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Chapitre 1

Erreurs. Auteur : M. ACHACHE

1.1 Résumé du cours

Utilité de Perreur. Evaluer les méthodes numériques utilisées pour résoudre différents problemes

mathématiques en reconnaissant l'exactitude des résultats.

Source de ’erreur. Les sources de 'erreur sont les opérations arithmétiques (arrondissement des
nombres et les erreurs de données) ainsi que des méthodes théoriques qui remplacent les relations
mathématiques par une autre simple (par exemple la formule de Taylor).

1.1.1  Erreurs absolues et relatives

Définition 1. Soit a une valeur approchée d’un nombre A (généralement inconnu). Alors, l'erreur
absolue en a est définie par :

A, = |A—al.

Tout nombre A > 0, qui vérifie :
A, <A

s’appelle un magjorant de l'erreur absolue A, et on écrit :
A~a+ A

Définition 2. L’erreur relative de a ? est définie par :

_|A-a] A,
RV EN

Si 6 > 0, est tel que :
0a< 0,

alors 6 s’appelle un majorant de 6, et on prend comme majorant de l'erreur relative exacte, la

valeur :
A

~

“ Tl
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Les chiffres significatifs et exacts d’un nombre a.
Chaque nombre a > 0, admet une écriture décimale de la forme :

a=anl0™ + oy 110" 4 4y 10T

tels que :
am #0, a; € {0,1,...,9}.

Définition 3. Les chiffres significatifs d’un nombre a > 0, sont tous ces chiffres qui sont différents
de zéro et aussi le zéro s’il se trouve entre deux chiffres significatifs ou bien s’il présente un chiffre
CONSETVE.

1.1.2  Erreur absolue et chiffres exacts.

Les chiffres exacts d’un nombre a > 0.

Définition 4. Si [inégalité suivante :

Aa S 1Om—n+1

N —

est vérifiée, alors les n chiffres significatifs premiers s appelle les chiffres exacts de a.

1.1.3  Erreur relative et chiffres exacts.

Définition 5. Le nombre a posséde n chiffres exacts =

1
0a < —1017™.

m

1.1.4 Arrondissement d’un nombre a

Regle d’arrondissement. Pour arrondir un nombre a jusqu’a n chiffres significatifs, il faut

éliminer les chiffres & droite du n®™¢ chiffre significatif conservé.

e Si le (n + 1)®™€ chiffre significatif est > 5, on augmente le n®"¢ chiffre de 1.

e Sile (n + 1)®m¢ chiffre significatif est < 5, les chiffres retenus restent inchangés.

e Sile (n + 1)®m¢ chiffre significatif est 5, alors deux cas sont possibles :

a) Tous les chiffres rejetés, situés apres le (n+ 1) chiffre significatif, sont des zéros. On applique
la regle du chiffre pair c’est & dire : le n®™¢ chiffre significatif reste inchangé s’il est pair sinon on
lui ajoute 1 s’il est impair.

b) Parmi les chiffres rejetés, situés apres le (n + 1)¢™¢ chiffre significatif, il existe au moins un qui

chiffre significatif.

eme

soit non nul : on ajoute 1 au n
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1.1.5 Loi générale de l’erreur
Soit
Yy = f(xlux%"-yxn)

telle que f est une fonction différentiable aux points z;. La formule suivante :

0 0 0
Ay = —f Ax; + —f AXo+ ...+ —f Ax,,
8951 8x2 axn
ou of
a), i=1,2.. . .n,
81’2' (fL‘l,.I‘Q, » L ) ? n
sont les dérivées partielles de f en x;, 1 = 1,2,...,n, s’appelle la loi générale de ’erreur.

Probléme directe. Si les erreurs Ax; sont connues et Ay est inconnue. Dans ce cas on rem-
place les Ax; par leurs valeurs dans la formule de la loi générale, et on détermine Ay .
Probléme inverse. L’erreur Ay est connue et on veut déterminer les erreurs Ax;, i = 1,2,...,n.
Dans ce cas, on applique le principe d’égalité d’effet qui est mathématiquement équivalent a
I’égalité des quantités

of of of
8561 1 8562 = 8% x
D’ou, on obtient :
A
Ax; = =Y i—12 ... .n
n| 5
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1.2 Exercices résolus

Exercice 1.

e QQuel est le nombre nécessaire de chiffres exacts pour que 'erreur relative commise dans le calcul
de = = /28 ne dépasse pas l'erreur relative 1%.

e Méme question pour les nombres z = V31 et z = /33 avec lerreur relative ne dépasse pas
0.1%.

Solution.
eOna:
r =128~ 5291502622 =5 x 10° +2 x 107" + - -+
donc
O =95, m =0,
et

1 1
5, < —107" = 104",
O, 5

Soit n le nombre exact dans x, alors d’apres la question

1
5, < 5101*” < 1% = 0.01.

Ceci est équivalent a déterminer n tel que :
10" < 0.05.

L’inégalité 10'~" < 0.05, est vérifiée si et seulement si n > 3. Donc, il faut prendre au moins 3
chiffres exacts dans le nombre x et dans ce cas I'erreur absolue est donnée par :

1 1
10m*n+1 — _100734’1 — 51072 = 0005

A, <
= 2

N | —

et par conséquent, on peut prendre comme valeur approchée de /28 toutes les valeurs suivantes :
V28 ~ 5.29 4+ 0.005.

Remarque. On peut aussi déduire n de la maniere suivante :

In(10"") < In(0.05) (In désigne le logarithme népérien)
0
(1-n)ln10 < In(0.05)
0
(1-n)23 < —2.995
0
n > 23
0
n > 3.
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e Pour z = /31, on a :
z =31 ~ 55677643628 =5 x 10° +5x 107 + - - -

donc
Qpy =5, m=0,

et

1 1
5, < —101 " = =10t ™.
O 5

Soit n le nombre de chiffres exacts dans z, alors d’apres la question
1
6y < 5101—” < 0.1% = 0.001.
Ceci est équivalent a déterminer n tel que :

101" < 0.005.

L’inégalité 10'~" < 0.005, est vérifiée si et seulement si n > 4. Donc, il faut prendre au moins 4
chiffres exacts dans le nombre x et dans ce cas I'erreur absolue est donnée par :

1 1 1
A:p <1 m—n+1 _ 21 0—44+1 _ 21 -3 _ )
<35 0 5 0 5 0 0.0005

et par conséquent, on peut prendre comme valeur approchée de /31 toutes les valeurs suivantes :
V31 ~ 5.567 £ 0.0005.
Pour z = /33, on a :

r=133~57446 =5 x 10°+7x 1071 + ...

donc
Qp =5, m =0,
et 1 1
5, < —1017" = g101—”.

Soit n le nombre de chiffres exacts dans z, alors d’apres la question
1
6y < 5101*" < 0.1% = 0.001.
Ceci est équivalent a déterminer n tel que :

101" < 0.005.

L’inégalité 10'~" < 0.005, est vérifiée si et seulement si n > 4. Donc, il faut prendre au moins 4
chiffres exacts dans le nombre x et dans ce cas l'erreur absolue est donnée par :

1 1 1
A, < =10m " = 21094 = 21073 = 0.0005
=92 2 2
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et par conséquent, on peut prendre comme valeur approchée de v/33 toutes les valeurs suivantes :
V33 =~ 5.7446 £ 0.0005.

Exercice 2.
a. Notons par A, 'erreur absolue d’un nombre a. Montrer que si :

n
a = E a;
=1

alors,

A, < En: A,
i=1

b. Notons par d, 'erreur relative d’'un nombre a. Montrer que si :

alors

c. Soient les nombres suivants :
a; = 3.124, ay = 2.01, a3 = 38.1.

Supposons que tous les chiffres de a;,7 = 1, 2, 3 sont exacts, alors combien de chiffres exacts possede
le nombre

a=aj + as + as.

d. Soient b; = 3.024 et by = 38.01. Supposons que tous les chiffres sont exacts, alors combien de
chiffres exacts possede le nombre b = bbs.

Solution.

a. Soit a = ) a; la valeur approchée de la valeur exacte A = > A; telle que a;, est la valeur
approchée dezzflli,i =1,2,...,n. Notons par : -
A, =|A-a,
I’erreur absolue commise en a et par :
A, =Ai—al,i=1,2,...,n

Perreur absolue commise dans chaque a;. Alors, on a :

S a3
i=1 i=1

|A1+A2+...+An—(a1+a2+...—|—an)|
= \Al—al—l—Ag—aQ—l—...—!—An—aM

A, = |[A—-a|=

< JA = ag| 4+ Ay —as| + .+ Ay —an] =) A,
=1
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Ce qui implique que :

b. On a:

Alors

On dérive, on obtient :

En tenant compte que :

il découle que :

a i1 a;
\
Aa . - Aai
a i1 a;
n
Aai ]Aal|
< =
R PP
\
n
ba <Y 6,
i=1
c. Soit
a=a+ as+ as
tels que :

a; = 3.124, as = 2.01, az = 38.1.

La question est de calculer le nombre des chiffres exacts n dans a > 0, sachant que tous les chiffres
de a; sont exacts. Pour calculer n, on doit calculer ’erreur absolue dans a. On a :

A, =A +A + Ay,
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Calculons maintenant les erreurs absolues Aa; dans chaque nombre a;. On a :

a; = 3124=310+1.10""4+2. 1072 +4.1073

I
m = 0etn =4.
a = 2.01=210"+0.10" ' +1. 1072
I
m = Qetn=3.
as = 381=23.10"+8.10"+1.10""
I
m = letn=3.
Alors
1 1 1
A, = 10" =107 = 21072 = 0.0005
! 2 2 2
1 1 1
A, = =10""H =103 = 21072 = 0.005
2 2 ) 2
1 1 1
Aa — 1mn+1 113+1 1—1:‘ )
, 5 0 5 0 5 0 0.05
d’on

A, = A, + Aaz + Aaz = 0.0005 + 0.005 + 0.05 = 0.0555.

