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Préambule

Les systèmes et réseaux informatiques ont besoin de méthodes pour l’étude de leur
comportement. Ces systèmes traitent des concepts complexes avec des demandes
de service aléatoires, par conséquent, les méthodes probabilistes et statistiques sont
couramment employées à des fins d’évaluation des performances et de la fiabilité.
Les modèles analytiques les plus couramment utilisés sont les chaînes de Markov.
Les progrès des méthodes automatisées d’espace d’état ont entraîné une utilisation
intensive des chaînes de Markov dans l’analyse des performances et de la fiabilité.

Une chaîne de Markov se compose d’un ensemble d’états et d’un ensemble de trans-
itions étiquetées entre les états. Un état peut modéliser diverses conditions dans
le système étudié, ex. il peut s’agir du nombre de taches en attente d’utilisation
de chaque ressource, le nombre de tâches en cours d’exécution, etc. Après un sé-
jour dans un état, la chaîne de Markov fera une transition vers un autre état. Ces
transitions sont étiquetées soit avec des probabilités de transition (dans le cas de
chaînes de Markov à temps discret), soit avec des taux de transition (dans le cas de
chaînes de Markov à temps continu). Le régime stationnaire des chaînes de Markov
peut être étudié à l’aide d’un système d’équations linéaires avec une équation pour
chaque état. La solution de ces équations donne des probabilités d’état de la chaîne
de Markov à partir desquelles les mesures de performance souhaitées peuvent être
facilement obtenues. Les mesures de performance qui présentent généralement un
intérêt comprennent le débit, l’utilisation des ressources, la probabilité de perte et
le retard (ou temps de réponse).

L’objectif de ce cours est d’exploiter les principales techniques de modélisation prob-
abiliste qui sont les files d’attente Markoviennes pour l’analyse des performances des
systèmes informatiques comme un réseau cellulaire, un système de transmission de
paquets, un protocole d’accés aléatoire et un protocole de réseaux Wi-fi.

De l’autre côté, des modèles d’évaluation de performances sont basés sur la sim-
ulation à événements discrets (SED). La SED peut être appliquée à un système
dans sa phase de conception pour vérifier qu’il répond aux exigences de concep-
tion et pour effectuer les compromis nécessaires. L’utilisation de la simulation est
présentée dans la partie des Travaux Pratiques de ce cours.
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1 Rappels des lois de probabilités

1.1 Processus de poisson

Le processus de Poisson sert à modéliser l’occurrence d’évènements successifs, par
exemple : Le nombre d’appels reçus par un standard téléphonique dans une période
de temps, Le nombre de voyageurs se présentant à un guichet dans la journée, etc.

On dit qu’une variable aléatoire dénombrable (discrète) X, à valeurs dans N ,
suit une loi de poisson de paramètre λ (λ > 0), si:

pour tout: k ∈ N,P [X = k] = e−λ × λk

k!
X ∼ P (λ)

• P [X = k] : La probabilité d’avoir K fois l’évènement A pour une période de
T

• λ : le nombre moyen d’occurrence du phénomène observé pendant la durée
donnée. Pour une période de T , un évènement se produit en moyenne λ fois

• L’espérance et la variance : E[X] = λ, V [X] = λ.

Exemple
Un magasin reçoit généralement un nombre de deux clients par heure. Xt est une
variable aléatoire présentant le nombre de clients arrivant au magasin. Xt suit la loi
de poisson de paramètre λ = 2 clients/heure.

Exercice
Le taux de naissance au Canada est d’environ 43 naissances par heure.

• Quelle est la probabilité que durant les 5 prochaines minutes il y ait 3 nais-
sances ou plus?

• Quelle est la probabilité que 10 minutes s’écoulent sans aucune naissance?

1.2 La loi exponentielle

La loi exponentielle sert à modéliser les temps et les durées :

• La durée de service,

2



• La durée d’un appel téléphonique,

• Le temps d’inter-arrivée

• . . . etc.

Xt est une variable aléatoire suivant la loi exponentielle de paramètre λ et d’un
espérance d (le temps moyen ou la durée moyenne). Les probabilités de Xt par
rapport au temps t sont calculées comme suit :

P (X ≥ t) = e−λt

P (X ≤ t) = 1− e−λt

P (t1 ≤ X ≤ t2) = e−λt1 − e−λt2

Exemple

Un magasin reçoit 1 client chaque 1
4

heure (le temps moyen d’inter-arrivée des
clients). Ce temps suit la loi exponentielle de paramètre λ.

→ λ = 1
d
. Tel que d est la durée moyenne d’inter-arrivée.

Dans cet exemple : λ = 4 clients/heure.

On dit que :

• Le nombre de clients suit une loi de poisson de paramètre λ.

• Le temps d’inter-arrivée de ces clients suit une loi exponentielle de paramètre
λ.

• λ est le taux d’arrivées, d’entrées, de naissances ... (plusieurs nominations
peuvent être appliquées)

3



2 Rappels sur les Files d’attente Markoviennes

2.1 Processus de Markov à temps continu

• Dans les chaînes de Markov à temps discret, les instants de temps sont discrets
(0,1,2,...).

• Maintenant, nous allons analyser des situations où les observations se font de
façon continue plutôt qu’à des moments discrets.

• Xt = l’état du système au temps t

• Les points de changement d’états sont des points aléatoires dans le temps.

2.2 Processus de naissance et de mort

De base, c’est pour rendre compte de l’évolution de la taille d’une population, les
processus de naissance et de mort sont des processus de Markov continus (T ∈ R+),
à valeurs dans E ∈ N tels que:

• Les seules transitions non négligeables possibles à partir de n sont soient celles
vers n+ 1 ou vers n− 1 → Processus de saut.

• Pour les taux de transition dans un graphe de Markov, les arcs vers la droite
représentent les taux de naissance, et ceux vers la gauche les taux de mort.

• La naissance : l’apparition d’individus au sein d’une population suivant une
certaine loi de probabilité.

• Dans le cas de mort : quand l’état est 0, on ne parle pas de mort.

Dans le graphe markovien de processus de naissance et de mort :

• L’état présente l’effectif de population (de 0 à l’infinie)

• S’il y a une naissance on passe à l’état suivant

• S’il y a une mort on revient sur l’état précédent

• S’il n’y a ni naissance ni mort, on reste sur l’état actuel, avec une probabilité
négligeable.
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2.3 Les files d’Attente Markoviennes (F.A.M)

Les files d’attente peuvent être considérées comme un phénomène caractéristique de
la vie contemporaine. On les rencontre dans les domaines d’activité les plus divers:
(guichet de poste, trafic routier, central téléphonique, atelier de réparation,...).

L’étude mathématique des phénomènes d’attente constitue un champ d’application
important des processus stochastiques.

On parle de phénomène d’attente chaque fois que certaines unités appelées “clients”
se présentent d’une manière aléatoire à des “stations” afin de recevoir un service dont
la durée est généralement aléatoire.

Si un poste de service est libre, le client qui arrive se dirige immédiatement vers
ce poste où il est servi, sinon, il prend sa place dans une queue d’attente dans
laquelle les clients se rangent suivant leur ordre d’arrivée.

Un système de file d’attente comprend (Figure 2.1):

• Un espace de service avec une ou plusieurs stations de service montées en
parallèle,

• Un espace d’attente dans lequel se forme une éventuelle file d’attente.

Figure 2.1: Un système de file d’attente

2.3.1 Les caractéristiques d’une F.A.M

Une file d’attente est décrite par plusieurs éléments:

1. Les instants d’arrivée des clients: sont en général aléatoires. Certaines hypo-
thèses sur leurs lois :

• Il n’arrive qu’un client à la fois.
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• Les temps d’inter-arrivée sont des variables aléatoires indépendantes et
de même loi. Cette hypothèse simplifie notablement l’étude de système.

• La loi la plus utilisée pour ce temps c’est « la loi exponentielle ». Dans ce
cas, le modèle d’arrivée des clients est un processus de Poisson (évidement
d’autres lois peuvent se présenter).

