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Avant-propos

Ce document est destiné a des étudiants de Master 1 physique médicale (département de
Physique— faculté des sciences — unviversité de Sétifl). L’objectif de ce cours est d’apporter
quelques compléments essentiels en mathématiques, afin de donner a I’étudiant les bases néces-
saires a la compréhension de notes techniques ou d’articles spécialisés.

Les cours/TPs/TDs de ce module insisterons sur :

w ]a compréhension de la méthode des moindes carrés pour l'estimation des parametres des
systémes linéaires ;

w les applications des transformées de Fourier, et le filtrage linéaire;

m ’échantillonnage et l'illustration de 'importance du théoreme de Shannon en traitement
numérique du signal ;

m 1a modélisation des systémes linéaires du 1°7 et 2°™¢ ordre, et leurs analyse (étude de leurs
réponses) ;

w les systémes de rétroaction/asservissement et leurs applications dans le domaine biomédi-
cal.
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Algebre linéaire avancée

Nous aborderons dans ce chapitre, le probléme de ’estimation paramétrique par la méthode
de minimisation du critere quadratique. Le présent chapitre contient deux parties : la premiere
partie est un rappel sur le calcul matriciel. Il permet de bien appréhender le reste du cours. La
deuxiéme partie concerne la méthode des moindres carrés pour ’estimation paramétrique. Enfin,
nous présentons un critére d’évaluation pour qualifier la qualité d’estimation, en se basant sur
le coefficient de corrélation.

Mots clés : matrices et calcul matriciel, méthode des moindres carrés linéaires.



4 1. ALGEBRE LINEAIRE AVANCEE

1.1 Généralités sur le calcul matriciel

En algebre linéaire, une matrice est un ensemble de mXn membres (réels ou complexes)
rangés dans un tableau rectangulaire de m lignes et de n colonnes :

ail a12 a13 e a1n
A= az1 az2 a3 e Q2n (1.1)
am1 am?2 am3 Ce Amn
Les membres a;; (1 =1,2,...,m; j =1,2,...,n) se nomment les éléments de la matrice A et le

produit m x n s’appel 'ordre de la matrice A. Le premier indice ¢ désigne le numéro de la ligne,
et le deuxieme indice j désigne le numéro de la colonne.
La matrice peut étre écrite sous d’autres formes, appelées formes condensées, a savoir
la forme (|1.2) et (1.3)) :
A = [aij]avec(i=1,2,....m;j=1,2,...,n) (1.2)

ou

A= [ay) (13)

m.n

Définissons quelques types de matrices :

1. Si m = n la matrice s’appelle matrice carrée d’ordre n.
2. Mais si m # n, on dit que la matrice (1.1]) est rectangulaire.

3. En particulier, lorsqu’elle est d’ordre 1 x n, on lui donne le nom de vecteur de ligne, et de
vecteur de colonne si elle est d’ordre m x 1.

4. Une matrice dont tous les éléments sont nuls est dite matrice nulle; on écrit alors O, =
5. Un nombre (scalaire) peut étre considéré comme une matrice d’ordre 1 x 1.

6. Une matrice carrée dont les coefficients en dehors de la diagonale principale sont nul est
appelée une matrice diagonale (eq. ((1.4))).

ap 0 --- 0
A= 0 2 0 (1.4)
0 O Qi

7. Une matrice carrée avec des uns ([1.5)) sur la diagonale principale et des zéro (0) partout
ailleurs est appelée communément matrice d’identité ou matrice unité.

1 0 0
=% 1! 0 (1.5)
0 0 1

1.2 Opérations sur les matrices

1.2.1 Egalité des matrices

Deux matrices A = [a;;] et B = [b;;] sont considérées comme égales (A = B), si seulement si
elles ont le méme nombre de lignes et de colonnes et si leurs éléments respectifs sont égaux.
Autrement dit si :

aj; = by pour i =1,2,....m; 7=1,2,...,n
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1.2.2 Sommes et différences

La somme (différence) de deux matrices A = [a;;] et B = [b;;] est possible si seulement si les
deux matrices A et B ont le méme ordre. Par conséquent, la matrice résultante C a le méme
ordre que les deux matrices A et B.

C=A+B=[c]=laij+bj]pouri=1,2,....m; j=1,2,...,n

C=A-B= | =laij —bijlpouri=1,2,...,m; j=1,2,...,n

1.2.3 Produit d’'une matrice par un nombre

Le produit d’une matrice A = [a;;] par un scalaire « est le produit de chaque élément de A par
le scalaire a.
aA=Aa=aaypouri=1,2,....m; j=1,2,...,n

Propriétés :

A = [a;;] et B = [b;;] deux matrices, o et S deux scalaires :
m 1A= A.
m 0.A = 0.
w o (8.A) = (a.f) . A.
w (a4 f[).A=aA+ (A
w . (A+ B)=a.A+ a.B.

1.2.4 Multiplication des matrices

Soit deux matrices

a a2 a3 e a1n b11 b1z b3 oo by
a a a .. a b b b ... b
A 21 22 23 o ot B — 21 22 23 2
am1 Am?2 am3 . Amn, bpl bp2 bpg e bpq
mxn pXq

Le produit de A par B (A x B ou A.B) est possible (ou a un sens) si le nombre de colonne de
la matrice A est égale au nombre de ligne de la matrice B. Autrement dit, si n = p.
Par conséquent, le résultat de la multiplication de la matrice A par la matrice B est une matrice
d’ordre m x ¢, noté C' = [c;5],, ., telle que :

.q . .
Cij = aﬂblj —I—aigbgj + ‘--—i-ambnj pourt=1,2,...,m; 5=1,2,...,q

Propriétés :

1. A.B # B.A.
2. AI=1.A=A.
Exemple 1 :
Soit deux matrices définies comme suit :
2 -1
3 2 8 1 1 -3
A_l1—4031’B_ 0 1
3 1
2x4 ,

Le produit des deux matrices est calculé comme suit :
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O Ap—| 3X2+2x148x0+1x3  3x(=1)+2x(-3)+8x1+1x1 ]:l

Ix24+(—4)x140x04+3x3 1x(=1)+(—4)x(-3)+0x1+3x1

2x2

1.2.5 Transposée d’une matrice

Considérons la matrice A = [a;;] d’ordre m x n définie comme suit :

ail ai2 ai3 e A1n
a1 a9 a9 e a9
A= 3 " (1.6)
am1 am2 am3 ce Amn
mxn

La matrice transposée de la matrice A, noté AT, est définie comme suit :

ail asy a31 ce am1
a a a - a
AT — 12 22 32 m2 (1'7)
Aln a2n a3n ce Amn
nxm

Propriétés :
T
1. (AT) — A
2. (A+ B)T = AT + BT,
3. (A.B)l = BT AT,

4. Si AT = A, la matrice A est dite alors matrice symétrique.

1.3 Matrice Inverse

1.3.1 Déterminant d’une matrice

- Le déterminant d’'une matrice est un outil mathématique nécessaire pour vérifier I'inversi-
bilité d’une matrice, comme il est utilisé pour le calcul de I'inverse d’une matrice.

wm e déterminant d’une matrice est un scalaire et ne concerne que les matrices carrées.

m Une matrice dont le déterminant est différent de zéro est une matrice dite réguliére. Elle
est dite singuliére dans le cas contraire.

w [e déterminant d’une matrice est nul si et seulement si les vecteurs colonnes (ou vecteur
lignes) sont liées.

Déterminant d’une matrice 2 x 2
Soit la matrice A définie comme suit :
a b
as]e ] .

Le déterminant de la matrice A est donné par I'expression suivante :

a b

det A = d

= a.d—b.c (1.9)

Exemple 2 :

Soit la matrice A = [ 33

9 4 ], le déterminant de cette matrice est :
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3 3
det A = =34—-26=06.
¢ 2 4 |
Déterminant d’une matrice n X n
Soit la matrice A définie comme suit :
a1l a21 asl - anl
A — a2 a2 asg e an2 (1.10)
A1n a2n a3n cee Ann
nxn

Pour calculer le déterminant de la matrice A, nous suivons ’algorithme suivant :

1. Prenant un élément a;; de la matrice A.

N

Enlever la ligne et la colonne contenant a;;.

@

On peut alors définir une matrice de n — 1 lignes et de n — 1 colonnes, notée A;;.

e

On peut alors développer le calcul du déterminant de la matrice A suivant la ligne ¢ comme
suit : det A =37, a;; (—=1)"* det (Ay).

Exemple 3 :
Soit la matrice A définie comme suit :

1 2 3
A=| -2 —4 -5 (1.11)
3 5 6
3x3
Le déterminant de la matrice A est calculé en utilisant ’algorithme présenté ci-avant :
-4 =5 -2 =5 -2 —4
det A=1x 56 +(=2) x 3 6 +3 X 3 5 =1+#0 (1.12)

Donc, la matrice A est une matrice réguliere.

Propriétés du déterminant d’une matrice
1. Si la matrice A est d’ordre n x n, alors det . A = o™ det A.
2. det (A.B) =det A .det B.
3. det AT = det A.

1.4 Définition et calcul de la matrice inverse

1.4.1 Définitions

Définition 1 : on appelle une matrice inverse de la matrice carrée A toute matrice carrée, notée
A1 telle que A. A1 = A1 A = 1,,. I,, est une matrice identité.

Théoréme 1 : Toute matrice réguliére posséde une matrice inverse.

Propriétés :
w det A7, det A =det I, = 1.

[l 71 — 1
» det A7 = 55~

IS (A,B)f1 =B 1Al
-1

3 (A_I)T = (AT) .

[T 3 AX :B = X :Ail.B.

mw Y A=B = Y =B.A L
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1.4.2 Calcul de ’inverse d’une matrice carrée

Nous présentons dans ce cours la méthode de calcul basée sur 'utilisation de la matrice adjointe.
Soit la matrice carrée A d’ordre n :

ail a2 a3 a1n
a2 a2 as as N , . . cors
A= 3 " ou le déterminant de cette matrice est différent
anl an?2 an3 cen Ann
nxn

de zéro, det A = A # 0.
Composons ensuite pour la matrice A ce qu’on appelle la matrice adjointe :

A Ar2 A1z o An

. Aoy Ao Ao oo Aoy
Anl An2 AnS e Ann

nxn
La matrice inverse alors est :
An Aio Az Aip
A & & &
A = A A A A (1.13)

An1 Ano Ans Ann

A A A A

nxn

Afin de bien élucider la méthode de calcul, nous présentons I’exemple suivant :

Exemple 4 : Nous reprenons dans cet exemple la matrice définie dans I'exemple 3. Soit la
matrice A définie comme suit :

1 2 3
A=| -2 -4 -5 (1.14)
3 5 6
3x3

Comme nous ’avons illustré dans ’exemple précédent, le déterminant de cette matrice est égal
a 1. Donc, c’est une matrice réguliere qui posséde une matrice inverse.

Pour calculer la matrice inverse de la matrice A, nous commencons alors par calculer la matrice
adjointe transposée :

+—4—5_—2—5+—2—4'
5 6 3 6 3 5
< 2 3 1 3 1 2
T _ _ _
At = 5 6 ’ + 3 6 ‘ 3 5 (1.15)
n 2 3 1 3 n 1 2
-4 =5 -2 =5 -2 —4
1 -3 2]
Al=13 -3 1
2 -1 0
Apres avoir calculé la transposée de la matrice adjointe, la matrice adjointe est égale a :
1 3 2
A=| -3 -3 -1 (1.16)
2 1 0

La matrice inverse peut étre déterminée en devisant la matrice adjointe par le déterminant. Et
comme le déterminant est égal a 1, la matrice inverse est égale alors a la matrice adjointe.
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1.5 Normes de matrices

La norme est un opérateur qui permet de quantifier un scalaire, un vecteur, une fonction

vectorielle (ex : un vecteur de signaux temporels), une matrice.

1.5.1 Norme euclidienne d’un vecteur

Elle se définit en effet, pour un vecteur v, par :

K
lvlly = V< v,0>=, Zv%
k=1

v=|15 V5|

Exemple 5 :

La norme de ce vecteur est :

[v]ly = /12 52 (V5)2 = 5.57.

