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Avant-propos

Ce document est destiné à des étudiants de Master 1 physique médicale (département de
Physique– faculté des sciences – unviversité de Sétif1). L’objectif de ce cours est d’apporter
quelques compléments essentiels en mathématiques, afin de donner à l’étudiant les bases néces-
saires à la compréhension de notes techniques ou d’articles spécialisés.

Les cours/TPs/TDs de ce module insisterons sur :
à la compréhension de la méthode des moindes carrés pour l’estimation des paramètres des

systèmes linéaires ;
à les applications des transformées de Fourier, et le filtrage linéaire ;
à l’échantillonnage et l’illustration de l’importance du théorème de Shannon en traitement

numérique du signal ;
à la modélisation des systèmes linéaires du 1er et 2ème ordre, et leurs analyse (étude de leurs

réponses) ;
à les systèmes de rétroaction/asservissement et leurs applications dans le domaine biomédi-

cal.

1
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1

Algèbre linéaire avancée

Nous aborderons dans ce chapitre, le problème de l’estimation paramétrique par la méthode
de minimisation du critère quadratique. Le présent chapitre contient deux parties : la première
partie est un rappel sur le calcul matriciel. Il permet de bien appréhender le reste du cours. La
deuxième partie concerne la méthode des moindres carrés pour l’estimation paramétrique. Enfin,
nous présentons un critère d’évaluation pour qualifier la qualité d’estimation, en se basant sur
le coefficient de corrélation.

Mots clés : matrices et calcul matriciel, méthode des moindres carrés linéaires.

3



4 1. ALGÈBRE LINÉAIRE AVANCÉE

1.1 Généralités sur le calcul matriciel

En algèbre linéaire, une matrice est un ensemble de mXn membres (réels ou complexes)
rangés dans un tableau rectangulaire de m lignes et de n colonnes :

A =


a11
a21
. . .
am1

a12
a22
. . .
am2

a13
a23
. . .
am3

. . .

. . .

. . .

. . .

a1n
a2n
. . .
amn

 (1.1)

Les membres aij (i = 1, 2, . . . ,m ; j = 1, 2, . . . , n) se nomment les éléments de la matrice A et le
produit m×n s’appel l’ordre de la matrice A. Le premier indice i désigne le numéro de la ligne,
et le deuxième indice j désigne le numéro de la colonne.

La matrice (1.1) peut être écrite sous d’autres formes, appelées formes condensées, à savoir
la forme (1.2) et (1.3) :

A = [aij ] avec(i = 1, 2, . . . ,m ; j = 1, 2, . . . , n) (1.2)

ou
A = [aij ]m.n (1.3)

Définissons quelques types de matrices :

1. Si m = n la matrice s’appelle matrice carrée d’ordre n.
2. Mais si m 6= n, on dit que la matrice (1.1) est rectangulaire.
3. En particulier, lorsqu’elle est d’ordre 1× n, on lui donne le nom de vecteur de ligne, et de

vecteur de colonne si elle est d’ordre m× 1.
4. Une matrice dont tous les éléments sont nuls est dite matrice nulle ; on écrit alors Om.n =

[0]m.n.
5. Un nombre (scalaire) peut être considéré comme une matrice d’ordre 1× 1.
6. Une matrice carrée dont les coefficients en dehors de la diagonale principale sont nul est

appelée une matrice diagonale (eq. (1.4)).

An =


α1 0 · · · 0

0 α2
. . . 0

... . . . . . . ...
0 0 · · · αn

 (1.4)

7. Une matrice carrée avec des uns (1.5) sur la diagonale principale et des zéro (0) partout
ailleurs est appelée communément matrice d’identité ou matrice unité.

In =


1 0 · · · 0

0 1 . . . 0
... . . . . . . ...
0 0 · · · 1

 (1.5)

1.2 Opérations sur les matrices

1.2.1 Egalité des matrices

Deux matrices A = [aij ] et B = [bij ] sont considérées comme égales (A = B), si seulement si
elles ont le même nombre de lignes et de colonnes et si leurs éléments respectifs sont égaux.
Autrement dit si :
aij = bij pour i = 1, 2, . . . ,m; j = 1, 2, . . . , n
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1.2.2 Sommes et différences

La somme (différence) de deux matrices A = [aij ] et B = [bij ] est possible si seulement si les
deux matrices A et B ont le même ordre. Par conséquent, la matrice résultante C a le même
ordre que les deux matrices A et B.
C = A+B ⇒ [cij ] = [aij + bij ] pour i = 1, 2, . . . ,m; j = 1, 2, . . . , n
C = A−B ⇒ [cij ] = [aij − bij ]pour i = 1, 2, . . . ,m; j = 1, 2, . . . , n

1.2.3 Produit d’une matrice par un nombre

Le produit d’une matrice A = [aij ] par un scalaire α est le produit de chaque élément de A par
le scalaire α.
α.A = A.α = [α.aij ] pour i = 1, 2, . . . ,m; j = 1, 2, . . . , n

Propriétés :

A = [aij ] et B = [bij ] deux matrices, α et β deux scalaires :

à 1.A = A.
à 0.A = 0.
à α. (β.A) = (α.β) .A.
à (α+ β) .A = α.A+ β.A.
à α. (A+B) = α.A+ α.B.

