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Département de Mathématiques. Université Ferhat Abbas, Sétif1. Sétif 19000, Algérie. e-

mail : achache m@univ-setif.dz



2 Achache Mohamed



Table des matières

1 Erreurs. Auteur : M. ACHACHE 5
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Chapitre 1

Erreurs. Auteur : M. ACHACHE

1.1 Résumé du cours

Utilité de l’erreur. Evaluer les méthodes numériques utilisées pour résoudre différents problèmes

mathématiques en reconnaissant l’exactitude des résultats.

Source de l’erreur. Les sources de l’erreur sont les opérations arithmétiques (arrondissement des

nombres et les erreurs de données) ainsi que des méthodes théoriques qui remplacent les relations

mathématiques par une autre simple (par exemple la formule de Taylor).

1.1.1 Erreurs absolues et relatives

Définition 1. Soit a une valeur approchée d’un nombre A (généralement inconnu). Alors, l’erreur

absolue en a est définie par :

∆a = |A− a| .

Tout nombre ∆ > 0, qui vérifie :

∆a ≤∆

s’appelle un majorant de l’erreur absolue ∆a et on écrit :

A ' a±∆.

Définition 2. L’erreur relative de a ? est définie par :

δa =
|A− a|
|A|

=
∆a

|A|
.

Si δ > 0, est tel que :

δa≤ δ,

alors δ s’appelle un majorant de δa et on prend comme majorant de l’erreur relative exacte, la

valeur :

δ ' ∆

|a|
.
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Les chiffres significatifs et exacts d’un nombre a.

Chaque nombre a > 0, admet une écriture décimale de la forme :

a = αm10m + αm−110m−1 + . . .+ αm−n+110m−n+1 + . . .

tels que :

αm 6= 0, αi ∈ {0, 1, . . . , 9} .

Définition 3. Les chiffres significatifs d’un nombre a > 0, sont tous ces chiffres qui sont différents

de zéro et aussi le zéro s’il se trouve entre deux chiffres significatifs ou bien s’il présente un chiffre

conservé.

1.1.2 Erreur absolue et chiffres exacts.

Les chiffres exacts d’un nombre a > 0.

Définition 4. Si l’inégalité suivante :

∆a ≤
1

2
10m−n+1

est vérifiée, alors les n chiffres significatifs premiers s’appelle les chiffres exacts de a.

1.1.3 Erreur relative et chiffres exacts.

Définition 5. Le nombre a possède n chiffres exacts ⇒

δa ≤
1

αm
101−n.

1.1.4 Arrondissement d’un nombre a

Règle d’arrondissement. Pour arrondir un nombre a jusqu’à n chiffres significatifs, il faut

éliminer les chiffres à droite du nème chiffre significatif conservé.

• Si le (n+ 1)ème chiffre significatif est > 5, on augmente le nème chiffre de 1.

• Si le (n+ 1)ème chiffre significatif est < 5, les chiffres retenus restent inchangés.

• Si le (n+ 1)ème chiffre significatif est 5, alors deux cas sont possibles :

a) Tous les chiffres rejetés, situés après le (n+1)ème chiffre significatif, sont des zéros. On applique

la règle du chiffre pair c’est à dire : le nème chiffre significatif reste inchangé s’il est pair sinon on

lui ajoute 1 s’il est impair.

b) Parmi les chiffres rejetés, situés après le (n+ 1)ème chiffre significatif, il existe au moins un qui

soit non nul : on ajoute 1 au nème chiffre significatif.
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1.1.5 Loi générale de l’erreur

Soit

y = f(x1, x2, . . . , xn)

telle que f est une fonction différentiable aux points xi. La formule suivante :

∆y =

∣∣∣∣ ∂f∂x1

∣∣∣∣∆x1 +

∣∣∣∣ ∂f∂x2

∣∣∣∣∆x2 + . . .+

∣∣∣∣ ∂f∂xn
∣∣∣∣∆xn,

où
∂f

∂xi
(x1, x2, . . . , xn), i = 1, 2, . . . , n,

sont les dérivées partielles de f en xi, i = 1, 2, . . . , n, s’appelle la loi générale de l’erreur.

Problème directe. Si les erreurs ∆xi sont connues et ∆y est inconnue. Dans ce cas on rem-

place les ∆xi par leurs valeurs dans la formule de la loi générale, et on détermine ∆y .

Problème inverse. L’erreur ∆y est connue et on veut déterminer les erreurs ∆xi, i = 1, 2, . . . , n.

Dans ce cas, on applique le principe d’égalité d’effet qui est mathématiquement équivalent à

l’égalité des quantités ∣∣∣∣ ∂f∂x1

∣∣∣∣∆x1 =

∣∣∣∣ ∂f∂x2

∣∣∣∣∆x2 = · · · =
∣∣∣∣ ∂f∂xn

∣∣∣∣∆xn.

D’où, on obtient :

∆xi =
∆y

n
∣∣∣ ∂f∂xi ∣∣∣ , i = 1, 2, . . . , n.
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1.2 Exercices résolus

Exercice 1.

• Quel est le nombre nécessaire de chiffres exacts pour que l’erreur relative commise dans le calcul

de x =
√

28 ne dépasse pas l’erreur relative 1%.

• Même question pour les nombres x =
√

31 et x =
√

33 avec l’erreur relative ne dépasse pas

0.1%.

Solution.

• On a :

x =
√

28 ' 5.291502622 = 5× 100 + 2× 10−1 + · · ·

donc

αm = 5, m = 0,

et

δx ≤
1

αm
101−n =

1

5
101−n.

Soit n le nombre exact dans x, alors d’après la question

δx ≤
1

5
101−n ≤ 1% = 0.01.

Ceci est équivalent à déterminer n tel que :

101−n ≤ 0.05.

L’inégalité 101−n ≤ 0.05, est vérifiée si et seulement si n ≥ 3. Donc, il faut prendre au moins 3

chiffres exacts dans le nombre x et dans ce cas l’erreur absolue est donnée par :

∆x ≤
1

2
10m−n+1 =

1

2
100−3+1 =

1

2
10−2 = 0.005

et par conséquent, on peut prendre comme valeur approchée de
√

28 toutes les valeurs suivantes :

√
28 ' 5.29± 0.005.

Remarque. On peut aussi déduire n de la manière suivante :

ln(101−n) ≤ ln(0.05) (ln désigne le logarithme népérien)

m
(1− n) ln 10 ≤ ln(0.05)

m
(1− n)2.3 ≤ −2.995

m
n ≥ 2.3

m
n ≥ 3.
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• Pour x =
√

31, on a :

x =
√

31 ' 5.5677643628 = 5× 100 + 5× 10−1 + · · ·

donc

αm = 5, m = 0,

et

δx ≤
1

αm
101−n =

1

5
101−n.

Soit n le nombre de chiffres exacts dans x, alors d’après la question

δx ≤
1

5
101−n ≤ 0.1% = 0.001.

Ceci est équivalent à déterminer n tel que :

101−n ≤ 0.005.

L’inégalité 101−n ≤ 0.005, est vérifiée si et seulement si n ≥ 4. Donc, il faut prendre au moins 4

chiffres exacts dans le nombre x et dans ce cas l’erreur absolue est donnée par :

∆x ≤
1

2
10m−n+1 =

1

2
100−4+1 =

1

2
10−3 = 0.0005

et par conséquent, on peut prendre comme valeur approchée de
√

31 toutes les valeurs suivantes :
√

31 ' 5.567± 0.0005.

Pour x =
√

33, on a :

x =
√

33 ' 5.7446 = 5× 100 + 7× 10−1 + · · ·

donc

αm = 5, m = 0,

et

δx ≤
1

αm
101−n =

1

5
101−n.

Soit n le nombre de chiffres exacts dans x, alors d’après la question

δx ≤
1

5
101−n ≤ 0.1% = 0.001.

Ceci est équivalent à déterminer n tel que :

101−n ≤ 0.005.

L’inégalité 101−n ≤ 0.005, est vérifiée si et seulement si n ≥ 4. Donc, il faut prendre au moins 4

chiffres exacts dans le nombre x et dans ce cas l’erreur absolue est donnée par :

∆x ≤
1

2
10m−n+1 =

1

2
100−4+1 =

1

2
10−3 = 0.0005
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et par conséquent, on peut prendre comme valeur approchée de
√

33 toutes les valeurs suivantes :
√

33 ' 5.7446± 0.0005.

Exercice 2.

a. Notons par ∆a, l’erreur absolue d’un nombre a. Montrer que si :

a =
n∑
i=1

ai

alors,

∆a ≤
n∑
i=1

∆ai
.

b. Notons par δa l’erreur relative d’un nombre a. Montrer que si :

a =
n∏
i=1

ai, ai > 0

alors

δa ≤
n∑
i=1

δai .

c. Soient les nombres suivants :

a1 = 3.124, a2 = 2.01, a3 = 38.1.

Supposons que tous les chiffres de ai, i = 1, 2, 3 sont exacts, alors combien de chiffres exacts possède

le nombre

a = a1 + a2 + a3.

d. Soient b1 = 3.024 et b2 = 38.01. Supposons que tous les chiffres sont exacts, alors combien de

chiffres exacts possède le nombre b = b1b2.

Solution.

a. Soit a =
n∑
i=1

ai la valeur approchée de la valeur exacte A =
n∑
i=1

Ai telle que ai, est la valeur

approchée de Ai, i = 1, 2, . . . , n. Notons par :

∆a = |A− a| ,

l’erreur absolue commise en a et par :

∆ai = |Ai − ai| , i = 1, 2, . . . , n

l’erreur absolue commise dans chaque ai. Alors, on a :

∆a = |A− a| =

∣∣∣∣∣
n∑
i=1

Ai −
n∑
i=1

ai

∣∣∣∣∣
= |A1 + A2 + . . .+ An − (a1 + a2 + . . .+ an)|
= |A1 − a1 + A2 − a2 + . . .+ An − an|

≤ |A1 − a1|+ |A2 − a2|+ . . .+ |An − an| =
n∑
i=1

∆ai .
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Ce qui implique que :

∆a ≤
n∑
i=1

∆ai .

b. On a :

a =
n∏
i=1

ai = a1a2 . . . an.

Alors

ln a = ln
n∏
i=1

ai =
n∑
i=1

ln ai.

On dérive, on obtient :

∂a

a
=

n∑
i=1

∂ai
ai
.

En tenant compte que :
∂a

a
' ∆a

a
et
∂ai
ai
' ∆ai

ai

il découle que :

∆a

a
=

n∑
i=1

∆ai
ai

⇓∣∣∣∣∆aa
∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

∆ai
ai

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∆aiai

∣∣∣∣ =
n∑
i=1

|∆ai|
|ai|

⇓

δa ≤
n∑
i=1

δai .

c. Soit

a = a1 + a2 + a3

tels que :

a1 = 3.124, a2 = 2.01, a3 = 38.1.