1.5.2 Norme d’une matrice

Plusieurs normes différentes peuvent étre utilisées par exemple :

1M, =

1.6 Valeurs et vecteurs propres de matrice

A est valeur propre de A si et seulement si :

P(\) = det(A\, — A) =0

(1.17)

(1.18)

(1.19)

Une matrice de dimension n a nécessairement n valeurs propres \;, ¢ = 1,...,n. Pour simplifier,
I’on supposera que celles-ci sont distinctes. Lorsque A est réelle, les valeurs propres constituent
un ensemble auto-conjugué. Autrement dit, si A est valeur propre de A, sa quantité conjuguée
I’est aussi. Tous ces scalaires constituent un ensemble de cardinal n appelé spectre de A et

parfois noté A\(A).

Il existe n vecteurs v;, ¢ = 1,...,n non nuls, appelés vecteurs propres a droite, tels que :

Av; = \v; Vi € {1, ,n}

Exemple 6 :
Soit la matrice

Son polynéme caractéristique est égal a :

A—=3 1

P()\):det()\IQA):detq 5 )\D:(Al)()\m

(1.20)

Les racines de ce polynome sont A\; = 1 et Ay = 2. Ce sont les valeurs propres de A et elles sont
distinctes. On peut calculer une matrice V = [v; ] des vecteurs propres a droite Eq

o[
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1.7 Méthode des moindres carrés linéaires

Des situations courantes en sciences biologiques, économiques, techniques est d’avoir a sa dis-
position deux ensembles de données de taille n, y1,y2, ..., Y& €t x1,x2, ..., T, obtenus expérimen-
talement et généralement entachées d’erreurs de mesure y7,y3, ..., y;. La méthode des moindres
carrés (Estimation paramétrique par minimisation du critére quadratique) permet de comparer
ces données mesurées a un modele mathématique, par exemple on peut retenir a priori :

w "approximation linéaire qui dépend d’un seul parametre a : y = ax;
m "approximation par une loi de puissance qui dépend aussi d’un seul parameétre a : y = z%;
m ’approximation affine qui dépend de deux parametres a et b : y = ax + b;

w ’approximation polynomiale de degré 2 qui dépend trois parameétres a, b et ¢ : y = ax? +
bx + c;

e etc.

Modele

FI1GURE 1.1: Systeme et Modele

1.7.1 Principes généraux
Position du probléme
Soit y = f (6, ) le modeéle mathématique d’un systeéme, avec :
=» f : structure de la loi mathématique.
=» 0 : ensemble de I coefficients ou parametres de la loi, tel que : 8 = (01, 62, ..., 01).
=» 2 : variable indépendante (le plus souvent, z est le temps).
=» y : réponse du systeme a des sollicitations ou des excitations.

Supposons que nous disposons de k mesures de y* (xy), éventuellement recueillies apres 'exci-
tation du systéme. L’objectif de l'identification paramétrique est de déterminer les parametres
6 de la loi mathématique décrivant le systeme, tout en supposant que :

w La loi f est connue.

w Jes erreurs de modélisation sont nulles.

Comme les mesures y* (xy) sont entachées de bruit, il est impossible, en pratique, d’obtenir les
valeurs exactes de . Pour pallier ce probleme, on se contente d’estimer (donner des valeurs
approximatives) les valeurs des parametres du modele. Pour ce faire, nous définissons § comme
étant ’ensemble des parameétres estimés qui sont des variables aléatoires. Par conséquent, la
sortie estimée peut étre définie comme suit :

o= (8,1) (1.21)
Le résidu ou l'erreur entre la sortie réelle du systeme et celle estimée est donnée par :
er =yt — i = vi — f (8.1) (1.22)
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FIGURE 1.2: évolution de la sortie réelle et la sortie estimée.

Intuitivement, la meilleure valeur de 0 est celle qui minimise ’ensemble des résidus. Notons ici
que les erreurs d’estimation peuvent prendre des valeurs positives comme elles peuvent prendre
des valeurs négatives.

Ainsi, 'estimation paramétrique consiste a chercher la valeur de 9 qui minimise mieux 1’ensemble
des résidus. Toutefois, vu le nombre de résidus qui peut étre tres élevé, nous allons définir un seul
critére a minimiser qui cumule et prend en compte I’ensemble des résidus. Notons également que
le critere choisi doit éviter toute sorte de compensation de résidus. Plusieurs types de critéres
existent en littérature. Toutefois, dans le cadre de ce cours, nous nous contentons de présen-
ter le critere quadratique . Ce dernier offre une multitude de propriétés mathématiques
intéressantes que nous allons aborder ci-apres.

K
J=>"(ex)’ (1.23)
k=1

Notons ainsi que la minimisation du critere ([1.23]) est appelée la méthode des moindres carrés
(moindres pour minimaux) introduite par "Gauss" vers 1800.

1.7.2  Modéle linéaire par rapport aux parameétres (LP)

Nous désignons par un modele linéaire par rapport aux parametres, tout genre de modéle ma-
thématique dont les effets des parametres 8 sont séparables de ceux des variables indépendantes
x. Soit

y=1r(0 z)=¢1(z).00+p2(2) 02+ +or(z).0f (1.24)
L’équation(|1.24]) peut étre reformulée comme suit :
01
)
y=|¢1(@) ¢202) - pr(@) || . (1.25)
ET(I) 0[
0

Soit encore y = ¢! () .0.

Notons que l'expression BT (z) peut étre non linéaire et complexe.

1.7.3 Critere quadratique pour les modeles LP

Comme nous 'avons mentionné ci-avant, 'intérét du critére quadratique réside dans le fait qu’il
posséde des propriétés mathématiques intéressantes, surtout pour ce qui est des modeles LP.
Soient la Portie estimée et 'erreur d’estimation sont définie comme suit :

gk = @i -0 et e, =y — G

Supposons que les mesures sont non bruitées, donc y; = yi, telle que y; la sortie exacte., on
peut alors écrire :
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ekzyk—ﬁkzgf-ﬁ—gz-ézgf-(Q—Q) (1.26)
Soit 6 = 6 + df, on peut alors développer I'erreur comme suit :
ep = _EZ .db (1.27)

Ainsi, le critere quadratique J peut étre reformulé comme suit :
K K
2
2 T
J= () =Y (~¢f - db) (1.28)
k=1 k=1

En développant I’équation ([1.28]), on peut écrire alors :

K K
T= () =Y db" (g, ) -0 (1.29)
k=1 k=1
K K
J=Y(en)? =a". (Z . (gok.go’j;)) 9= df".R.do (1.30)
k=1 k=1

Afin de bien élucider les propriétés du critére quadratique, nous supposons dans un premier
temps que le nombre de parametres est égal a 1, c’est-a-dire I = 1. Alors, ’équation peut
étre reformulée comme suit :

J = d#*. R avec la matrice R est positive.

En se basant sur ’équation nous pouvons constater que le critere J est une parabole

(figure [1.3).

FI1GURE 1.3: Allure du critere quadratique.

En ce qui concerne le cas général ou le nombre de parametre est différent de un, le critere
quadratique J est un paraboloide centré sur §. En substance, dans le cas des systemes LP, le
critére quadratique J est parabolique. Par conséquent, un seul et unique optimum est possible.

1.7.4 Modeéle LP et moindres carrés

Dans cette section, nous présentons la méthode des moindres carrés qui permet de déterminer
le vecteur des parametres estimés 6.
Dans le cas des systeémes LP, le critere quadratique est défini comme suit :

K N\ 2
J=3 (vi—¢f-0) (1.31)
k=1
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Notre objectif est de déterminer = 0,;o qui minimise le critére (T.31)). Autrement dit, déter-

miner 6,,- tel que :
oJ

00;
L’équation (1.32) peut étre reformulée comme suit :
9J

0 pour i=1,2,...,1 (1.32)

(l ;;)0 =0 tel que J /9 = est le gradient du critére J par rapport a 0.
MC

Cas élémentaire (cas monovariable)

Considérons le cas monovariable, alors :

Ok = on. 0 (1.33)
Et
K N 2
J=3 (i —o-0) (1.34)
k=1
En développant le critere ((1.34]), nous pouvons écrire :
K K K K
T=3 (W) =200 0i +63.02) = S i)* = 2.0. > wnyi+ 02> ¢f (135
k=1 k=1 k=1 k=1

L’équation ([1.35)) est bien I’équation d’une parabole (avec ou sans perturbation). Le minimum
de cette parabole est obtenu analytiquement comme suit :

o K L X
- = —2. E oy + 26. E v =0 (1.36)
90 k=1 k=1

A partir de I’équation (|1.36)), nous pouvons déterminer 057 minimisant le critere J. Oy¢ est
donnée alors par I'expression suivante :

K
Omce = (Z w%)
k=1

Remarque : supposons que la sortie du systeme est entachée de bruit, 'expression de la sortie
devient donc :

L e
LY kUi (1.37)
k=1

Vi = Y + bg (1.38)

avec by est une variable aléatoire qui représente le bruit de mesure.
Dans ce cas, le vecteur des parametres estimés devient :

K -1 K K
b (z @i) | (z I o bk) (1.39)
k=1 k=1 k=1

En développant y, ’équation (1.39) peut étre reformulée comme suit :
-1

K K K
Opc = (Z (,0%) . <Z gpi.0+ Z(Pk~bk> (1.40)
k=1 k=1 k=1

Alors,
—1

K K
Oric =0+ <Z goz) : <Z Ok bk> =0+ A0 (1.41)
k=1

k=1
A cause du bruit by, 0y¢ est différent de 6.

Cas général (cas multivariables)
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Dans cette section, nous abordons le cas d’un systéme avec plusieurs parametres. Nous avons
alors :

K N2 K
J=3 (vi—¢f-0) => & (1.42)
k=1 k=1

Afin de déterminer 0,;~ minimisant le critére quadratique, nous calculons le gradient de J. Nous
obtenons alors :

K
Jp=—2. kZEk-fk -2. Z (vi—¢r-0) ¢, (1.43)
=1
Nous obtenons 8, minimisant mieux 1e critére quadratique, lorsque J /9 =0, soit :
_9 Z (yk ol 7) 9, =0 (1.44)
En développant 1’équation , nous obtenons :

f: (nyk) =

k=1
L’expression ([1.45)) est équivalente & :

K K
> (epui) = (e4f-0) (1.46)
k=1

M=

(fk d. fk) (1.45)

e
Il
—_

>
—_

Nous pouvons alors déterminer 0, comme suit :
K -1 K
T
e = (3 (eef)) - S ev (Lan)
k=1 k=1
Notons ici que I'expression (1.47)) du vecteur des parametres estimés 0, est trés utile pour

I’écriture des algorithmes récursifs. Toutefois, il existe d’autres écritures équivalentes. Dans la
section suivante, nous présentons la formulation matricielle de 6.

Cas général : formulation matricielle

Soit le vecteur des sorties Y* tel que :

Y1
y*
yr=| 7 (1.48)
YK
Nous pouvons écrire alors,
vi ¢r-0 )
* T ) T
Y @, -8 @ 5 N
yi=| P =T =] 2 | h=00 (1.49)
Yi ol 0 Pi

Ou ¢ est une matrice d’ordre K x I. De méme, 'erreur d’estimation peut étre calculée comme
suit :

e=Y"-¢.0 (1.50)
Ainsi, le critére quadratique peut étre reformulé comme suit :
J=¢ele (1.51)
En développant J, nous pouvons obtenir :
J=Y" v 2y 6.0+0 . ¢T.0.0 (1.52)

Rappelons quelques outils nécessaires pour calculer le gradient :
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Rappel : soit f une fonction, telle que f = X7. A.Y, ot A est une matrice symétrique, Alors :

(1.53)

Afin d’obtenir 'expression de 0, minimisant le critére, nous calculons le gradient du critere
J, nous obtenons alors :

Jy=-2.9"Y" +2.¢".9.0=0 (1.54)

D’ou 'estimation du vecteur des parametres au sens des moindres carrés peut étre reformulée
comme suit :

e G ¢)_1 oY (1.55)

Finalement, notons que l'intérét d’utiliser la méthode des moindres carrés pour 'estimation
paramétrique des systémes LP réside dans le fait que le minimum du critére J est obtenu de
maniere analytique. De plus, la solution obtenue est unique (sommet d’un paraboloide).