2. Les durées de service sont supposées être des variables aléatoires de même loi
(ex. loi exponentielle) et indépendante du processus d’arrivée.

3. Le nombre de serveurs : est évidemment un paramètre important du modèle.

4. La longueur max de la file d’attente : c’est logique de supposer dans certains
cas que la file d’attente puisse être d’une longueur infinie, aussi longue que
l’on veut. Cependant dans d’autres cas, la longueur est limitée et lorsque
cette limite est atteinte, un client arrivant ne peut entrer dans la file, donc il
repart.

5. La discipline de service : le plus souvent les clients sont servis dans leur or-
dre d’arrivée, ce qu’on appelle la discipline FIFO (First In First Out). Mais
d’autres disciplines pourraient être utilisées comme par exemple, servir en pri-
orité certains types de clients, ceux demandant un service de courte durée.

2.3.2 Classification des systèmes d’attente

Pour la classification des systèmes d’attente, on recourt à une “notation symbolique”
dite notation de Kendall, comprenant en général les 4 symboles : A/ S/ s/ K

La signification de ces symboles :

Loi d’interarrivée / Loi de service / nombre de serveurs / Longueur maximale de la
file

• Les lois d’interarrivées et les lois de services sont notées symboliquement :

– M pour une loi exponentielle (M pour Markov),

– D pour une loi déterministe (v.a. constante),

– U pour une loi uniforme,

– G pour une loi quelconque (G pour générale).

• s : c’est le nombre de serveurs (puisque la station peut disposer de plusieurs
serveurs en parallèles). Quand un client arrive à la station et il y a un serveur

6



libre, il entre instantanément en service, sinon, si tous les serveurs sont occupés,
le client se place dans la file en attente de la libération d’un serveur. La plupart
du temps les serveurs sont supposés identiques avec la même distribution et
indépendants les uns des autres.

• K : c’est la capacité de système de file d’attente incluant le ou les clients en
service.

Par exemple, une file M/M/s/∞ signifie que :

• le flot d’arrivée des clients est poissonnien,

• la loi de temps de services est exponentielle,

• il y a « s » serveurs

• et la capacité de la salle d’attente est illimitée.
PS: Lorsqu’on ne spécifie pas le dernier paramètre celui-ci est infini.

• Sauf avis contraire la discipline de service est FIFO.

2.3.3 Analyse mathématique

L’étude mathématique d’un système d’attente se fait le plus souvent par l’introduction
d’un processus stochastique approprié (Xt) t ≥ 0

Tel que: Xt est une v.a. qui présente le nombre de clients se trouvant dans le
système au temps t.

Pour cela, on se ramènera généralement à un processus de Markov dont on déter-
minera le graphe des taux de transition. Pour déterminer la distribution station-
naire, on écrira, en chaque point du graphe, les équations de balance (“taux entrant
égal au taux sortant”) et

∑∞
i=0 pi = 1.

Le régime stationnaire du processus est défini par :

• pn = P (X = n), tel que : pn est la probabilité d’être dans l’état n (i.e. d’avoir
un nombre de client égal à n).

• Xt admet une mesure stationnaire si et seulement si le paramètre λ du pro-
cessus de Poisson des Arrivées est strictement inférieur au paramètre µ de la
loi exponentielle des services. (λ < µ)
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• La file d’attente se stabilise s’il n’arrive pas trop de clients pour saturer l’offre
de service,

2.3.4 Caractéristiques d’exploitation du système

A partir de la distribution stationnaire du processus (Xt) t ≥ 0, on pourra obtenir
d’autres caractéristiques d’exploitation du système telles que :

• Le nombre moyen L de clients dans le système;

• Le nombre moyen Lq de clients dans la queue d’attente ;

• La durée d’attente moyenne Wq d’un client ;

• La durée de séjour moyenne W dans le système (attente + service) ;

2.4 Étude de cas M/M/1

Considérant un guichet ou un serveur où:

• Les arrivées des clients à ce guichet suivent un processus de Poisson d’intensité
λ.

• Le temps de service pour chaque client est une v.a. de loi exponentielle de
paramètre µ. Toutes les v.a. qui interviennent sont supposées être indépend-
antes.

• Les clients se mettent en file d’attente et sont servis selon leur ordre d’arrivée
(discipline FIFO).

• La capacité de la file d’attente est illimitée.

C’est un processus de sauts à valeurs dans N . Quand un client arrive, le processus
saute de +1 et quand un client s’en va à la fin de son service, le processus saute de
−1.

→ L’espace d’états E est infini: E = {0, 1, 2, ...}.

La file peut être considérée comme un processus de naissance et de mort, pour
lequel :

λn = λ
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µn =

µ si n ̸= 0

0 si n = 0

Tous les paramètres de performances sont calculés dans le cas où la file est stable
(λ < µ, i.e. u < 1)

→ pour le régime stationnaire de la file.

2.5 Étude de cas M/M/S

Ce système comporte s serveurs indépendants. On conserve les hypothèses :

• processus d’arrivée des clients poissonien de taux λ

• et temps de service exponentiel de taux µ (pour chacun des serveurs).

• L’espace d’états E est, comme pour la M/M/1 infini: E = {0, 1, 2, ...}.

On a un processus de naissance et de mort de taux :

λn = λ

µn =


0 si n = 0

nµ si 0 < n < S

Sµ si n ≥ S

La condition de stabilité est ici λ < Sµ et exprime le fait que le nombre moyen de
clients qui arrivent à la file par unité de temps doit être inférieur au nombre moyen
de clients que les serveurs de la file sont capables de traiter par unité de temps.
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Utilisation des files d’attente Markoviennes pour l’évaluation
des systèmes informatiques

3 Évaluation d’un Réseau cellulaire avec blocage

3.1 Concept cellulaire

Un système de radiotéléphonie utilise une liaison radioélectrique entre le ter-
minal portatif (mobile station MS) et le réseau téléphonique. La liaison radio
entre le téléphone mobile et le réseau doit être de qualité suffisante, ce qui nécessite
la mise en place d’un ensemble de stations de base (BTS) sur l’ensemble du ter-
ritoire que l’on souhaite couvrir, de telle sorte que le terminal soit toujours à moins
de quelques kilomètres de l’une d’entre elles.

• Le principe consiste à diviser une région en un certain nombre de cellules
desservies par un relais radioélectrique (la station de base BS).

• Ces cellules doivent être contiguës sur la surface couverte.

• L’hexagone est la forme régulière qui ressemble le plus au cercle et que l’on
peut juxtaposer sans laisser de zones vides (Figure 3.1).

Figure 3.1: La forme des cellules

• Toutefois, la réalité du terrain est bien différente de ce modèle théorique, not-
amment en zone urbaine où de nombreux obstacles empêchent une propagation
linéaire (Figure 3.2).

3.2 Problématique du système

• L’une des métriques d’évaluation importantes dans un réseau cellulaire est :
la probabilité de blocage
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Figure 3.2: Un réseau cellulaire dans une zone urbaine et une zone rurale

• Le réseau bloque les appels parce que le nombre de canaux est limité.

• Considérant un système cellulaire avec une seule station de base qui sert les
appels téléphoniques entrants et sortants (Figure 3.3).

• Il y a un nombre limité de canaux sans fils servant ces appels téléphoniques
pour une cellule (ex. 6 canaux dans Figure 3.4).

Figure 3.3: Une cellule avec un nombre spécifique d’utilisateurs

• Un canal peut être utilisé par un seul appel à la fois (ex. pour effectuer/recevoir
un appel)

• Si tous les canaux sont entrain d’être utilisés, lors d’un nouvel appel, l’utilisateur
reçoit un signal occupé et donc il doit essayer de se connecter ultérieurement.

• Une fois la connexion établie, le canal n’est plus accessible aux autres util-
isateurs jusqu’à ce que l’utilisateur actuel mette fin à la connexion en rac-
crochant.