Donc n est un nombre exact dans a si :

—_

A _1Om n+1

(\V]

On a:

a = 3.124+2.01 + 38.1 = 43.234.

=

1.

m

Alors, on cherche n qui vérifie I'inégalité suivante :

1
0.0555 5102—".

<
0
<

n 2.

Alors a admet au plus 2 chiffres exacts. Vérifions que le chiffre dans 'ordre 2 est exact. En effet,
pour n = 2, le chiffre 3 dans le nombre 43.234 est exact car 0.0555 < 0.5. Alors a admet exactement
deux chiffres exacts. Donc on peut prendre :

a =43 £0.0555.
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d.. La question est de calculer le nombre des chiffres exacts n dans b, sachant que tous les chiffres
de b;,7 = 1,2 sont exacts. Pour calculer n, on doit calculer I'erreur relative dans b. En utilisant le
résultat dans (b), on déduit qu'une borne supérieure de d, est donnée par :

0 < Oy + Opy-

Calculons donc ¢y, et d;,. On a :

3.024 =3.10° +0.107' +2.1072 + 4.1073

aq e
I

m = Qetn=4.

by, = 38.01=3.10'+8.10" +0.107* +1.1072
I

m = letn=4.

En utilisant la définition de I’erreur absolue, on a :

Ay Ay
Oy = —2 et d,, = —2
bl bl Y € b2 bQ
avec
Ay = 110’”*“+1 = 110*‘**1 = 110*3 = 0.0005
b9 9 9 ‘
ot 1 1 1
A — _1 m—n-+1 — _1 1—4+1 — _1 -3 = 0. )
b= 0 : 0 5 0 0.005
Par conséquent :
0.0005
= —=1.6534.107*
b 3,024 0534.10
ot 0.005
= —=1.3154.107%
27 3801
On prend :

5 = 2.9688.107%.

Alors b admet n nombres exacts si : )
& < —1017".

b= 114.94, alors a,,, = 1 et donc on cherche n qui vérifie I'ingalité suivante :

2.9688.107* < 10t

Il découle que n < 3 et donc b admet au plus 3 chiffres exacts. Pour s’assurer, on calcule son erreur
absolue. En effet, on a :

Ay = bd, = 114.94 x 2.9688.10~% = 3.4123 x 1073.
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Comme

—_

1
Ay =3.4123 x 1072 < 5107 2 < 5102 "m =2),

alors b admet exactement 3 chiffres exacts.

Remarque. On peut consulter I'exercice 8, la question 3, pour déduire autrement ce résultat.
Exercice 3. Arrondir les nombres suivants a n=4 chiffres exacts et déterminer I’erreur absolue a
chaque fois .

T = 32.3462, xy = 12.12143, x3 = 173.7500, 24 = 173.0500,
r5 = 9722534, x¢ = 0.012051, z7 = 0.00123650.

Solution. On a :

Ty = 323462 ~ 32.35 £ 0.004

Ty = 1212143 «~ 12.12 £ 0.001

r3 = 173.7500 ~ 173.8 £0.05

xg = 173.0500 ~ 173.0+0.050u bien173.1 £0.05
x5 = 9722534 ~ 972.3 £0.05

r¢ = 0.012051 «~ 0.01205 £ 0.000001

z7 = 0.00123650 0.01236 %= 0.0000005

Exercice 4. Soit R = 2cm, le rayon de la base d’un cylindre et A = 2c¢m son hauteur. Quelles
sont les erreurs absolues AR et Ah dans R et h pour que le volume

V = rhR?

soit calculé d’une erreur absolue AV = 0.1em3? On donne 7 = 3.14 comme valeur exacte.
Solution. D’apres la loi générale de 'erreur, on a :

AV = ’— AR+ '— Ah

ou les dérivées partielles de V en R et h, sont données par :

ov oV
—9 — 1R
R TRh, ah =mTR".
Par le principe d’égalité d’effet, on déduit que :
AV AV 0.1
A
i 2[27] T 4rRh 4 x 314 x2x 2
\
0.1
AR = —— ~0.0002.
h 50.24
De méme pour Ah,
A A 1
Ah = 4 = 4 = 0 =~ (.0004.

2|9 27R? 2x3.14x4
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Exercice 5. La période d’un pendule de longueur [ est donnée par :

[
T = 2w/ —.
g

Déterminer 'erreur relative d;, sachant que l'erreur relative ér = 0.5%.
Solution. D’apres la loi générale de 'erreur, on a :

or

AT =
on

Aﬂ'—l-‘— Al+’— Ag,

ou les dérivées partielles en 7,1 et g sont données par :

or_, [l o« or_ 1
or g ol g 0g g

Par le principe d’égalité d’effet, on déduit que :

AT =3 '— Al,
d’out
5 _ AT _ 3|57 Al
TTr T
En remplacant 7" et ’ ‘ par leurs valeurs, on obtient :
3
(ST - §6l
et par conséquent :
2
(Sl == §6T == 03%

Exercice 6. Soit
U = 62°%(Inx — sin 2y)

avec
r =152, y = 22.73°,

Supposons que tous les chiffres dans x et y sont exacts, alors combien de chiffres exacts possede
le nombre U.
Solution. Calculons U pour les valeurs x = 15.2, y = 22.73, alors on obtient :

U = 6(15.2)%(In 15.2 — sin 45.46) = 2784.310837.
Calculons AU (erreur absolue de U.) Posons :

U = f(x,y) = 62°(Inx — sin 2y).
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Appliquons la loi générale de 'erreur, on a :

4] )
AU = of Az + of Ay.
ox oy
Calculons les dérivées partielles, g—i et g—g. On a :
of :
5—(x, y) = 12zlnz+ 6x — 12zsin2y
x
o
5—f(x,y) = —1227cos2y.
Y

Comme tous les chiffres dans x = 15.2 (m = 1,n = 3),y = 22.73 (m = 1,n = 4), sont exacts,
alors les erreurs absolues dans x et y sont :

1 1

Av = Z10m = 2107 = 0.05,
1 1

Ay = 51om-"+1 = 5101—4+1 = 0.005.

De plus, on a :

5
5(15.2, 22.73) = 12(15.2)In(15.2) + 6(15.2) — 12(15.2) sin 2(22.73) = 457.5566891.

) )
(5—f(15.2, 22.73) = —12(15.2)2 c0s2(22.73) = —1944.63698 = ‘6—f(15.2, 22.73)‘ = 1944.63698.
Yy Yy
Alors
of of
AU = 5o Ax + Su Ay = 457.5566891 x 0.05 4 1944.63698 x 0.005 = 32. 601.
z Y

Donc U possede n chiffres exacts si :

1
AU < 510m—"+1.

AU

1 1
32.601 < 50 = 5102 — 5104—71

I <=
no

n

Donc U possede 2 chiffres exacts.

Exercice 7. Soient x =2.54+0.01,y =1.24+0.02, 2 = 3.2+ 0.03,£ = 5.1 £ 0.01.
1- Calculer U = 22 + y? + 2% + 2.

2- Déterminer le nombre de chiffres exacts dans U.

Solution. Calcul de U. On a :

U=2>+y"+2°+1*=(25)2+ (1.2)> + (3.2)* + (5.1)* = 43.94.
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Calculons maintenant I'erreur absolue AU. D’apres la loi générale de I'erreur, on a :

5
AU = 55 Aaj—{—‘— Ay—l—‘— Az—l—'— At
avee SU SU SU SU
R i Ll S vl
Dol

AU = 2zAx+2yAy + 22Az + 2tAt
= 5x001+14x0.02+6.4x0.03+10.2x0.01

=

AU 0.372.

Alors n, est chiffre exact dans U si et seulement si :

1
AU = 0372< 5101—"+1

0.744 102"

IN <= IN &

n 2.

17

Par conséquent, U possede au plus 2 chiffres exacts. Testons maintenant si le chiffre 3 est exact.

En effet, le chiffre 3 est exact car
1
AU =0.372 < 5102*2 = 0.5.

Par conséquent U admet 2 chiffres exacts.
Exercice 8. Donner les résultats finaux dans les cas suivants :

= 30124 + 2.0 + 38.1
= 29.72 — 11.25

93.87 x 9.236

= 12.114 =+ 43.1673

= In(10.3 4 v/4.4) avec /4.4 = 2.0976

S~y Eiav WIS
Il

sachant que tous les chiffres dans ces nombres sont exacts.
Solution.
1- On a :

S = x1+xo+x3=3124+2.0+ 38.1
1 = 3.124 +0.0005

o = 2.0£0.05

r3 = 38.1+0.05
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ce qui implique que :

S = 43.22et AS = Axq + Axg + Azz = 0.1005 ~ 0.1

1 1
0.5=-10""=-10*"
2 2

IN <=

AS

e

n 3.

Alors S admet 3 chiffres exacts et donc le résultat final est :
S =43.2+0.1.
2- Pour D, on a:

D = z1—29=29.72—-11.25=18.47.
r1 = 29.724+0.005, zo = 11.25£0.005
AD = Ax;+ Azy =0.005+ 0.005 = 0.01.