1.7.5 Qualité de Papproximation

Si maintenant on cherche la fonction d’approximation x = ay , on procede de la méme
maniere :

n n n
e=Y (zx—g(yr)® = Y (zx — ayr)® = Y 2} — 2axpyp + 0’y (1.56)
k=1 k=1 k=1
d’ou :
de & 9
i Z —2xkyr + 2ay; (1.57)
@ =
qui s’annule pour :
n
> TkYk
a="r= (1.58)
> Ui
k=1

Ce qui définit la fonction d’approximation :

NgE

TkYk
k

9
> Yk
k=1

Il
MR

y (1.59)

€r =

Si approximation est parfaite, les deux fonctions d’approximation y = azx et x = ay sont
l'inverse I'une de 'autre et donc a.@ = 1. On définit alors le nombre R? = a.a, appelé coefficient
de détermination. Plus ce coefficient est proche de 1, meilleure est I’approximation. Il permet
donc d’en apprécier la qualité. On utilise aussi le nombre R = v/ R2 affecté du signe de a. I1 est
appelé coefficient de corrélation. Coeflicient de détermination :

k=l (1.60)
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2

Transformations linéaires et
Echantillonnage

Nous abordons dans ce chapitre deux types de transformation nécessaires pour le traitement
du signal, a savoir, la transformée de Fourier et la transformée de Laplace. Généralement, nous
désignons par le mot signal, toute manifestation d’une grandeur physique mesurable (tension
électrique, la pression d’une fluide, .. .etc). Plusieurs classifications de signaux existent dans la
littérature. Nous présentons quelques unes dans la section suivante.

Mots clés : Classification des signaux, Transformée de Fourier, Transformée de Laplace,
Echantillonnage, théoreme de Shannon.

17
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2.1 Classification des signaux

2.1.1 Signaux déterministes et signaux aléatoires

Les signaux déterministes sont des signaux dont le modele mathématique est connu, donc leur
évolution dans le temps peut étre prédite a tout moment. Par contre, les signaux aléatoires sont
des signaux dont le modele mathématique n’est pas connu, donc leur évolution dans le temps
est imprévisible.

2.1.2 Signaux continus et signaux discrets

Les signaux continus sont des fonctions d’une ou plusieurs variables continues (définies dans
des espaces continus, par exemple, ’ensemble des nombres réels). Par contre, les signaux a
variation temporelle discrete sont des fonctions d’une ou plusieurs variables discrétes (définies
pour certaines valeurs seulement).

2.1.3 Signaux pairs et signaux impairs

Un signal z (t) est dit pair 8’il satisfait x (—t) = x (¢) pour tout ¢. Par contre, un signal impair
est dit impair, s’il satisfait x (—t) = —x (¢).

Exemple 1 :
1. z(t) = cos(t) = x(—t) = cos(—t) = cos (t) signal pair.
2. y(t) =sin(t) = z(—t) =sin(—t) = —sin (¢) signal impair.

2.1.4 Signaux périodiques et signaux apériodiques

Un signal périodique x (t) est une fonction du temps qui satisfait la condition :

x(t)=x(t+To) pour tout t (2.1)

Ty est la plus petite constante positive non nulle qui vérifie la condition . Ty est la période.
De méme, le rapport f = T% est la fréquence fondamentale. Par conséquent, la pulsation du
mouvement, elle est donnée par : wy = 27 f = %

Cependant, tout signal pour lequel il n’existe pas de valeur Ty qui vérifie la condition (2.1)

est appelé apériodique.

Exemple 2 : Soit le signal x (t) = cos (3t). Il s’agit de trouver la période du signal z (¢).
En appliquant la formule (2.1)), alors

x(t+To) = cos(3(t+Tp))
= cos (3t + 3Tp) (2.2)
= cos(3t).cos(3Tp) — sin (3t) . sin (37p) = cos (3t)

La condition (2.2)) est vérifiée si :

sin (37p) =0 B _2m
{COS(STO):O = 31y =27 :>T0—3.

Le signal z (t) est périodique et sa période est T = %’T
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2.1.5 Signaux a énergie finie et a puissance finie

Un signal s (t) est dit a énergie finie non nulle, §’il vérifie :

+0o0
/ & () dt < oo (2.3)
—00
Un signal s (t) est dit a puissance moyenne non nulle, s’il satisfait :
0< tlg]élo —/ T/2 ) dt < oo (2.4)

Nota :

1. Un signal & énergie finie est un signal a puissance moyenne nulle.

2. Un signal a puissance moyenne finie est un signal a énergie infinie.

Exemple 3 :
Soit le signal s (t) = A. L’énergie de ce signal est :

400 +
/ A%dt = A%t * - o (2.5)
—o0 —00
Sa puissance se calcule ainsi :

lim /T/2 A%dt = lim — A2 = A? (2.6)

T—ooT T—ool ‘— /2

Alors, le signal s (t) = A est un signal a puissance moyenne infinie.

2.2 Rappel sur les signaux sinusoidaux

Les signaux sinusoidaux sont les signaux périodiques fondamentaux qu’on rencontre souvent
dans plusieurs disciplines scientifique et phénomeénes physiques (électricité, vibration, mécanique,

..,etc). La forme générale est la suivante :
s(t) = a.sin (27 fo.t) (2.7)

Avec fo = Tio est la fréquence fondamentale.

FI1GURE 2.1: Signal sinusoidal défini a Dorigine.

Si on choisi 'origine des temps arbitraire a I'instant tg. Dans ce cas, le signal sinusoidal est défini
comme suit :

s(t) = a.sin (2w fo.t — o) avec o est la phase. (2.8)

FIGURE 2.2: Forme générale d’un signal sinusoidal.
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Comme nous pouvons aussi donner une autre représentation graphique de nature différente,
appelée représentation fréquentielle ou spectrale. Elle contient deux parties; I'amplitude en
fonction de la fréquence et la deuxiéme concerne la phase en fonction de la phase.

FIGURE 2.3: Représentation fréquentielle d’un signal sinusoidale.

Nota : La représentation fréquentielle d’un signal composé de plusieurs signaux sinusoidaux
consiste a représenter chaque signal séparément. A titre d’exemple, soit le signal suivant :
s(t) = ay.sin (27 f1.t) + ag.sin (27 fa.t — p2) + as.sin (27 f3.t) (2.9)

La représentation graphique du signal (2.9) est la suivante :

FIGURE 2.4: Représentation fréquentielle d’un signal composé.

2.3 Rappel sur la décomposition en séries de Fourier

La décomposition en séries de Fourier est une approche qui permet de représenter n’importe
quel signal périodique sous la forme suivante :

s(t) = Z ap.cos (2mn fo.t) + by. sin (2mn fo. t) (2.10)
n=0
Ou sous la forme suivante : -
s(t) =ap+ Z ap.cos (2mnfo.t) + by. sin (27nfy. t) (2.11)
n=1
avec : )
a0 = = s(t) dt 2.12
0= [ 50 (212)
2
an = 7/ s (t) . cos (2mnfo.t) dt (2.13)
To J(wv)
2 .
by, = —/ s(t) . sin (2mnfo.t) dt (2.14)
To J(zw)

Exemple 4 : Soit le signal pair et périodique s (t) défini comme suit (figure :

s(t)

Ty

S e T >

FIGURE 2.5: Représentation graphique du signal s(t).
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—t pour —L <t<0
t) = 2 == 2.15
s (1) { tpour0<t§% ( )
L’objectif est de déterminer les coefficients de la série de Fourier. Nous commencons par ag.
L d e at| = Lo 2.16
= — —tdt tdt| == :
“w=T7 /To/2 + /0 4 (2.16)
En ce qui concerne les coefficients a,,, ils sont calculés comme suit :
2 0 Top
ap = —. / —t. cos (2mnfo.t)dt + / t. cos (2mnfo.t) dt (2.17)
To —Top 0
En utilisant I'intégration par partie, nous pouvons obtenir le résultat suivant :
1 0 sinestpair
= —1] = _ . 2.18
an 2o [cos (mn) — 1] { W%gfo ailleurs (2.18)
Pour ce qui est des coefficients b,, sont calculés comme suit :
2 0 Topy
b = —. / —t. sin (2mn fo. t) dt + / t. sin (2mnfo.t) dt (2.19)
To | J-Top 0
En utilisant 'intégration par partie, nous obtenons le résultat suivant :
1 Ti Ti
b, = 27T7nf0' {cos (27rnf0. 20) — CoS <27mf0. 20)] =0 (2.20)
La décomposition en série de Fourier du signal (2.15)) peut étre écrite comme suit :
T 2 2
S (t) = ? — 71'2f0. COS (27Tf()t) — QT% COS (67Tf(]. t) — 257% COS (107Tf0t) — e (221)

2.3.1 Propriétés des séries de Fourier

=» Les signaux pairs n’ont que des termes en cosinus, tous les coefficients b,, sont nuls.
=» Les signaux impairs n’ont que des termes sinus, tous les coefficients a,, sont nuls.

=» Le spectre ou la représentation fréquentielle d’un signal périodique est un spectre discret
(spectre de raies).
2.3.2 Représentation complexe

En se basant sur les relations qui existent entre les signaux sinusoidaux el les exponentiels
complexes, nous pouvons reformuler les séries de Fourier trigonométriques comme suit :

“+oo
s(t) = Z S (nfy) . e?2mniot (2.22)
n=—oo
Tel que :
1 T/2 —j2mnfo.t
S (nfy) = T./_T/2s(t) e dt (2.23)
La relation entre les ccefficients complexes et ceux trigonométriques est donnée par :
— b
S (+nfo) = % n # 0 n : positive (2.24)
b
S (—nfy) = W—% n # 0 n : négative (2.25)
S(0) =ap (2.26)

Pour ce qui est de 'inverse :
an =S (+nfo) +S(—nfo) pour n#0 (2.27)
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—S (+nfo) + S (—nfo)
J

by, =

pour n # 0 (2.28)

ag = S (0) (2.29)

2.4 Transformée de Fourier

La transformée de Fourier est la généralisation de la série de Fourier aux signaux non pério-
dique. La transformée de Fourier d'un signal s (¢)est définie comme suit :

+o0 .
Fls(t) =S(f) = / s () .2t gy (2.30)
De méme, on peut définir la transformée de Fourier inverse comme suit :
+o00 .
PUS(A)=s) = [ S().ermitf (231)

Comme on peut écrire la Transformée de Fourier sous la forme suivante :

S(f)=15(f)] e (2.32)

La forme (2.32) constitue la représentation spectrale du signal s (¢) qui fait apparaitre le spectre
d’amplitude |S (f)| et le spectre de phase 6 (f) tel que :

B Sm (S (f))
0(f) = arctg ( Re (S (f)) )

Comme il existe une autre écriture de la transformée de Fourier qui consiste a le mettre sous la
forme complexe suivantes :

(2.33)

S(f) =Re(S(f) +3.3m(5(f)) (2.34)

2.4.1 Conditions d’existence de la transformée de Fourier

Comme nous ’avons mentionné ci-avant, la transformée de Fourier est la généralisation de
la série de Fourier aux signaux ou fonctions apériodiques. Toutefois, ce n’est pas toutes les
fonctions du temps posseédent forcément une Transformée de Fourier. Seules les fonctions ou
signaux vérifiant les conditions ci-dessous possedent une Transformée de Fourier :

— Fonction ou signaux absolument convergents :

+o0
/ s(t)dt < oo (2.35)

— 00

— Le nombre d’extremums de la fonction s (¢)soit fini dans un intervalle de temps fini; On
désigne par les extremums d’une fonction les maximums et les minimums.

— Le nombre de discontinuité de la fonction s (¢) soit fini dans tout intervalle de temps fini.

2.4.2 Quelques propriétés de la transformée de Fourier
Linéarité

Si X (f)=Flx(t)] et Y(f)=F[y(t) on peut alors écrire :
Flax(t)+by(t)] =aX (f)+bY(f) (2.36)

Ceci est une conséquence directe de la propriété de linéarité de 'opération de l'intégration. No-
tons que a et b sont deux constantes arbitraires.

Dérivation
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Si S (f) = F[s(t)], on peut alors écrire :

F [d‘;ﬁt)} = jorf. S (f) (2.37)
Translation
Si S(f)= F[s(t)], on peut alors écrire :
Fls(t—tg)] =S (f).e 92 to (2.38)
Similitude
Si S (f) = F[s(t)], on peut alors écrire :
Fls(at) = ‘al’.s (%) (2.39)

Ou a est une constante arbitraire.

2.4.3 Théoréme de Perceval

Si s (t) est un signal qui vérifie les conditions d’existence de la Transformée de Fourier, alors :

E:/:: (s (t))z.dt:/+oo (S(f)?. df (2.40)

—00
Autrement dit, ’énergie du signal dans le domaine temporel est égale a celle calculée dans le
domaine fréquentiel.