• La société de ce système cellulaire a pour politique de contrôler la probabilité
de blocage en dessous de 1%.
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• Cependant, une enquête initiale sur le système révèle que les clients des zones
ont connu un blocage d’appels plus fréquent que ce seuil. Il s’avère que la
population de la région n’a cessé d’augmenter.

Figure 3.4: Un système cellulaire avec deux appels téléphoniques en cours.

3.3 L’objectif de l’étude

• L’objectif de l’étude de ce système est de réduire la probabilité de blocage.

• Afin d’atteindre cet objectif, on décide de réduire la taille des cellules dans la
zone pour réduire la probabilité de blocage.

• Avec une taille de cellule plus petite, la probabilité de blocage diminue à mesure
que le taux d’appels entrants est réduit.

• Mais comment sélectionner le rayon de cellule réduit? Pour répondre à la
question, on développe un modèle analytique de ce système.

3.4 Modélisation

Quels sont les facteurs importants qui affectent la probabilité de blocage ?

• Le taux d’arrivée des appels,

• La durée moyenne des appels,

• Le nombre de canaux disponibles.

Nous pouvons collecter les informations sur ces facteurs à partir de données his-
toriques.
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3.4.1 L’étude de système

L’étude de système peut se faire par simulation ou par un modèle analytique.
Afin de développer un modèle analytique de nombreuses hypothèses simplificatrices
sont nécessaires.

3.4.2 Hypothèses

Nous faisons les hypothèses suivantes:

• La durée d’une conversation téléphonique est distribuée de façon exponentielle
avec une moyenne de 1/µ. (loi exponentielle de paramètre µ)

• Le temps entre les appels téléphoniques entrant au système est distribué de
façon exponentielle avec une moyenne de 1/λ, même lorsque tous les canaux
sont occupés. (loi de poisson de paramètre λ)

3.4.3 Chaine de Markov à temps continu (CTMC)

Les hypothèses présentées sont essentielles pour développer un modèle CTMC.

• La valeur moyenne des durées d’appel peut être obtenue à partir de données
historiques et nous supposons en outre que les durées d’appel sont distribuées
de façon exponentielle pour créer un modèle CTMC.

• La deuxième hypothèse est une autre façon de dire que les arrivées d’appels
forment un processus de Poisson de taux λ.

États
Un modèle CTMC est déterminé par l’ensemble d’états E et les taux de transitions.
Dans le modèle du système cellulaire (Figure 3.5), l’espace d’état est:

E = 0, 1, 2, ..., K − 1, K

Tel que K est le nombre de canaux disponibles dans la cellule.
L’état X(t) représente le nombre de canaux occupés au temps t (le nombre d’appels
téléphoniques en cours) et X(t) ∈ E.

Taux de transition
L’état change à l’arrivée d’un nouvel appel et à la fin d’un appel, ce qui correspond
à un processus de naissance et de mort.
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Figure 3.5: Modèle de Markov de réseau cellulaire

3.4.4 Solutions

Les équations de balance pour certains états sont comme suit :

π0.λ = π1.µ

πi(λ+ iµ) = πi−1.λ+ πi+1(i+ 1)µ i = 1, 2, ..., K − 1

πK .Kµ = πK−1.λ

Tel que: πi = Pi est la probabilité d’être sur l’état i

Ces équations donnent:

πiλ = πi+1.(i+ 1)µ i = 1, 2, ..., K − 1

A partir des équations de balance et de théorème:
∑

i πi = 1, nous aurons la
solution suivante :

π0 =

[
K∑
i=0

ρi

i!

]−1

πi = π0
ρi

i!
, 1 ≤ i ≤ K

Tel que: ρ = λ
µ

est le taux d’utilisation de la cellule (appelé aussi u)

La probabilité de blocage du système cellulaire est πk ou Pk

En effet, la probabilité qu’un appel arrive lorsque tous les cannaux sont occupés
est la probabilité πK .

Pk = P0 ×
uk

k!
(Formule d′Erlang)

3.4.5 Graphe

• La figure 3.6 montre la probabilité de blocage πk du système cellulaire lorsque
le nombre K de canaux est de 20.
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• Nous supposons que le taux d’arrivée par kilomètre carré est de deux appels
par heure et donc le taux d’arrivée par cellule λ = 3, 14× r2 × 2 appels.

• L’axe X correspond au rayon de la cellule et l’axe Y à la probabilité de
blocage.

• La ligne continue avec une coche carrée provient de la formule d’Erlang
(qu’on a extrait des équations de balances) et la ligne pointillée avec une
coche circulaire provient de la simulation.

Figure 3.6: Probabilité de blocage avec différents rayons de cellule

3.4.6 Observations

• Nous pouvons observer que la probabilité de blocage est presque nulle lorsque
le rayon de la cellule est inférieur à 4 Km et qu’elle atteint 9% lorsque le rayon
de la cellule devient 5, 5 Km.

• Nous pouvons conclure que la taille de la cellule est inférieure à 5 Km pour
satisfaire le seuil de probabilité de blocage du modèle (1% ou 0, 01).
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4 Évaluation d’un simple système de transmission

4.1 Description du système

Considérant un réseau de campus qui a un groupe de réseaux locaux (LAN) et un
routeur d’accès comme passerelle vers internet (Figure 4.1).

Figure 4.1: Un simple système de transmission

• Les étudiants commencent à remarquer une lenteur du réseau de connexion,
alors, le gestionnaire de réseau décide d’étudier le problème de perform-
ances et constate que le routeur d’accès est un goulot d’étranglement potentiel.

• Pour résoudre le problème, le gestionnaire de réseau n’est pas sûr de remplacer
ou de mettre à niveau le routeur.

• Dans les deux cas, le gestionnaire doit déterminer les caractéristiques de
routeur.

• Pour étudier ces questions, le gestionnaire décide de développer un modèle
de performance pour évaluer les différentes options.

4.2 Modélisation du système

On décide de simplifier le modèle en se concentrant sur les aspects clés :

• Étant donné que les réseaux locaux ne sont pas des goulots d’étranglement,
on se concentre sur le routeur comme indiqué dans la figure précédente.

• On ignore la complexité des réseaux locaux et on modélise le trafic total qu’ils
génèrent pour le routeur.

On étudie les données historiques et identifie les modèles de trafic d’entrée tels que:
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• le nombre de paquets.

• également le CPU et la mémoire du routeur.

On sait déjà qu’on peut étudier ce système soit par simulation informatique, soit
par un modèle mathématique. On opte pour un modèle mathématique car le
système n’est pas excessivement complexe :

• Un modèle de chaîne de Markov peut fournir une compréhension détaillée
des performances du routeur.

• La question maintenant est de savoir s’il faut utiliser un DTMC (Markov à
temps discret) ou CTMC (Markov à temps continu): avec des slots d’intervalles
de temps généralement fixes on décide d’utiliser un modèle à temps discret.

4.2.1 États

Dans le DTMC, on doit définir l’état Xn à l’instant n.
→ Que devrait être l’état ? que devrait signifier le temps n ?

Comme on s’intéresse par les performances du routeur d’accès, pour observer le
comportement de l’occupation du buffer et celui du CPU, on définit l’état Xn

par le nombre de paquets dans le système au temps n

Xn ∈ E = {0, 1, 2, 3, ..., N1, N}

Ici, n est l’intervalle de temps suffisamment long pour transmettre un paquet (dit
slot) et N est la taille du buffer (en nombre de paquets).

4.2.2 Données historiques

Après avoir étudié les données historiques, on découvre que :

• Les paquets arrivent au routeur avec une probabilité α dans l’intervalle de
temps n, indépendamment de toute autre chose.

• Le paquet qui arrive à l’intervalle de temps n est disponible pour être transféré
dans l’intervalle de temps suivant n+ 1.
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• Le CPU du routeur est impliqué dans de nombreuses tâches différentes et
alloue seulement une fraction β de ses cycles à la tâche de transmission de
paquets. En conséquence, le routeur est capable de transmettre un paquet
avec une probabilité β dans un emplacement donné.