1 1 1
0.05=-10""' = =10t = 210>

AD
2 2 2

3.

n

Alors D admet 3 chiffres exacts et donc le résultat final est :
D =18.5+0.01.
3- Pour P, on a :

P = zy X129 =93.87x%9.236
r1 = 93.87x0.005, o =9.236 £ 0.0005

D’ou
P = 866.98332
et
AP = |xy| Axy + |21 Azy = 9.236 x 0.005 + 93.87 x 0.0005
= 9.3115x 1072
NI
AP = 0.093115.
On a:

1 1 1
AP <05==-10"= =10>""t' = 210>
= 2 2 2
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alors le nombre P admet 3 chiffres exacts et par conséquent :
P ~ 866 4 0.093.

4- Pour R, on a :

r, 12,114
R p— = —_——
flay, o) vy 431673
et
Logis _ 1o o3
Az; = =10 = -10"2 = 0.0005
2 2
|}
ry = 12.114 +0.0005
1 1
Axy = 5101—6+1 = 510—4 = 0.00005
|}

Ty = 43.1673 £ 0.000005.

En appliquant la loi générale de I’erreur, on obtient :

AZ'Q

19

= (.28063

1
2

0xy 0Ty
_Ax | 1Aw
- =
~0.0005  0.000005
12,114 43.1673
N2
AR = 0.000004139.
Alors
AR < 0.000005 = 110—4 = 110—1—”+1 = _10™"
- 2 2
U
n = 4.

Donc R possede 4 chiffres exacts et le résultat final est :
R = 0.2806 + 0.000004.

Pour E, on a :

E =1n(10.3 + V4.4) = 25175 = m = 0.

Calculons AFE. Posons
E =1n(a+ VD).

Appliquons la loi générale de I'erreur a E, on obtient :

oF oF
= |— —IA
AE 5 Aa + ‘ 5 b
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avec

sE_ 1B
ba  a++vb b 2vVbla+V0b)
Alors . A Ab
a
AE = —Aa + Ab = + )
@t b 2v/b(a+ Vb) 12.398 © 52.011

Calculons Aa et Ab sachant que tous les chiffres dans a et b sont exacts. On a :

1
Aa = 510*1:0.05

et
1
Ab = =107' =0.05,
2
donc 0.05  0.05
AE = —"—" 4+ _—"_=0.00499 < 0.005.

12.398 © 52.011
Par conséquent, F admet 4 chiffres exacts car :

1 1
AFE < 0.005 = 510*3 = 5101*4.

Le résultat final dans E est donc :

E =2.518 £0.005.




Chapitre 2

Résolution numérique d’équations non
linéaires

2.1 Résumé du cours

Utilité de résoudre numériquement I’équation non linéaire f(x) = 0. La non capapilité de
trouver facilement une solution exacte de I’équation non linéaire f(z) = 0 c’est a dire difficile de
calculer ces racines exactement.

Source de ces équations. Ces équations apparaissent dans beaucoup de problemes mathématiques

et pratiques.

Le but de ce chapitre est d’étudier quelques méthodes numériques pour trouver les zéros (racines)
de f(x) = 0. On se contente uniquement sur quatres méthodes de résolution a savoir : la méthode
de bissection (Dichotomie), de Lagrange, de Newton et de point fixe.

Pour traiter ce probleme on a besoin de quelques notions fondamentales de 1’analyse.

2.1.1 Rappel de quelques notions de ’analyse

Définition 6. Soit f une fonction définie sur un intervalle [a,b] (a < b) de R et d valeurs dans
R. Le réel € est dit racine (zéro) de f(x) si f(§) =0.

Définition 7. Soit m un entier et f une fonction m dérivable.

1. On dit que & est une racine d’ordre m si :
FEO =1 =...=fmDE =0, ) #0.

2. Sim =1, alors & est dite racine simple.

3. Sim =2, alors & est dite racine double.

Remarque 1. En générale si  est une racine de multiplicité m alors f(x) = (x — &)"h(z) avec
h(€) #0.
Définition 8. Un point £ est dit point fize d’une fonction ¢ si :

p(€) =¢&.

21
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Théoréme 1 (des valeurs intermediares). Soit f une fonction définie et continue sur un intervalle
la,b] et vérifiant f(a)f(b) < 0, alors il existe un réel & € [a,b] tel que f(§) = 0. Si de plus f est
strictement monotone alors & est unique.

Remarque 2. Si f est dérivable et que f'(x) # 0 sur]a,b|, alors f est strictement monotone.

Théoréeme 2 (des accroissements finis). Soit f une fonction définie sur un intervalle |a,b] de R et
a valeurs dans R. Si f est continue sur |a,b] et dérivable sur)a,b|, alors il existe un réel ¢ € la,b],
tel que :

f(b) = fla) = (b—a)f'(c).

Définition 9 ( fonction contractante). Soit f une fonction continue sur [a,b]. [ est dite contrac-
tante sur [a,b], s’il existe un réel q € |0, 1], tel que pour tous x,y dans [a,b],

[f(x) = fW)] < qlz—yl.

Lemme 1. Soit f une fonction continument dérivable sur [a,b]. S’il existe un réel ¢ € ]0,1],
tel que |f'(x)| < q, Yx € [a,b]. Alors f est contractante. On peut prendre comme valeur de q, la
valeur :

=max |f'(z)].
0= max |7'2)

Définition 10. Soit (z,,) une suite admet le réel & comme limite. L’erreur absolue a l’itération n
est donnée par :

A, = |z, — €.
Définition 11. On dit que la convergence de la suite (x,) vers & est d’ordre p si :

An—i—l
AL

=c,c>0,p>0.

Sip=1, avec ¢ < 1, la convergence de (x,) vers £ est dite linéaire.
St p =2, alors la convergence est dite quadratique.
S11 < p <2, la convergence est dite superlinéaire.

Définition 12. On dit que le terme xy de la suite (x,) est une valeur approchée de la valeur
exacte & avec une précision € si :
Ay =z — € <e

2.1.2 Recherche des racines

La recherche d’une racine approchée de I’équation f(x) = 0 se déroule en deux étapes :

1. La séparation de la racine £, c’est a dire localiser £ dans un intervalle [a, b] telle que soit la
seule racine de cette équation dans [a, b].

2. Calcul de cette racine avec une méthode numérique et avec une précision demandée e.



2.2. METHODES NUMERIQUES 23

2.1.3 Séparation des racines

Il n’existe pas une méthode générale pour séparer les racines de f(z) = 0. Mais on peut distinguer
deux méthodes pour les séparer sur le domaine de définition de la fonction f(x) a savoir les
méthodes analytiques et les méthodes graphiques.

Méthodes analytiques

Cette méthode est basée sur Iapplication du théoreme des valeurs intermédiares (T.V.I), qui

assure au moins 'existence d’une racine dans Uintervalle [a, b]. Si de plus f est strictement mo-

notone, alors I'équation f(z) = 0 admet une seule racine isolée dans l'intervalle [a, b]. De plus on
prend en considération les remarques suivantes :

— Les racines de la dérivée f’(x) devisent le domaine de définition de f en des intervalles dont
chacun contient au plus une racine unique.

— Si f'(z) existe et s’il est possible de calculer ces racines facilement, donc la séparation des

racines f doit étre ordonnée, tout en prenant les bornes de [a, b] et puis les racines de f'(x).

Méthodes graphiques

Dans cette méthode soit on trace le graphe de la fonction f toute entier, tout en étudiant ses
variations et puis on cherche son intersection avec I’axe Ox. Soit on décompose f en deux fonctions
f1 et fy telles que f(x) = fi(x) — fa(z), et on cherche les points d’intersection des graphes f; et
fo, dont les abscisses sont exactement les racines de I’équation f(x) = 0.

Remarque 3. On cherche toujours a décomposer la fonction f en deux fonctions de facons que
leurs courbes soient faciles a tracer ou bien sont connues.

2.2 Meéthodes Numériques

2.2.1 Meéthode de Dichotomie

Soit f une fonction continue et strictement monotone sur l'intervalle [a, b], et de plus f(a)f(b) < 0.
Alors d’apres le T.V.I, I'équation f(z) = 0 admet une seule racine ¢ dans [a, b].

Le principe de la méthode de Dichotomie (bissection) est d’approcher la racine £ par encadrement,
en réduisant a chaque étape la longueur de moitié selon la procédure (algorithme) suivante :

Soit ¢ la seule racine de f(z) = 0 dans l'intervalle [a, b].

Etape 1 : on pose ag = a et by =b et g = ‘Eéﬂ et puis on teste si xo = &, on s’arrcte.

Sinon.

Si f(ag)f(xg) < 0, alors £ € [ag, xo], on pose alors a; = ag et by = x( sinon

Si f(ao)f(zo) > 0, alors £ € [z, by, on pose alors a; = g et by = by.

Etape 2 :

On répete la procédure du Pas 1 pour l'intervalle [a1,b;] c’est a dire on fait le méme travail sur

le nouveau intervalle [ay, b;] avec x; = ‘“QLIH
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Remarquons que :
ag — bo
oy = o=
Etape (n+1) :
Apres un (n+ 1) pas de procédé, on trouve ou bien la solution { = x,,41, sinon on trouve une suite
des intervalles emboités

[an—i-lu bn—i—l] g s g [CL07 bO]

tels que f(ant1)f(bns1) <0, Vn, et de plus :

lap — bo|
[nt1 = b | = =

Par conséquent, la suite (z,,) obtenue par I'algorithme de dichotomie est donnée par :

xn:a 5 ,n=0,1,...,

converge vers la racine 5 avec une erreur :

b —al
on+1 :

Remarque 4. Sie est une précision donnée, alors on peut estimer a l’avance le nombre d’itérations
n produit par l’algorithme de dichotomie comme suit :
St

b—af _
2n+1 =€
alors (b — a) 1
nb—a)—1Ine
> — 1.
"= In2
ou bien, on prend
Y E In(b—a) —Ine 41
In2

avec E désigne la partie entiere de l'expression considérée.