La question est de calculer le nombre des chiffres exacts n dans a > 0, sachant que tous les chiffres

de ai sont exacts. Pour calculer n, on doit calculer l’erreur absolue dans a. On a :

∆a = ∆a1 + ∆a2 + ∆a3 .
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Calculons maintenant les erreurs absolues ∆ai dans chaque nombre ai. On a :

a1 = 3.124 = 3.100 + 1.10−1 + 2. 10−2 + 4.10−3

⇓
m = 0 etn = 4.

a2 = 2.01 = 2.100 + 0. 10−1 + 1. 10−2

⇓
m = 0 etn = 3.

a3 = 38.1 = 3.101 + 8.100 + 1.10−1

⇓
m = 1 etn = 3.

Alors

∆a1 =
1

2
10m−n+1 =

1

2
10−4+1 =

1

2
10−3 = 0.0005

∆a2 =
1

2
10m−n+1 =

1

2
10−3+1 =

1

2
10−2 = 0.005

∆a3 =
1

2
10m−n+1 =

1

2
101−3+1 =

1

2
10−1 = 0.05.

d’où

∆a = ∆a1 + ∆a2 + ∆a3 = 0.0005 + 0.005 + 0.05 = 0.0555.

Donc n est un nombre exact dans a si :

∆a ≤
1

2
10m−n+1.

On a :

a = 3.124 + 2.01 + 38.1 = 43.234.

⇓
m = 1.

Alors, on cherche n qui vérifie l’inégalité suivante :

0.0555 ≤ 1

2
102−n.

m
n ≤ 2.

Alors a admet au plus 2 chiffres exacts. Vérifions que le chiffre dans l’ordre 2 est exact. En effet,

pour n = 2, le chiffre 3 dans le nombre 43.234 est exact car 0.0555 < 0.5. Alors a admet exactement

deux chiffres exacts. Donc on peut prendre :

a = 43± 0.0555.
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d.. La question est de calculer le nombre des chiffres exacts n dans b, sachant que tous les chiffres

de bi, i = 1, 2 sont exacts. Pour calculer n, on doit calculer l’erreur relative dans b. En utilisant le

résultat dans (b), on déduit qu’une borne supèrieure de δb, est donnée par :

δb ≤ δb1 + δb2 .

Calculons donc δb1 et δb2 . On a :

a1 = 3.024 = 3.100 + 0.10−1 + 2.10−2 + 4.10−3

⇓
m = 0 etn = 4.

b2 = 38.01 = 3.101 + 8.101 + 0.10−1 + 1.10−2

⇓
m = 1 etn = 4.

En utilisant la définition de l’erreur absolue, on a :

δb1 =
∆b1

b1

, et δb2 =
∆b2

b2

avec

∆b1 =
1

2
10m−n+1 =

1

2
10−4+1 =

1

2
10−3 = 0.0005

et

∆b2 =
1

2
10m−n+1 =

1

2
101−4+1 =

1

2
10−3 = 0.005.

Par conséquent :

δb1 =
0.0005

3.024
= 1.6534.10−4

et

δb2 =
0.005

38.01
= 1.3154.10−4

On prend :

δb = 2.9688.10−4.

Alors b admet n nombres exacts si :

δb ≤
1

αm
101−n.

b = 114.94, alors αm = 1 et donc on cherche n qui vérifie l’ingalité suivante :

2.9688.10−4 ≤ 101−n

Il découle que n ≤ 3 et donc b admet au plus 3 chiffres exacts. Pour s’assurer, on calcule son erreur

absolue. En effet, on a :

∆b = bδb = 114.94× 2.9688.10−4 = 3.4123× 10−3.
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Comme

∆b = 3.4123× 10−3 <
1

2
10−2 ≤ 1

2
102−n+1(m = 2),

alors b admet exactement 3 chiffres exacts.

Remarque. On peut consulter l’exercice 8, la question 3, pour déduire autrement ce résultat.

Exercice 3. Arrondir les nombres suivants à n=4 chiffres exacts et déterminer l’erreur absolue à

chaque fois .

x1 = 32.3462, x2 = 12.12143, x3 = 173.7500, x4 = 173.0500,

x5 = 972.2534, x6 = 0.012051, x7 = 0.00123650.

Solution. On a :

x1 = 32.3462 ' 32.35± 0.004

x2 = 12.12143 ' 12.12± 0.001

x3 = 173.7500 ' 173.8± 0.05

x4 = 173.0500 ' 173.0± 0.05 ou bien 173.1± 0.05

x5 = 972.2534 ' 972.3± 0.05

x6 = 0.012051 ' 0.01205± 0.000001

x7 = 0.00123650 ' 0.01236± 0.0000005

Exercice 4. Soit R = 2 cm, le rayon de la base d’un cylindre et h = 2 cm son hauteur. Quelles

sont les erreurs absolues ∆R et ∆h dans R et h pour que le volume

V = πhR2

soit calculé d’une erreur absolue ∆V = 0.1 cm3 ? On donne π = 3.14 comme valeur exacte.

Solution. D’après la loi générale de l’erreur, on a :

∆V =

∣∣∣∣∂V∂R
∣∣∣∣∆R +

∣∣∣∣∂V∂h
∣∣∣∣∆h

où les dérivées partielles de V en R et h, sont données par :

∂V

∂R
= 2πRh,

∂V

∂h
= πR2.

Par le principe d’égalité d’effet, on déduit que :

∆R =
∆V

2
∣∣∂V
∂R

∣∣ =
∆V

4πRh
=

0.1

4× 3.14× 2× 2

⇓

∆R =
0.1

50.24
' 0.0002.

De même pour ∆h,

∆h =
∆V

2
∣∣∂V
∂h

∣∣ =
∆V

2πR2
=

0.1

2× 3.14× 4
=' 0.0004.
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Exercice 5. La période d’un pendule de longueur l est donnée par :

T = 2π

√
l

g
.

Déterminer l’erreur relative δl, sachant que l’erreur relative δT = 0.5%.

Solution. D’après la loi générale de l’erreur, on a :

∆T =

∣∣∣∣∂T∂π
∣∣∣∣∆π +

∣∣∣∣∂T∂l
∣∣∣∣∆l +

∣∣∣∣∂T∂g
∣∣∣∣∆g,

où les dérivées partielles en π, l et g sont données par :

∂T

∂π
= 2

√
l

g
,

∂T

∂l
=

π√
l g
,
∂T

∂g
= −π

√
l

g3
.

Par le principe d’égalité d’effet, on déduit que :

∆T = 3

∣∣∣∣∂T∂l
∣∣∣∣∆l,

d’où

δT =
∆T

T
=

3
∣∣∂T
∂l

∣∣∆l
T

.

En remplaçant T et
∣∣∂T
∂l

∣∣ par leurs valeurs, on obtient :

δT =
3

2
δl

et par conséquent :

δl =
2

3
δT = 0.3%.

Exercice 6. Soit

U = 6x2(lnx− sin 2y)

avec

x = 15.2, y = 22.73◦.

Supposons que tous les chiffres dans x et y sont exacts, alors combien de chiffres exacts possède

le nombre U.

Solution. Calculons U pour les valeurs x = 15.2, y = 22.73, alors on obtient :

U = 6(15.2)2(ln 15.2− sin 45.46) = 2784.310837.

Calculons ∆U (erreur absolue de U.) Posons :

U = f(x, y) = 6x2(lnx− sin 2y).
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Appliquons la loi générale de l’erreur, on a :

∆U =

∣∣∣∣δfδx
∣∣∣∣∆x+

∣∣∣∣δfδy
∣∣∣∣∆y.

Calculons les dérivées partielles, δf
δx

et δf
δy
. On a :

δf

δx
(x, y) = 12x lnx+ 6x− 12x sin 2y

δf

δy
(x, y) = −12x2 cos 2y.

Comme tous les chiffres dans x = 15.2 (m = 1,n = 3), y = 22.73 (m = 1,n = 4), sont exacts,

alors les erreurs absolues dans x et y sont :

∆x =
1

2
10m−n+1 =

1

2
101−3+1 = 0.05,

∆y =
1

2
10m−n+1 =

1

2
101−4+1 = 0.005.

De plus, on a :

δf

δx
(15.2, 22.73) = 12(15.2) ln(15.2) + 6(15.2)− 12(15.2) sin 2(22.73) = 457.5566891.

δf

δy
(15.2, 22.73) = −12(15.2)2 cos 2(22.73) = −1944.63698⇒

∣∣∣∣δfδy (15.2, 22.73)

∣∣∣∣ = 1944.63698.

Alors

∆U =

∣∣∣∣δfδx
∣∣∣∣∆x+

∣∣∣∣δfδy
∣∣∣∣∆y = 457.5566891× 0.05 + 1944.63698× 0.005 = 32. 601.

Donc U possède n chiffres exacts si :

∆U ≤ 1

2
10m−n+1.

On a :

∆U = 32. 601 < 50 =
1

2
102 =

1

2
104−n

⇓
n = 2.

Donc U possède 2 chiffres exacts.

Exercice 7. Soient x = 2.5± 0.01, y = 1.2± 0.02, z = 3.2± 0.03, t = 5.1± 0.01.

1- Calculer U = x2 + y2 + z2 + t2.

2- Déterminer le nombre de chiffres exacts dans U.

Solution. Calcul de U . On a :

U = x2 + y2 + z2 + t2 = (2.5)2 + (1.2)2 + (3.2)2 + (5.1)2 = 43.94.
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Calculons maintenant l’erreur absolue ∆U. D’après la loi générale de l’erreur, on a :

∆U =

∣∣∣∣δUδx
∣∣∣∣∆x+

∣∣∣∣δUδy
∣∣∣∣∆y +

∣∣∣∣δUδz
∣∣∣∣∆z +

∣∣∣∣δUδt
∣∣∣∣∆t

avec
δU

δx
= 2x,

δU

δy
= 2y,

δU

δz
= 2z,

δU

δt
= 2t.

D’où

∆U = 2x∆x+ 2y∆y + 2z∆z + 2t∆t

= 5× 0.01 + 1.4× 0.02 + 6.4× 0.03 + 10.2× 0.01

⇓
∆U = 0.372.

Alors n, est chiffre exact dans U si et seulement si :

∆U = 0.372 ≤ 1

2
101−n+1

m
0.744 ≤ 102−n

⇓
n ≤ 2.

Par conséquent, U possède au plus 2 chiffres exacts. Testons maintenant si le chiffre 3 est exact.

En effet, le chiffre 3 est exact car

∆U = 0.372 ≤ 1

2
102−2 = 0.5.

Par conséquent U admet 2 chiffres exacts.

Exercice 8. Donner les résultats finaux dans les cas suivants :

S = 30124 + 2.0 + 38.1

D = 29.72− 11.25

P = 93.87× 9.236

R = 12.114÷ 43.1673

E = ln(10.3 +
√

4.4) avec
√

4.4 = 2.0976

sachant que tous les chiffres dans ces nombres sont exacts.

Solution.

1- On a :

S = x1 + x2 + x3 = 3.124 + 2.0 + 38.1

x1 = 3.124± 0.0005

x2 = 2.0± 0.05

x3 = 38.1± 0.05



18 CHAPITRE 1. ERREURS. AUTEUR : M. ACHACHE

ce qui implique que :

S = 43.22 et ∆S = ∆x1 + ∆x2 + ∆x3 = 0.1005 ' 0.1

⇓

∆S ≤ 0.5 =
1

2
10−1 =

1

2
102−n

⇓
n = 3.