• Avec une probabilité de (1− β), le CPU effectue une tâche différente.

• On simplifie ainsi le système en supposant que les arrivées et les départs sont
indépendants.

4.2.3 Probabilités de transition

• À partir de cette compréhension des arrivées et du comportement du routeur,
on peut spécifier les probabilités de transition.

• Notant que les transitions d’état se produisent suite à l’arrivée/départ d’un
paquet :

– Lorsqu’un paquet arrive à l’instant n, l’occupation du buffer Xn augmente
ou reste la même selon si le départ a lieu ou non.

– S’il y a un départ dans le même slot, alors Xn+1 = Xn; sinon Xn+1 =

Xn + 1

• De même, s’il n’y a pas d’arrivée dans l’intervalle de temps n, Xn reste le
même ou diminue d’une unité, selon si le départ a lieu ou non.

• Ainsi, la matrice de probabilités de transition P est la suivante:

P (i, j) =



C1 = α(1− β), j = i+ 1, i = 1, 2, ...;

C2 = (1− α)β, j = i− 1, i = 1, 2, ...;

C3 = αβ + (1− α)(1− β), j = i, i = 1, 2, ...;

α, i = 0, j = 1;

(1− α), i = 0, j = 0;

0, sinon

4.2.4 Solution du modèle

Les équations de balance de ce modèle de Markov sont comme suit:

p0α = p1C2

p1 = p0α + p1C3 + p2C2
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pn = pn−1C1 + pnC3 + pn+1C2 pour n ≥ 2

A partir de ces équations et de théorème
∑

pn = 1 , on constate que pn est donnée
par:

pn =
αCn−1

1

Cn
2

p0

p0 =

(
1 +

N∑
n=1

αCn−1
1

Cn
2

)−1

• À partir de la modélisation faite, le nombre moyen de paquets dans le système
(backlog) E[X] (ou L) peut être calculé comme suit:

E[X] =
N∑

n=1

n× pn

• Le backlog moyen est tracé sur la figure 4.2 pour différentes valeurs de α et β.

• L’axe des x correspond à la valeur de α et l’axe des y correspond au backlog
moyen.

• Les trois lignes de gauche à droite correspondent aux différentes probabilités
de transmission β = 0.3, 0.6 et 0.9 respectivement.

Figure 4.2: le backlog moyen en fonction de la probabilité avec différentes valeurs
de β = 0.3, 0.6, 0.9.

4.2.5 Observations

• Selon le graphe, on note que lorsque la probabilité d’arrivée approche de β,
l’occupation moyenne du buffer augmente rapidement.

• On peut calculer le retard moyen W à partir du backlog moyen L en utilisant
la formule de Little : L = αW .
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5 Évaluation d’un protocole d’accès aléatoire: Aloha

5.1 Présentation de protocole Aloha

ALOHA était un système de réseau sans fil novateur développé à l’Université
de Hawaï au début des années 1970. Afin de permettre la communication entre
les campus séparés de l’Université, le professeur Abramson a développé le réseau à
commutation de paquets avec le premier schéma à accès multiple.

Comme plusieurs émetteurs partagent un seul canal de communication:

• Si deux nœuds ou plus transmettent simultanément, les transmissions échouent.

• Si aucun nœud ne transmet, le canal n’est pas utilisé. (la différence avec le
cours précédent c’est qu’ici la communication est sans fil)

Le défi du protocole d’accès multiple est de coordonner plusieurs émetteurs pour
atteindre l’efficacité et l’équité d’accès.

5.2 Description du système

Il existe deux versions du protocole ALOHA: pur et slotté (de l’anglais slotted).

• Dans le protocole ALOHA pur: chaque émetteur peut transmettre des
paquets à tout moment

• Dans slotted Aloha : la transmission des paquets est limitée au début des
slots de temps (intervalles de temps)

Le slotted Aloha est plus synchronisé que le protocole pur et il est connu que
cette restriction améliore le débit (d’un facteur de deux) par rapport au protocole
ALOHA pur en réduisant le nombre de collisions.

• Le débit c’est la vitesse avec laquelle les paquets sont transmis, ex: nombre de
bits par seconde.

• On parle de collision, quand deux émetteurs (ou plus) essaient de transmettre
des paquets au même temps (plus précisément : dans le même slot de temps) et
puisque dans ce cas il y a un seul canal : ces deux transmissions vont échouer.
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5.3 Fonctionnement

Le protocole d’accès multiple slotted ALOHA fonctionne comme suit:

• Lorsqu’un paquet arrive sur un nœud unbacklogged 1, le nœud transmet
simplement le paquet dans le début du slot après l’arrivée

– risquant ainsi des collisions mais réalisant de très petits retards si les
collisions sont rares.

• Lorsqu’une collision se produit, chaque nœud envoyant l’un des paquets entrant
en collision découvre la collision quand ’il ne reçoit pas d’accusé de réception

– Donc ce paquet devient backlogged 2

REtransmission des paquets backlogged :

• Le nœud backlogged attend un nombre aléatoire de slots de temps (un délai
aléatoire ) pour retransmettre le paquet.

• Si les autres nœuds backlogged devaient réessayer la transmission dans le slot
suivant (le même slot que le premier nœud) → une autre collision serait in-
évitable.

• Un délai aléatoire est inclus dans le protocole pour éviter les collisions répétit-
ives.

5.4 Définitions

5.4.1 Pure Aloha

• Le client envoie son message à n’importe quel moment sur le canal sans se
soucier de savoir si celui-ci est déjà occupé à transmettre ou non (Figure 5.1).

• Si l’émetteur ne reçoit pas d’acquittement pour sa transmission durant un
intervalle de temps donné, il réémet celui ci de la même manière.

1Un noeud qui ne contient pas un paquet backlogged
2Un paquet dont sa transmission a échoué et il est en attente d’être retransmis
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Figure 5.1: Pure Aloha

5.4.2 Slotted Aloha

• Ce protocole améliore le pur Aloha, en divisant le temps sur des « slots » de
durée 577µs. Tous les émetteurs sont synchronisés sur cette division de temps
(même horloge) : chaque nœud sait exactement lorsqu’un slot commence.

• Deux paquets entrent en collision s’ils sont prêts à être émis dans le même slot
(Figure 5.2).

Figure 5.2: Slotted Aloha

5.5 Modélisation du Slotted Aloha par Chaine de Markov

5.5.1 Modélisation du système

• Le protocole Aloha est une formalisation de l’accès aléatoire (Random access)
que l’on rencontre dans de nombreux systèmes de communication.

• Pour mieux comprendre les performances de protocole slotted Aloha, on
développe un modèle de chaine de Markov.
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• Comme le temps est une séquence de slots dans slotted ALOHA, c’est logique
de considérer un modèle de chaine de Markov à temps discret.

5.5.2 Évènements

Les événements possibles qui modifient le nombre de nœuds backlogged sont:

(1) les arrivées de paquets vers des nœuds unbacklogged

(si un paquet arrive à un nœud unbacklogged celui-ci devient backlogged si
sa première transmission est ratée)

(2) Une transmission réussie et

(3) Une transmission ratée.

5.5.3 Hypothèses

• Il y a N nœuds dans le système; soit n le nombre de nœuds backlogged au
début d’un slot donné.

• Chaque nœud backlogged transmet un paquet avec une probabilité p, indépen-
damment des autres nœuds.

• Chacun des nœuds (N − n) unbacklogged transmet un paquet qui est arrivé
dans le slot précédent.

• Les paquets arrivent au système selon un processus de poisson avec un taux λ

dans un slot.

• Étant donné que le nombre de ces arrivées dans une unité de temps est distribué
par un processus de Poisson :

– La probabilité qu’aucun paquet n’arrive est : e−λ

– Ainsi, la probabilité qu’un nœud unbacklogged transmet son paquet dans
un slot donnée est : q = 1 − e−λ (s’il y a un paquet arrivant à un nœud
unbacklogged, il sera transmis certainement)
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5.5.4 États

Soit Xt le nombre de nœuds backlogged dans le système au début de slot de temps
t. Alors, l’espace d’états E du système est :

E = 0, 1, 2, ..., N

Où N est le nombre de nœuds dans le système.