Code Scilab

%Etude de la fonction :

%f(x) =2 + 42* — 10, dans [1, 2]
a = input(”donner la valeur de a”);
b = input(”donner la valeur de b”);
function [y] = f(z)
y=a3+4x2%—-10;

endfunction

r=(a+0b)/2;

eps = 10" —4;



2.2. METHODES NUMERIQUES 25

k=0;

tic;

While abs(b — a) > eps
if f(a)x f(x) <0
b=ux;

else

a=uz;

end
r=(a+0b)/2;
k=k+1,;

end

t=toc;

disp("z ="7);
disp(z) ;

2.2.2 Méthode de Lagrange

Soit f une fonction continue et au moins deux fois dérivables sur 'intervalle [a, b]. Supposons que :

1. f(a)f(b) <O.
2. f'(x) # 0 sur [a,b] et f"(x) # 0 garde le méme signe sur cet intervalle.

Alors 'algorithme de Lagrange pour calculer une valeur approchée de la racine £ est donné par :

xo=a si f(a)f"(a) <0
Pt = () n = 0,1,

ou bien par
{ zo=">b si f(a)f"(a) >0

tet = n— ) (r —a) n=0,1,..

Suivant les hypotheses (1) et (2), la suite (z,,) produite par I’algorithme de Lagrange dans les
deux alternatives converge vers la seule racine ¢ dans [a, b]. De plus lerreur absolue commise dans
chaque itération x,, est donnée par :

M
An:|xn_£|:12—

|xn - xn—1|
ma
avec
M, = max |f'(x)|, m;= min |f'(z)].
z€[a,b] z€[a,b]

Code Scilab

%Etude de la fonction :

%f(x) =2 + 42* — 10, dans [1, 2]
eps = 10" — 4;

function [y] = f(z)



26 CHAPITRE 2. RESOLUTION NUMERIQUE D’EQUATIONS NON LINEAIRES

y=a3+4*2*>—-10;
endfunction

function [y] = df (z)
y=3%2>+8xux;
endfunction

if f(a)xdf(a) <0
r=a;

else

r=b;

end

k=0;

err = norm(f(x));
tic;

while (err > eps)

if r==ua

= — f(@)* ((b—2)/(Fb) — (2))):
else

r=x— f(x)*((x—a)/(f(x) = f(a)));
end

err = norm(f(x));
k=Fk+1;

end

t=toc;

disp("z =7);
disp(z) ;

2.2.3 Meéthode de Newton

Soit f une fonction continue et au moins deux fois dérivables sur 'intervalle [a, b]. Supposons que :

1. f(a)f(b) < 0.
2. f'(z) # 0 sur [a,b] et f’(z) # 0 garde le méme signe sur cet intervalle.

Alors la procédure de la méthode de Newton pour approcher la racine £ est donnée par :

o € [a, 0] tel que f(@o) f"(20) > 0
Tn+41 =Tp — ]]c‘,((a;y;))’ n = 07 17 e

Si les conditions (1) et (2) sont satisfaites alors la suite générée par l’algorithme de Newton est
convergente et dans ce cas l’erreur commise est donnée par :

M
An: n = 7 Un — In— 2
on = €1 = (= a1
avec

M = max |f"(x)|, m;= min |f'(z)].

z€[a,b] z€la,b]
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Code Scilab

%Etude de la fonction :

%f(z) = 2® + 42? — 10, dans [1, 2]
function [y] = f(z)
y=a+4x*2%—10;

endfunction

function [y] = df (z)
y=3*xx>+8x1;

endfunction

eps =107 —4;
r=1;

err = norm(f(x));
nb=0;

tic;

while (err > eps)
nb=nb+1;

v =x—(f(x)/df (x));
err = norm(f(x));
end

t=toc;

disp("z =7);
disp(z) ;

2.2.4 Meéthode de point fixe

Le principe de cette méthode, est de transformer 'équation f(xz) = 0 en z = ¢(z), c’est a dire
trouver une fonction ¢(x) définie et continue sur [a, b] telle que :

f(x) =0&z=p(),

et puis elle construit une suite (z,,) par la procédure suivante :

{ zg € [a,b]

Tpt1 = ¢<xn)7 n = 07 ]-) e

Si les conditions suivantes sont satisfaites :
1- ¢([a, b]) C [a,b] c’est a dire Yz € [a,b], ¢(x) € |a, b].
2-  est une application contractante sur [a,b] c’est a dire s’il existe une constante ¢, 0 < ¢ < 1
telle que :

() —eW)| < qlz—yl, Yo,y € [a,b].
Alors la suite (z,) donnée par I'algorithme de point fixe est convergente vers 1'unique solution £
de I’équation f(x) = 0 pour tout point initiale z¢ de [a,b]. De plus lerreur commise est donnée

par la formule suivante :
A= fon =€l = 7l — ol
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Code Silab

%Etude de la fonction :

%f(z) = x — cos(z), dans [—1, 3]

k=0;

eps = 10" —4;

function [y] = g(x)
= cos(z);

endfunction

function [y] = f(x)

y=x — cos(z);

endfunction

x=1/2;

err = norm(f(x));

tic;

while (err > eps)

z=g(z);

err =norm(f(x));

k=k+1,;

end

t=toc;

disp("z =)

disp(z) ;

2.3 Exercices résolus
Exercice 1. Séparer les racines des équations suivantes :

2t —4r—-1=0, 2°—-5z*+1=0, 20 —Inz —4 =0,
22 —e"+2=0, rt+sinz—2=0, 2°+122>—60x +46 =0 =0.

Solution.

1. 2 —4x—1=0. On pose f(z) = * — 4z — 1, alors f est une fonction définie et dérivable sur
son domaine de définition R car f(z) est un polynéme. De plus comme lim,, , o, f(z) = 400,
limg, s 400 f(2) = 400 = (limgy o f(2)) (limgs oo f(2)) = +00 > 0, alors d’apres le T. V.1,
I'équation f(x) = 0, admet un nombre pair de racines sur R ou bien elle n’admet pas de
racines sur R. Pour s’assurer, on étudie ses variations sur R. On a :

f'(z) 42 —4=0

=
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Le tableau de variations de f est donné par :

T —00 1 +00
signe de f’ - 0 +
+00 400
variations de f N ya
—4

Alors d’apres son tableau de variations f(x) = 0 admet exactement deux racines séparées
dans R comme suit :

gl € ]_OO’ 1[
et

& e ]1, +OO[ .
Localisation de ces deux racines dans des intervalles finis de la forme [a, b]. Comme f(—1)f(0) <
0, alors & €[—1,0] et comme f(1)f(2) < 0, alors & € [0, 1].

2. 2% — 5z* + 1 = 0, on fait le méme travail que pour (1). On pose f(z) = 2° — 52? + 1
alors f est un polynome donc continue et indéfinement dérivable sur R. De plus, comme
lim, o f(2) = —00, lim,4 0 f(2) = 00 = (lim,—o f(2)) (limyio f(x)) = +00 < 0, alors
d’apres le T.V.I, I'équation f(x) = 0, admet un nombre impair de racines sur R ou bien

elle admet au moins une racine sur R. Pour s’assurer, on étudie aussi ses variations sur R.

On a:

fl(x) = 5z* —202° =0

r = 0Vax=4,

et donc son tableau de variations est donné par :

x —00 0 4 ~+00
signe de f’ + 0 - 0 +
+1 +00
variationsde f e N\ N
—00 —256

Alors suivant le tableau de variations f(x) = 0 possede exactement trois racines séparées
dans R comme suit :
51 € ]_0070[752 € ]074[7
et
53 € ]4, +OO[ .

Localisation de ces deux racines dans des intervalles se la form [a,b]. On vérifie facilement
que :
61 S [_37 _2]7 62 € [074]7 53 S [5a6] :
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3. 2 —Inz —4 = 0. Alors f(x) = 2z — Inz — 4, est une fonction définie et continue sur son
domaine |0, +o0[, de plus on a :lim,, o f(z) = 400, limy 100 f(2) = +00 = (limgy o f(2))
(limgy 100 f(2)) = 400 > 0, alors d’aprés le T.V.I, f(z) = 0 admet une nombre pair de
racines sur son domaine ou bien elle n’admet pas de racines. D’autre part :

IR
flx) = 2 :1:_0
0
_ !
o= g

D’ou le tableau de variations de f, est donné par :

x 0 % +00
signe de f’ — 0 +
400 400
variationsde f N ya
In2-3<0

Alors f(x) = 0, admet exactement deux racines dans |0, +-00[ séparées comme suit :

1 1
&1 6]075{7 &2 6]5,00[-
De plus on peut les localiser dans des intervalles compacts, comme suit :
& €10.01,0.1], & € [2,3].