Exemple 5 :
Soit I'impulsion rectangulaire suivante :

s(t) = { L [t < 7/2 (2.41)

0 ailleurs

L’objectif est de calculer la transformée de Fourier de I'impulsion rectangulaire et son spectre
d’amplitude.

+oo . +TR
S(f) = / s (). e 2ty = / eI -t gy (2.42)
—00 7T/2
S eijﬂ-f'T/Q —_ e+j27rf'7—/2 1 . 2 4
(f) = 2] = ﬁsm(ﬂfﬂ (2.43)
S(f)=rsinc(nf.1) (2.44)
Le spectre d’amplitude est donné comme suit (figure :
s £l
- —:— —1’ / E/- // f

FIGURE 2.6: Spectre d’amplitude du signal.
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2.5 Transformée de Laplace

Soit f (t) une fonction ou un signal qui dépend du temps. Sa transformée de Laplace F (s) est
définie par :

F(s) = L[f (t)] = / R e tar (2.45)

—0o0
Telle que s : une variable complexe, soit s = 0 + jw.
Notons que la transformée de Laplace est un outil trés important dans ’analyse des systémes,
des signaux et des fonctions. Elle permet de simplifier de fagon considérable les calculs tels que
les calculs des dérivées et des intégrales.

a7

La notation ”s” (variable de Laplace) est utilisée dans les pays anglo-saxons alors que la notation
"p” est utilisée notamment en France et en Allemagne.
Généralement, on divise la transformée de Laplace en deux types : la transformée de Laplace

fonctionnelle et la transformée de Laplace opérationnelle.

2.5.1 Transformée de Laplace fonctionnelle

Dans cette section, nous nous intéressons uniquement au calcul de la transformée de Laplace
appliquée généralement sur des fonctions. Dans ce qui suit, nous passons en revue quelques
exemples sur des fonctions connus|]

Transformée de Laplace d’une fonction échelon
Soit la fonction échelon définie comme suit :

0stt<0
u(t) = K sit>0 (2.46)
Si K =1, la fonction u (¢) est appelée ainsi la fonction échelon unitaire.
La transformée de Laplace de la fonction u (t) est donnée par :
+o00 st |To® K
Llu(t)] = / Ketd= -S| =2 (2.47)
0 5 o S
Transformée de Laplace d’un exponentiel décroissant
Etant donné la fonction suivante :
0 st <0
f (t) - e—at Z 0 si t 2 0 (248)
La transformée de Laplace de la fonction f () est calculée comme suit :
+oo +oo 1
L[f(t)]= / e ttemstdt = / e (ato)t gy — 2.49
oSy O — (249)
Transformée de Laplace d’une fonction sinusoidale
Soit la fonction sinusoidale suivante :
0 st t<0
)= sin (wt) si t>0 (2.50)
La transformée de Laplace de cette fonction est donnée par :
+00 e(jw t) — e_(jwt) +00 6_(S_jw)t — 6_(5+jw)t
L [sin (wt)] :/ - e stdt :/ : dt
0 2j 0 2j
L [sin (wt)] = = (2:51)
in(wt)]=———= .
52 + w?

1. Annexe 1 : Table des transformées de Laplace
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2.5.2 Transformée de Laplace opérationnelle

Dans cette section, nous allons montrer comment sont effectuées des opérations telles que I'ad-
dition, la multiplication, la dérivé, l'intégrale dans le domaine de Laplace.
Transformée de Laplace d’une multiplication par une constante

Soit F'(s) = L[f (t)], alors on peut écrire :
LIK.f(t)]=K.F(s) (2.52)

Transformée de Laplace d’une addition (soustraction)

L’opération de l'addition (soustraction) dans le domaine temporel correspond & une addition
dans le domaine de Laplace. Autrement dit, Soient, F (s) = L [f1 (t)], Fa (s) = L[f2(t)], F5(s) =
L[fs(t)], on peut écrire alors :

Lfi(t)+ f2(t) + f3(t)] = F1 (s) + F2 (s) + F3(s) (2.53)

Transformée de Laplace de la dérivation

La dérivation dans le domaine du temps correspond a multiplier F' (s) par la variable de Laplace
s et puis soustraie la valeur initiale de f (¢) (donc f (0)). On obtient alors :
Soit F'(s) = L|[f (t)], alors on peut écrire :

L [dj;(tt)} — 5. F(s)— (0) (2.54)

Exemple 6 :

Soit I’équation différentielle de 1°7¢ ordre, linéaire et & coefficients constants :
y=—ay +bx (2.55)

La transformée de Laplace de I’équation est calculée comme suit :
Lyl =L[—ay+bx]
s.Y(s)—y(0)=—aY (s)+ bX (s)
s.Y(s)+aY (s) =y (0)+bX (s) (2.56)
Y (s)(s+a)=y(0)+bX(s)
Y (s) = y(ozz_j;)((S)

Transformée de Laplace de l’intégration

L’intégration dans le domaine du temps correspond & diviser par la variable de Laplace s dans
le domaine de Laplace.
Soit F'(s) = L[f (t)], alors on peut écrire :
+o0 F (S)
L / £t) dt] _ ) (2.57)

o S

2.6 Propriétés fondamentales de la Transformée de Lapalce

Nous présentons dans cette section quelques propriétés de la Transformée de Laplace.
=» Linéarité : Lia f (t)+ bg(t)] =a F (s) + bG (s).
=» Dérivée : L{%(tt)} =sF(s)— f(0).
-» Intégrale : L [fj;’ ) dt} = @
=» Retard temporel : L[f (t —7)] = F (s) e *7.
-» Translation de la transformée : L [e™%! f (t)] = F (s + a).
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=» Convolution : L[f (t) xg (t)] = F (s).G (s).

=» Théoréme de la valeur initiale : lim s. F' (s) = limf (¢).
s—00 t—0

=» Théoréme de la valeur finale : lim s. F'(s) = lim f ().
s—0 t—o0

2.7 Echantillonnage. Theoréme de Shannon

2.7.1 Echantillonnage

Il est possible de transformer un signal continu en un signal discret. Ce processus est appelé
échantillonnage ou discrétisation (voir figure . L’échantillonnage consiste a prélever les va-
leurs d’un signal a intervalles définis, généralement réguliers. Il produit une suite de valeurs dis-
crétes nommées échantillons. Dans cette partie, I’échantillonnage impulsionnel (idéal) est évo-

qué.

Temps(sec)

FIGURE 2.7: Signaux a temps continu et discret

Exemple 1
Considérons une pompe a insuline & commande automatique (voir figure [2.8)) un algorithme de

contrble numérique est utilisé pour activer le fonctionnement de l’insuline pompe.

insulin pump infusion /
glucose target

set
. PC insulin ‘ (.

rate %
A \‘
insulin
A

glucose monitor

F1GURE 2.8: Controleur a temps discret pour la régulation glycémique.

Impulsion de Dirac
L’impulsion de Dirac, notée 0(t) et vérifie :
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5() = 0, si t#0 (2.58)

+oo
/5(u)du = 1. (2.59)

Par convention, §(t) est représentée par une fleche de hauteur égale a la surface de 'impul-
sion :

(1) ot =) 1.5x0(t—T)

FI1GURE 2.9: Impulsion de Dirac

Produit d’une fonction par un Dirac
Le produit d’un fonction f(t) par une distribution de Dirac 6(¢ — 7) s’écrit :

x(t)o(t—71)= x(1)é(t — 1) (2.60)
+oo
/ et —1)dt = (7). (2.61)
(t)
(0)
z(t) z(t)5(t)

FIGURE 2.10: Le produit d’une fonction z(t) par 6(t — 7), avec 7 = 0

Peigne de Dirac (train d’impulsions)
Soit maintenant le train d’impulsions unitaires distantes dans le temps de T, se produisant a
partir de I'instant 0 sur un horizon infini de temps, et dessiné sur la figure Du point de vue
mathématique, ce train d’impulsion 0(t — nT;), se produisant & 'instant ¢ = nT'e. On appelle
P(t), "Peigne" de Dirac, I’ensemble de ces impulsions.

Pt)= Y 46(t—nT.) (2.62)
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P(t)
_41_‘5 _Te[] TE ‘4:1_‘5 t

FIGURE 2.11: Train d’impulsions unitaires discrétes ("Peigne" de Dirac)

Produit dune fonction continue par un Peigne de Dirac

ot (t) = 2(t)P(t) (2.63)
= Yi2 o a(nT)é(t — nT,) (2.64)

Le signal 2*(t) est donc composé d’une suite d’impulsions de Dirac d’aire z(nTy).

=

: | M
WL e o

0 T. t

FIGURE 2.12: x*(t) représente le produit d’une fonction z(¢) par un Peigne de Dirac)
Par la suite, x*(t) sera le modéle mathématique du signal échantillonné.
Signal échantillonné réel z.(t)

On peut considérer que le signal échantillonné réel, notée z.(t), est obtenu & partir de z(t) grace
a un interrupteur fermé périodiquement, pendant la durée 7, a la fréquence F, (F, = %)

Echantillonneur

(1 (1) P U
v T — —
: Mmoo, A11113£it/uc1e z(nTe)
2 T T
Ol t t =nTe I —ITE (|] TI} I -ni’} I t

F1GURE 2.13: Echantillonnage bloqueur

Nota :

— x(t), 2*(t), x.(t) sont des signaux temporels
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— x(t), x.(t) sont des signaux physiques, tandis que x*(t) est un signal idéalisé, nécessaire
aux développements mathématiques.

Spectre d’un signal échantillonné z*(t)

=» Spectre xz(t)

“+oo
X (w) = TF[x(t)] = / 2(t)e 9@t dt (2.65)
plw)
p(0)
—wp 0 W "W

FIGURE 2.14: Spectre d’amplitude de z(t)

=» Spectre de P(t)

P(w) =TF[P — Z §(w — kwe) (2.66)
ek:——oo
P(t) P(w)

1 2n [T,
,,,,,,,,,,,,,,,,,,,,,,,,,,,, P ey
L] == T

1T, ['] T.9T, nT, ¢t we o We Zwe Bwe W

FIGURE 2.15: Spectre de P(t)

=» Spectre de z*(t)

X*(w) = TF[z* io X(w — kwe) (2.67)

k=—o00

On faisons I’hypothese que we >> wp.
Le spectre du signal échantillonné x*(t) est périodique, de période we.
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p(0)/T

FIGURE 2.16: Interprétation géométrique du spectre de z*(t)

2.7.2 Theoréme de Shannon

Pour pouvoir reconstituer X (w) a partir de X*(w) (a T%), il faut que la pulsation (fréquence)
d’échantillonnage w, soit au moins le double de la plus grande pulsation, wy,q., du spectre de x(t).

We > 2Wmax (2.68)

=* Repliement du spectre
Lorsque la condition (2.68) précédente n’est plus respectée, les «motifs» correspondant
aux différentes valeurs de k se chevauchent : on dit qu’il se produit un repliement du
spectre.

=» Filtre anti-repliement
Pour éviter ce recouvrement spectral nuisible, on doit éliminer préalablement la partie
inutile (ou nuisible) du signal a échantillonner a I’aide d’un filtre passe-bas analogique (a
forte atténuation lors de sa bande passante). Ce filtre porte le nom de filtre anti-repliement
(ou antialiasing en anglais)

Echantillonneur
bloqueur
a(t) Filtre zpt) | | welt)
—>| anti-repliement T —
e

FI1GURE 2.17: Une partie de la chaine d’acquisition de données avec filtre anti-repliement
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Systemes linéaire et filtrage

Dans le cadre de ce chapitre, nous aborderons quelques notions élémentaires qui concernent les
filtres linéaires. Trois types de filtres seront abordés, a savoir, les filtres passes bas, les filtres
passes hauts et les filtres passes bandes. Afin de permettre d’appréhender le contenu de ce cha-
pitre, nous présenterons dans ce qui suit un rappel sur les systemes.

Mots clés : Systemes linéaires, Fonction de transfert, Filtres linéaires, Diagramme de Bode.

31
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3.1 Rappel sur les systemes

3.1.1 Notion de systéeme

Un systeme, agrégation d’éléments interconnectés, est constitué naturellement ou artificiellement
afin d’accomplir une tache prédéfinie. Son état est affecté par une ou plusieurs variables. Le
résultat de D’action des entrées est la réponse du systeme qui peut étre caractérisée par le
comportement d’une ou plusieurs variables de sorties.