Alors S admet 3 chiffres exacts et donc le résultat final est :

S = 43.2± 0.1.

2- Pour D, on a :

D = x1 − x2 = 29.72− 11.25 = 18.47.

x1 = 29.72± 0.005, x2 = 11.25± 0.005

∆D = ∆x1 + ∆x2 = 0.005 + 0.005 = 0.01.

⇓

∆D ≤ 0.05 =
1

2
10−1 =

1

2
101−n+1 =

1

2
102−n

⇓
n = 3.

Alors D admet 3 chiffres exacts et donc le résultat final est :

D = 18.5± 0.01.

3- Pour P , on a :

P = x1 × x2 = 93.87× 9.236

x1 = 93.87± 0.005, x2 = 9.236± 0.0005

D’où

P = 866.98332

et

∆P = |x2|∆x1 + |x1|∆x2 = 9.236× 0.005 + 93.87× 0.0005

= 9. 311 5× 10−2

⇓
∆P = 0.093115.

On a :

∆P ≤ 0.5 =
1

2
100 =

1

2
102−n+1 =

1

2
103−n
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alors le nombre P admet 3 chiffres exacts et par conséquent :

P ' 866± 0.093.

4- Pour R, on a :

R = f(x1, x2) =
x1

x2

=
12.114

43.1673
= 0.28063

et

∆x1 =
1

2
101−5+1 =

1

2
10−3 = 0.0005

⇓
x1 = 12.114± 0.0005

∆x2 =
1

2
101−6+1 =

1

2
10−4 = 0.00005

⇓
x2 = 43.1673± 0.000005.

En appliquant la loi générale de l’erreur, on obtient :

∆R =

∣∣∣∣ δfδx1

∣∣∣∣∆x1 +

∣∣∣∣ δfδx2

∣∣∣∣∆x2

=
∆x1

x2

+
x1∆x2

x2
2

=
0.0005

12.114
+

0.000005

43.1673
⇓

∆R = 0.000004139.

Alors

∆R ≤ 0.000005 =
1

2
10−4 =

1

2
10−1−n+1 =

1

2
10−n

⇓
n = 4.

Donc R possède 4 chiffres exacts et le résultat final est :

R = 0.2806± 0.000004.

Pour E, on a :

E = ln(10.3 +
√

4.4) = 2.5175 ⇒ m = 0.

Calculons ∆E. Posons

E = ln(a+
√
b).

Appliquons la loi générale de l’erreur à E, on obtient :

∆E =

∣∣∣∣δEδa
∣∣∣∣∆a+

∣∣∣∣δEδb
∣∣∣∣∆b
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avec
δE

δa
=

1

a+
√
b
,
δE

δb
=

1

2
√
b(a+

√
b)
.

Alors

∆E =
1

a+
√
b
∆a+

1

2
√
b(a+

√
b)

∆b =
∆a

12.398
+

∆b

52.011
.

Calculons ∆a et ∆b sachant que tous les chiffres dans a et b sont exacts. On a :

∆a =
1

2
10−1 = 0.05

et

∆b =
1

2
10−1 = 0.05,

donc

∆E =
0.05

12.398
+

0.05

52.011
= 0.00499 ≤ 0.005.

Par conséquent, E admet 4 chiffres exacts car :

∆E ≤ 0.005 =
1

2
10−3 =

1

2
101−4.

Le résultat final dans E est donc :

E = 2.518 ± 0.005.

—————————————————————————————————————————-



Chapitre 2

Résolution numérique d’équations non

linéaires

2.1 Résumé du cours

Utilité de résoudre numériquement l’équation non linéaire f(x) = 0. La non capapilité de

trouver facilement une solution exacte de l’équation non linéaire f(x) = 0 c’est à dire difficile de

calculer ces racines exactement.

Source de ces équations. Ces équations apparaissent dans beaucoup de problèmes mathématiques

et pratiques.

Le but de ce chapitre est d’étudier quelques méthodes numériques pour trouver les zéros (racines)

de f(x) = 0. On se contente uniquement sur quatres méthodes de résolution à savoir : la méthode

de bissection (Dichotomie), de Lagrange, de Newton et de point fixe.

Pour traiter ce problème on a besoin de quelques notions fondamentales de l’analyse.

2.1.1 Rappel de quelques notions de l’analyse

Définition 6. Soit f une fonction définie sur un intervalle [a, b] (a < b) de R et à valeurs dans

R. Le réel ξ est dit racine (zéro) de f(x) si f(ξ) = 0.

Définition 7. Soit m un entier et f une fonction m dérivable.

1. On dit que ξ est une racine d’ordre m si :

f(ξ) = f ′(ξ) = . . . = f (m−1)(ξ) = 0, f (m)(ξ) 6= 0.

2. Si m = 1, alors ξ est dite racine simple.

3. Si m = 2, alors ξ est dite racine double.

Remarque 1. En générale si ξ est une racine de multiplicité m alors f(x) = (x− ξ)mh(x) avec

h(ξ) 6= 0.

Définition 8. Un point ξ est dit point fixe d’une fonction ϕ si :

ϕ(ξ) = ξ.

21
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Théorème 1 (des valeurs intermèdiares). Soit f une fonction définie et continue sur un intervalle

[a, b] et vérifiant f(a)f(b) < 0, alors il existe un réel ξ ∈ [a, b] tel que f(ξ) = 0. Si de plus f est

strictement monotone alors ξ est unique.

Remarque 2. Si f est dérivable et que f ′(x) 6= 0 sur ]a, b[, alors f est strictement monotone.

Théorème 2 (des accroissements finis). Soit f une fonction définie sur un intervalle [a, b] de R et

à valeurs dans R. Si f est continue sur [a, b] et dérivable sur ]a, b[ , alors il existe un réel c ∈ ]a, b[ ,

tel que :

f(b)− f(a) = (b− a)f ′(c).

Définition 9 ( fonction contractante). Soit f une fonction continue sur [a, b]. f est dite contrac-

tante sur [a, b], s’il existe un réel q ∈ ]0, 1[ , tel que pour tous x, y dans [a, b] ,

|f(x)− f(y)| ≤ q |x− y| .

Lemme 1. Soit f une fonction continûment dérivable sur [a, b]. S’il existe un réel q ∈ ]0, 1[ ,

tel que |f ′(x)| ≤ q, ∀x ∈ [a, b]. Alors f est contractante. On peut prendre comme valeur de q, la

valeur :

q = max
[a,b]
|f ′(x)| .

Définition 10. Soit (xn) une suite admet le réel ξ comme limite. L’erreur absolue à l’itération n

est donnée par :

∆n = |xn − ξ| .

Définition 11. On dit que la convergence de la suite (xn) vers ξ est d’ordre p si :

∆n+1

∆p
n

= c, c > 0, p > 0.

Si p = 1, avec c < 1, la convergence de (xn) vers ξ est dite linéaire.

Si p = 2, alors la convergence est dite quadratique.

Si 1 < p < 2, la convergence est dite superlinéaire.

Définition 12. On dit que le terme xk de la suite (xn) est une valeur approchée de la valeur

exacte ξ avec une précision ε si :

∆xk = |xk − ξ| ≤ ε.

2.1.2 Recherche des racines

La recherche d’une racine approchée de l’équation f(x) = 0 se déroule en deux étapes :

1. La séparation de la racine ξ, c’est à dire localiser ξ dans un intervalle [a, b] telle que soit la

seule racine de cette équation dans [a, b].

2. Calcul de cette racine avec une méthode numérique et avec une précision demandée ε.
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2.1.3 Séparation des racines

Il n’existe pas une méthode générale pour séparer les racines de f(x) = 0. Mais on peut distinguer

deux méthodes pour les séparer sur le domaine de définition de la fonction f(x) à savoir les

méthodes analytiques et les méthodes graphiques.

Méthodes analytiques

Cette méthode est basée sur l’application du théorème des valeurs intermédiares (T.V.I), qui

assure au moins l’existence d’une racine dans l’intervalle [a, b]. Si de plus f est strictement mo-

notone, alors l’équation f(x) = 0 admet une seule racine isolée dans l’intervalle [a, b]. De plus on

prend en considération les remarques suivantes :

– Les racines de la dérivée f ′(x) devisent le domaine de définition de f en des intervalles dont

chacun contient au plus une racine unique.

– Si f ′(x) existe et s’il est possible de calculer ces racines facilement, donc la séparation des

racines f doit être ordonnée, tout en prenant les bornes de [a, b] et puis les racines de f ′(x).

Méthodes graphiques

Dans cette méthode soit on trace le graphe de la fonction f toute entier, tout en étudiant ses

variations et puis on cherche son intersection avec l’axe Ox. Soit on décompose f en deux fonctions

f1 et f2 telles que f(x) = f1(x) − f2(x), et on cherche les points d’intersection des graphes f1 et

f2, dont les abscisses sont exactement les racines de l’équation f(x) = 0.

Remarque 3. On cherche toujours à décomposer la fonction f en deux fonctions de façons que

leurs courbes soient faciles à tracer ou bien sont connues.

2.2 Méthodes Numériques

2.2.1 Méthode de Dichotomie

Soit f une fonction continue et strictement monotone sur l’intervalle [a, b], et de plus f(a)f(b) < 0.

Alors d’après le T.V.I, l’équation f(x) = 0 admet une seule racine ξ dans [a, b].

Le principe de la méthode de Dichotomie (bissection) est d’approcher la racine ξ par encadrement,

en réduisant à chaque étape la longueur de moitié selon la procédure (algorithme) suivante :

Soit ξ la seule racine de f(x) = 0 dans l’intervalle [a, b].

Etape 1 : on pose a0 = a et b0 = b et x0 = a0+b0
2

et puis on teste si x0 = ξ, on s’arrète.

Sinon.

Si f(a0)f(x0) < 0, alors ξ ∈ [a0, x0], on pose alors a1 = a0 et b1 = x0 sinon

Si f(a0)f(x0) > 0, alors ξ ∈ [x0, b0], on pose alors a1 = x0 et b1 = b0.

Etape 2 :

On répète la procédure du Pas 1 pour l’intervalle [a1, b1] c’est à dire on fait le même travail sur

le nouveau intervalle [a1, b1] avec x1 = a1+b1
2

.
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Remarquons que :

|a1 − b1| =
|a0 − b0|

2
.

Etape (n+1) :

Après un (n+ 1) pas de procédé, on trouve ou bien la solution ξ = xn+1, sinon on trouve une suite

des intervalles emboités

[an+1, bn+1] ⊆ . . . ⊆ [a0, b0]

tels que f(an+1)f(bn+1) < 0, ∀n, et de plus :

|an+1 − bn+1| =
|a0 − b0|

2n+1
.

Par conséquent, la suite (xn) obtenue par l’algorithme de dichotomie est donnée par :

xn =
an + bn

2
, n = 0, 1, . . . ,

converge vers la racine ξ avec une erreur :

∆n = |xn − ξ| =
|b− a|
2n+1

.