4. 2 —e"+2 = 0. La fonction f(z) = 2? — e” +2 est une fonction continue sur tout R. De plus
comme limgy,, o f(2) = 400, limyy 100 f(2) = —00 = (liMys—oo f(2)) (liMgs oo f(2)) =
—o0 > 0, alors d’apres le T.V.I, I'équation f(x) = 0, admet un nombre impair de racines
sur R ou bien elle admet au moins une racine sur R. Pour s’assurer on étudie ses variations
sur R. On a f'(z) =2z —e¢” et f"(2) =2—¢e” =0 < x = In2. Donc le tableau de variations
de la fonction f est donné par :

x —00 In2 —+00
signede f” + 0 —
2In2-2<0
f'(x) /! N\
—00 —00
400
N\
f(z) (In2)?
N\
—00

Donc f(z) = 0 admet une racine unique & € [In2,4+o00| et plus précisément ¢ € [0, 1] car
FO)=1>0et f(1)=6—¢® <0
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Remarque 5. On peut utiliser la méthode graphique pour séparer ces racines. Pour cela,
on décompose f(x) par ezemple comme suit :

f(x) = fi(z) = fa(x)
ot
filz) =2*+2
et
f2(x) =€,
et puis on trace leurs graphes et on cherche les points de leurs intersections.
Exercice 2. En utilsant la méthode de Dichotomie, déterminer la plus petite racine positive de
I’équation :
2’ + 427 =10 =0
avec une précision € = 1072. Quelle est le nombre des chiffres exacts dans le résultat ?
Solution
f(x) = 2®+42% — 10, est un polynéme donc elle est continue sur R. De plus, comme lim_, f(z) =
—00, lim; o f(x) = 400 = (limys—oo f(2)) (limgy 100 f(z)) = —00 < 0, alors d’apres le T. V.1,
I'équation f(z) = 0, admet un nombre impair de racines sur R ou bien elle admet une racine sur
R. Pour s’assurer, on étudie ses variations sur R. La fonction f est dérivable, alors on a :

fllz) = 32°+8x=0
0

8
= 0Va=—-.
xr xXr 3

Alors son tableau de variations f est donné :

x —00 —% 0 +00
signe de f’ + 0 - 0 +
—0.5 400
variations de f Ve N Ve
—00 —10

D’apres le tableau de variations f(x) = 0, admet une seule racine positive ¢ dans Iintervalle
[0, +o0]. De plus, comme f(1)f(2) < 0, alors £ € [1, 2].

Calculons cette racine par la méthode de Dichotomie. Pour cela, on construit le tableau de Dicho-
tomie comme suit :

n | a, b,, T, = @ flxn) flan) | A, = Qn%

01 2" 1.5% <0 0.5>¢

111 1.5% 1.25~ >0 0.25 > ¢

2 | 1.25™ 1.5T 1.375% <0 0.125 > ¢

3| 1.257 1.3757 | 1.3125~ >0 0.0625 > ¢

4 | 1.3125~ 1.375% | 1.34375~ >0 0.03125 > €

5 | 1.34375~ 1.375% | 1.359375~ | >0 0.015625 > €

6 | 1.359375 | 1.375" | 1.3671875 | ... 0.0078 < e = 0.01.
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On prend donc comme valeur approchée de &, les valeurs :
& =27+ A; = 1.3671875 £ 0.0078.

n est le nombre des chiffres exacts dans x7 si :
1 m—n+1
A7 =0.0078 < 510 .
Comme m = 0, alors on calcule n tel que :
1 —n+1
0.0078 < 510 :

Cette inégalité est vérifiée si n > 4. Donc £ possede au moins 4 chiffres exacts.
Exercice 3.

1. Séparer dans un intervalle de la forme [k, k+ 1] : k € Z, la plus petite racine positive de
I'équation 22 + 1222 — 60z + 45 = 0.

2. En utilisant la méthode de Lagrange puis celle de Newton, calculer cette racine avec 2 chiffres
exacts.

3. Est-il préférable d’utiliser la méthode de Dichotomie ?

Solution.

1. f(x) = 23+122? —60x+45, est un polynore donc continue sur R. De plus il est facile d’avoir
limg, o f(2) = —00, limy sy oo f(2) = 400 = (limg oo f(2)) (limyy oo f(2)) = —00 <0,
alors d’apres le T.V.I, I"équation f(z) = 0, admet un nombre impair de racines sur R ou
bien elle admet une racine sur R. Pour s’assurer, on étudie ses variations sur R. On a :

fl(z) = 32 +122° =60 =0

=

T 10V z = 2.

Alors son tableau de variations est comme suit :

x —00 —10 2 400
signe de f’ + 0 - 0 4+
846 400
variations de f N N\ Ve
—00 —18

D’apres ses variations, f(x) = 0 admet exactement deux racines positives et une seule racine
négative situées dans R comme suit :

61 S [—16,—15] ,52 S [0, 1], 53 € [2,3] .
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Calculons maintenant la plus petite racine positive dans [0, 1] par la méthode de Lagrange et puis
par la méthode de Newton.

1. Méthode de Lagrange.. En effet, comme f'(z) = 32% + 242 — 60 # 0 (d’apres le tableau
de variations) et f”(x) = 62424 > 0 sur [0, 1]. Alors la méthode de Lagrange est applicable.
Choix de xy.

f"(x) >0, f(0) >0, alors f”(0)f(0) > 0= x¢ = 1.

M, = max,epq | [/ ()] = 60, mi = mingepq | f'(z)] = 33.

On calcule une valeur approchée de £ avec 2 chiffres exacts c¢’est a dire avec une précision
€= %10_1 = 0.05 car m = 0 et n = 2. Alors en partant de xg = 1, I'algorithme de Lagrange

génere une suite donnée par :

I I T ) — 1)
Itération z;.

fvm o1
OO I Ak

,I‘l:l—

L’erreur commise dans x; est :

97 27
Ay =21z — 2ol = Ay = 22 10.9787 — 1| = 0.0087 ~ 0.009.
1= g 71— w0l = A =e | |

Comme A; < 0.05, on s’arrete et on prend comme valeur approchée de la racine £ la valeur

£ =0.9787 £ 0.009.

2. Méthode de Newton. Les conditions de cette méthode sont les mémes que celles de La-
grange et donc la méthode de Newton est applicable pour approximer cette racine.
Choix de zy. f"(z) > 0, f(0) > 0, alors f”(0)f(0) > 0 = xy = 0. Alors l'algorithme de

Newton pour approcher la racine ¢ est donnée par :

Ty = 0,
Tyl =z, — J{,(é’;)), n=0,1,..

avec
M = max |f"(x)] = 30, m; = min_|f'(z)| = 33.

z€[0,1] z€(0,1]

et parconséquent et apres simplification I'erreur devient :

5

A, ==
11

(T — p1)%

Calcul de litération x; :

S (o) f0) 23

r1 = Ty — = —

Pl = T F0) = 30 = 076666

et son erreur : .
Ay = — (2, — 10)* = ﬁ(0.76666)2 = (.267.
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A1 > e =0.05, on calcule donc l'itération x5 par :

f(z1)
To =T — m = 0.953688,
et son erreur
Ay = 15—1(1:2 — 1) = %(0.76666 —0.953688)? ~ 0.016.
Alors Ay = 0.016 < € = 0.05 et donc on s’arréete et on peut prendre comme valeur approchée
de ¢ :
& = x5 +0.016.

3. La méthode de Dichotomie avec la précision € = (.05, a besoin de 4 itérations pour approxi-
mer cette racine car :

. In(1 —0) — In(0.05) B
- In2
Alors il n’est pas préférable de I'utiliser la méthode de Dichotomie car les autres méthodes

1 ~4.

ont besoin au plus deux itérations.

Exercice 4.

On considere ’équation
2

ex—%—x—lzo, (2.1)

sur l'intervalle [—1, 1].
1. Montrer que I’équation (2.1), admet un zéro (une racine) ¢ dans [—1, 1] et qu’il est unique.

2. Résoudre I'équation (2.1) par la méthode de Newton a e = 0.05 pres, utiliser |f(z)| < e.
Quelle est 'ordre de convergence de cette méthode ? Justifier votre réponse.

3. Proposer une méthode d’ordre 2 pour résoudre ’équation donnée.
Solution.

1. La fonction f(x) =¢e" — % — 2 — 1 est indéfiniment dérivable sur son domaine R, donc elle

est continue de plus comme f(—1)f(1) = (%2)(242) < 0, alors d’apres le T.V.I f(z) =0
admet au moins une racine £ sur [—1, 1]. Pour 'unicité de la racine, on étudie ses variations
sur l'intervalle [—1,1]. On a f'(x) = €* — 2 — 1 et comme elle est difficile de connaitre son

signe, on calcule f”(z) = e —1 = 0. Alors son tableau de variations est donné par :

T —1 0 1
signede f” - 0 +
0.37 0.72
7() N S
0
0.22
/!
f(x) 0
/!
—0.13

Alors il est claire que f(x) = 0 admet une racine unique § € [—1,1].
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Remarque 6. La racine exacte de cette équation est & = 0 avec multiplicité m = 3 car
f(0) = f'(0) = f"(0) = 0, f"(0) # 0.

Choix de xy. f"(z) > 0 et f(1) > 0, alors f”(1)f(1) > 0 = xy = 1. Alors l'algorithme de
Newton pour approcher £ est donné par :

To = 17
xn+l =Tn — }f,((cir;))’ n = O, 17

Calcul de litération z; :

flao) _y Sy 022 644

fl(zg) (1 0.72

Ty = Ty —
et son erreur :
| £(0.69444)| = 0.06702.
| £(0.69444)| = 0.06702 > ¢ = 0.05, on calcule donc l'itération xy par :

flz)  f(0.69444)
fi(zy) 0.69444 £7(0.69444)

= 0.476905,

To = T1 —

et son erreur :

| £(0.476905)| = 0.0204.
| £(0.476905)| = 0.0204 < € = 0.05. On prend comme valeur approchée de & :

¢ = 0.476905 % 0.02.

Remarque :

1. On peut prendre aussi comme choix de g, la valeur zy = —1 car f(—1)f"(—=1) > 0 et la
méthode de Newton converge aussi vers la racine £.

2. On remarque dans cet exemple que les conditions de Newton ne sont pas vérifiées, mais
la méthode converge. On déduit que les conditions de convergence de cette méthode sont
suffisantes mais non nécessaires.