Une transmission réussie peut se produire si il y a :

• Un paquet arrivant aux nœuds unbacklogged (une seule transmission) et
aucune tentative de transmission des nœuds backlogged ou

• Aucun paquet arrivant aux nœuds unbacklogged et une seule tentative
de transmission des nœuds backlogged.

5.5.5 Probabilités de transition

• Soit ru(i, n) la probabilité que i nœuds unbacklogged transmettent des paquets
dans un slot donné.

• De même, soit rb(i, n) la probabilité que i nœuds backlogged transmettent des
paquets dans un slot donné.

• Avec ces notations, et pour tout état n (1 < n < N − 1) la probabilité de
transition peut être écrite comme suit:

Pn,n+1 =


ru(0, n)rb(1, n), i = −1;

ru(1, n)rb(0, n) + ru(0, n)[1− rb(1, n)], i = 0;

ru(1, n)[1− rb(0, n)], i = 1;

ru(i, n), 2 ≤ i ≤ N − n

De l’état n à n− 1:

L’état n passe à n− 1 si un seul nœud backlogged transmet un paquet et qu’aucun
nœud unbacklogged fait une transmission.

De l’état n à n:

L’état n reste le même:
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(1) lorsqu’il y a une tentative de transmission des nœuds unbacklogged et zéro
tentative des nœuds backlogged ou

(2) lorsqu’il n’y a aucune tentative de transmission des nœuds unbacklogged et
(zéro tentative des nœuds backlogged ou une collision des nœuds backlogged).

De l’état n à n+ 1:

n passe à n + 1 lorsqu’une tentative des nœuds unbacklogged entre en collision
avec des tentatives des nœuds backlogged.

De l’état n à (n+ 2, n+ 3, ...n+N − n):

L’état augmente de i (≥ 2) lorsqu’il y a i tentatives à partir des nœuds unback-
logged, indépendamment des nœuds backlogged.

5.6 Les Performances d’Aloha par Analyse Heuristique

5.6.1 Analyse heuristique

Il est connu que l’efficacité du protocole slotted ALOHA est de 36% sous certaines
hypothèses idéalisées. Cela signifie que sur 100 slots de temps, seuls 36 emplacements
peuvent être utilisés pour la transmission de données et que les 64 emplacements
restants sont gaspillés. Le gaspillage provient des collisions.
Pour comprendre l’efficacité de 36%, dans cette deuxième partie de cours, nous
évaluons les performances de protocole Aloha de ses deux types : Pure et Slotted,
en se basant sur une analyse heuristique.

5.6.2 Offered channel traffic

On considère un ensemble de sources de trafic générant λ paquets par secondes et
Tp la durée moyenne d’un paquet en secondes.
On introduit alors le trafic normalisé (ou offered channel traffic) :

G = λ× Tp

G représente ainsi le nombre moyen de tentatives de transmission de paquets
pendant la durée d’un paquet (dans un slot de temps).
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5.6.3 Nombre de paquets générés

On considère alors que la probabilité que k paquets soient générés pendant la
durée d’un paquet suit une distribution de Poisson et s’écrit :

Pr(k) =
Gke−G

k!

5.6.4 Probabilité de succès : Pure ALoha

Si on identifie alors un paquet particulier on peut dire que la transmission sera
effectuée avec succès si :

• Aucun paquet n’a été émis dans une "fenêtre temporelle" (slot de temps) de
Tp avant l’émission de ce paquet identifié

• et que ce dernier a été le seul a être émis durant son temps d’émission Tp

(Figure 5.3).

Figure 5.3: Occupation des slots

La probabilité de succès que l’on note S s’écrit donc:

S = Pr[X = 0]× Pr[X = 1] =⇒ S = G.e−2G

Cette probabilité est la probabilité qu’un paquet soit émis et qu’il passe (soit trans-
mis), c’est donc aussi le nombre moyen de paquets qui passent avec succès durant
un slot et bien entendu ce nombre ne peut pas être plus grand que 1.

- Débit effectif :
Pour remonter au débit effectif en bits/sec, il faut regarder la taille du paquet en
nombre de bits Np et on obtient alors :

Débit =
(
Np

Tp

)
Ge−2G
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5.6.5 Probabilité de succès : Slotted ALoha

Si on se place dans le cadre d’un système de communications utilisant une structure
de trame temporelle avec des times slots définis, on parle alors de Slotted ALOHA
La probabilité de transmission avec succès est alors simplement égale à la probabilité
d’émettre un paquet pendant un slot. On a alors :

S = Pr[k = 1] =⇒ S = Ge−G

5.6.6 Points d’efficacité maximale

En fonction de G, on obtient les points d’efficacité maximale:

- Pour le pure ALOHA:

• Gmax = 0.5 paquet émis par temps paquet

• Smax = 0.18 paquet émis et passé par temps paquet (en utilisant la formule
de S)

- Pour le Slotted ALOHA:

• Gmax = 1 paquet émis par temps paquet

• Smax = 0.36 paquet émis et passé par temps paquet

Les courbes de S = f(G) pour l’ALOHA et le Slotted ALOHA sont représentées sur
la Figure 5.4.

Figure 5.4: Pure Aloha vs Slotted Aloha
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6 Évaluation d’un Réseau Wi-Fi – CSMA/CA

6.1 Description du système

• Un groupe d’appareils Wi-Fi utilisent le protocole CSMA/CA (Carrier Sense
Multiple Access with Collision Avoidance) pour partager un canal radio.

• C’est un protocole d’accès multiple avec écoute de canal et évitement de col-
lision.

• Un appareil qui souhaite transmettre des données doit d’abord écouter le canal
pour un temps prédéterminé pour vérifier si un autre nœud est en transmission
sur le canal. Si le canal est détecté "libre", le nœud est autorisé à entamer le
processus de transmission. Si le canal est ressenti «occupé», le nœud reporte
sa transmission (back off) pour une période de temps aléatoire.

• L’appareil avec le temps d’attente aléatoire le plus court retransmet son paquet.

• Si deux émetteurs sont suffisamment proches (dans la même portée radio),
ils ne peuvent pas émettre simultanément sous le protocole CSMA / CA car
l’appareil ressent que le canal radio est occupé quand l’autre transmet.

• Nous nous intéressons au débit normalisé des émetteurs du réseau Wi-Fi et
donc le débit normalisé des liens entre chaque source et son destinataire.

• Ce cours présente l’évaluation des performances de ce système dans l’objectif
de pouvoir calculer à la fin le débit normalisé de chaque lien de réseau.

Figure 6.1: Exemple de deux domaines de collision

• Dans le modèle de domaine de collision multiple, un lien1 n’interfère pas avec
1Un lien sans-fil (a wireless link): présente une transmission sans fil entre un nœud source

(émetteur) et un nœud de destination (récepteur).
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tous les liens mais avec certains d’eux. Dans la Figure 6.1(b), le lien C interfère
avec le lien D, mais pas avec le lien E.

• Dans Figure 6.1, les liens A et B ne peuvent pas être utilisés simultanément
car ils sont voisins les uns des autres. Cependant, les liens C et E peuvent
être utilisés simultanément.

6.2 Graphe de conflit

• Le modèle de Markov de CSMA utilise un modèle d’interférence appelé graphe
de conflit.

• Les sommets de ce graphe sont les liens du réseau et ses arêtes connectent
les liens interférents.

• Les liens interférents sont les liens qui ne peuvent pas transmettre simul-
tanément.

• La Figure 6.2 montre les graphes de conflit qui correspondent aux deux réseaux
de la Figure 6.1.

