutions
nulles yi = 0,des deux systèmes sont asymptotiquement stables.

(2) Si au moins une racine possède une partie réelle positive les solutions
nulles yi = 0, des deux systèmes sont instables.Dans les deux cas on dit qu’il
est possible d’étudier la stabilité en première approximation.
Exemple :Etudier la stabilité en première approximation du point de repos

(0, 0) du système :
{
x′ = 2x+ y − 5y2

y′ = 3x+ y + x3

2

.

Le systéme en première approximation est
{
x′ = 2x+ y
y′ = 3x+ y

.

L’équation caractéristique est

∣∣∣∣ 2− λ, 1
3, 1− λ

∣∣∣∣ = 0⇒ λ2 − 3λ− 1 = 0,

Les racines de l’équation λ1 = 3+
√

13
2 et λ2 = 3−

√
13

2 sont réelles et λ1 � 0
.Par suite la solution nulle x = 0, y = 0 est instable.

Méthodes des fonctions de Liapounov
La méthode des fonctions de Liapounov consiste à étudier directement la

stabilité de la position d’équilibre du système : dxi
dt = fi (t, x1, x2, ....xn) ,i =

1, 2, , , , , , n
avec une fonction convenablement choisie F (t, y1, y2, ....yn) qu’on appelle

fonction de Liapounov sans chercher les solutions.On se borne aux systèmes
autonomes dxidt = fi (x1, x2, ....xn) ,pour lesquels xi = 0 est un point de repos.
· Définition 1 : On dit qu’une fonction V (x1, x2, ....xn) définie dans un cer-

tain voisinage de l’origine est de signe défini (définie positive ou définie négative )
si dans un certain domaine |xi| ≤ h avec h positif et suffi samment petit elle ne
peut prendre que des valeurs de signe défini et ne s’annule que pour x1 = x2 =
.. = xn = 0
Exemple 1 : Pour n = 3 les fonctions suivantes sont définies positives :
V (x1, x2, x3) = x2

1 + x2
2 + x2

3 et V (x1, x2, x3) = x2
1 + 2x1x2 + 2x2

2 + x2
3

· Définition 2 : On dit qu’une fonction V (y1, y2, ....yn) définie dans un
certain voisinage de l’origine est de signe constant ( positive ou négative ) si
dans un certain domaine |xi| ≤ h avec h positif et suffi samment petit elle ne
peut prendre que des valeurs d’un seul signe déterminé mais peut s’annuler aussi
pour x2

1 + x2
2 + ..+ x2

n 6= 0.

Exemple 2 : La fonction V (x1, x2, x3) = x2
1+2x1x2+x2

2+x2
3 = (x1 + x2)

2
+

x2
3. est de signe constant positif et elle s’annule même pour x1 = x2 = x3 = 0
.Il suffi t de prendre x1 = −x2 et x3 = 0
Définition 3 : Soit V (x1, x2, ....xn) une fonction dérivable et soient x1, x2, ....xn

des fonctions du temps t et solutions du système dxi
dt = fi (x1, x2, ....xn) ,alors

la dérivée totale de V par rapport au temps t a pour expression :

dV

dt
=

i=n∑
i=1

∂V

∂xi

∂xi
∂t

=

i=n∑
i=1

∂V

∂xi
fi (x1, x2, ....xn)

Théorème 1 ( théorème de Liapounov de la stabilité ) : Si pour le système
dxi
dt = fi (x1, x2, ....xn) il existe une fonction V de signe constant
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( fonction de Liapounov) dont la dérivé totale dV
dt est de signe constant in-

verse de V ou est identiquement nulle alors le point de repos xi = 0 est stable.

Exemple 1 :

{
x′ = y
y′ = −x

Prenons pour V (x, y) = x2 + y2,elle est définie positive et dV
dt = 2xdxdt +

2y dydt = 2xy − 2yx = 0 , il résulte que le point de repos (0, 0) est stable.
Théorème 2 ( théorème de Liapounov de la stabilité asymptotique ) : Si

pour le système dxi
dt = fi (x1, x2, ....xn) il existe une fonction V de signe défini

( fonction de Liapounov) dont la dérivé totale dV
dt est de signe défini inverse

de V alors le point de repos xi = 0 est asymptotiquement stable.La stabilité
n’est pas asymptotique car les trajectoires qui sont des circonférences ne tendent
pas vers (0, 0) lorsque t→ +∞

Exemple 2 :

{
x′ = y − x3

y′ = −x− 3y3

Prenons V (x, y) = x2 + y2,on trouve dV
dt = 2xdxdt + 2y dydt = 2x

(
y − x3

)
+

2y
(
−x− 3y3

)
= −2

(
x4 + y6

)
.Ainsi dVdt est une fonction définie négative et le

poit de repos (0, 0) est asymptotiquement stable.
Indication : On a pas de méthode générale pour chercher la fonction de

Liapounov V.Dans les cas les plus simples on cherche V sous la forme : V (x, y) =
ax2 + by2, V (x, y) = ax4 + by2,

V (x, y) = ax2 + by4, V (x, y) = ax4 + by4 avec a � 0, b � 0.

Exemple 3 :

{
x′ = −x− 2y + x2y2

y′ = x− y
2 −

x3y
2

Prenons V (x, y) = ax2 + by2,on trouve :
dV
dt = 2axdxdt + 2by dydt = 2ax

(
−x− 2y + x2y2

)
+ 2by

(
x− y

2 −
x3y
2

)
= −

(
2ax2 + by2

)
+ (b− 2a)

(
2xy − x3y2

)
.

On prend b = 2a et on trouve dV
dt = −2a

(
x2 + y2

)
.