3. On montre dans le cas ou la racine ¢ d'une équation f(z) = 0 est de multiplicité m > 2,
alors 'ordre de la convergence de la méthode de Newton ne reste pas quadratique mais se
réduit a l'ordre 1 c’est a dire linéaire. En effet, si £ est une racine de multiplicité m, alors

f(2) = (x — &)™ h(z) telle queh(€) # 0,
avec
fl(x) =m(z — " h(z) + (x — &)W (x).
On veut comparer maintenant l'erreur A, 1 avec 'erreur A,. Avec la formule de Newton,
on obtient :

(@ — §)"h(@y)
m(zn, — &)™ h(@n) + (20 — §)™H (2n)
(zn — )N ()
h(n) + (2 — N (2n)

$n+1—f - xn_g_

$n+1—f - $n—5—
m
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Ce qui implique que :

Tn+1 _5 —1_ h(‘rn)
Tn — & mh(x,) + (2, — N (2,)

Par conséquent, il découle que :

iy — 1
TS Bk | R (S
m

o [T, — €]

Finalement

An—‘,—l
A,

=c< 1.

Alors cette méthode est d’ordre 1.

. Proposition d'une méthode d’ordre 2 pour résoudre 1’équation donnée. Pour que I’algorithme

de Newton dans ce cas avoir un ordre de convergence d’ordre deux, il suffit de considerer le
schéma itfatif modifié suivant :

)
f'(@n)

et on peut montrer que son convergence est d’ordre 2.

Tp1 = Tp — M

Exercice 5. Soit I’équation :

f(z) =Invz2+a?:a€R" (2.2)

1. Etudier suivant les valeurs de a, 'existence des racines de I'équation (2.2).

. . _ 1
2. Dans ce qui suit, on prend a = 3.

— Séparer les racines réelles de 1’équation (2.2) dans des intervalles de type [p,p + 1], p € Z.

— Déterminer une valeur approximative de la plus petite racine positive de ’équation (2.2)
par la méthode de Dichotomie a 0.2 pres.

— Rappeler les conditions de convergence de la méthode de Newton, sont-elles vérifiées pour
cette équation ?

Solution.

1. f est une fonction définie continue sur R, de plus limg, o f(z) = 400, lim, o f(z) =

+oo = (limgs—oo f(2)) (limgyioo f(z)) = +00 > 0, alors d’apres le T.V.I, I"équation
f(x) =0, admet un nombre pair de racines sur R ou bien elle n’admet pas de racines sur R.

On a:
x

2+ a?

f'(x)

=

0.

T

Alors le tableau de variations de la fonction f est donné par :

T —00 0 400
signe de f’ - 0  +
+00 +00
variationsde f Ny Ve
In |al
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On constate que si |a| < 1, alors In |a| < 0, et dans ce cas f(x) = 0, admet exactement deux
racines dans R. Sinon si |a| > 1 alors In|a| > 0 et par conséquent f(z) = 0 n’admet pas de
racines.

2. Si a = 5 alors a est dans Uintervalle [—1, 1], et comme f(0)f(1) <0 et f(—1)f(0) < 0 donc
& €[0,1] avec p=1et & € [—1,0], avec p = —1.

3. Détermination d’une valeur approximative de la plus petite racine positive de ’équation par
la méthode de Dichotomie a 0.2 pres. On construit donc le tableau de Dichotomie. Comme
€ = 0.2 alors le nombre d’itérations n est :

In (1-0)
1—0; —1=1.3219
n

donc on prend n = 2 et le tableau de Dichotomie est donné par :

n | ap b, | x, = % flxn) flan) | A, = #
0|0 17105 >0 0.5>¢€=0.2
1105 |17 10.75 >0 0.25 > ¢
21075~ |1t | 0.875 0.125 < ¢

Donc £ = 0.875 £ 0.125.
4. Dans cet exemple les conditions de Newton ne sont pas satisfaites car il existe un zy = 0.5 €
[0, 1] tel que : 0
7@ = e roame ~
et par conséquent f”(z) ne garde pas le méme signe sur [0, 1].
Exercice 6.

On considere 1’équation
e’ +3Vr—2=0 (2.3)
sur U'intervalle [0, 1].
1. Montrer que 'équation (2.3) admet une racine unique sur [0, 1].

2. On veut calculer la racine de cette équation par une méthode de point fixe convenable. En
particulier on se donne deux méthodes de point fixe z = ¢;(x),7 = 1,2, ou les fonctions ¢,
et o sont définies par :

(2 - ex)z.

p1(a) = (2 = 3v3), ala) =

Solution.

1. Remarquons tout d’abord que f(0) = —1 < 0et f(1) =e+1 > 0 alors en utilisant le T.V.I,
on a que f(z) = 0 admet au moins une racine £ sur [0, 1]. D’autre part f'(x) = ex—i—%Q\/E >0
sur [0, 1], alors la racine £ est unique sur cet intervalle.
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2. On va maintenant étudier la convergence de deux méthodes de point fixe liées a les formes
précédentes.
— Pour ¢1(x) = In(2 — 3y/x), on constate que cette fonction est définie uniquement sur

le domaine [0,3] et on remarqe aussi que f(0)f(5) < 0 ce qui implique que la racine

9
¢ € [0,3]. Mais on peut facilement montrer que la premiére condition ¢([0,3]) € [0, 5]

)9 = )9
de cette méthode n’est pas satisfaite. En effet, on a : ¢ (z) = <0, Yz e [0,3].

BN ) ;
Ce qui montre que ¢1([0,3]) = [¢1(5), ¢1(0)] =]-00,0.69] & [0, 3] . Par conséquent la
méthode de point fixe liée a ¢ diverge.

— Pour ¢y(x) = %. La fonction ¢o(z) est continue et dérivable sur [0, 1], et ¢)(x) =

m est une fonction continue sur [0, 1], ¢5(z) admet donc un maximum sur [0, 1] et

comme () est strictement croissante car ¢j(z) = ge® (¢* — 1) > 0 sur [0, 1], alors pour

tout z de [0, 1],

—0.22 = ¢5(0) < ph(z) < ¥h(1) = 0.42

donc il existe un ¢ = 0.42 < 1 c’est a dire la fonction ps(x) est contractante sur [0, 1].
D’autre part, il est facile de vérifier que

2([0,1]) = [p2(In 2), 0(0)] = [0,0.111] € [0, 1],

Donc la méthode de point fixe associée a la fonction @9 est convergente c’est a dire la suite
générée par la méthode de point fixe converge vers 'unique point & solution de 1’équation
©a(&) = & sur [0, 1] qui est en outre I'unique solution de I’équation f(&) = 0.

Examen 2017 Analyse numérique 1

Exercice.
Soit I'équation : f(x) = 2> —Inx —a =0, a € R,z > 0.

1. Trouver toute les valeurs de a pour que ’équation f(z) = 0 admet une seule solution £ dans
1, e].

2. Considérons l'algorithme de point fixe suivant :

xo € [1, €]
Tpp1 = p(x,) = V/In(z,) + @, n=0,1, ...

Etudier la convergence de cet algorithme vers £ selon toutes les valeurs de a obtenues de la
question (1).
3. Prenons a = 2.
— Quel est le nombre nécessaire d’itérations pour calculer £ avec trois chiffres exacts par
I’algorithme de Dichotomie et puis par 'algorithme de point fixe ? comparer.
— Donner trois itérations par l'algorithme de point fixe, prendre o = 1.

Solution

1. Iéquation f(z) = 0 admet une seule solution sur [1,e] si f(1)f(e) < 0 et f'(z) # 0 pour

tout x € [1,¢e]. On a d’une part que pour tout = € [1,¢], f'(x) = 2’-1 (). D’autre part :

x
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f(O)fle) <0& (1—a)(e*—a—1)<0.
Casl:(1—a)>0cet (e?—a—1)<0alorsa <1eta>e*—1 (impossible).
Cas2:(1—a)<0et (e?—a—1)>0alors 1 < a < e?—1. Donc cette équation admet une
racine unique sur [1, e] si et seulement si « € ]1,¢e — 1].

2. Convergence de 'algorithme de point fixe vers £. Posons ¢(z) = /In(x) + «, avec a €
]1,e* —1][.
On a : pour tout = € [1,¢],

1
(7)== —————=>0
#lw) 2zvInz 4+ «
et
A/ 1
¢'(z) = et e < 0.
422(Inx + «)
Ce qui implique ¢'(z) > 0, est décroissante et donc :
1
maxy¢'(z) =¢'(1)=¢g=—= < 1.

el 2/«
Pour (1, e]) C [1,¢]?
On a : ¢'(x) > 0, alors ¢(x) est croissante et par conséquent on a :

oL, = (). ¢()) = |Va, VITal.
ora€]l,e? —1[alors 1 < ya</T+a<V1+e2—1=e. Cequi montre que ¢([1,e] C

[1,e]. Alors la méthode de point fixe est convergente vers & dans [1,e].

3. Nombre d’iérations dans la méthode de Dichotomie si on calcule la racine £ dans [1, e] avec
3 chiffres exacts c’est a dire n = 3 donc A, < %10_2 car m = (0. On sait que le nombre
d’itérations n produit par la ’algorithme de Dichotomie vérifie que :

- In(e — 1) — In(0.5(1072))
= In2

donc on prend n = 8 comme le nombre nécessaire d’itérations produit par l'algorithme de
Dichotomie pour approcher cette racine.

— 1 =7.428,

Pour l'algorithme de point fixe on sait que la formule d’erreur est donnée par :

q
Anz 1_q’$1—$0‘

n

Pour a = 2, donc ¢ = #ﬁ et pour 2o = 1 on a : 21 = (1) = v/2. Alors

n (L)n
Tl — ol = =22
l1—q 1-2v2
Apres simplification, on déduit que n > 4.66, donc le nombre nécessaire d’iérations pour

approcher cette racine par 1'algorithme de point fixe est n = 5.
Il est claire que I'algorithme de point fixe est plus rapide que celui de Dichotomie.