Remarque 4. Si ε est une précision donnée, alors on peut estimer à l’avance le nombre d’itérations

n produit par l’algorithme de dichotomie comme suit :

si
|b− a|
2n+1

≤ ε

alors

n ≥ ln(b− a)− ln ε

ln 2
− 1.

ou bien, on prend

n = E
(

ln(b− a)− ln ε

ln 2

)
+ 1

avec E désigne la partie entière de l’expression considérée.

Code Scilab

%Etude de la fonction :

%f(x) = x3 + 4x2 − 10, dans [1, 2]

a = input(”donner la valeur de a”);

b = input(”donner la valeur de b”);

function [y] = f(x)

y = x3 + 4 ∗ x2 − 10 ;

endfunction

x = (a+ b)/2 ;

eps = 10ˆ − 4 ;
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k = 0 ;

tic ;

While abs(b− a) > eps

if f(a) ∗ f(x) < 0

b = x ;

else

a = x ;

end

x = (a+ b)/2 ;

k = k + 1 ;

end

t=toc ;

disp(”x = ”) ;

disp(x) ;

2.2.2 Méthode de Lagrange

Soit f une fonction continue et au moins deux fois dérivables sur l’intervalle [a, b]. Supposons que :

1. f(a)f(b) < 0.

2. f ′(x) 6= 0 sur [a, b] et f ′′(x) 6= 0 garde le même signe sur cet intervalle.

Alors l’algorithme de Lagrange pour calculer une valeur approchée de la racine ξ est donné par :{
x0 = a si f(a)f ′′(a) < 0

xn+1 = xn − f(xn)
f(b)−f(xn)

(b− xn), n = 0, 1, ...

ou bien par {
x0 = b si f(a)f ′′(a) > 0

xn+1 = xn − f(xn)
f(xn)−f(a)

(xn − a), n = 0, 1, ...

Suivant les hypothèses (1) et (2), la suite (xn) produite par l’algorithme de Lagrange dans les

deux alternatives converge vers la seule racine ξ dans [a, b]. De plus l’erreur absolue commise dans

chaque itération xn est donnée par :

∆n = |xn − ξ| =
M1 −m1

2m1

|xn − xn−1|

avec

M1 = max
x∈[a,b]

|f ′(x)| , m1 = min
x∈[a,b]

|f ′(x)| .

Code Scilab

%Etude de la fonction :

%f(x) = x3 + 4x2 − 10, dans [1, 2]

eps = 10ˆ− 4 ;

function [y] = f(x)
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y = x3 + 4 ∗ x2 − 10 ;

endfunction

function [y] = df(x)

y = 3 ∗ x2 + 8 ∗ x ;

endfunction

if f(a) ∗ df(a) < 0

x = a ;

else

x = b ;

end

k = 0 ;

err = norm(f(x)) ;

tic ;

while (err > eps)

if x == a

x = x− f(x) ∗ ((b− x)/(f(b)− f(x))) ;

else

x = x− f(x) ∗ ((x− a)/(f(x)− f(a))) ;

end

err = norm(f(x)) ;

k = k + 1 ;

end

t=toc ;

disp(”x = ”) ;

disp(x) ;

2.2.3 Méthode de Newton

Soit f une fonction continue et au moins deux fois dérivables sur l’intervalle [a, b]. Supposons que :

1. f(a)f(b) < 0.

2. f ′(x) 6= 0 sur [a, b] et f ′′(x) 6= 0 garde le même signe sur cet intervalle.

Alors la procédure de la méthode de Newton pour approcher la racine ξ est donnée par :{
x0 ∈ [a, b] tel que f(x0)f ′′(x0) > 0

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, · · ·

Si les conditions (1) et (2) sont satisfaites alors la suite générée par l’algorithme de Newton est

convergente et dans ce cas l’erreur commise est donnée par :

∆n = |xn − ξ| =
M

2m1

(xn − xn−1)2

avec

M = max
x∈[a,b]

|f ′′(x)| , m1 = min
x∈[a,b]

|f ′(x)| .
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Code Scilab

%Etude de la fonction :

%f(x) = x3 + 4x2 − 10, dans [1, 2]

function [y] = f(x)

y = x3 + 4 ∗ x2 − 10 ;

endfunction

function [y] = df(x)

y = 3 ∗ x2 + 8 ∗ x ;

endfunction

eps = 10ˆ − 4 ;

x = 1 ;

err = norm(f(x)) ;

nb = 0 ;

tic ;

while (err > eps)

nb = nb+ 1 ;

x = x− (f(x)/df(x)) ;

err = norm(f(x)) ;

end

t=toc ;

disp(”x = ”) ;

disp(x) ;

2.2.4 Méthode de point fixe

Le principe de cette méthode, est de transformer l’équation f(x) = 0 en x = ϕ(x), c’est à dire

trouver une fonction ϕ(x) définie et continue sur [a, b] telle que :

f(x) = 0⇔ x = ϕ(x),

et puis elle construit une suite (xn) par la procédure suivante :{
x0 ∈ [a, b]

xn+1 = ϕ(xn), n = 0, 1, · · ·

Si les conditions suivantes sont satisfaites :

1- ϕ([a, b]) ⊆ [a, b] c’est à dire ∀x ∈ [a, b], ϕ(x) ∈ [a, b].

2- ϕ est une application contractante sur [a, b] c’est à dire s’il existe une constante q, 0 < q < 1

telle que :

|ϕ(x)− ϕ(y)| ≤ q |x− y| , ∀x, y ∈ [a, b] .

Alors la suite (xn) donnée par l’algorithme de point fixe est convergente vers l’unique solution ξ

de l’équation f(x) = 0 pour tout point initiale x0 de [a, b]. De plus l’erreur commise est donnée

par la formule suivante :

∆n = |xn − ξ| =
qn

1− q
|x1 − x0| .
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Code Silab

%Etude de la fonction :

%f(x) = x− cos(x), dans [−1
2
, 3]

k = 0 ;

eps = 10ˆ − 4 ;

function [y] = g(x)

y = cos(x) ;

endfunction

function [y] = f(x)

y = x− cos(x) ;

endfunction

x = 1/2 ;

err = norm(f(x)) ;

tic ;

while (err > eps)

x = g(x) ;

err = norm(f(x)) ;

k = k + 1 ;

end

t=toc ;

disp(”x = ”) ;

disp(x) ;

2.3 Exercices résolus

Exercice 1. Séparer les racines des équations suivantes :

x4 − 4x− 1 = 0, x5 − 5x4 + 1 = 0, 2x− lnx− 4 = 0,

x2 − ex + 2 = 0,
√
x+ sinx− 2 = 0, x3 + 12x2 − 60x+ 46 = 0 = 0.

Solution.

1. x4− 4x− 1 = 0. On pose f(x) = x4− 4x− 1, alors f est une fonction définie et dérivable sur

son domaine de définition R car f(x) est un polynôme. De plus comme limx 7→−∞ f(x) = +∞,
limx 7→+∞ f(x) = +∞ ⇒ (limx 7→−∞ f(x)) (limx 7→+∞ f(x)) = +∞ > 0, alors d’après le T.V.I,

l’équation f(x) = 0, admet un nombre pair de racines sur R ou bien elle n’admet pas de

racines sur R. Pour s’assurer, on étudie ses variations sur R. On a :

f ′(x) = 4x3 − 4 = 0

m
x = 1.
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Le tableau de variations de f est donné par :

x −∞ 1 +∞
signe de f ′ − 0 +

+∞ +∞
variations de f ↘ ↗

−4

Alors d’après son tableau de variations f(x) = 0 admet exactement deux racines séparées

dans R comme suit :

ξ1 ∈ ]−∞, 1[

et

ξ2 ∈ ]1,+∞[ .

Localisation de ces deux racines dans des intervalles finis de la forme [a, b]. Comme f(−1)f(0) <

0, alors ξ1 ∈[−1, 0] et comme f(1)f(2) < 0, alors ξ2 ∈ [0, 1].

2. x5 − 5x4 + 1 = 0, on fait le même travail que pour (1). On pose f(x) = x5 − 5x4 + 1

alors f est un polynôme donc continue et indéfinement dérivable sur R. De plus, comme

limx−∞ f(x) = −∞, limx+∞ f(x) = +∞ ⇒ (limx−∞ f(x)) (limx+∞ f(x)) = +∞ < 0, alors

d’après le T.V.I, l’équation f(x) = 0, admet un nombre impair de racines sur R ou bien

elle admet au moins une racine sur R. Pour s’assurer, on étudie aussi ses variations sur R.

On a :

f ′(x) = 5x4 − 20x3 = 0

m
x = 0 ∨ x = 4,

et donc son tableau de variations est donné par :

x −∞ 0 4 +∞
signe de f ′ + 0 − 0 +

+1 +∞
variationsdef ↗ ↘ ↗

−∞ −256

Alors suivant le tableau de variations f(x) = 0 possède exactement trois racines séparées

dans R comme suit :

ξ1 ∈ ]−∞, 0[ , ξ2 ∈ ]0, 4[ ,

et

ξ3 ∈ ]4,+∞[ .

Localisation de ces deux racines dans des intervalles se la form [a, b]. On vérifie facilement

que :

ξ1 ∈ [−3,−2] , ξ2 ∈ [0, 4] , ξ3 ∈ [5, 6] .
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3. 2x − lnx − 4 = 0. Alors f(x) = 2x − lnx − 4, est une fonction définie et continue sur son

domaine ]0,+∞[, de plus on a :limx 7→0 f(x) = +∞, limx 7→+∞ f(x) = +∞ ⇒ (limx 7→−∞ f(x))

(limx 7→+∞ f(x)) = +∞ > 0, alors d’aprés le T.V.I, f(x) = 0 admet une nombre pair de

racines sur son domaine ou bien elle n’admet pas de racines. D’autre part :

f ′(x) = 2− 1

x
= 0

m

x =
1

2
.

D’où le tableau de variations de f , est donné par :

x 0 1
2

+∞
signe de f ′ − 0 +

+∞ +∞
variationsdef ↘ ↗

ln 2− 3 < 0

Alors f(x) = 0, admet exactement deux racines dans ]0,+∞[ séparées comme suit :

ξ1 ∈
]
0,

1

2

[
, ξ2 ∈

]
1

2
,∞
[
.

De plus on peut les localiser dans des intervalles compacts, comme suit :

ξ1 ∈ [0.01, 0.1[ , ξ2 ∈ [2, 3] .

4. x2− ex + 2 = 0. La fonction f(x) = x2− ex + 2 est une fonction continue sur tout R. De plus

comme limx 7→−∞ f(x) = +∞, limx 7→+∞ f(x) = −∞ ⇒ (limx 7→−∞ f(x)) (limx 7→+∞ f(x)) =

−∞ > 0, alors d’après le T.V.I, l’équation f(x) = 0, admet un nombre impair de racines

sur R ou bien elle admet au moins une racine sur R. Pour s’assurer on étudie ses variations

sur R. On a f ′(x) = 2x− ex et f ′′(x) = 2− ex = 0⇔ x = ln 2. Donc le tableau de variations

de la fonction f est donné par :

x −∞ ln 2 +∞
signedef ′′ + 0 −

2 ln 2− 2 < 0

f ′(x) ↗ ↘
−∞ −∞
+∞

↘
f(x) (ln 2)2

↘
−∞

Donc f(x) = 0 admet une racine unique ξ ∈ [ln 2,+∞[ et plus précisément ξ ∈ [0, 1] car

f(0) = 1 > 0 et f(1) = 6− e2 < 0.
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Remarque 5. On peut utiliser la méthode graphique pour séparer ces racines. Pour cela,

on décompose f(x) par exemple comme suit :

f(x) = f1(x)− f2(x)

où

f1(x) = x2 + 2

et

f2(x) = ex,

et puis on trace leurs graphes et on cherche les points de leurs intersections.