Un systeme est généralement représenté schématiquement par un schéma fonctionnel qui
consiste en un rectangle auquel nous ajoutons des fleches entrantes représentant les signaux
d’entrée u (t). L’action des entrées du systéme produit de maniére causale des effets mesurés par
les signaux de sortie y (t), et d représentant les signaux les perturbations (voir figure

dy dy-
UL gl L 1
UD g \ H— L2
: Systéme :
Ty - - Yp

FIGURE 3.1: Systeme comportant m entrées, p sorties et r perturbations

Remarques :
— La notion de systeme est indissociable de celle de signal.

— Un systéme est dit multivariable s’il posséde plusieurs entrée/sorties sinon il est dit nono-
variable.

— Les entrées affectant le systéme peuvent étre de nature différente. Premierement, celles
qui ont pour but d’exercer des actions entrainant le fonctionnement désiré du systeme, ce
sont dans ce cas les commandes. Deuxiémement, celles qui troublent le fonctionnement
désiré, ce sont alors les perturbations.

— La relation entre les entrées et les sorties du systéme constitue le modele mathématique
du systeme.

3.1.2 Systemes linéaires

Définition
Un systéme linéaire est un systéme pour lequel les relations entre les grandeurs d’entrée et celles
de sortie peuvent se mettre sous la forme d’un ensemble d’équations différentielles a coefficients
constants. D’un point de vue purement automatique, les systémes linéaires réalisables doivent
vérifier :

1. Le principe de superposition (additivité).
2. Le principe d’homogénéité (proportionnalité).

Principe de superposition
On dit qu'un systéme de type entrée-sortie releve du principe de superposition si :

— En additionnant deux entrées quelconques, la sortie est la somme des deux sorties corres-
pondantes.

— En additionnant plusieurs entrées quelconques, la sortie est la somme des sorties corres-
pondantes.
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Autrement dit, si y; est la réponse a l'entrée e, et si yo est la réponse a 'entrée es alors la
réponse au signal d’entrée e = e; + eo est égale a y = y1 + yo.

Principe d’homogénéité ou proportionnalité a la cause
Si y est la réponse a I'entrée e, alors A.y est la réponse a I'entrée A.e. Notons ici, que l'effet de
proportionnalité n’est effectif que lorsque le systeme a atteint sa position d’équilibre ou lorsque
le régime permanant s’établit.

3.1.3 Systémes continus

Un systeme est continu, par opposition a un systéme discret, lorsque les variations des grandeurs
physiques qui le caractérisent sont des fonctions continues du temps, on parle dans ce cas d’'un
systeme analogique.

3.1.4 Systémes invariant

Un systéme est dit un systéme invariant lorsque ses caractéristiques ne se modifient pas dans le
temps.

—»p| Systeme |[——p =% —| OSysteme (—p
e(r) v(t) e(r+T) v(1+T)

FIGURE 3.2: Représentation schématique d’un systéme invariant.

3.1.5 Systemes dynamiques et systemes instantanés

Systémes instantanés
Un systeme instantanée est un systeme pour lequel les sorties dépendent uniquement et instan-
tanément des grandeurs d’entrée.

Exemple 1 :
Soit le circuit électrique suivant :

=» u (t) est la tension d’entrée.
=» i (t) est le courant électrique.

=» R est la résistance.

R
."{I}{ —» Systeme | —p
—_—> u(r) i(7r)
u(t) 1
i(f)=—ul(f)
R
Schéma descripfif du systeme Scheéma fonctionnel du systeme

FIGURE 3.3: Exemple d’un systéme instantané.

Notons ici que la sortie du systéme (le courant i(¢)) dépends instantanément de la grandeur
d’entrée, a savoir la tension w (t).

Systémes dynamiques
Un systéme dynamique est un systeme dont les grandeurs de sortie dépendent de valeurs instan-
tanées et antérieures des grandeurs d’entrée, on parle dans ce cas d’effet de mémoire ou d’inertie.
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Exemple 2 :
Considérons le circuit électrique suivant :
R
’ Ii t —»| Systteme (—p
e{r{ CT( }TH[I} e(r) u(r)
[ L
. du(r) dult
i) =€ 2 Ly =e(s)
dr ;
- e(t)—u(r)
it)=———
R
Schéma descriptif du systéme Schéma fonctionnel du systeme

FIGURE 3.4: Exemple d’un systemes dynamique.

3.1.6 Fonction de transfert d’un systéme

La fonction de transfert est une technique qui se base sur la transformée de Laplace. Elle permet
de décrire la relation entre les signaux d’entrée et les signaux de sortie. Considérons un systéme
dynamique continu linéaire invariant qui posséde une entrée e (t) et une sortie y (t). Supposons
également qu’il est régi par une équation différentielle de n degré.

d™y v ly dy d™e d"le de

an. —— +ap—1. ——+...+aq. 7 4+ag.y =by. ——+0b +...+0b1. 7

i din—1 dgm UM gpm—1 +ho-e (3.1)

En appliquant la transformée de Laplace, tout en supposant nulles les différentes conditions
initiales, nous obtenons alors :

an-s"Y (8) + ap_1.8" LY (s) + ...+ a1.5.Y (s) +ap.Y (5) = bp.s™E(s)+bpn_1.5"1LE(s)+
..+ b1.s.E(s) 4+ by.E (s)
(3.2)
Soit,
Ly 4as+ ao} Y (s)= [bm.sm + b8 L+ bps+ bo] E(s)
(3.3)

{an.s” +ap_1.8""

L’équation (3.3]) peut étre alors reformulée comme suit :

Y(s) by 8™ 4 byy—1.8™ L 4+ ... bis + by (3.4)
E(s)  aps"+an_1.5"1+...+ai.s+ap '

Cette fraction rationnelle (3.4]) de deux polynémes de la variable complexe s est appelée fonction
de transfert du systeme et elle est communément notée :

F(s)= (3.5)

3.2 Filtres linéaires

Un filtre linéaire est un systéme linéaire dynamique invariant qui laisse passer certaines fré-
quences du signal d’entrée et arréte (atténue) le reste. Focalisons-nous dans cette partie sur la
réponse en régime harmonique d’un systeme linéaire. C’est-a-dire, étudier le comportement
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d’un filtre lorsque 'entrée du systéme est un signal sinusoidal. Dans ce cas, la variable de Laplace
s sera remplacée par j27 f = jw. La fonction de transfert devient alors :

F (jw) = - 3.6
3) = i (36)
Le module de la fonction de transfert est défini alors par :
, Y (jw)
[F (jw)| = 7> (3.7)
|E (jw)
A partir du module, nous pouvons définir le gain en Décibel :
Ga = 20 logyo (|F (je)) (3.8)

Nous pouvons également définir argument de la fonction de transfert Arg (F' (jw)) comme étant
la phase entre le signal d’entrée E (jw) et le signal de sortie.

3.2.1 Représentation graphique et caractérisation fréquentielle de la fonction
de transfert d’un filtre linéaire (diagramme de Bode)

Le diagramme de Bode est une méthode graphique d’analyse. Il est composé de deux courbes :

1. La courbe de gain : elle consiste a tracer directement le gain G4p en fonction de la fréquence
w ou f avec une échelle logarithmique pour w.

2. La courbe de phase : elle consiste a tracer I’argument de la fonction de transfert du filtre
sur la méme échelle de fréquence que celle utilisée dans la courbe de gain.

En ce qui concerne I’échelle logarithmique de fréquence, elle s’agit du logarithme de décimal.
Elle permet, entre autres, d’étirer les basses fréquences et de contracter les hautes fréquences.

La fréquence de coupure d’un filtre, notée we, est la fréquence qui vérifie la relation suivante :

H (juoe)| = H;g" (3.9)

Elle correspond aussi a

20. logyg | H (jwe)| = 20. log |Hmpax| — 20. log /2 (3.10)

Exemple 3 : Considérons la courbe de gain suivante :

dB A
10dBL, Gma.\‘ =10dB
7dB ............................ . Gmm_ —3(]8 = 7(]’3

»

a)cl a)(‘ 2 HZ

FIGURE 3.5: courbe du gain.
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A Y
[# (o) Gan
| 0dB
0 o, [‘;Z @, ]_[Lz
—oo!

FIGURE 3.6: courbes de module d’un filtre passe-bas idéal.

3.2.2 Filtres idéaux

— Filtre passe-bas idéal
Un filtre passe-bas doit « laisser-passer » uniquement les composantes de fréquence infé-
rieure & une fréquence donnée w, (fréquence de coupure). Les courbes de modules de ce
filtre sont représentées comme suit :

— Filtre passe-haut idéal
Un filtre passe-haut idéal doit « laisser-passer » uniquement les composantes de fréquence
supérieure a une fréquence donnée w. (fréquence de coupure). Les courbes de gain de ce
filtre sont données ci-apres :

A . A
|H ( ]o)| Gy
1 — 0dB
0 ®, H_f @, H;
—o0

FIGURE 3.7: courbes de module d’un filtre passe-haut idéal.

— Filtre passe-bande idéal
Un filtre passe-bande idéal doit « laisser-passer » uniquement des composantes de fréquence
comprise entre deux fréquences données w.1 et wea (fréquence de coupure basse et fréquence
de coupure haute). Les courbes de module de ce filtre sont les suivantes : Notons ici que les

A A
1 0dB
0 oM @, H=z M @, Hbz

—c0

FI1GURE 3.8: courbes de module d’un filtre passe-bande idéal.

filtres idéaux sont des filtres irréalisables. Dans ce qui suit, nous passons en revue quelques
filtres réels réalisables.



3.2. FILTRES LINEAIRES 37

3.2.3 Filtres réels

— Filtre passe-bas du premier ordre
Un filtre passe-bas réel du premier ordre est caractérisé par la fonction de transfert sui-

vante : I
0
H(s) = 3.11
(5) = (3.11)
En régime harmonique, la fonction de transfert du filtre s’écrit alors :
Hy
H (jw) = - 3.12
Uw) =17 JZ (3.12)

Avec w, = % est la fréquence de coupure. Le module de la fonction de transfert du filtre

est : \H|

. 0
H (jo)] =~ (3.13)

1+ (2)
2
Gap = 20. log;o | Ho| — 20. logyg \/1+ () (3.14)
En ce qui concerne 'argument de la fonction de transfert est donné comme suit :
Arg (H (jw)) = Arg (Hp) — arctan (w) (3.15)
We

Afin de tracer le diagramme de Bode, nous procédons a la détermination de quelques points
importants : Pour w — 0, |H (j0)| = |Ho| = Gap = 20. log,( |Ho| = Go.

Arg (H (j0)) = Arg (Ho) -

Pour w = w,, |H (jw.)| = ‘i\/%‘, Gy = Gy — 3dB.

Arg (H (ju)) = Arg (Ho) — 7.

Pour w = 10w, |H (j10w,)| = % ~ 1 G =Gy —20dB.

Arg (H (j10w,)) = Arg (Hy) — arctan (10) .

Pour w — 400, |H (joo)| =0, Ggp = 20. logy (0) = —oo0.
s

Arg (H (joo)) = Arg (HO) — 5

Le tracé asymptotique du diagramme de Bode du filtre considéré est représenté ci-apres :
— Filtre passe-bas du deuxiéme ordre

Un filtre passe-bas réel du second ordre est caractérisé par la fonction de transfert suivante :

Hy
(1+ TS)2

Hy
(1+j§c)2

Avec w. = % est la fréquence de coupure. Pour ce qui est du module de la fonction de

H(s)= = H (jw) = (3.16)

transfert, on peut écrire alors :

: H, W\ 2
|H (jw)| = ol 5 = Ggp = Go — 20. logy, (1 + (E) ) (3.17)

1+ (2)
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Gy
Gﬂ
G, —3dB
G, —20dB
l : ! -
Pl 0, 100,
; F 3
4rg(H (jo))
Arg(H, ) =
s
Arg(H,)—— T
4 i --..........A"g(Ho }_7
r*}%o o), l 0 . " -

FI1GURE 3.9: diagramme de Bode d’'un filtre passe-bas du premier ordre.

En ce qui concerne 'argument de la fonction de transfert :

Arg (H (jw)) = Arg (Hy) — 2arctan (£ ) (3.18)

w

we
Afin de tracer le diagramme de Bode, nous déterminons quelques points importants : Pour
w — O, ‘H(]O)‘ = ’H0| = GdB = 20. logm |H0| = Go.

Arg (H (§0)) = Arg (Ho) -

Pour w = w,, |H (jw)| = ‘LQO‘, Gy = Gy — 6dB.