V2 -1 < %102.

4. Calcul de trois itérations par l'algorithme de point fixe. On a : g = 1,21 = (1) =
VInT +2 =2, xy = (1) = 1.5318, x5 = () = 1.5577.
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Chapitre 3

Résolution numérique des systemes
linéaires

Utilité des sysemes linéaires. En générale il est difficile de traiter ces problemes manuel-

lement, on est donc obliger a utiliser des méthodes numériques abordables par les machines
et efficaces a résoudre des systemes a grande taille.

Source. Beaucoup de problemes scientifiques et mathématiques se réduisent a la résolution
d’un systeme linéaire de la forme Ax = b ou A est une matrice inversible carrée d’ordre n
donnée et b € R™.

3.1 Exercices résolus

3.1.1 Meéthodes directes

. Exercice 1 Soit le systeme linéaire :

1 2 1 1 2
1 2 3 | =14 ]. (3.1)
0 —1 2 T 2

(a) Montrer que le systéme linéaire (3.1) admet une solution unique x € R¥.
(b) Déterminer x par la méthode de Gauss.

(c) En utilisant la méthode de Gauss-Jordan, déterminer U'inverse de la matrice A des
coefficients. Déduire la valeur de la solution z.

Solution.

(a) Le systeme (3.1), admet une solution unique = car det A = 2 # 0.

41
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(b) Résolution de (3.1) par la méthode de Gauss. On transforme le systeme (3.1) a un
systeme dont la matrice de coefficients est triangulaire supérieure. Pour cela, on écholonne :

1 2 12 I
(Alp) = |1 2 3 4 Iy | «
0 -1 2 2 I3
1 2 12
~ [0 =122 ]|=(Ulb).
0 0 2 2

l

1
0
<12_ll) 0 —1

Le systeme (3.1) est donc équivalent & un systeéme Uz = b :

1 2 1
(Ulb): | 0 -1 2
0 0 2

Alors la solution de (3.1), est évidente :

X1
Tr = T2 =
€3

0
1

\)

2
0

1 2
2 2
2 2

(c) Calcul de A~! par la méthode de Gauss-Jordan. La procédure se déroule comme suit :

L, /12 1100 1 1 2 1 1
AlI) = L |12 3010 |vbL1 [0 0 2 -1
I3 0 -1 2 0 0 1 I3 0 -1 2 0
1, 1 2 1 1 00 1, 12
“w I3 0O -1 2 0 01 “w —1x1y 01
I,—1; 0O 0 2 -1 10 15 00
1 1 1 1 0 0 1 0 5
“w 2L+ 1 01 -2 0 0 -1 “ 01 =2
1y 0 2 —1 1 0 00 2
14 1 0 5 1 0 2 1,
A I, 01 -2 0 0 -1 A I,
ob,—1L, \0 0 1 —1/2 1/2 0 5l + 1
100 7/2 -5/2 2
“ 010 -1 1 —1
001 —1/2 1/2 47
Alors A~! est donnée par :
7
3 —3 2
Alt=| -1 1 -1
B

0

—1

0

10
-1 1 -
~1/2 1/2 -
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Exercice 2 Soit le systeme linéaire :

110 7 0
15 2 w | =1 4 . (3.2)
02 2 T3 2

(a) Montrer que le systeme linéaire (3.2) admet une solution unique x € R3.
(b) Déterminer x par la méthode de LU, si c’est possible.
(c¢) Déterminer x par la méthode de Cholesky, si c’est possible.

Solution.

(a) Le systeme (3.2), admet une solution unique z car det A =4 # 0.

(b) Méthode de Crout. La méthode LU est applicable si et seulement si les mineurs
principaux de A sont non nuls. En effet, par un calcul simple, on obtient :

det Ay =1#0,det Ay =4 #0,det A=4#0.

Le principe de cette méthode est de factoriser A = LU ou L une matrice triangulaire
inférieure et U triangualire supérieure données par :

1 0 O 1 1 0
L= 1 lgg 0 et U = 0 1 U923
0 Ils2 33 00 1

Alors résoudre Az = b est équivalent a résoudre deux systemes linéaires évidents c.a.d :

Ly=1»

Ax:b<:>LUx:b<:>{
Ur =y.

Déterminons maintenant les coefficients des matrices L et U, on a :

1 10 1 0 0 1 1 0 1 1 0
1 5 2 = 1 l22 0 0 1 U23 = 1 l22—|—1 122U23
0 2 2 0 132 l33 0 0 1 1 l32 l33+l32u23
Par identification, on obtient :
(1+1p =5
logugs = 2

l30 =2
L 33 + l32u93 = 2

et par conséquent :

U23:%
l30 =2 ’

l33 = 2 — l3ou93
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et donc :
100
L=11 4
0 21
et
110
U=|01 3
0 01
Alors la solution de Az = b, est équivalent
Ar = b LUx =10
T
Ly = betUzx =y.
T
1 00 U1 0
Ly = b | 1 4 v | =1 4
0 21 Y3 2
\
Y1 0
Y2 = 1
Ys 0
110 T 0
Ur = y<& | 01 % xo | = 1
0 1 XT3 0
-1
r = 1
Donc la solution de systeme est donnée par :
-1
T = 1

(c) Méthode de Cholesky. Cette méthode est applicable si la matrice A est symétrique
définie positive. En effet, on vérifie facilement que la matrice A est symétrique car
A = AT et de plus les mineurs principaux de A, det A; = 1 > 0, det Ay = 4 > 0,
et det A = 4 > 0. Alors la matrice A est définie positive et dans ce cas il existe une
matrice triangulaire inférieure L telle que A se factorize comme suit : A = LLT. Par
conséquent, on a :

Ar=be LL'z =be Ly =bet Lz = y.
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La matrice L est de la forme :

Iy 0 0 lin lar b3
L= log log O = LT = 0 lyo l23
li3 1oz 33 0 0 Is3
Alors
lh 0 0 lin lor b3
LLT = log Iy O 0 Iy Il
lis oz 33 0 0 Is3
12 i1l linlhs
= i1l 13, + 13, lo1l13 + laala3

Linlis lorlys + loalas l%g + @3 + lg?)

45

et les six coefficients de la matrice L sont donnés par la résolution des ces équations :

( l%l =1
Ll =1
li1lz1 =0

l%z + l%z =9
lorlsy + loglsze = 2
15+ 15, + 155 =2

d’ou on obtient que :

(ln:l
l21:1
131:()
lyg =2
l32:1
l33:1
et
100
L=11220
011

Pour le systeme Ly = b,

1 00 Y1 0
1 20 ( Yo ) =1 4
011 Y3 2
alors
n 0
Yy = Y2 = 2 .
Ys 0
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Pour le systeme LTz = v,

1 10 I 0
0 21 To =\ 2
0 01 T3 0

alors la solution du systeme Az = b, est donnée par :

-1
T = 1
3.1.2 Meéthodes itératives
Exercice 3 Soit le systeme linéaire :
4 -1 0 T 1
-1 4 -1 x | =111]. (3.3)
0 -1 4 x3 1

(a) Etudier la convergence des méthodes de Jacobi et de Gauss-Seidel pour (3.3).

(b) Vérifier que les rayons spectraux des matrices d’itération vérifient : p(Hgg) = p*(Hy).
Que peut-on conclure ?

(c) Vérifier que la factorisation de LU existe et unique, puis résoudre le systeme Az = b.

(d) Donner les trois premieres itérations par la méthode de Gauss-Seidel pour le systéme
(3.3).
Solution.

— _Méthode de Jacobi : Tout d’abord vérifions que ce systeme admet une solution unique.
Comme det A = 56 # 0, alors la solution est unique. La matrice de Jacobi associée a A,
est donnée par :

H;=1-D"A.
On a:
400 200 4 -1 0
D=|040]|, D'4=|0 1 0 -1 4 -1
00 4 00 ; 0 -1 4
d’ott
0 10
-1
Hi=I-D"'A=[ 1 0 1
0 10
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La méthode de Jacobi est convergente si et seulement si p(H;) < 1. Calculons donc les
valeurs propres de la matrice H;. On a :

det(Heag — M) = X — ~A =0

PHGS (/\) - 3

j:i\/i A =0,

et donc ]
p(Hj) = max|A| = Z\@ —=0.35355 < 1.

Alors la méthode de Jacobi converge.

— Méthode de Gauss-Seidel. La matrice de Gauss-Seidel est donnée par :

Hegs = (D — E)'F

ol
4 00 0 0 0 0 -1 0
D=1040 |, F= -1 0 0 JeteF=[0 0 -1
00 4 0 -1 0 0 0 O
alors
0 -1 0
Hes=(D-E)'F=(0 & -1
0 —5 1
car
4 00 0 0 O 400
D-FE=1040 |- -1 0 0]=1140
0 0 4 0 -1 0 01 4
¢
1 0 0 0 -1 0 0 -1 0
(D-E)'"F=| —-% 1 0 00 -1 )]={0 & -1
s w1/ \0 0 0 0 —5 1
La méthode de Gauss-Seidel est convergente si et seulement si p(Hgs) < 1. Pour cela

calculons le spectre de la matrice Hgg. On a :

1
Pros(\) = det(Hgs — M) = \* — gv =0

A

1
0, A=—.
’ 8

Ce qui implique que le rayon spectral p(Hgg) = % = 0.125 < 1. Alors la méthode de
Gauss-Seidel est convergente.
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— Il est claire que % = (‘/75)2, ce qui montre que p(Hgg) = p?(Hjy). Cette égalité montre que

la convergence de la méthode de Gauss-Seidel est plus rapide que celle de Jacobi.