Exercice 2. En utilsant la méthode de Dichotomie, déterminer la plus petite racine positive de

l’équation :

x3 + 4x2 − 10 = 0

avec une précision ε = 10−2. Quelle est le nombre des chiffres exacts dans le résultat ?

Solution

f(x) = x3 +4x2−10, est un polynôme donc elle est continue sur R. De plus, comme lim−∞ f(x) =

−∞, lim+∞ f(x) = +∞ ⇒ (limx 7→−∞ f(x)) (limx7→+∞ f(x)) = −∞ < 0, alors d’après le T.V.I,

l’équation f(x) = 0, admet un nombre impair de racines sur R ou bien elle admet une racine sur

R. Pour s’assurer, on étudie ses variations sur R. La fonction f est dérivable, alors on a :

f ′(x) = 3x2 + 8x = 0

m

x = 0 ∨ x = −8

3
.

Alors son tableau de variations f est donné :

x −∞ −8
3

0 +∞
signe de f ′ + 0 − 0 +

−0.5 +∞
variations de f ↗ ↘ ↗

−∞ −10

D’après le tableau de variations f(x) = 0, admet une seule racine positive ξ dans l’intervalle

[0, +∞]. De plus, comme f(1)f(2) < 0, alors ξ ∈ [1, 2].

Calculons cette racine par la méthode de Dichotomie. Pour cela, on construit le tableau de Dicho-

tomie comme suit :

n an bn xn = an+bn
2

f(xn)f(an) ∆n = 1
2n+1

0 1− 2+ 1.5+ < 0 0.5 > ε

1 1− 1.5+ 1.25− > 0 0.25 > ε

2 1.25− 1.5+ 1.375+ < 0 0.125 > ε

3 1.25− 1.375+ 1.3125− > 0 0.0625 > ε

4 1.3125− 1.375+ 1.34375− > 0 0.03125 > ε

5 1.34375− 1.375+ 1.359375− > 0 0.015625 > ε

6 1.359375− 1.375+ 1.3671875 ... 0.0078 < ε = 0.01.
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On prend donc comme valeur approchée de ξ, les valeurs :

ξ = x7 ±∆7 = 1.3671875± 0.0078.

n est le nombre des chiffres exacts dans x7 si :

∆7 = 0.0078 ≤ 1

2
10m−n+1.

Comme m = 0, alors on calcule n tel que :

0.0078 ≤ 1

2
10−n+1.

Cette inégalité est vérifiée si n ≥ 4. Donc ξ possède au moins 4 chiffres exacts.

Exercice 3.

1. Séparer dans un intervalle de la forme [k, k + 1] : k ∈ Z, la plus petite racine positive de

l’équation x3 + 12x2 − 60x+ 45 = 0.

2. En utilisant la méthode de Lagrange puis celle de Newton, calculer cette racine avec 2 chiffres

exacts.

3. Est-il préférable d’utiliser la méthode de Dichotomie ?

Solution.

1. f(x) = x3+12x2−60x+45, est un polynom̂e donc continue sur R. De plus il est facile d’avoir

limx 7→−∞ f(x) = −∞, limx 7→+∞ f(x) = +∞ ⇒ (limx 7→−∞ f(x)) (limx 7→+∞ f(x)) = −∞ < 0,

alors d’après le T.V.I, l’équation f(x) = 0, admet un nombre impair de racines sur R ou

bien elle admet une racine sur R. Pour s’assurer, on étudie ses variations sur R. On a :

f ′(x) = 3x2 + 12x2 − 60 = 0

m
x = −10 ∨ x = 2.

Alors son tableau de variations est comme suit :

x −∞ −10 2 +∞
signe de f ′ + 0 − 0 +

846 +∞
variations de f ↗ ↘ ↗

−∞ −18

D’après ses variations, f(x) = 0 admet exactement deux racines positives et une seule racine

négative situées dans R comme suit :

ξ1 ∈ [−16,−15] , ξ2 ∈ [0, 1] , ξ3 ∈ [2, 3] .
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Calculons maintenant la plus petite racine positive dans [0, 1] par la méthode de Lagrange et puis

par la méthode de Newton.

1. Méthode de Lagrange.. En effet, comme f ′(x) = 3x2 + 24x− 60 6= 0 (d’après le tableau

de variations) et f ′′(x) = 6x+24 > 0 sur [0, 1]. Alors la méthode de Lagrange est applicable.

Choix de x0.

f ′′(x) > 0, f(0) > 0, alors f ′′(0)f(0) > 0⇒ x0 = 1.

M1 = maxx∈[0,1] |f ′(x)| = 60, m1 = minx∈[0,1] |f ′(x)| = 33.

On calcule une valeur approchée de ξ avec 2 chiffres exacts c’est à dire avec une précision

ε = 1
2
10−1 = 0.05 car m = 0 et n = 2. Alors en partant de x0 = 1, l’algorithme de Lagrange

génère une suite donnée par :

xn+1 = xn −
f(xn)

f(xn)− f(0)
xn, n = 0, 1, . . . .

Itération x1.

x1 = 1− f(1)

f(1)− f(0)
= 1− 1

47
= 0.9787.

L’erreur commise dans x1 est :

∆1 =
27

66
|x1 − x0| = ∆1 =

27

66
|0.9787− 1| = 0.0087 ≈ 0.009.

Comme ∆1 < 0.05, on s’arrète et on prend comme valeur approchée de la racine ξ la valeur

ξ = 0.9787± 0.009.

2. Méthode de Newton. Les conditions de cette méthode sont les mêmes que celles de La-

grange et donc la méthode de Newton est applicable pour approximer cette racine.

Choix de x0. f ′′(x) > 0, f(0) > 0, alors f ′′(0)f(0) > 0 ⇒ x0 = 0. Alors l’algorithme de

Newton pour approcher la racine ξ est donnée par :{
x0 = 0,

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, ...

avec

M = max
x∈[0,1]

|f ′′(x)| = 30, m1 = min
x∈[0,1]

|f ′(x)| = 33.

et parconséquent et après simplification l’erreur devient :

∆n =
5

11
(xn − xn−1)2.

Calcul de l’itération x1 :

x1 = x0 −
f(x0)

f ′(x0)
= − f(0)

f ′(0)
=

23

30
= 0.76666.

et son erreur :

∆1 =
5

11
(x1 − x0)2 =

5

11
(0.76666)2 = 0.267.
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∆1 > ε = 0.05, on calcule donc l’itération x2 par :

x2 = x1 −
f(x1)

f ′(x1)
= 0.953688,

et son erreur

∆2 =
5

11
(x2 − x1)2 =

5

11
(0.76666− 0.953688)2 ≈ 0.016.

Alors ∆2 = 0.016 < ε = 0.05 et donc on s’arrète et on peut prendre comme valeur approchée

de ξ :

ξ = x2 ± 0.016.

3. La méthode de Dichotomie avec la précision ε = 0.05, à besoin de 4 itérations pour approxi-

mer cette racine car :

n ≥ ln(1− 0)− ln(0.05)

ln 2
− 1 ≈ 4.

Alors il n’est pas préférable de l’utiliser la méthode de Dichotomie car les autres méthodes

ont besoin au plus deux itérations.

Exercice 4.

On considère l’équation

ex − x2

2
− x− 1 = 0, (2.1)

sur l’intervalle [−1, 1].

1. Montrer que l’équation (2.1), admet un zéro (une racine) ξ dans [−1, 1] et qu’il est unique.

2. Résoudre l’équation (2.1) par la méthode de Newton à ε = 0.05 près, utiliser |f(x)| ≤ ε.

Quelle est l’ordre de convergence de cette méthode ? Justifier votre réponse.

3. Proposer une méthode d’ordre 2 pour résoudre l’équation donnée.

Solution.

1. La fonction f(x) = ex − x2

2
− x− 1 est indéfiniment dérivable sur son domaine R, donc elle

est continue de plus comme f(−1)f(1) = (2−e
2e

)(2e+5
2

) < 0, alors d’après le T.V.I f(x) = 0

admet au moins une racine ξ sur [−1, 1]. Pour l’unicité de la racine, on étudie ses variations

sur l’intervalle [−1, 1]. On a f ′(x) = ex − x − 1 et comme elle est difficile de connaitre son

signe, on calcule f ′′(x) = ex − 1 = 0. Alors son tableau de variations est donné par :

x −1 0 1

signedef ′′ − 0 +

0.37 0.72

f ′(x) ↘ ↗
0

0.22

↗
f(x) 0

↗
−0.13

Alors il est claire que f(x) = 0 admet une racine unique ξ ∈ [−1, 1].
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Remarque 6. La racine exacte de cette équation est ξ = 0 avec multiplicité m = 3 car

f(0) = f ′(0) = f ′′(0) = 0, f ′′′(0) 6= 0.

Choix de x0. f ′′(x) ≥ 0 et f(1) > 0, alors f ′′(1)f(1) > 0 ⇒ x0 = 1. Alors l’algorithme de

Newton pour approcher ξ est donné par :{
x0 = 1,

xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, ...

Calcul de l’itération x1 :

x1 = x0 −
f(x0)

f ′(x0)
= 1− f(1)

f ′(1)
= 1− 0.22

0.72
= 0.69444

et son erreur :

|f(0.69444)| = 0.06702.

|f(0.69444)| = 0.06702 > ε = 0.05, on calcule donc l’itération x2 par :

x2 = x1 −
f(x1)

f ′(x1)
= 0.69444− f(0.69444)

f ′(0.69444)
= 0.476905,

et son erreur :

|f(0.476905)| = 0.0204.

|f(0.476905)| = 0.0204 < ε = 0.05. On prend comme valeur approchée de ξ :

ξ = 0.476905± 0.02.

Remarque :

1. On peut prendre aussi comme choix de x0, la valeur x0 = −1 car f(−1)f ′′(−1) > 0 et la

méthode de Newton converge aussi vers la racine ξ.

2. On remarque dans cet exemple que les conditions de Newton ne sont pas vérifiées, mais

la méthode converge. On déduit que les conditions de convergence de cette méthode sont

suffisantes mais non nécessaires.

3. On montre dans le cas où la racine ξ d’une équation f(x) = 0 est de multiplicité m ≥ 2,

alors l’ordre de la convergence de la méthode de Newton ne reste pas quadratique mais se

réduit à l’ordre 1 c’est à dire linéaire. En effet, si ξ est une racine de multiplicité m, alors

f(x) = (x− ξ)mh(x) telle queh(ξ) 6= 0,

avec

f ′(x) = m(x− ξ)m−1h(x) + (x− ξ)mh′(x).