. T
Arg (H (jwe)) = Arg (Ho) — .
Pour w = 10we, |H (j10w)| = A2k ~ {8 Gup = Gy — 40dB.

Arg (H (j10w.)) = Arg (Hy) — arctan (100) .
Pour w — 400, |H (joo)| = 0, Ggp = 20. log, (0) = —o0.
Arg (H (joo)) = Arg (HO) — 7.

Le tracé asymptotique du diagramme de Bode du filtre considéré est présenté ci-apres :
En comparant les deux filtres (filtre passe-bas du premier ordre et le filtre passe-bas du
second ordre), nous pouvons constater que celui du second ordre est meilleur en termes
d’atténuation des hautes fréquences (fréquences supérieure a w.). Ceci est dii & une pente
d’atténuation de l'ordre de —40dB/décade.

— Filtre passe-haut du premier ordre
Un filtre passe-haut réel du 1¢" ordre est caractérisé par la fonction de transfert suivante :

) Kj(e
H(s) = TK+3 S H (ju) = 1;7((% (3.19)
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(JdB

GO
G, —GdB S

v

Arg(H [j(o)]‘

“I"'g(Ho)

‘4 - H T e e, \
8(H) 2 Arg(Hy)-x

fy O 100

F1cURE 3.10: diagramme de Bode d’'un filtre passe-bas du second ordre.

avec w. = T est la fréquence de coupure du filtre. Le module de la fonction de transfert du
filtre est déterminé comme suit :

(1)2 = Ggp = 20. logyo (K)+ 20. logy, (ﬁ)-QO- logyg ( 1+ (5)2>

(3.20)

En ce qui concerne 'argument de la fonction de transfert, il est déterminé comme suit :

|H (jw)| = K.

Arg (H (jw)) = g — arctan (w%) (3.21)

Afin de pouvoir tracer le diagramme de Bode, nous déterminons quelques points impor-
tants : Pour w — 0, |H (j0)| = 0 = G4p = 20. log;, (0) = —oc.

) 7r
Arg (H (j0) = ©.

Pour w = we, |H (jwe)| = %, Gap = Goo — 3dB.
, i
Arg (H (jue)) = 7.

Pour w = we/10, [H (jwe/10)| & &, Gqp = Go — 20dB. Pour w — +o0, |H (joo)| = K,
Arg (H (joo)) = 0.

Le tracé asymptotique du diagramme de Bode du filtre considéré est présenté ci-apres :

— Filtre passe-bande du premier ordre

Un filtre passe-bande du premier ordre est caractérisé par une fonction de transfert qui
possede quelques spécificités qu’on doit définir :

— wy est la pulsation ou la fréquence centrale du filtre.
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3.

Y

A 4

0 f‘)%‘o o, 10 2}
FIGURE 3.11: diagramme de Bode d’un filtre passe-haut du premier ordre.

— Thax est le module de la fonction de transfert pour w = w, (on considére que Tiax >
0).
— @ est le facteur de qualité du filtre définit par la bande passante Aw = wy/Q (plus
Q est grand, plus la bande passante Aw est étroite et plus le filtre est sélectif).
La fonction de transfert s’écrit alors comme suit :
Tmax

H (jw) = (3.22)
1+Q.j (& - =)
Le module de la fonction de transfert est déterminé de la fagon suivante :
T
[H (jw)| = — (3.23)

Jrea(s-a)

FEn ce qui concerne I'argument de la fonction de transfert, il est calculé de la maniere
suivante :

Arg (H (jw)) = — arctan {Q (wio - %)] (3.24)
Dans ce qui suit, nous déterminons quelques points importants pour tracer le diagramme
de Bode. Pour w — 0, |H (j0)| = 0 = Gap = 20. log;y (0) = —o0.

Arg (H (j0)) = 3.

Notons que pour les basses fréquences le filtre passe-bande se comporte de fagon similaire a
celle d’un filtre passe-haut. Pour w — +o0, |H (joo)| = 0, Ggp = 20. logy (Tmax) = Gmax-

Arg (H (joc)) = ~ 7.

Contrairement a son comportement en basse fréquence, le filtre passe-bande se comporte
en hautes fréquences comme un filtre passe-bas. Pour w = wy, |H (jwo)| = Tmax, Gap =
Goo — 3dB.

Arg (H (jwo)) = 0.
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Pour w = wy/10 et w = 10. wy,

. TmaX
|H (jwo/l())‘ ~ JTTQQ’ GdB = 20. logm (Tmax) — 20. loglo (\/ 1+ 100. QQ) .

Le tracé asymptotique du diagramme de Bode du filtre considéré est représenté ci-apres :
Donnons dans le paragraphe suivant, un exemple de filtre passe-bas dans le cas d'un

............... 0=05
_____ 0=2
e
max ,)/"’/’. -""'k\
ol o\
Sl L\
,I / ’! \ \\\
/’ / :
S ‘ VAN h
@, >

FIGURE 3.12: diagramme de Bode d’un filtre passe-bande du premier ordre.

systéeme mécanique.

Exemple 4 : La suspension d’une automobile est habituellement assurée par quatre systémes
identiques indépendants montés entre le chassis du véhicule et chaque arbre de roue. La suspen-
sion d’un véhicule permet :

1. aux roues de suivre les inégalités du sol sans communiquer au chassis des efforts trop
importants, ceci en filtrant les sollicitations de la route.

2. d’assurer le maintien du contact des roues avec le sol (la tenue de la route).

Le confort vibratoire du conducteur ainsi que des passagers dépend essentiellement de deux
parameétres :

1. la fréquence des oscillations.
2. et 'accélération verticale qu’ils subissent.
Les principaux éléments constitutifs d’une suspension sont indiqués sur la figure[3.13] :
— le pneu (1) avec son amortisseur (caoutchouc)
— le ressort (2)
— lamortisseur (3)
— le siége (4) avec son amortisseur (mousse).

On suppose que la masse m, du chéssis et des passagers est également répartie entre les quatre
systemes de suspension. On désigne par m la masse supportée par chacun des systemes, qui
sera appelé « suspension » par la suite (on parle aussi de « modele de quart de voiture »).
Modeéle de suspension simplifié :

Les pneus et les sieges sont considérés comme entierement rigides et n’interviennent pas dans
I’étude. Les pneus sont supposés rester en contact avec la route. On utilise le modele de suspen-
sion simplifié de la figure La suspension est constituée :

1. d’un ressort métallique de constante de raideur k et de longueur a vide Lo,

2. d’un amortisseur a piston a huile fixé parallelement au ressort, exercant une force résistante
de frottement visqueux de coefficient f.
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FIGURE 3.13: les éléments constitutifs d’une suspension.

z()

FIGURE 3.14: modele simplifié d’une suspension.
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On désigne par z, (t) les variations de la hauteur du chéassis par rapport a I’équilibre. On sup-
pose que le profil de la route impose au centre de la roue un déplacement vertical z. (t) par
rapport & sa position d’équilibre. Etudions un systéme idéal Masse-Ressort-Amortisseur, avec
une masse m fixe (dans le sens ou le corps garde la méme masse tout au long de ’étude), une
constante de raideur k, et un coefficient d’amortissement f :

Fr=—k(zy(t) — 2z (t)) (3.25)
F, = _f (év (t) — Ze (t)) (3'26)

D’apres la conservation de la quantité de mouvement :
—k (Zv (t) — Zc (t)) - f (2:'1) (t) — Zc (t)) = mZy (t) (327)

En utilisant la transformé de Laplace, la fonction de transfert du systeme s’écrit comme suit :

Zy(s) _ 1+2Es
Ze(s) 1+ 25+

H(s) = (3.28)

Pour les valeurs numériques suivante : m, = 1260 kg, soit m = 315kg, k = 29.5kN/m, f =
1850Ns/m, nous tragons le diagramme de Bode de la fonction de transfert H (s) (Figure 3.15]).
Nous pouvons alors constater que le systéme présenté se comporte comme un filtre passe-bas.

Diagranmme de Bode

10 -
. |
10
g
= 20
= ~
(=3 ~
= 20 -
-40
50
o
a5
=
-
a
£ -90 i —
135
1
10 10 10 10

Fréquence (rad/sec)

FI1GURE 3.15: diagramme de Bode de la suspension.
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Réponse temporelle des systemes
linéaires
Nous passons en revue dans ce chapitre deux types de réponses temporelles, & savoir, la réponse

impulsionnelle et la réponse indicielle. Deux types de systémes seront étudiés; les systemes li-
néaires du premier ordre et les systemes linéaires du second ordre.

Mots clés : Réponse impulsionnelle, Réponse indicielle.

45
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4.1 Systeme du premier ordre

C’est un systeme régi par une équation différentielle du premier ordre a coefficients constants :

y(t)+7dydit):K.e(t) (4.1)

avec y (t) et e (t) sont respectivement la sortie et ’entrée du systéme. En appliquant la trans-
formée de Laplace sur I’équation (4.1)) tout en supposant que la condition initiale y (07) = 0 est
nulle, nous pouvons alors obtenir :

Y(s).(14+7s)=K.E(s) (4.2)
La fonction de transfert d’un systeme linéaire du premier ordre est donnée donc :

Y(s) K
E(s) 1+7.s

H(s) = (4.3)

avec K et 7 sont respectivement le gain statique et la constante de temps. Dans ce qui suit,
nous étudions la réponse temporelle du systéeme du premier ordre pour deux types d’entrée; la
réponse a une impulsion de Dirac et la réponse a un échelon.

4.1.1 Réponse a une impulsion de Dirac (réponse impulsionnelle)

Soit le signal d’entrée e (t) est une impulsion de Dirac ¢ (t) définie comme suit :

_J 400 t=0
o (t) _{ 0 ailleurs (4.4)

Notons que la transformée de Laplace de I'impulsion de Dirac est égale a 1. Alors, la sortie du
systeme est définie comme suit :

=
ks

) 4.5
%—i—s ( )

En appliquant la transformée de Laplace inverse, la réponse temporelle du systéme peut étre
déterminée comme suit :

y(t) = g e (4.6)

Le tracé de la réponse impulsionnelle (4.6)) d'un systéme du premier ordre est présenté dans la
figure suivante :

y(t)A

K/

t

FIGURE 4.1: réponse impulsionnelle d’un systéme du premier ordre.
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4.1.2 Réponse a un échelon (réponse indicielle)

Dans cette section, nous considérons que le signal d’entrée e (¢) est un échelon u (t). La fonction
échelon est une fonction réelle de la variable réelle ¢ définie par :

) +A st >0
“(t)_{ 0si t<0 (47)
La transformée de Laplace de la fonction échelon est définie comme suit :
A
TLu(t)]=U(s)=— (4.8)
s
Dans ce cas, la sortie du systeme du premier ordre peut étre calculée de la fagon suivante :
K A K. A K. AL
Y (s)=H(s).E(s) = = / (4.9)

T 1+7ss s (1+4+71s) . (%_,_5)

En utilisant la transformée de Laplace inverse, la réponse temporelle du systeme du premier
ordre a une entrée de type échelon peut étre écrite comme suit :

y(t) = K. A (1 —e—i) (4.10)

Nous présentons dans ce qui suit quelques points caractéristiques de la réponse indicielle d’un
systéme du premier ordre.

— Powt=7=y(t)=K. A(1—-e!)=0.63. K. A.
— Pourt =27 = y(t) =K. A(1—e2) =0.86. K. A.
— Powrt=3.7=y(t)=K A(1l—-e?) =095 K. A.

On définit alors le temps de réponse a 95% obtenu pour t = 3.7 : ¢, & 95% = 3.7. Comme on

définit également la valeur finale lorsque le temps tend vers linfinie : *
¢
lim y(t) = lim K.A (1 — eT) =KA (4.11)
t—+o00 t——+o0
Ainsi, U'erreur statique est définie comme suit :
e=A-KA=(1-K).A (4.12)

Le tracé graphique de la réponse indicielle d’'un systéeme du premier ordre est donné dans la
figure suivante :

y(t)ﬂ
K.A4
86%[

632

FIGURE 4.2: réponse indicielle d’un systéme du premier ordre.
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4.1.3 Application 1

Un thermometre utilisé pour mesurer la température des patients (figure [4.3) peut étre
modélisé a 'aide de I’équation différentielle :
ar  T.(t) - 1T(t)
dt R
ou C est la capacité thermique du thermomeétre, R la résistance thermique, T'(¢) la tempéra-

ture mesurée et T,.(¢) la température de référence. Ainsi, cette équation peut étre réécrite pour
correspondre au format général

(4.13)

ar 1 T, (t)

i TrotW=ge

étant T'(t) la sortie systeme et T,.(t) entrée de référence et avec une valeur initiale de T'(t) = Tp.
Pour obtenir une réponse du systéme avec RC' = 20sec a partir de Ty = 20°C' (Condition Initiale
CI)et pour un signal d’entrée échelon T,.(t) = 38°C'. En appliquant la transformation de Laplace,
on obtient :

(4.14)

0.05 1.25

T(s) = mﬂ(s) + o005 = Yi(s) 4 Ya(s) (4.15)

with 7, (s) = 28 the input signal in Laplace domain.