— Méthode de Crout.
La foctorisation de LU existe et unique si les trois matrices principales A4;,7 = 1,2, 3, de
A sont inversibles, autrement dit si leurs mineurs principaux det A; # 0 pour tout i. On
a:
det A; = det(4) = 4,det Ay = 17, det A = 56.

— Calcul de trois premieres par la méthode de Gauss-Seidel. On a :

avec
0 —3 0 0 0 1 3
_ 1 1 _ -1 1 1 _ 3
HGS = 0 1_61 —171 , C= (D—E) b= _11_6 Zl (1) 1 = %
0 —51 16 81 "6 1 1 61

La méthode de Gauss-Seidel converge pour tout point initial z(°). Alors, on a :

I

xgkﬂ) 0 —}L 0 ffgk) i
xgk+1) _ 0 + -1 x;’f) +1 & |.k=0,1,2
o o ow /)
)
o SR ¥ U
Ig+) = E.ﬁl@)-a&@‘i‘a

Dans ce tableau, on résume le calcul de ces trois itérations par la méthode de Gauss-Seidel
en partant du point initiale 2(® = (0,0,0)7 :

k 0 1 2

25 0,25 0.20313 | 0.21289
101875 | 0.14844 | 0.14355
20 10.20313 [ 0.21289 | 0.21411

Alors d’apres le tableau, on déduit que :

M = (0.25,0.1875,0.20313)7, ¥ = (0.20313,0.14844,0.21289)",

et
2 = (0.21289,0.14355, 0.21411)7.
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Exercice 4.
Soit a résoudre le systeme linéaire Ax = b.

(a) Soit la matrice
1 3/4 3/4
A= 3/4 1 34
3/4 3/4 1

Montrer que la matrice A est définie positive et que la méthode de Jacobi apliquée a
ce systeme diverge.

(b) Prendre

1 2 =2
A=111 1
2 2 1

Montrer que la méthode de Jacobi apliquée a ce systeme converge mais celle de Gauss-
Seidel diverge.

(c) Prendre

2 —-11
A= 2 2 2
-1 -1 2

Montrer que la méthode de Jacobi apliquée a ce systeme diverge mais celle de Gauss-
Seidel converge.

Solution.

(a) Lamatrice A de (1), est symétrique car A = AT et aussi définie positive car les mineurs
principaux de A sont positifs puisque det A; = 1,det Ay = 1—76 et det A = 3%
La matrice itérative H; de Jacobi associée a A dans (1), est donnée par :

0 —3/4 —3/4
Hy=D ' E+F)=I-D"'"A=| —3/4 0 -3/4
—3/4 —3/4 0

On calcule le polynéme caractéristique det(H; — AI) en A. On a :

27

A
32

det(Hy — M) = X\ — ?—’;/\—F

& pour racine Ay = —32 et Ay = 2, donc p(H;) = max(|\1],[Xo])=3 = 1.5 > 1 et la

méthode de Jacobi diverge.

(b) Pour la matrice A de (2), la matrice de jacobi est donnée par :

H,

I

|
—_
@]

|
—_
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Avec un simple calcul, on obtient que det(H; — AI) = A* = 0. Alors A = 0, est une
racine triple de H; et donc p(H;) = 0 < 1. La méthode de Jacobi converge.
Soit maintenant la matrice itérative Hgg de Gauss-Seidel qui est définie par :

0 -2 2
Hos=(D-E)'F=|0 2 -3
0 0 2

I est aussi facile de calculer les valeurs propres de Hgs. On a : det(Hgs — \) =
—X(2 — M\)% = 0. Alors les valeurs propres de Hgg, sont Ay = 0 et A\, = 2 (racine
double). Donc p(Hgs) = 2 > 1 et la méthode de Gauss seidel diverge.

Meme travail pour la matrice A dans (3).
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Examen de rattrapage. 2018/2019

Exercice 1.
Le volume délimité par une sphere et un plan sécant correspond a une calotte sphérique

est donné par la formule :
h?
V= T(3R —h)
Si R = 20cm et h = 12cm. Quelle est I'incertitude nécessaire pour R et h pour que
le volume V soit calculé & 0.1cm? prés. On donne © = 3.14 comme valeur exacte.
Exercice 2.
On considere 1’équation :

flx)=2>-2—-4=0, (E)

1- Séparer dans un intervalle de la forme [k, k + 1] /k € Z, la plus petite racine positive
¢ de I'équation (E).
2- Soit la méthode de point fixe suivante :

xo € [k, k+ 1], xpr1 = d(xy),n=0,1,---,
ou
o(z) = (x—l—4)1/3.

Résoudre I'équation (E) par la méthode de point fixe avec la précision € = 0.01.
3- Est-il préférable d’utiliser la méthode de Dichotomie (bissection) ?

Exercice 3.

Soit le systeme linéiare Ax = b ou

A:

ISEERSINN
[SEEES)
— Q Q

et b= (1,a,a)’, a € R.
Une méthode itérative consiste a décomposer la matrice A comme suit :

A=M—-N

avec M inversible, puis approcher la solution du systeme Az = b, en utilisant I’algo-
rithme suivant :

MzFt = NzF +b.

1- En utilisant uniquement la structure de la matrice A, pour quelle valeur de a est-on
assuré que la méthode de Jacobi est convergente ?

2- En étudiant le spectre de M !N, déterminer toutes les valeurs de a pour lesquelles
la méthode de Jacobi est convergente. Que peut-on conclure ?

3- Déterminer toutes les valeurs de a lesquelles le systeme linéiare Ax = b admet une
solution unique, puis résoudre ce systeme par la méthode de Gauss pour a = 10.
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Solution.
Exercice 1.

Posons )
7h

V= f(hR) = (3R —h).

D’apres la formule générale de I'erreur, on a :

AV AV 0.1
AR = = = =1.1 x 10~ em.
. 2097 " 20h? T 2x 314 x (12)? X< 10 em
AV AV 0.1

Ah = = 4.7 x 10 %cm.

~21%) 7 2(2mhR —7wh?) 2 x3.14 x (12) x 28
Exercice 2.

Ona: f(x)=a%—2—4=0.

1- f est continue et dérivable sur tout R. De plus, lim,,, o f(z) = —00, limg 1o f(2) =
+oo d'ott (limgy— oo f(2))(limg 100 f(2)) = —00 < 0. Alors d’apres le TVI, I'équation
E admet un nombre impair de racines sur R, et il admet au moins une racine dans R.

On a:

fliz) = 322 -1=0

\/T\/ \/T
T = —4/=V x=+/-.
3 3

Alors le tableau de variations f est donné par :

T —00 —\/g \/g +00
— 0 — 0 +

signede f’

—4 +00

variations de f VA N a
e 438

Donc d’apres le tableau de variations, f(x) admet une seule racine positive £ € [0, +-00].
Comme f(1) = —4 et f(2) =2, alors £ € [1,2] car f(1)f(2) <0.

Calcul de & par la méthode de point fixe avec e = 0.001.

Prenons comme point initial zq = 1, alors

r1 = ¢(10) =5

On a I'expréssion de I'erreur théorique de la méthode est donnée par :

W=
I

1.709.

o |l‘0 — {L'1|Ln

A, =
1-L

Détermination de L7
Ona:Vz € [1,2], ¢"(z) < 0 ce qui implique que ¢'(z) es décroissante et parconséquent :

L = max|¢/(z)| = ¢'(1) = 0.114.
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Donc ¢/(z) est contractante. D’ou

|1 —1.709](0.114)"
N 1—0.114

On a: A; = 0.0912 > e. Calculons donc zy = ¢(x1) = 1.787 avec Ay = 0.0104 >
e. Calcul de x3. 3 = ¢(x9) = 1.72 avec Az = 0.001 < e. Finalement, une solution
approchée de E est donnée par :

Ap

& =23+ A3 =1.795+£0.001.

3- Le nombre d’itérations nécessaires par la méthode de Dichotomie est :

In 50
> —— =565
"= In2

d’ou n > 6. Alors pour voir une solution approchée de £ par cette méthod il faut au
poins 6 itérations. Donc il est préférable d'utiliser cette méthode.

Exercice 3.

1- On sait que la méthode de Jacobi est convergente si la matrice A est a diagonale
strictement dominante c’est & dire si 1 > 2|al. Alors A est a diagonale strictement
dominante si a € ]—%, %[ Alors la méthode de Jacobi est convegente si a € ]—%, % [
2- La méthode de Jacobi est convegente si et seumlement si p(H;) < 1. Calculons les

valeurs propres de H;. On a :
det(H; — M) = —(\ — a)*(A + 2a) = 0.

D’ou A\; = a et Ay = —2a, donc p(H;) = 2|al. Alors, la méthode de Jacobi est conver-

gente si et seulement si a € }—%, % [

3- A est inversible si et seulement si det A # 0. On a :
det A= (1—a)(1+a—2a*) = (1—a)?(l+2a).

Alors det A =0« a =1V a = —0.5 et parconséquent le systeme Az = b admet une
solution unique si: a € R — {-0.5, 1}.
Résolution du systeme Ax = b pour a = 10 par la méthode de Gauss :

1 10 10 1 L z 1 10 10 1
(Alb) = [ 10 1 10 0 Iy “(z—lz> 0 99 90 0
10 10 1 0 I3 2 0 90 99 0
1 10 10 1
“ 10 99 90 0 ]=(U]lb).
0 0 902—992 0
Le systeme Az = b, est équivalent donc & un systeme Uz = b :
1 10 10 T 1
(Ulb): [ 099 90 g | =10
0 0 90%—992 T3 0
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Alors la solution du systeme Az = b, est évidente :