• Par exemple, le graphe de la Figure 6.2 (b) montre que les liens C et D sont
en conflit, tout comme les liens D et E. Ce graphe indique également que les
liens C et E ne sont pas en conflit puisqu’ils ne sont pas connectés par une
arête dans ce graphe.

Figure 6.2: Graphe de conflit: le sommet dans ce graphe correspond à un lien dans
le réseau; une arête dans ce graphe représente une relation d’interférence entre deux
liens du réseau.

6.3 Les Performances du système par Modélisation de Markov

6.3.1 Hypothèses

• Chaque lien a des temps d’attente distribués selon une loi exponentielle;
PS: quand on parle de temps d’attente d’un lien on signifie ainsi le temps
d’inter-arrivée des données à transmettre sur ce lien.
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• Les temps de transmission de donnée sont distribués selon une loi exponenti-
elle;

• Les conflits entre les liens sont capturés par un graphe de conflit.

• La distribution exponentielle dans les deux premières hypothèses est nécessaire
pour modéliser les activités des liens par un CTMC.

• Avec ces hypothèses, nous définissons un CTMC dans la suite de ce cours.

6.3.2 Espace d’états

• Le modèle de Markov de ce système présente l’état des liens L dans le réseau.

• Soit xl(t) état de lien l au temps, qui peut être soit actif (occupé, transmission
en cours) soit inactif (libre).

• Quand le lien est libre xl(t) = 0; sinon, xl(t) = 1

• Soit X(t) = [xl(t), l ∈ L] le vecteur des états de tous les liens du réseaux et E
l’ensemble des états possibles de X(t).

• En raison de conflits entre les liens, E a un nombre d’éléments inférieur à 2k

où k est le nombre de liens du réseau.

• Considérant le réseau de la Figure 6.1 (a): Puisque les liens A et B interfèrent
l’un avec l’autre, l’état (1, 1) n’est pas possible.

• Pour cet exemple de réseau, L’espace d’états est : E = {(0, 0), (1, 0), (0, 1)}

• De même, pour le réseau de la Figure 6.1 (b), l’espace d’états est: E =

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}

6.3.3 Transitions

Dans le modèle de Markov de ce système, il existe deux types de transitions:

• le début de transmission

• et la fin d’une transmission.

Ttr est le temps de transmission de données et Tcd est le temps de countdown, d’inter-
arrivée des données à transmettre et le temps d’attente avant de transmettre.
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• λ = 1
E[Tcd]

tel que: E[Tcd] la durée moyenne d’inter-arrivée.

• µ = 1
E[Ttr]

tel que E[Ttr] est la durée moyenne de transmission.

Alors, pour tous deux états connectés, la transition de l’état gauche à l’état droit se
produit avec le taux λ la transition de l’état droit à l’état gauche avec le taux µ.

Figure 6.3: Modèle de Markov de transition d’états pour les réseaux de Figure 6.1

La Figure 6.3 montre le modèle de transition d’états du modèle de Markov
CSMA pour les deux réseaux illustrés dans la Figure 6.1. Dans le modèle de gauche,
il n’y a que trois états (0, 0), (1, 0), (0, 1), car les deux liens sont en conflit.

• L’état (0, 0) passe à l’état (1, 0) avec le taux λ et de (1, 0) à (0, 0) avec le
taux µ.

Le modèle de droite correspond au réseau à trois liens de la Figure 6.1.

• Dans ce modèle, nous ne montrons pas les taux de transition, par souci de
simplicité.

Figure 6.4: Le graphe de conflit d’un réseau et son modèle de Markov correspondant
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Figure 6.4 présente un graphe de conflit d’un réseau (à gauche) et son modèle de
transition d’états (à droite). Par exemple, le passage de 1000 à 1010 est dû au début
d’une transmission sur le lien 3 pendant que le lien 1 est en transmission; tandis que
la transition inverse de 1010 à 1000 est due à la fin d’une transmission sur le lien 3
tandis que la transmission de lien 1 se poursuit.

6.3.4 Calcul du débit normalisé (Normalized throuhput)

• Ps est la probabilité que le réseau soit dans l’état s (appelée aussi la fraction
de temps pendant laquelle le réseau est dans l’état s).

• s est un vecteur qui présente l’état de tout lien dans le réseau (1 si occupé, 0
si libre).

– s = s1s2s3...sL

– L est le nombre total de liens dans le réseau

– s3 vaut 1 si le lien 3 est occupé ou 0 si le lien 3 est libre.

• Par exemple: dans la figure 6.4, l’état s = (0, 0, 0, 1) signifie que tous les liens
1, 2, 3 sont libres et le lien 4 est occupé (en transmission).

– Ps = Ps1s2s3...sL

• Le débit normalisé d’un lien présente l’utilisation de ce lien (occupé, en
transmission)

• Le débit normalisé de lien i est:

xi =
∑
s:si=1

Ps (1)

– C’est la somme des probabilités de tous les états s où si = 1, autrement
dit, de tous les états s où le lien i est occupé.

– Par exemple: dans le réseau de la Figure 6.4, le débit de lien 3 est :

x3 = P0010 + P1010

• Une observation dit que tous les états avec le même nombre de liens occupés
(c’est-à-dire les états dans la même colonne dans le modèle de Markov) ont la
même probabilité.

• Par exemple: dans la Figure 6.4, P1010 = P1001 (les états de la troisième colonne
de modèle)
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• Pour pouvoir calculer Ps, il faut appliquer les équations de balance sur le
modèle de Markov de réseau. La formule de Ps à la fin, doit être présentée en
fonction de λ et µ.

6.3.5 Solution: Exemple de Figure 6.4

• Probabilités de transition

En appliquant les équations de balance sur le modèle de Markov de la Figure
6.4, on obtient:

P0000 =

(
1 + 4

λ

µ
+ 2

(
λ

µ

)2
)−1

P1000 = P0100 = P0010 = P0001 =

(
µ

λ
+ 4 + 2

λ

µ

)−1

P1010 = P1001 =

((µ
λ

)2
+ 4

µ

λ
+ 2

)−1

• Le Débit Normalisé de chaque lien

En appliquant la formule 1 sur le modèle de Markov de la Figure 6.4, on
obtient:

x1 = P1000 = P1010 = P1001 =
(

µ
λ
+ 4 + 2λ

µ

)−1

+ 2
((

µ
λ

)2
+ 4µ

λ
+ 2
)−1

x2 = P0100

x3 = P0010 + P1010

x4 = P0001 + P1001

6.4 Les Performances du système par Analyse heuristique

6.4.1 Méthode de BoE (Back of the Envelope)

Le concept de la méthode BoE est que pour de nombreux états de réseau, des ré-
sultats de débits peuvent être obtenus par un simple calcul manuel. Les débits
normalisés (throughput) des liens sont présentés par un vecteur:

Ex. Le vecteur des débits normalisés des liens 1,2,3 et 4 est (Th1 Th2 Th3 Th4)
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• Etape 1: À partir de graphe de conflit, trouver les états possibles de réseau
pour lesquelles un nombre maximal de liens peuvent être actifs simultanément;

• Etape 2: Additionner les vecteurs et diviser la somme par le nombre d’états
possibles trouvés.

Ex. Dans le réseau de Figure 6.4, il y a deux états possibles: (1 0 1 0) et (1 0 0 1)
et donc le vecteur des débits est (1 0 0.5 0.5).

• Cette procédure est purement algorithmique et il n’y a pas d’analyse stochastique
complexe.

• Cette méthode est d’origine proposée à partir de l’observation de la simulation
et des résultats expérimentaux du réseau réel plutôt que de la construction
théorique.

• Les résultats de débits de la méthode précédente (Markov) se rapprochent des
résultats de BoE lorsque µ

λ
approche de zéro.

Figure 6.5: Exemples de graphes de conflits

Exemple : Calculer le débit des liens dans chaque graphe de conflit présenté dans
la Figure 6.5.