On veut comparer maintenant l’erreur ∆n+1 avec l’erreur ∆n. Avec la formule de Newton,

on obtient :

xn+1 − ξ = xn − ξ −
f(xn)

f ′(xn)

xn+1 − ξ = xn − ξ −
(xn − ξ)mh(xn)

m(xn − ξ)m−1h(xn) + (xn − ξ)mh′(xn)

xn+1 − ξ = xn − ξ −
(xn − ξ)h(xn)

mh(xn) + (xn − ξ)h′(xn)
.
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Ce qui implique que :

xn+1 − ξ
xn − ξ

= 1− h(xn)

mh(xn) + (xn − ξ)h′(xn)
.

Par conséquent, il découle que :

lim
xn 7→ξ

|xn+1 − ξ|
|xn − ξ|

= 1− 1

m
= c > 0,m ≥ 2.

Finalement
∆n+1

∆n

= c < 1.

Alors cette méthode est d’ordre 1.

4. Proposition d’une méthode d’ordre 2 pour résoudre l’équation donnée. Pour que l’algorithme

de Newton dans ce cas avoir un ordre de convergence d’ordre deux, il suffit de considèrer le

schéma itŕatif modifié suivant :

xn+1 = xn −m
f(xn)

f ′(xn)
,

et on peut montrer que son convergence est d’ordre 2.

Exercice 5. Soit l’équation :

f(x) = ln
√
x2 + a2 : a ∈ R∗. (2.2)

1. Étudier suivant les valeurs de a, l’existence des racines de l’équation (2.2).

2. Dans ce qui suit, on prend a = 1
2
.

– Séparer les racines réelles de l’équation (2.2) dans des intervalles de type [p, p+ 1], p ∈ Z.

– Déterminer une valeur approximative de la plus petite racine positive de l’équation (2.2)

par la méthode de Dichotomie à 0.2 près.

– Rappeler les conditions de convergence de la méthode de Newton, sont-elles vérifiées pour

cette équation ?

Solution.

1. f est une fonction définie continue sur R, de plus limx 7→−∞ f(x) = +∞, limx 7→+∞ f(x) =

+∞ ⇒ (limx 7→−∞ f(x)) (limx7→+∞ f(x)) = +∞ > 0, alors d’après le T.V.I, l’équation

f(x) = 0, admet un nombre pair de racines sur R ou bien elle n’admet pas de racines sur R.
On a :

f ′(x) =
x

x2 + a2
= 0

m
x = 0.

Alors le tableau de variations de la fonction f est donné par :

x −∞ 0 +∞
signe de f ′ − 0 +

+∞ +∞
variationsdef ↘ ↗

ln |a|
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On constate que si |a| < 1, alors ln |a| < 0, et dans ce cas f(x) = 0, admet exactement deux

racines dans R. Sinon si |a| > 1 alors ln |a| > 0 et par conséquent f(x) = 0 n’admet pas de

racines.

2. Si a = 1
2

alors a est dans l’intervalle [−1, 1], et comme f(0)f(1) < 0 et f(−1)f(0) < 0 donc

ξ1 ∈ [0, 1] avec p = 1 et ξ2 ∈ [−1, 0], avec p = −1.

3. Détermination d’une valeur approximative de la plus petite racine positive de l’équation par

la méthode de Dichotomie à 0.2 près. On construit donc le tableau de Dichotomie. Comme

ε = 0.2 alors le nombre d’itérations n est :

n ≥
ln (1−0)

0.2

ln 2
− 1 = 1.3219

donc on prend n = 2 et le tableau de Dichotomie est donné par :

n an bn xn = an+bn
2

f(xn)f(an) ∆n = 1
2n+1

0 0− 1+ 0.5− > 0 0.5 > ε = 0.2

1 0.5− 1+ 0.75− > 0 0.25 > ε

2 0.75− 1+ 0.875 0.125 < ε

Donc ξ = 0.875± 0.125.

4. Dans cet exemple les conditions de Newton ne sont pas satisfaites car il existe un x0 = 0.5 ∈
[0, 1] tel que :

f ′′(x) =
−x2 + 0.25

(x2 + 0.25)2
= 0

et par conséquent f ′′(x) ne garde pas le même signe sur [0, 1].

Exercice 6.

On considère l’équation

ex + 3
√
x− 2 = 0 (2.3)

sur l’intervalle [0, 1].

1. Montrer que l’équation (2.3) admet une racine unique sur [0, 1].

2. On veut calculer la racine de cette équation par une méthode de point fixe convenable. En

particulier on se donne deux méthodes de point fixe x = ϕi(x), i = 1, 2, où les fonctions ϕ1

et ϕ2 sont définies par :

ϕ1(x) = ln(2− 3
√
x), ϕ2(x) =

(2− ex)2

9
.

Solution.

1. Remarquons tout d’abord que f(0) = −1 < 0 et f(1) = e+1 > 0 alors en utilisant le T.V.I,

on a que f(x) = 0 admet au moins une racine ξ sur [0, 1]. D’autre part f ′(x) = ex+ [
3
2
√
x > 0

sur [0, 1], alors la racine ξ est unique sur cet intervalle.
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2. On va maintenant étudier la convergence de deux méthodes de point fixe liées à les formes

précédentes.

– Pour ϕ1(x) = ln(2− 3
√
x), on constate que cette fonction est définie uniquement sur

le domaine
[
0, 4

9

]
et on remarqe aussi que f(0)f(4

9
) < 0 ce qui implique que la racine

ξ ∈
[
0, 4

9

]
. Mais on peut facilement montrer que la première condition ϕ(

[
0, 4

9

]
) ⊆

[
0, 4

9

]
de cette méthode n’est pas satisfaite. En effet, on a : ϕ′1(x) = 3

2
√
x(3
√
x−2)

< 0, ∀x ∈
[
0, 4

9

]
.

Ce qui montre que ϕ1(
[
0, 4

9

]
) =

[
ϕ1(4

9
), ϕ1(0)

]
= ]−∞, 0.69] &

[
0, 4

9

]
. Par conséquent la

méthode de point fixe liée à ϕ1 diverge.

– Pour ϕ2(x) = (2−ex)2

9
. La fonction ϕ2(x) est continue et dérivable sur [0, 1], et ϕ′2(x) =

2
9ex(ex−2)

est une fonction continue sur [0, 1], ϕ′2(x) admet donc un maximum sur [0, 1] et

comme ϕ′2(x) est strictement croissante car ϕ′′2(x) = 4
9
ex (ex − 1) > 0 sur [0, 1], alors pour

tout x de [0, 1],

−0.22 = ϕ′2(0) ≤ ϕ′2(x) ≤ ϕ′2(1) = 0.42

donc il existe un q = 0.42 < 1 c’est à dire la fonction ϕ2(x) est contractante sur [0, 1].

D’autre part, il est facile de vérifier que

ϕ2([0, 1]) = [ϕ2(ln 2), ϕ2(0)] = [0, 0.111] ⊆ [0, 1] .

Donc la méthode de point fixe associée à la fonction ϕ2 est convergente c’est à dire la suite

générée par la méthode de point fixe converge vers l’unique point ξ solution de l’équation

ϕ2(ξ) = ξ sur [0, 1] qui est en outre l’unique solution de l’équation f(ξ) = 0.

Examen 2017 Analyse numérique 1

Exercice.

Soit l’équation : f(x) = x2 − lnx− α = 0, α ∈ R+, x > 0.

1. Trouver toute les valeurs de α pour que l’équation f(x) = 0 admet une seule solution ξ dans

[1, e].

2. Considérons l’algorithme de point fixe suivant :{
x0 ∈ [1, e]

xn+1 = ϕ(xn) =
√

ln(xn) + α, n = 0, 1, ...

Etudier la convergence de cet algorithme vers ξ selon toutes les valeurs de α obtenues de la

question (1).

3. Prenons α = 2.

– Quel est le nombre nécessaire d’itérations pour calculer ξ avec trois chiffres exacts par

l’algorithme de Dichotomie et puis par l’algorithme de point fixe ? comparer.

– Donner trois itérations par l’algorithme de point fixe, prendre x0 = 1.

Solution

1. l’équation f(x) = 0 admet une seule solution sur [1, e] si f(1)f(e) < 0 et f ′(x) 6= 0 pour

tout x ∈ [1, e]. On a d’une part que pour tout x ∈ [1, e], f ′(x) = 2x2−1
x

> 0. D’autre part :
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f(1)f(e) < 0⇔ (1− α)(e2 − α− 1) < 0.

Cas 1 : (1− α) > 0 et (e2 − α− 1) < 0 alors α < 1 et α > e2 − 1 (impossible).

Cas 2 : (1−α) < 0 et (e2−α− 1) > 0 alors 1 < α < e2− 1. Donc cette équation admet une

racine unique sur [1, e] si et seulement si α ∈ ]1, e2 − 1[.

2. Convergence de l’algorithme de point fixe vers ξ. Posons ϕ(x) =
√

ln(x) + α, avec α ∈
]1, e2 − 1[.

On a : pour tout x ∈ [1, e],

ϕ′(x) =
1

2x
√

lnx+ α
> 0

et

ϕ′′(x) = −
2
√

lnx+ α + 1√
lnx+α

4x2(lnx+ α)
< 0.

Ce qui implique ϕ′(x) > 0, est décroissante et donc :

max
[1,e]

ϕ′(x) = ϕ′(1) = q =
1

2
√
α
< 1.

Pour ϕ([1, e]) ⊆ [1, e] ?

On a : ϕ′(x) > 0, alors ϕ(x) est croissante et par conséquent on a :

ϕ([1, e]) = ([ϕ(1), ϕ(e)]) =
[√

α,
√

1 + α
]
.

or α ∈ ]1, e2 − 1[ alors 1 <
√
α <

√
1 + α ≤

√
1 + e2 − 1 = e. Ce qui montre que ϕ([1, e] ⊆

[1, e]. Alors la méthode de point fixe est convergente vers ξ dans [1, e].

3. Nombre d’iérations dans la méthode de Dichotomie si on calcule la racine ξ dans [1, e] avec

3 chiffres exacts c’est à dire n = 3 donc ∆ξ ≤ 1
2
10−2 car m = 0. On sait que le nombre

d’itérations n produit par la l’algorithme de Dichotomie vérifie que :

n ≥ ln(e− 1)− ln(0.5(10−2))

ln 2
− 1 = 7.428,

donc on prend n = 8 comme le nombre nécessaire d’itérations produit par l’algorithme de

Dichotomie pour approcher cette racine.

Pour l’algorithme de point fixe on sait que la formule d’erreur est donnée par :

∆n =
qn

1− q
|x1 − x0|

Pour α = 2, donc q = 1
2
√

2
et pour x0 = 1 on a : x1 = ϕ(1) =

√
2. Alors

qn

1− q
|x1 − x0| =

( 1
2
√

2
)n

1− 2
√

2
|
√

2− 1| ≤ 1

2
10−2.