FIGURE 4.3: Thermometre utilisé pour mesurer la température des patients

La figure [£.4] montre les graphiques correspondant aux différentes parties des réponses obte-
nues.

4.2 Systeme du second ordre

Il s’agit d’un systeme régi par une équation différentielle a coefficients constants du second ordre.

d’y (t) dy (t)
a2~ + a1 o +apy="be(t) (4.16)

avec y (t) et e(f) sont respectivement la sortie et I'entrée du systeme. Si toutes les conditions
initiales sont supposées nulles, la transformée de Laplace de I'équation différentielle (4.16) est
déterminée comme suit :

{(Ig s+ a;s+ ao} Y (s)=bE (s) (4.17)

La fonction de transfert décrivant le fonctionnement d’un systéme du second ordre est donnée
par :

Y (s) b
H(s) = = 4.18
(5) E(s) axs*+ais+ ap ( )
L’équation (4.18]) peut étre mise sous les deux formes canoniques suivantes :
Y K.wd
Hs)= 20 _ =0 (4.19)

E(s)  s2+4+2m.wps+ wi
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Réponse du systéme avec les conditions initiales Réponse du systéme sans les conditions initiales
38 —— 40
//// - |
- P 35 —
/ " /
34
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— / — 201 /
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(a) Réponse indicielle avec les CI (b) Réponse forcée

Réponse du systeme avec juste les conditions initiales
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20
\
\
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10 AN
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/

0 10 20 30 40 50 60 70 8 9 100
Temps (s)

(c) Réponse naturelle

FIGURE 4.4: Réponses du systeme

avec wq est la pulsation propre et m est le coefficient d’amortissement. Comme nous pouvons
aussi la mettre sous la forme canonique suivante :

Y (s G
H(S):EES;:1+§J’Q‘3+ %52 (4.20)

2
0

Afin de mettre en évidence les formes canoniques, nous présentons l’exemple suivant.

Exemple 1 : Soit la fonction de transfert suivante :

6

H(s)=—-—— 4.21
(5) 424+ 75+ 8 ( )

Mettons la fonction de transfert (4.21]) sous la forme canonique (4.19)). Soit,

3 2

H(s)=-. 4.22
= s 12 (4.22)
Par identification, nous pouvons dire que wi = 2, m = 71—‘? et K = % En ce qui concerne

I’analyse temporelle d’un systéme du second ordre, nous présentons dans ce qui suit les réponses
impulsionnelle et indicielle.

4.2.1 Réponse a une impulsion de Dirac (réponse impulsionnelle)

Dans cette section, nous considérons que l'entrée est une impulsion de Dirac. Nous supposons
également que la constante K = 1. Ainsi, la sortie du systeme dans le domaine de Laplace est
définie comme suit :
2 2
w w
Y (s)=H(s).E(s) = 0 1= 2 4.23
(s) (s)- E(s) s2 +2muwp s + wd D (s) (4.23)
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Calculons alors le déterminant du polynéme D (s) :
A* = (mwy)? —wd =w? (m—1) (4.24)

En analysant le déterminant (4.24)), quatre cas de figures sont possibles.

1. Cas de deux racines réelles (systéme amorti m>1)

Supposons que A* > 0, dans ce cas nous avons deux racines p; et po définis comme suit :
P1 = wo (—m +vm? — 1) et p1 = —wo (m +vVm?2 — 1) Ainsi, la fonction de transfert du
systeme peut étre reformulée da la maniere suivante :

= wg W2 A B
Y(S)_(S—m) (s —p2) 0(5—p1+8—p2> (4.25)

Par identification, nous pouvons déterminer les constante A et B. Nous obtenons ainsi le

résultat suivant : )
w 1 1
Y (s) = 0 : ( — ) 4.26
(s) 2wpvVm?2 —1 \s—p1  s—p2 (4.26)
En utilisant la transformée de Laplace inverse, nous obtenons la réponse impolsionnelle :
y(t) = —— (etPrt —eP2!) avec p; < pa < 0 Le tracé de la réponse impulsionnelle d'un

2vVm2—1
systéeme du second ordre amorti est donné dans la figure suivante.

y([)n

!
FIGURE 4.5: réponse impulsionnelle d’un systeme du second ordre amorti.

2. Cas de deux racines complexes conjuguées (systéme non amorti m<1)

Dans ce cas, les racines du polynoéme D (s) sont définies comme suit :

plz_mw0+jwovl_m2 (427)
p2 = —muwy— jwoV1—m? '

Les deux racines (4.27)) peuvent étre reformulées comme suit :

P2 =0 —jwn,
avec 0 = —muwp et w, = wo V1 —m2. Ainsi, la sortie du systéme dans le domaine de
Laplace devient alors :
_ wh
Y(s) = (s=p1) (s—p3) (4.29)
_ “o

(s—o—jwn) (s—o+jwn)
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En développant 1’équation (4.29)), nous pouvons obtenir la formule suivante :

2
wo
Y (s) = 4.30
(#) (s + mwo)® + wi (1 —m2) (4.30)
Cette derniere peut étre écrite de la maniere suivante :
Y (p) = 2. “n (4.31)

CVI—m? (s+a) + wl
2 2

avec w3 = wj (1— mz) et a = mwy. En appliquant la transformée de Laplace inverse,
nous obtenons alors :

y(t) = \/% e~mw@ol gin <<w0 V1-— m2) .t) (4.32)

Le tracé de la réponse impulsionnelle d’un systeme du second ordre non amorti est présenté
dans la figure suivante.

A

v(1)] Dy eyt

NI

2
o, N1—m

FIGURE 4.6: réponse impulsionnelle d’un systeme du second ordre nonamorti.

3. Cas de deux racines réelles multiples ( m=1) La réponse impulsionnelle pour m = 1

est donnée comme suit : )
Kuw,

Y (s) = 0 4.33

(s) s2 + 2muwp s + wi (433)

Le déterminant dans ce est nul : A* = 0, donc les deux racines sont :
P1 = P2 = —Wo (4.34)
Dans ce cas, la réponse impulsionnelle dans le domaine de Laplace s’écrit comme suit :
K w?
(p+wo)?

En utilisant la transformée de Laplace inverse, la réponse impulsionnelle dans le domaine
temporel s’écrit comme suit :

Y (s) = (4.35)

y(t) = Kwite 0! (4.36)

4. Cas de deux racines réelles multiples ( m=0) Dans ce cas la réponse impulsionnelle
dans le domaine de Laplace s’écrit :

2
K wj

H(s) = s2 + wd

(4.37)
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En utilisant la transformée de Laplace inverse, nous pouvons déduire la réponse impul-
sionnelle temporelle :

y(t) = K wp sin wyt (4.38)
Le tracé de la réponse impulsionnelle pour m = 0 est présenté dans la figure suivante :

a

nan.

FIGURE 4.7: réponse impulsionnelle d’un systéeme du second ordre avec m=0.

4.2.2 Réponse a un échelon (réponse indicielle)

Comme pour le cas de la réponse impulsionnelle, nous avons quatre cas de figure pour la réponse
indicielle d’un systeme du second ordre.

1. Deux racines réelles (systéme amorti m>1)
Dans ce cas de figure, la réponse impulsionnelle dans le domaine de Laplace s’écrit :
wi A

Y(s):H(s).E(s):52+2mw08+w8.; (4.39)

En se basant sur les propriétés de la transformée de Laplace, nous pouvons remarquer que
la réponse indicielle est I'intégrale de la réponse impulsionnelle entre 0 et ¢.

y(t) = 2\/%. /Ot (eplt - emt) dt (4.40)

En calculant I'intégrale (4.40), nous obtenons alors :

y(t)=1+

1 e(fmwoero\/mzfl)t e(fmwof wox/mel)t
(4.41)

. +
2vm?2 — 1 —m+vm? — 1 m+vm?2 — 1

Le tracé de la réponse indicielle d’'un systéme du second ordre avec un facteur d’amortis-
sement supérieur a 1 est donné dans la figure suivante.

2. Deux racines complexes conjuguées (systéme non amorti m<1)
La réponse indicielle dans le domaine de Laplace d’un systéeme du second ordre avec un
facteur d’amortissement m < 1 est donnée comme suit :

2
w; A

Yis)=H(s). B(s) = s2 +2muwos + W s

(4.42)
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) (r)n

m>1

s

FI1GURE 4.8: réponse indicielle d’'un systéeme du second ordre amorti.

93

En intégrant la réponse impulsionnelle, nous pouvons obtenir la réponse indicielle dans le

domaine temporelle :

y(t)=1— \/1172.6_771“)01& sin (wox/l —m2t+ gp)
—-m

(4.43)

avec ¢ = arcos (m). Le tracé de la réponse indicielle d’'un systéme du second ordre non-

amorti est donné dans la figure suivante.

A

()

1 —mayt
e

Nl=m?

s

FIGURE 4.9: réponse indicielle d’un systéme du second ordre amorti.

3. Deux racines multiples (m=1)
Dans ce cas, la réponse indicielle dans le domaine de Laplace s’écrit :

Kwo 1
Y(s)=H(s) . E(s) = ——5.—
s(s 4+ wo)” s
L’équation (4.44) peut étre reformulée comme suit :

K
s(ts + 1)°

avec T = wi En utilisant la transformée de Laplace inverse, nous obtenons :

~

y(t) =K (1= (1+wt)e'™)

(4.44)

(4.45)

(4.46)
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4. Deuzx racines multiples (m=0)
Dans ce cas, la réponse indicielle dans le domaine de Laplace s’écrit comme suit :

Y (s)=H(s).E(s) = ﬁiowgf (4.47)

En utilisant la transformée de Laplace inverse, nous obtenons la réponse indicielle dans le
domaine temporelle d’un systéme du second ordre avec un facteur d’amortissement m = 0.

y(t) = K (1 — cos wpt) (4.48)

y(1

v

FIGURE 4.10: réponse indicielle d’un systeme du second ordre avec m = 0.

4.2.3 Spécifications sur le régime transitoire

w ¢ : temps de réponse a +5%.

w Dy : dépassement maximal en %, avec D; = 100 77”"“;_9“’ ;
o0

réponse indicielle
T : :

18
D1
16
Régime transitoire Régime permanent
1.4
12+
+ 5% y(o0) Y
N R R e S N

= A

0.8

0.6

0.4 F ‘

tr
02 /

0
0 001 002 003 004 005 0.06 0.07 0.08 0.09

Temps en secondes

FIGURE 4.11: Analyse transitoire
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4.2.4 Application 2

Un capteur de pression sanguine (figure [4.12)) peut étre modélisé comme un systeme de
second ordre dont la dynamique est donnée par des poéles réels situés a s; = —1 et so = —10 et
un gain statique K = 10. La fonction de transfert du systeme est donnée par :

F1GURE 4.12: Un transducteur de pression sanguine

10

") = G710

(4.49)

La réponse en sortie y(t) de ce systéme est illustrée a la figure dont la forme est similaire
a celle des systéemes du premier ordre, mais un peu plus lente au début.

réponse indicielle
. . .

Point d'inflexion montrant qu'il s'agit d’'un modéle

0.2 de second ordre et non de premier ordre
0.1r

0 20 40 60 80 100 120
Temps en secondes

FIGURE 4.13: Réponse indicielle du modele du transducteur de pression sanguine



56

4. REPONSE TEMPORELLE DES SYSTEMES LINEAIRES



5]

Rétroaction/asservissement

Dans le domaine biomédical, nombreux sont les appareils dont leur fonction est assuré par une
rétoaction ou asservissement, par exemple dans les pompes a insuline pour maintenir constant le
niveau de sucre d’une personne diabétique. Dans ce chapitre, quelques exemples seront considérés
pour mettre en évidence certaines applications de régulation dans le domaine biomédical. Afin de
permettre d’appréhender le contenu de ce chapitre, nous présenterons dans ce qui suit quelques
notions sur les systémes de régulation.