34



Travaux Pratiques (Simulation)

7 Évaluation d’un système cellulaire

7.1 Exercice TP n°01: (Modèle analytique)

7.1.1 Énoncé

(A) Étape 1 (Figure 7.1)

– Écrire un programme Java qui permet de calculer la probabilité de blocage
(formule d’Erlang de cours) en modifiant les valeurs de rayon de 1 à 7
avec un pas de 0,5.

– Les données sont:

∗ µ = 20

∗ Le nombre de canaux disponibles pour une cellule K = 20

– À partir de ces calculs, tracer la courbe présentant la probabilité de bloc-
age en fonction de rayon de la cellule en utilisant JFreeChart.

(B) Étape 2 (Figure 7.2)

– Sur le même graphique, tracer une deuxième courbe pour µ = 15

Figure 7.1: La probabilité de blocage avec différents rayons de cellule (mu=20)
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Figure 7.2: La probabilité de blocage avec différents rayons de cellule (mu=20 et
mu=15)

7.1.2 Java Build Path - JFreeChart

• Le Java build path est utilisé lors de la compilation d’un projet Java pour
découvrir les classes dépendantes

• Le Java Build Path peut être vu et modifié à l’aide de la page Java Build Path
de la boîte de dialogue des propriétés du projet Java.

• Eclipse : Clic droit sur le projet → Build Path → Configure Build Path
→ Libraries → Add External Jars (car les Jars se trouvent dans un fichier
séparé)

• Netbeans : Clic droit sur le projet → Properties (ou autres) → Libraries →
Add Jar/folder

• Rajouter les paths suivants (selon l’emplacement de votre fichier JfreeChart):

– C:jfreechart-1.0.19-lib-jfreechart-1.0.19;

– C:jfreechart-1.0.19-lib-jcommon-1.0.23;
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7.2 Exercice TP n°02: (Simulation)

L’objectif de cet exercice est de faire évaluer les performances d’un système cellulaire
avec blocage en utilisant la SIMULATION.
Simuler ce système en Java, dont:

• Le rayon prend les valeurs de 1 à 7 avec un pas de 0,5

• Le nombre de canaux disponibles k = 20

7.2.1 Génération des variables aléatoires

Méthode de la fonction inverse :

• Temps d’inter-arrivée = −ln(u)
λ

• Durée de service = −ln(u)
µ

Utiliser la méthode de génération des variables aléatoires pour définir :

• Le temps d’inter arrivée (pour trouver le temps d’arrivée de chaque appel)
dont le taux λ dépend de rayon r (λ = 3.14× r2 × 2)

• La durée d’appel (durée de service) dont le taux est µ = 20

7.2.2 Évènements

Les évènements qui peuvent changer l’état de ce système sont :

• L’arrivée d’un nouvel appel,

• La fin d’appel (sortie du système),

Dans le code Java, chaque évènement possède au moins :

• Le type : 0 pour arrivée, 1 pour fin.

• Le temps de l’événement:

– Le temps d’arrivée si le type est 0
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– Le temps de sortie si le type est 1

L’évènement de départ doit contenir un troisième paramètre qui présente le numéro
de canal occupé par le client correspondant. La structure générale de la classe Event
est présentée dans la Figure 7.3.

Figure 7.3: La classe Event

7.2.3 Probabilité de blocage & courbe

Dans le début de la simulation:

• Tous les canaux sont libres, et ils sont placés dans un tableau «Canaux» d’une
taille k et chaque case contient 0 si le canal est libre et 1 si le canal est occupé.

• La valeur de «blocage» est 0
Ps: cette valeur est incrémentée de 1 quand un client ne trouve aucun canal
libre dans le tableau «canaux»

• Le temps d’arrivée du premier appel est 0 et donc le temps correspondant au
premier évènement est 0

A travers cette simulation, pour chaque appel (client) on peut déterminer :

• Le temps d’arrivée,

• Le numéro de canal utilisé (de 1 à 20), si il y a un canal libre sinon le client
sera bloqué et donc la probabilité de blocage est incrémenté par 1.

• La durée de service
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• La fin de service

Le client cherche un canal libre dans le tableau «canaux» depuis la première case
jusqu’à la dernière. Si par exemple, le client n° 10 prend le canal n°5, il libère ce
même canal juste après la fin de son service.

La Probabilité de blocage est la valeur finale de «blocage» (incrémentée de 1 à
chaque blocage) divisée par le nombre total d’appels (de clients):

Pb =

∑N
i=1 pi
N

Tels que: pi est la valeur de blocage de chaque client : 1 si il y a un blocage , 0
sinon. N est le nombre de clients (appels) exécutés.

→ La simulation prend fin après un temps de simulation limité (ex. 30) ou un
nombre d’appels limité (ex. 100).

À partir de cette simulation, tracer la courbe présentant la probabilité de bloc-
age en fonction de rayon de la cellule en utilisant la classe JFreeChart.

→ La courbe trouvée ressemble à celle du modèle analytique du 1er TP. La Figure
7.4 présente les graphes résultant de plusieurs exécutions de cette simulation.

Figure 7.4: Probabilité de blocage en fonction de rayon à partir d’une simulation.
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8 Simulateur Omnet++

8.1 Introduction

Ce document présente comment installer le simulateur réseau Omnet++ sur Win-
dows et puis comment installer la plateforme INET, en plus des étapes de configur-
ation et de compilation.

8.2 Installation Omnet++

Omnet++ est un environnement de simulation à évènements discrets basé sur le
langage C++, une application open source et sous licence GNU. Il est programmable,
paramétrable et modulaire ainsi grâce à son architecture flexible et générique, il a
été utilisé avec succès dans divers domaines, notamment la simulation :

• des réseaux de file d’attente,

• des protocoles de communication,

• des réseaux filaires et sans-fil,

• et donc l’évaluation des performances pour des systèmes simples et complexes.

8.2.1 Téléchargement

(1) Version Windows

• OMNeT ++ (version 6.0) est prise en charge uniquement sur les versions 64
bits de Windows.

• Si vous avez besoin de versions Omnet++ pour 32 bits sous Windows, vous
pouvez utiliser OMNeT++ 5.0.

• Téléchargez OMNeT++ depuis https://omnetpp.org/download/. Assurez-vous
de sélectionner l’archive spécifique à Windows.

• Sur le site web : (Figure 8.1)

→ Previews : pour Omnet++ 6.0
→ Older versions : pour autres.
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Figure 8.1: Interface de site de téléchargement

En plus des fichiers OMNeT ++, ce package téléchargé comprend :

• un compilateur C ++,

• un environnement de construction en ligne de commande,

• et toutes les bibliothèques et programmes requis par OMNeT ++.

(2) Un autre système d’exploitation
Pour l’utilisation d’Omnet++ sur un autre système d’exploitation, vous pouvez
consulter les liens suivants :

– Téléchargement : https://omnetpp.org/download/

– Installation : https://doc.omnetpp.org/omnetpp/InstallGuide.pdf

8.2.2 Après téléchargement

• Extraire le fichier .zip

• Placer le dossier dans un répertoire: (ex. C:-Sim-omnetpp-6.0pre10-src-windows)

(1) Configurer et compiler Omnet++

– Dans le répertoire omnetpp-6.0pre10, démarrez mingwenv.cmd en
double-cliquant dessus.

– Il affichera une console avec le shell bash MSYS (figure 8.2), où le chemin
est déjà défini pour inclure le répertoire omnetpp-6.0pre10/bin.

– Sur cette console de shell bash, entrez la commande : ./configure et
attendez que la configuration d’Omnet++ se termine.