Après simplification, on déduit que n ≥ 4.66, donc le nombre nécessaire d’iérations pour

approcher cette racine par l’algorithme de point fixe est n = 5.

Il est claire que l’algorithme de point fixe est plus rapide que celui de Dichotomie.

4. Calcul de trois itérations par l’algorithme de point fixe. On a : x0 = 1, x1 = ϕ(1) =√
ln 1 + 2 =

√
2, x2 = ϕ(x1) = 1.5318, x3 = ϕ(x2) = 1.5577.
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Chapitre 3

Résolution numérique des systèmes

linéaires

Utilité des sysèmes linéaires. En générale il est difficile de traiter ces problèmes manuel-

lement, on est donc obliger à utiliser des méthodes numériques abordables par les machines

et efficaces à résoudre des systèmes à grande taille.

Source. Beaucoup de problèmes scientifiques et mathématiques se réduisent à la résolution

d’un système linéaire de la forme Ax = b où A est une matrice inversible carrée d’ordre n

donnée et b ∈ Rn.

3.1 Exercices résolus

3.1.1 Méthodes directes

. Exercice 1 Soit le système linéaire : 1 2 1

1 2 3

0 −1 2

 x1

x2

x3

 =

 2

4

2

 . (3.1)

(a) Montrer que le système linéaire (3.1) admet une solution unique x ∈ R3.

(b) Déterminer x par la méthode de Gauss.

(c) En utilisant la méthode de Gauss-Jordan, déterminer l’inverse de la matrice A des

coefficients. Déduire la valeur de la solution x.

Solution.

(a) Le système (3.1), admet une solution unique x car detA = 2 6= 0.

41
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(b) Résolution de (3.1) par la méthode de Gauss. On transforme le système (3.1) à un

système dont la matrice de coefficients est triangulaire supérieure. Pour cela, on écholonne :

(A | b) =

 1 2 1 2

1 2 3 4

0 −1 2 2

 l1
l2
l3

 v

(
l1

l2 − l1

) 1 2 1 2

0 0 2 2

0 −1 2 2


v

 1 2 1 2

0 −1 2 2

0 0 2 2

 =
(
U | b̄

)
.

Le système (3.1) est donc équivalent à un système Ux = b̄ :

(
U | b̄

)
:

 1 2 1

0 −1 2

0 0 2

 x1

x2

x3

 =

 2

2

2

 .

Alors la solution de (3.1), est évidente :

x =

 x1

x2

x3

 =

 1

0

1

 .

(c) Calcul de A−1 par la méthode de Gauss-Jordan. La procédure se déroule comme suit :

(A | I) =

l1
l2
l3

 1 2 1 1 0 0

1 2 3 0 1 0

0 −1 2 0 0 1

v
l1

l2−l1
l3

 1 2 1 1 0 0

0 0 2 −1 1 0

0 −1 2 0 0 1


v

l1
l3

l2−l1

 1 2 1 1 0 0

0 −1 2 0 0 1

0 0 2 −1 1 0

 v
l1

−1× l2
l3

 1 2 1 1 0 0

0 1 −2 0 0 −1

0 0 2 −1 1 0


v

l1
−2l2 + l1

l3

 1 2 1 1 0 0

0 1 −2 0 0 −1

0 0 2 −1 1 0

 v

 1 0 5 1 0 2

0 1 −2 0 0 −1

0 0 2 −1 1 0


v

l1
l2

2l3 − l1

 1 0 5 1 0 2

0 1 −2 0 0 −1

0 0 1 −1/2 1/2 0

 v
l1
l2

−5l3 + l1

 1 0 5 1 0 2

0 1 0 −1 1 −1

0 0 1 −1/2 1/2 −1


v

 1 0 0 7/2 −5/2 2

0 1 0 −1 1 −1

0 0 1 −1/2 1/2 +7

 .

Alors A−1 est donnée par :

A−1 =

 7
2
−5

2
2

−1 1 −1

−1
2

1
2

0

 .
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Exercice 2 Soit le système linéaire : 1 1 0

1 5 2

0 2 2

 x1

x2

x3

 =

 0

4

2

 . (3.2)

(a) Montrer que le système linéaire (3.2) admet une solution unique x ∈ R3.

(b) Déterminer x par la méthode de LU , si c’est possible.

(c) Déterminer x par la méthode de Cholesky, si c’est possible.

Solution.

(a) Le système (3.2), admet une solution unique x car detA = 4 6= 0.

(b) Méthode de Crout. La méthode LU est applicable si et seulement si les mineurs

principaux de A sont non nuls. En effet, par un calcul simple, on obtient :

detA1 = 1 6= 0, detA2 = 4 6= 0, detA = 4 6= 0.

Le principe de cette méthode est de factoriser A = LU où L une matrice triangulaire

inférieure et U triangualire supérieure données par :

L =

 1 0 0

1 l22 0

0 l32 l33

 et U =

 1 1 0

0 1 u23

0 0 1

 .

Alors résoudre Ax = b est équivalent à résoudre deux systèmes linéaires évidents c.à.d :

Ax = b⇔ LUx = b⇔
{

Ly = b

Ux = y.

Déterminons maintenant les coefficients des matrices L et U , on a : 1 1 0

1 5 2

0 2 2

 =

 1 0 0

1 l22 0

0 l32 l33

 1 1 0

0 1 u23

0 0 1

 =

 1 1 0

1 l22 + 1 l22u23

1 l32 l33 + l32u23

 .

Par identification, on obtient : 
1 + l22 = 5

l22u23 = 2

l32 = 2

l33 + l32u23 = 2

et par conséquent : 
l22 = 4

u23 = 1
2

l32 = 2

l33 = 2− l32u23

,
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et donc :

L =

 1 0 0

1 4 0

0 2 1


et

U =

 1 1 0

0 1 1
2

0 0 1

 .

Alors la solution de Ax = b, est équivalent

Ax = b⇔ LUx = b

m
Ly = b etUx = y.

m

Ly = b⇔

 1 0 0

1 4 0

0 2 1

 y1

y2

y3

 =

 0

4

2


⇓ y1

y2

y3

 =

 0

1

0

 .

Ux = y ⇔

 1 1 0

0 1 1
2

0 0 1

 x1

x2

x3

 =

 0

1

0


x =

 −1

1

0

 .

Donc la solution de système est donnée par :

x =

 −1

1

0

 .

(c) Méthode de Cholesky. Cette méthode est applicable si la matrice A est symétrique

définie positive. En effet, on vérifie facilement que la matrice A est symétrique car

A = AT et de plus les mineurs principaux de A, detA1 = 1 > 0, detA2 = 4 > 0,

et detA = 4 > 0. Alors la matrice A est définie positive et dans ce cas il existe une

matrice triangulaire inférieure L telle que A se factorize comme suit : A = LLT . Par

conséquent, on a :

Ax = b⇔ LLTx = b⇔ Ly = b etLTx = y.
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La matrice L est de la forme :

L =

 l11 0 0

l21 l22 0

l13 l23 l33

⇒ LT =

 l11 l21 l13

0 l22 l23

0 0 l33

 .

Alors

LLT =

 l11 0 0

l21 l22 0

l13 l23 l33

 l11 l21 l13

0 l22 l23

0 0 l33


=

 l211 l11l21 l11l13

l11l21 l221 + l222 l21l13 + l22l23

l11l13 l21l13 + l22l23 l213 + l223 + l233


et les six coefficients de la matrice L sont donnés par la résolution des ces équations :

l211 = 1

l11l21 = 1

l11l31 = 0

l212 + l222 = 5

l21l31 + l22l32 = 2

l231 + l232 + l233 = 2

d’où on obtient que : 

l11 = 1

l21 = 1

l31 = 0

l22 = 2

l32 = 1

l33 = 1

et

L =

 1 0 0

1 2 0

0 1 1

 .

Pour le système Ly = b,  1 0 0

1 2 0

0 1 1

 y1

y2

y3

 =

 0

4

2


alors

y =

 y1

y2

y3

 =

 0

2

0

 .
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Pour le système LTx = y,  1 1 0

0 2 1

0 0 1

 x1

x2

x3

 =

 0

2

0


alors la solution du système Ax = b, est donnée par :

x =

 −1

1

0

 .

3.1.2 Méthodes itératives

.

Exercice 3 Soit le système linéaire : 4 −1 0

−1 4 −1

0 −1 4

 x1

x2

x3

 =

 1

1

1

 . (3.3)

(a) Etudier la convergence des méthodes de Jacobi et de Gauss-Seidel pour (3.3).

(b) Vérifier que les rayons spectraux des matrices d’itération vérifient : ρ(HGS) = ρ2(HJ).

Que peut-on conclure ?

(c) Vérifier que la factorisation de LU existe et unique, puis résoudre le système Ax = b.

(d) Donner les trois premières itérations par la méthode de Gauss-Seidel pour le systéme

(3.3).

Solution.

– Méthode de Jacobi : Tout d’abord vérifions que ce système admet une solution unique.

Comme detA = 56 6= 0, alors la solution est unique. La matrice de Jacobi associée à A,

est donnée par :

HJ = I −D−1A.

On a :

D =

 4 0 0

0 4 0

0 0 4

 , D−1A =

 1
4

0 0

0 1
4

0

0 0 1
4

 4 −1 0

−1 4 −1

0 −1 4


d’où

Hj = I −D−1A =

 0 1
4

0
1
4

0 1
4

0 1
4

0

 .
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La méthode de Jacobi est convergente si et seulement si ρ(HJ) < 1. Calculons donc les

valeurs propres de la matrice HJ . On a :

PHGS
(λ) = det(HGS − λI) = λ3 − 1

8
λ = 0

m

λ = ±1

4

√
2, λ = 0,

et donc

ρ(HJ) = max
λ
|λ| = 1

4

√
2 = 0.353 55 < 1.

Alors la méthode de Jacobi converge.

– Méthode de Gauss-Seidel. La matrice de Gauss-Seidel est donnée par :

HGS = (D − E)−1F

où

D =

 4 0 0

0 4 0

0 0 4

 , E =

 0 0 0

−1 0 0

0 −1 0

 etF =

 0 −1 0

0 0 −1

0 0 0


alors

HGS = (D − E)−1F =

 0 −1
4

0

0 1
16

−1
4

0 − 1
64

1
16


car

D − E =

 4 0 0

0 4 0

0 0 4

−
 0 0 0

−1 0 0

0 −1 0

 =

 4 0 0

1 4 0

0 1 4


⇓

(D − E)−1F =

 1
4

0 0

− 1
16

1
4

0
1
64

− 1
16

1
4

 0 −1 0

0 0 −1

0 0 0

 =

 0 −1
4

0

0 1
16

−1
4

0 − 1
64

1
16

 .

La méthode de Gauss-Seidel est convergente si et seulement si ρ(HGS) < 1. Pour cela

calculons le spectre de la matrice HGS. On a :

PHGS
(λ) = det(HGS − λI) = λ3 − 1

8
λ2 = 0

m

λ = 0, λ =
1

8
.