Ainsi V (x, y) = ax2 + 2ay2 sera une fonction définie positive et sa dérivée
dV
dt = −2a

(
x2 + y2

)
sera une fonction définie négative et par suite on déduit

que le point de repos (0, 0) est asymptotiquement stable.
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Série 5 : Introduction à la stabilité

• Exercice 1 : En partant de la définition de la stabilité au sens de Liapounov
, étudier la stabilité d’une solution de l’équation : y′ = 1+x−y, y (0) = 0.

La solution est elle asymptotiquement stable.

• Exercice 2 : En partant de la définition de la stabilité au sens de Liapounov
,étudier la stabilité de la solution y = 0 de l’équation : y′ = sin2 y

• Exercice 3 : Etudier la stabilité de la solution triviale y = 0 de l’équation
: y′′′′ + 5y′′′ + 13y′′ + 19y′ + 10y = 0.

• Exercice 4 : Etudier la stabilité de la solution de l’équation dégénérée

· εy′ = y (ey − 2) · εy′ = (y − x)
2 · εy′ = y2 − 4y − 5· εy′ = y − x2.

• Exercice 5 : Etablir la différence entre les solutions des équations sur [0, 1]
avec y (0) = 0.1

·
{

x′ = y
1+x + x2

y′ = y
1+x + x2 + 0.01 sinx

·
{

x′ = 1
3 arctanxy

y′ = 1
3 arctanxy + 0, 001e−x

2

• Exercice 6 : En partant de la définition de la stabilité au sens de Lia-

pounov , montrer qu’une solution du système :
{
x′ = −y
y′ = x

qui satisfait

aux conditions x (0) = 0, y (0) = 0 est stable mais non asymptotiquement
.

• Exercice 7 : Définir la nature du point de repos (0, 0) des systémes suivants:{
x′ = 5x− y
y′ = 2x+ y

, .....

{
x′ = 3x+ y
y′ = −2x+ y

, .......

{
x′ = 3x
y′ = 3y

.

 x′ = −x+ z
y′ = −2y − z
z′ = y − z

 x′ = −x+ y + 5z
y′ = −2y + z
z′ = 3− z

 x′ = x
y′ = 2x− y
z′ = x+ y − z
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• Exercice 8 : Pour quelles valeurs de α le point de repos (0, 0) est il stable
pour les systèmes :

·
{
x′ = −3x+ αy
y′ = 2x+ y

·
{
x′ = 3x+ αy
y′ = −2x+ y

• Exercice 9 : Définir la nature du point de repos (0, 0) pour l’équation :

· y′′ + 2αy′ + β2y = 0. avec α � 0

• Exercice 10: Etudier la stabilité en première approximation de la solution
nulle x = 0, y = 0.

·
{

x′ = x+ 2y − sin2 y

y′ = −x− 3y + x
(
e
x2

2 − 1
) ·

{
x′ = −x+ 3y + x2 sin y
y′ = −x− 4y + 1− cos2 y

• Exercice 11 : Etudier la stabilité de la solution (0, 0) par la méthode des
fonctions de Liapounov .

·
{
x′ = −3y − 2x3

y′ = 2x− 3y3 ·
{
x′ = −xy4

y′ = yx4 ·
{

x′ = x+ 2y2

y′ = −2y + 4yx2 .

• Exercice 12 : Etudier la stabilité en première approximation de la solution
nulle.

·
{

x′ = x+ 2y − sin2 y

y′ = −x− 3y + x
(
e
x2

2 − 1
) ·

{
x′ = −x+ 3y + x2 sin y
y′ = −x− 4y + 1− cos2 y
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Exercices de révision

• Intégrer les équations suivantes:

· cos y′ = 0. · y′′ = ey

· ey′ = 1. · yy′′ = y′ + y′2.

·
(

1 + y′
2
)
y2 − 4yy′ − 4x = 0. ·y′′ = ey, y (0) = 0, y′ (0) =

√
2.

· y′2 − yy′ + ex = 0. · y′′ = 0, y (0)− y (π) = 1, y′ (0) + y′ (π) = 0.
· y′ = 1

2x−y . ·y
′′ + 2025y = 4, y (0)− y (π) = 1, y′ (0) + y′ (π) = 0.

· y′ =
√
x+ y. · y′ = |y| · y′ = |y − 1|

• Dans les problèmes suivants trouver les trois premiers termes du développe-
ment en série :

· y′ = 1xy, y (0) = 0.· y′ = sinxy, y (0) = 1.· y′′+x sin y, y (0) = π
2 , y
′ (0) = 0.

• Intégrer à l’aide de séries les équation suivantes :

· y′ − 2xy = 0, y (0) = 1. · y′′ − xy + y − 1 = 0, y (0) = y′ (0) = 0.

• Intégrer les systèmes suivants :

·
{
x′ = 8y − x
y′ = x+ y

,

{
x′ = y + x+ 1

y′ = −2x+ 4y + t
.

·

 x′ = −y + 2x+ z
y′ = x+ z

z′ = y − 2z − 2x
,

 x′ = −y + 2x+ z
y′ = −x+ 2y + z
z′ = −y + 2z + x

.

• Etudier la stabilité des systèmes et des équations .

· y′ = 1− y2.
· y′ = 1 + x− y,avec y (0) = 0
· y′ = sin2 y

·
{
x′ = −y
y′ = x

,avec x (0) = y (0) = 0.

• Etudier la stabilité en première approximation de la solution nulle.

·
{

x′ = x+ 2y − sin2 y

y′ = −x− 3y + x
(
e
x2

2 − 1
) ·

{
x′ = −x+ 3y + x2 sin y
y′ = −x− 4y + 1− cos2 y
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