– Puis, entrer la commande : make et attendez que la compilation d’Omnet++

se termine (cette compilation va prendre plus d’une heure tout dépend
les performances de PC)
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Figure 8.2: Console Shell bash Omnet++

(2) Démarrage de l’IDE (Integrated Development Environment)

OMNeT++ est livré avec un IDE de simulation basé sur Eclipse. Vous dev-
riez pouvoir démarrer l’IDE à partir de la ligne de commande (figure 8.3) en
tapant: « omnetpp »

Figure 8.3: Omnetpp IDE

8.3 Installation INET

La plateforme INET (INET Framework) est une bibliothèque open source pour
l’environnement de simulation OMNeT++. INET fournit des protocoles, des agents
et d’autres modèles aux chercheurs et aux étudiants travaillant avec des réseaux de
communication.
INET contient des modèles Internet (TCP, UDP, IPv4, IPv6, OSPF, BGP, etc.), les
protocoles filaire et sans fil de la couche de liaison (Ethernet, PPP, IEEE 802.11,
etc.), la prise en charge de la mobilité, des protocoles MANET, plusieurs modèles
d’application et de nombreux autres protocoles.

42



Plusieurs plateformes de simulation prennent INET comme base et l’utilisent dans
des directions spécifiques, telles que les réseaux véhiculaires, les réseaux de peer-to-
peer ou LTE.

→ Note : Pour le manuel d’installation de INET (Installation automatique et
installation manuelle) vous pouvez consulter le lien suivant : https://inet.omnetpp.
org/Installation.html, ou simplement lisez la suite de ce document.

8.3.1 Téléchargement

• Téléchargez INET depuis le site : https://inet.omnetpp.org/Download.html

• Assurez-vous de sélectionner la version correspondante à votre version Om-
net++ déjà installée.

• Pour la version Omnet++6.0 la version compatible d’INET est celle de la
Figure 8.4 ci-dessous.

Figure 8.4: Version INET compatible avec Omnet++6.0.

8.3.2 Installation manuelle

• Après avoir téléchargé INET, Extraire le fichier .Zip dans le répertoire de
votre choix, par exemple, le même répertoire où se trouve Omnet++.

• Lancer l’IDE Omnet++, allez sur : File -> Import -> Projects from Folder
or Archive et puis dans directory, vous sélectionnez le projet Inet.

• Une fois qu’Inet est importé, il va apparaitre sur la partie gauche de votre
IDE Omnet++ (Figure 8.5).

• Pour compiler le projet Inet, clique droit dessus et Build Project (la compila-
tion va prendre quelques minutes) Vous devriez maintenant pouvoir lancer des
exemples de simulations existants dans le Projet Inet (Examples, Tutorials,
. . . etc).
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Figure 8.5: Project Explorer de l’IDE de Omnet++.

• Figure 8.6 montre la méthode la plus simple pour lancer la simulation d’un
type de réseau, par exemple : ad-hoc.

Figure 8.6: Lancer une simulation sur Omnet++.

8.4 Simulation

8.4.1 Modèle

Commençant par un "réseau" composé de deux nœuds. Les nœuds feront quelque
chose de simple: l’un des nœuds créera un paquet, et les deux nœuds continueront
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à transmettre le même paquet dans les deux sens. Nous appellerons les nœuds tic
et toc.
Voici les étapes à suivre pour mettre en œuvre votre première simulation à partir
de zéro.

8.4.2 Mise en place du projet

Démarrez l’IDE OMNeT++ en tapant omnetpp dans votre terminal. Une fois
dans l’IDE, choisissez new -> OMNeT++ Project dans le menu.

Une boîte de dialogue d’assistant apparaîtra. Entrez tictoc comme nom de projet,
choisissez Projet vide lorsque vous êtes interrogé sur le contenu initial du projet,
puis cliquez sur Terminer. Un projet vide sera créé, comme vous pouvez le voir dans
l’explorateur de projet. (Remarque: certaines versions d’OMNeT++ généreront un
fichier package.ned dans le projet. Nous n’en avons pas besoin maintenant).

Le projet contiendra tous les fichiers appartenant à notre simulation. Dans notre
exemple, le projet se compose d’un seul répertoire. Pour les simulations plus im-
portantes, le contenu du projet est généralement trié dans les dossiers src/ et sim-
ulations/ , et éventuellement dans des sous-dossiers en dessous.

8.4.3 Ajout du fichier NED

OMNeT++ utilise des fichiers NED pour définir des composants et les assembler en
unités plus grandes comme des réseaux. Nous commençons à implémenter notre
modèle en ajoutant un fichier NED. Pour ajouter le fichier au projet, cliquez avec
le bouton droit sur le répertoire du projet dans le panneau Explorateur de pro-
jets à gauche, puis choisissez Nouveau -> Fichier de description de réseau (NED)
dans le menu. Entrez tictoc1.ned lorsque vous êtes invité à entrer le nom du fichier.

Une fois créé, le fichier peut être modifié dans la zone Éditeur de l’IDE OMNeT++.
L’éditeur NED de l’OMNeT++ IDE a deux modes, Design et Source ; on peut
basculer entre eux en utilisant les onglets en bas de l’éditeur.

• En mode Design, la topologie peut être éditée graphiquement, à l’aide de la
souris et de la palette de droite de l’IDE.

• En mode Source, le code source NED peut être directement édité sous forme
de texte.
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→ Passez en mode source et entrez le code présenté dans la Figure 8.7.

Figure 8.7: Partie Source de fichier NED.

→ Lorsque vous avez terminé, revenez au mode Design. Vous devriez voir
une conception comme celle de Figure 8.8.

Figure 8.8: Partie Design de fichier NED.

Le premier bloc du fichier déclare Txc1 comme un type de module simple.
Les modules simples sont atomiques au niveau NED. Ce sont également des com-
posants actifs et leur comportement est implémenté en C++. La déclaration indique
également que Txc1 a une porte d’entrée nommée in et une porte de sortie nom-
mée out.
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Le deuxième bloc déclare Tictoc1 en tant que réseau. Tictoc1 est assemblé à partir
de deux sous-modules, tic et toc, les deux instances du type de module Txc1. La
porte de sortie de tic est connectée à la porte d’entrée de toc, et vice versa. Il y
aura un délai de propagation de 100 ms dans les deux sens.

8.4.4 Ajout des fichiers C++

Nous devons maintenant implémenter la fonctionnalité du module simple Txc1 en
C++. Créez un fichier nommé txc1.cc en choisissant Nouveau -> Fichier source
dans le menu contextuel du projet (ou Fichier -> Nouveau -> Fichier dans le
menu principal de l’EDI), et entrez le contenu de Code 1.

8.4.5 Ajout de fichier omnetpp.ini

Pour pouvoir exécuter la simulation, nous devons créer un fichier omnetpp.ini in-
diquant au programme de simulation le réseau que vous souhaitez simuler (car les
fichiers NED peuvent contenir plusieurs réseaux).

Créez un fichier omnetpp.ini à l’aide de l’élément de menu Fichier -> Nouveau
-> Fichier d’initialisation (INI). Le nouveau fichier s’ouvrira dans un éditeur
Inifile. Comme dans l’éditeur NED, l’éditeur Inifile a également deux modes, Form
et Source, qui éditent le même contenu.

Pour l’instant, passez simplement en mode Source et entrez ce qui suit:

[General]
network = Tictoc1
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Algorithm 1 (txc1.cc)
# include <string.h>
# include <omnetpp.h>
using namespace omnetpp;
class Txc1 : public cSimpleModule
{
protected:
virtual void initialize() override;
virtual void handleMessage(cMessage *msg)
override;
};
// The module class needs to be registered with OMNeT++
Define_Module(Txc1);
void Txc1::initialize()
{
// Initialize is called at the beginning of the simulation.
// To bootstrap the tic-toc-tic-toc process, one of the modules needs
// to send the first message. Let this be ‘tic’.
// Am I Tic or Toc?
(strcmp("tic", getName()) == 0)
// create and send first message on gate "out". "tictocMsg" is an
// arbitrary string which will be the name of the message object.
cMessage *msg = new
cMessage("tictocMsg");
send(msg, "out");
}
}
void Txc1::handleMessage(cMessage *msg)
{
// The handleMessage() method is called whenever a message arrives
// at the module. Here, we just send it to the other module, through
// gate ‘out’. Because both ‘tic’ and ‘toc’ does the same, the message
// will bounce between the two.
send(msg, "out"); // send out the message
}
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