Ce qui implique que le rayon spectral ρ(HGS) = 1
8

= 0.125 < 1. Alors la méthode de

Gauss-Seidel est convergente.
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– Il est claire que 1
8

= (
√

2
4

)2, ce qui montre que ρ(HGS) = ρ2(HJ). Cette égalité montre que

la convergence de la méthode de Gauss-Seidel est plus rapide que celle de Jacobi.

– Méthode de Crout.

La foctorisation de LU existe et unique si les trois matrices principales Ai, i = 1, 2, 3, de

A sont inversibles, autrement dit si leurs mineurs principaux detAi 6= 0 pour tout i. On

a :

detA1 = det(4) = 4, detA2 = 17, detA = 56.

– Calcul de trois premières par la méthode de Gauss-Seidel. On a :

x(k+1) = HGSx
(k) + c

avec :

HGS =

 0 −1
4

0

0 1
16

−1
4

0 − 1
64

1
16

 , c = (D − E)−1b =

 1
4

0 0

− 1
16

1
4

0
1
64

− 1
16

1
4

 1

1

1

 =

 1
4
3
16
13
64

 .

La méthode de Gauss-Seidel converge pour tout point initial x(0). Alors, on a :

x(k+1) = HGSx
(k) + c

m x
(k+1)
1

x
(k+1)
2

x
(k+1)
3

 =

 0 −1
4

0

0 1
16

−1
4

0 − 1
64

1
16


 x

(k)
1

x
(k)
2

x
(k)
3

+

 1
4
3
16
13
64

 , k = 0, 1, 2,

m
x

(k+1)
1

x
(k+1)
2

x
(k+1)
3

=

=

=

−1
4
xk2 + 1

4
1
16
xk2 − 1

4
xk3 + 3

16
1
16
xk3 − 1

64
xk2 + 13

64

Dans ce tableau, on résume le calcul de ces trois itérations par la méthode de Gauss-Seidel

en partant du point initiale x(0) = (0, 0, 0)T :

k 0 1 2

x
(k+1)
1 0.25 0.203 13 0.212 89

x
(k+1)
2 0.187 5 0.148 44 0.143 55

x
(k+1)
3 0.203 13 0.212 89 0.214 11

Alors d’après le tableau, on déduit que :

x(1) = (0.25, 0.1875, 0.20313)T , x(2) = (0.20313, 0.14844, 0.21289)T ,

et

x(3) = (0.21289, 0.14355, 0.21411)T .
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Exercice 4.

Soit à résoudre le système linéaire Ax = b.

(a) Soit la matrice

A =

 1 3/4 3/4

3/4 1 3/4

3/4 3/4 1


Montrer que la matrice A est définie positive et que la méthode de Jacobi apliquée à

ce système diverge.

(b) Prendre

A =

 1 2 −2

1 1 1

2 2 1


Montrer que la méthode de Jacobi apliquée à ce système converge mais celle de Gauss-

Seidel diverge.

(c) Prendre

A =

 2 −1 1

2 2 2

−1 −1 2


Montrer que la méthode de Jacobi apliquée à ce système diverge mais celle de Gauss-

Seidel converge.

Solution.

(a) La matrice A de (1), est symétrique car A = AT et aussi définie positive car les mineurs

principaux de A sont positifs puisque detA1 = 1, detA2 = 7
16

et detA = 5
32

.

La matrice itérative HJ de Jacobi associée à A dans (1), est donnée par :

HJ = D−1(E + F ) = I −D−1A =

 0 −3/4 −3/4

−3/4 0 −3/4

−3/4 −3/4 0


On calcule le polynôme caractéristique det(HJ − λI) en λ. On a :

det(HJ − λI) = λ3 − 27

16
λ+

27

32
= 0

à pour racine λ1 = −3
2

et λ2 = 3
4
, donc ρ(HJ) = max(|λ1|, |λ2|)=3

2
= 1.5 > 1 et la

méthode de Jacobi diverge.

(b) Pour la matrice A de (2), la matrice de jacobi est donnée par :

HJ =

 0 −2 2

−1 0 −1

−2 −2 0


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Avec un simple calcul, on obtient que det(HJ − λI) = λ3 = 0. Alors λ = 0, est une

racine triple de HJ et donc ρ(HJ) = 0 < 1. La méthode de Jacobi converge.

Soit maintenant la matrice itérative HGS de Gauss-Seidel qui est définie par :

HGS = (D − E)−1F =

 0 −2 2

0 2 −3

0 0 2


Il est aussi facile de calculer les valeurs propres de HGS. On a : det(HGS − λI) =

−λ(2 − λ)2 = 0. Alors les valeurs propres de HGS, sont λ1 = 0 et λ2 = 2 (racine

double). Donc ρ(HGS) = 2 > 1 et la méthode de Gauss seidel diverge.

Mème travail pour la matrice A dans (3).



3.1. EXERCICES RÉSOLUS 51

Examen de rattrapage. 2018/2019

Exercice 1.

Le volume délimité par une sphère et un plan sécant correspond à une calotte sphérique

est donné par la formule :

V =
πh2

3
(3R− h)

Si R = 20cm et h = 12cm. Quelle est l’incertitude nécessaire pour R et h pour que

le volume V soit calculé à 0.1cm3 prés. On donne π = 3.14 comme valeur exacte.

Exercice 2.

On considère l’équation :

f(x) = x3 − x− 4 = 0, (E)

1- Séparer dans un intervalle de la forme [k, k + 1] /k ∈ Z, la plus petite racine positive

ξ de l’équation (E).

2- Soit la méthode de point fixe suivante :

x0 ∈ [k, k + 1] , xn+1 = φ(xn), n = 0, 1, · · · ,

où

φ(x) = (x+ 4)1/3.

Résoudre l’équation (E) par la méthode de point fixe avec la précision ε = 0.01.

3- Est-il préférable d’utiliser la méthode de Dichotomie (bissection) ?

Exercice 3.

Soit le système linéiare Ax = b où

A =

 1 a a

a 1 a

a a 1


et b = (1, a, a)T , a ∈ R.

Une méthode itérative consiste à décomposer la matrice A comme suit :

A = M −N

avec M inversible, puis approcher la solution du système Ax = b, en utilisant l’algo-

rithme suivant :

Mxk+1 = Nxk + b.

1- En utilisant uniquement la structure de la matrice A, pour quelle valeur de a est-on

assuré que la méthode de Jacobi est convergente ?

2- En étudiant le spectre de M−1N , déterminer toutes les valeurs de a pour lesquelles

la méthode de Jacobi est convergente. Que peut-on conclure ?

3- Déterminer toutes les valeurs de a lesquelles le système linéiare Ax = b admet une

solution unique, puis résoudre ce système par la méthode de Gauss pour a = 10.
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Solution.

Exercice 1.

Posons

V = f(h,R) =
πh2

3
(3R− h).

D’après la formule générale de l’erreur, on a :

∆R =
∆V

2| ∂f
∂R
|

=
∆V

2πh2
=

0.1

2× 3.14× (12)2
= 1.1× 10−4cm.

∆h =
∆V

2|∂f
∂h
|

=
∆V

2(2πhR− πh2)
=

0.1

2× 3.14× (12)× 28
= 4.7× 10−5cm.

Exercice 2.

On a : f(x) = x3 − x− 4 = 0.

1- f est continue et dérivable sur tout R. De plus, limx 7→−∞ f(x) = −∞, limx 7→+∞ f(x) =

+∞ d’où (limx 7→−∞ f(x))(limx7→+∞ f(x)) = −∞ < 0. Alors d’après le TVI, l’équation

E admet un nombre impair de racines sur R, et il admet au moins une racine dans R.

On a :

f ′(x) = 3x2 − 1 = 0

m

x = −
√

1

3
∨ x =

√
1

3
.

Alors le tableau de variations f est donné par :

x −∞ −
√

1
3

√
1
3

+∞
signede f ′ − 0 − 0 +

−4 +∞
variations de f ↗ ↘ ↗

−∞ −4.38

Donc d’après le tableau de variations, f(x) admet une seule racine positive ξ ∈ [0,+∞[.

Comme f(1) = −4 et f(2) = 2, alors ξ ∈ [1, 2] car f(1)f(2) < 0.

Calcul de ξ par la méthode de point fixe avec ε = 0.001.

Prenons comme point initial x0 = 1, alors

x1 = φ(x0) = 5
1
3 = 1.709.

On a l’expréssion de l’erreur théorique de la méthode est donnée par :

∆n =
|x0 − x1|Ln

1− L
.

Détermination de L ?

On a : ∀x ∈ [1, 2], φ′′(x) < 0 ce qui implique que φ′(x) es décroissante et parconséquent :

L = max |φ′(x)| = φ′(1) = 0.114.
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Donc φ′(x) est contractante. D’où

∆n =
|1− 1.709|(0.114)n

1− 0.114
.

On a : ∆1 = 0.0912 > ε. Calculons donc x2 = φ(x1) = 1.787 avec ∆2 = 0.0104 >

ε. Calcul de x3. x3 = φ(x2) = 1.72 avec ∆3 = 0.001 < ε. Finalement, une solution

approchée de E est donnée par :

ξ = x3 + ∆3 = 1.795± 0.001.

3- Le nombre d’itérations nécessaires par la méthode de Dichotomie est :

n ≥ ln 50

ln 2
= 5.65

d’où n ≥ 6. Alors pour voir une solution approchée de ξ par cette méthod il faut au

poins 6 itérations. Donc il est préférable d’utiliser cette méthode.

Exercice 3.

1- On sait que la méthode de Jacobi est convergente si la matrice A est à diagonale

strictement dominante c’est à dire si 1 > 2|a|. Alors A est à diagonale strictement

dominante si a ∈
]
−1

2
, 1

2

[
. Alors la méthode de Jacobi est convegente si a ∈

]
−1

2
, 1

2

[
.

2- La méthode de Jacobi est convegente si et seumlement si ρ(HJ) < 1. Calculons les

valeurs propres de HJ . On a :

det(HJ − λI) = −(λ− a)2(λ+ 2a) = 0.

D’où λ1 = a et λ2 = −2a, donc ρ(HJ) = 2|a|. Alors, la méthode de Jacobi est conver-

gente si et seulement si a ∈
]
−1

2
, 1

2

[
.

3- A est inversible si et seulement si detA 6= 0. On a :

detA = (1− a)(1 + a− 2a2) = (1− a)2(1 + 2a).

Alors detA = 0 ⇔ a = 1 ∨ a = −0.5 et parconséquent le système Ax = b admet une

solution unique si : a ∈ R− {−0.5, 1} .
Résolution du système Ax = b pour a = 10 par la méthode de Gauss :

(A | b) =

 1 10 10 1

10 1 10 0

10 10 1 0

 l1
l2
l3

 v

(
l1

l2 − l1

) 1 10 10 1

0 99 90 0

0 90 99 0


v

 1 10 10 1

0 99 90 0

0 0 902 − 992 0

 =
(
U | b̄

)
.

Le système Ax = b, est équivalent donc à un système Ux = b̄ :

(
U | b̄

)
:

 1 10 10

0 99 90

0 0 902 − 992

 x1

x2

x3

 =

 1

0

0

 .
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Alors la solution du système Ax = b, est évidente :

x =

 x1

x2

x3

 =

 1

0

0

 .