Mots clés : Rétroaction, Asservissement, Applications en génie biomédical.

o7
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La rétroaction (en anglais feedback) est ’action en retour d’un effet sur sa propre origine :
la séquence de causes et d’effets forme donc une boucle dite boucle de rétroaction.
Les rétroactions sont trés importantes dans de nombreux domaines, aussi bien pour les systéemes
physiques, chimiques et biologiques que dans de nombreuses technologies.

5.1 Objectif

La régulation doit garantir le fonctionnement du procédé selon un objectif détaillé. Cet
objectif, traduit en une consigne, est assuré en maitrisant une ou plusieurs grandeurs mesurées
quelles que soient les perturbations subies par le procédé.

5.2 Boucle de régulation

5.2.1 Etapes nécessaires

Pour réaliser une boucle, ou une chaine, de régulation, trois étapes sont nécessaires (figure
p.1) :
— D’observation de la grandeur a maitriser, faite par le capteur-transmetteur ;

— la réflexion sur I'action a entreprendre, qui est fonction de I’écart en rapport avec 1’objectif
fixé, effectuée par le régulateur;

— l’action sur une grandeur incidente, a ’aide d’un actionneur, vanne ou moteur.

5.2.2 Terminologie employée

— Grandeur réglée : grandeur a maitriser.
— Grandeur incidente : grandeur ayant une influence sur la grandeur réglée.
— Grandeur réglante : grandeur incidente commandée par le régulateur.

— Grandeur perturbatrice : grandeur incidente non controlée.

5.2.3 Régulation en chaine ouverte

L’observation n’est pas celle de la grandeur a maitriser mais celle d’une grandeur incidente.
La réflexion est I’étape ot la commande prend en compte une relation préétablie entre la grandeur
observée et la grandeur réglante. L’action modifie alors la grandeur a mafitriser.

Avantages

— Pas de probleme de stabilité.
— Simple et rapide a mettre en place.
— Coiit d’étude faible.
Inconvénients
— Impossibilité de réguler un procédé intégrateur.
— L’objectif n’est pas toujours atteint car ’effet des perturbations n’est pas pris en compte.

— On ne maitrise ni le temps de réponse ni la précision
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5.2.4 Régulation en boucle fermée

99

L’observation se porte sur la grandeur a maitriser. L’étape de réflexion détermine ’écart
entre la consigne et la grandeur a maitriser. En fonction de cet écart et des regles d’évolution
fixées, on en déduit ’action a entreprendre. L’action modifie la grandeur réglante et finalement

la grandeur a maitriser.
Avantages

— L’effet des perturbations est pris en compte.

— Le temps de réponse défini est atteint.

— La précision définie est atteinte.

— Un procédé intégrateur régulé devient autoréglant.

— La linéarité du procédé est améliorée.
Inconvénients

— La stabilité doit étre étudiée.

— Etude et mise au point peuvent étre complexes.

— Coiit d’étude important.

Nota : Plus performante, la régulation en boucle fermée est la plus employée industriellement
car la rétroaction continue fournie par le capteur permet au controleur de mettre a jour ses
actions. Cependant, la configuration en boucle ouverte peut également étre trouvée dans certains
systemes de controle simples et bon marché. Dans une configuration en boucle ouverte, aucun
retour n’est fourni (notez que le capteur disparait) et le contrdleur est cablé pour produire une
réponse fixe a la référence donnée. De toute évidence, ce type de systemes de controle ne peut

pas gérer les perturbations et ne convient que pour des systémes simples.
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FIGURE 5.1: Schéma de principe d’un systéme en boucle fermée
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5.2.5 Régulation de maintien, ou « régulation »

La mesure doit étre maintenue & une valeur constante égale & la consigne quelles que soient
les perturbations subies par le procédé. La vitesse de rejet de l'effet perturbateur pour une
tolérance donnée évalue sa performance.

5.2.6 Régulation de poursuite, ou « asservissement »

La mesure doit suivre toute évolution de la consigne. La rapidité d’obtention de la consigne
et la valeur du dépassement de celle-ci qualifient sa performance. Un asservissement agit sur une
ou plusieurs caractéristiques de la grandeur asservie telles que :

— la position : asservissement de position;
— la vitesse : asservissement de vitesse;
— la concentration : asservissement de concentration ;

— Daccélération : asservissement d’accélération.

5.3 Qualités d’une régulation

1. La premiere qualité a assurer d’une régulation est la stabilité puisque toute instabilité
conduit a la perte de controle du procédé. L’amortissement quantifie le degré de stabilité
dans 'espace temporel.

2. La précision, statique ou dynamique, est souvent la deuxiéme qualité attendue d’une
régulation.

3. La rapidité est une qualité opposée a la précision dynamique et liée a 'amortissement.

Exemple 1 :
240 °C
W / — X
o s
230 °C / \ /- N~
\4/"" X2
/ v )
220 °C / /
V.
210 °C _//
6h08min 6h09min 6h10min

FIGURE 5.2: Analyse des qualités d’une régulation de température.

Pour chaque essai X7 et X5, on passe d’'un régime stable a un autre régime stable : les deux
régulations de poursuite sont stables. La rapidité de la réponse de X; et X est définit par la
vitesse a laquelle une valeur stable en sortie est atteinte. C’est le temps de réponse. Concernant
la précision, la mesure X; est plus précise car la mesure Xo n’atteint pas la consigne.
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5.4 Régulateur PID

Un régulateur, également connu sous le nom de compensateur, est constitué d’un compara-
teur pour observer ’écart entre la mesure et la consigne, et d’'un correcteur dont 1’algorithme
permet d’obtenir une loi d’évolution de la mesure du procédé conforme au cahier des charges. Le
correcteur a une action PID (Proportionnelle, Intégrale et Dérivée) et, associé & un comparateur,
forme un régulateur PID (figure [5.3).

FIGURE 5.3: Schéma fonctionnel régulateur PID

5.5 Applications en biomédical

Des progres considérables ont été accomplis dans le traitement de problémes complexes tels
que le controle des organes artificiels, I'ingénierie de réadaptation, le matériel médical, la robo-
tique médicale et d’autres systémes médicaux grace a ’application de techniques d’ingénierie de
contréle biomédical et de technologies de l'information de pointe. Les techniques de réadapta-
tion aident les personnes handicapées a améliorer la qualité de la vie, telles que les appareils
électriques fonctionnels, les prothéses motorisées et les bras ou les jambes multifonction. De
plus, pour garantir ’équilibre du corps humain, beaucoup de variables physiologiques doivent
étre controlées et régulées. C’est par exemple le cas de la pression artérielle, de I'acidité du sang,
du taux sanguin de sucre, de la fréquence cardiaque, de la température corporelle, du rythme
respiratoire, etc. On présente ci-apres quelques exemples de systemes de régulation automatique
dans le domaine biomédical. Ceux-ci sont également appelés systémes asservis. Indépendamment
de leur complexité, nous pouvons identifier les éléments suivants dans tout systéme de contréle :

5.5.1 Application 1 : Boucle de régulation de Glucose-Insuline

Un systeme de contrdle en boucle fermée pour maintenir le niveau glycémique (diabéte type
1) peut étre représenté a par sa forme simplifiée, par le schéma bloc montré par la figure
Pour un diabétique Type 1, 'organe responsable de la régulation de cette concentration du
Glucose (le pancréas) se trouve pratiquement en état d’échec d’out 'importance de cette boucle
qui consisté essentiellement a la proposition d’'un pancréas artificiel dont la fonction pancréatique
est remplacée par un régulateur. Le systeme glucose-insuline représente le systeme sous controle,
avec injection d’insuline et niveau glycémique en entrée et en sortie, respectivement. Un capteur
de glucose est nécessaire pour convertir la concentration en glucose en tension, tandis qu’'un
systeme d’administration par pompe a insuline permet de maintenir le niveau de glucose controlé
par Iinjection d’insuline. Un circuit électronique basé sur des amplificateurs opérationnels est
utilisé comme controleur (par exemple controleur PID) afin de minimiser I’écart de glucose entre
le niveau souhaité et le niveau mesuré. Ce systeme de controle automatique empéche le patient
de subir des épisodes dangereux hypoglycémiques et hyperglycémiques.
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Food Intake
Desired Actual

Eiliare | insulin o
E—— i ; error y insulin pum rate Hase
Niveau de Signal Gain Controller -@ (mlurz‘llv: ) Human
glucose I i
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! .
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Mise a jour de
I"actionneur

Actionneur Hrimandede

‘ T Quantitd
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rE})iS

Glucometer

FI1GURE 5.4: Controle en boucle fermée de la glycémie.

5.5.2 Application 2 : Boucle de régulation d’un systéme de perfusion "Pousse-
seringues’

La perfusion est une technique médicale permettant de délivrer des liquides a une personne
directement dans son sang par 'intermédiaire d’une veine, généralement I’'une de celles du bras.
Un cathéter, sorte de tuyau souple, est introduit dans une veine périphérique, ou parfois une
grosse veine pour permettre la diffusion de plus gros débit. La perfusion intraveineuse permet
de :

Délivrer des fluides et des électrolytes, afin de restaurer les pertes de liquide.
Administrer des médicaments/drogues (effet thérapeutique).

Assurer une nutrition parentérale.

Faire des transfusions (injection de 1'un des constituants du sang).

Maintenir un équilibre hémodynamique.

LR R TR 4

L’administration intraveineuse permet d’avoir une distribution immédiate et de maintenir
un niveau constant de médication.

Les composants du pousse-seringues électrique sont : (voir ﬁgure
— Unité Centrale (UC) (Gérer le fonctionnement des PSE);
— Le moteur mécanique (Alimente le mouvement de la seringue) ;
— Le capteur de force (Mesure de la force pour pousser la seringue) ;
— Le capteur de position (Pour mesurer le déplacement linéaire de la seringue) ;
— La batterie (Pour alimenter le moteur (Rechargeable)) ;
— La carte d’alimentation (Pour alimenter le moteur mécanique) ;

— Le capot (Contient les boutons de réglage (débit et la vitesse)).

FIGURE 5.5: Pousse-seringues électrique.

Le contodle et 'automatisation du systéme de perfusion de médicament pour 'administration
d’une anesthésie par voie intraveineuse peut étre représenté par le schéma bloc montré par la

figure [5.6
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FIGURE 5.6: Schéma fonctionnel d’un systéme de perfusion de médicament a rétroaction contro-
1ée [4].

5.5.3 Application 3 : Robotique médicale

En ce qui concerne I'ingénierie de la réadaptation, la robotique médicale influe considéra-
blement sur ce domaine a ’heure actuelle. Les technologies robotiques améliorent les processus
médicaux ou chirurgicaux en améliorant la précision, la stabilité et la dextérité, et les robots
sont aujourd’hui capables d’améliorer la rééducation des patients handicapés (voir figure .

m Pourquoi les robots manipulateurs ?

v la rapidité; la précision; la répétabilité ;

v le suivi de trajectoire automatique ;

v la capacité a satisfaire des contraintes de position, vitesse et effort ;

v lenregistrement automatique des gestes effectués.

Disturbance
Desired l

Output error
A Gain @ o Controller .@

Actual
Output

@Nm‘se

Sensor

FIGURE 5.7: Controle en boucle fermée du membre supérieur en rééducation
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Annexes

Annexe A : Table de transformées de Laplace

10 LIF() = F(s)
1 : 1)
10 F(s—a) @)
Ut — a) e;as (3)
ft—aU(t—a) e F(s) (4)
S(t) 1 (5)
5(t —to) e sto (6)
") (1 T @
7t SF(s) - (0) ®)
£1(t) $F(s) — 50 £(0)
= F0D(0) (9)
[ f@att - ade P60 (10)
" (n=0,1,2,...) S:% (11)
Fle>-er Lot (12)
sin kt S2+kk2 (13)
cos kt ﬁ (14)
at . 1 - (15)
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Annexe B : TD

v TD 1 : Algebres matricielles -Rappels-
v TD 2 : Estimation par Moindes Carrés (MC)
v TD 3 : Analyse temporelle des systémes linéaires (ler & 2éme ordre)

v TD 4 : Filtrage linéaire

Annexe C : TP

v TP1 : Régression et interpolation

v TP2 : Transformée de Fourier (TF)

v’ TP3 : Echantillonnage et théoreme de Shannon
v TP4 : Régulation de débit

ANNEXES
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