1.2.4 Multiplication des matrices

Soit deux matrices

A =


a11
a21
. . .
am1

a12
a22
. . .
am2

a13
a23
. . .
am3

. . .

. . .

. . .

. . .

a1n
a2n
. . .
amn


︸ ︷︷ ︸

m×n

etB =


b11
b21
. . .
bp1

b12
b22
. . .
bp2

b13
b23
. . .
bp3

. . .

. . .

. . .

. . .

b1q
b2q
. . .
bpq


︸ ︷︷ ︸

p×q

.

Le produit de A par B (A× B ou A.B) est possible (ou a un sens) si le nombre de colonne de
la matrice A est égale au nombre de ligne de la matrice B. Autrement dit, si n = p.
Par conséquent, le résultat de la multiplication de la matrice A par la matrice B est une matrice
d’ordre m× q, noté C = [cij ]m.q, telle que :
cij = ai1b1j + ai2b2j + · · ·+ ainbnj pour i = 1, 2, . . . ,m; j = 1, 2, . . . , q

Propriétés :

1. A.B 6= B.A.
2. A.I = I.A = A.

Exemple 1 :
Soit deux matrices définies comme suit :

A =
[

3 2 8 1
1 −4 0 3

]
︸ ︷︷ ︸

2×4

, B =


2
1
0
3

−1
−3
1
1


︸ ︷︷ ︸

4×2

Le produit des deux matrices est calculé comme suit :
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C = A.B =
[

3× 2 + 2× 1 + 8× 0 + 1× 3 3× (−1) + 2× (−3) + 8× 1 + 1× 1
1× 2 + (−4)× 1 + 0× 0 + 3× 3 1× (−1) + (−4)× (−3) + 0× 1 + 3× 1

]
︸ ︷︷ ︸

2×2

=
[

11 0
7 14

]

1.2.5 Transposée d’une matrice

Considérons la matrice A = [aij ] d’ordre m× n définie comme suit :

A =


a11
a21
. . .
am1

a12
a22
. . .
am2

a13
a23
. . .
am3

. . .

. . .

. . .

. . .

a1n
a2n
. . .
amn


︸ ︷︷ ︸

m×n

(1.6)

La matrice transposée de la matrice A, noté AT , est définie comme suit :

AT =


a11
a12
. . .
a1n

a21
a22
. . .
a2n

a31
a32
. . .
a3n

. . .

. . .

. . .

. . .

am1
am2
. . .
amn


︸ ︷︷ ︸

n×m

(1.7)

Propriétés :

1.
(
AT
)T

= A.

2. (A+B)T = AT +BT .
3. (A.B)T = BT .AT .
4. Si AT = A, la matrice A est dite alors matrice symétrique.

1.3 Matrice Inverse

1.3.1 Déterminant d’une matrice

à Le déterminant d’une matrice est un outil mathématique nécessaire pour vérifier l’inversi-
bilité d’une matrice, comme il est utilisé pour le calcul de l’inverse d’une matrice.

à Le déterminant d’une matrice est un scalaire et ne concerne que les matrices carrées.
à Une matrice dont le déterminant est différent de zéro est une matrice dite régulière. Elle

est dite singulière dans le cas contraire.
à Le déterminant d’une matrice est nul si et seulement si les vecteurs colonnes (ou vecteur

lignes) sont liées.

Déterminant d’une matrice 2× 2
Soit la matrice A définie comme suit :

A =
[
a b
c d

]
(1.8)

Le déterminant de la matrice A est donné par l’expression suivante :

det A =
∣∣∣∣∣ a b
c d

∣∣∣∣∣ = a.d− b.c (1.9)

Exemple 2 :

Soit la matrice A =
[

3 3
2 4

]
, le déterminant de cette matrice est :
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det A =
∣∣∣∣∣ 3 3

2 4

∣∣∣∣∣ = 3.4− 2.6 = 6.

Déterminant d’une matrice n× n
Soit la matrice A définie comme suit :

A =


a11
a12
. . .
a1n

a21
a22
. . .
a2n

a31
a32
. . .
a3n

. . .

. . .

. . .

. . .

an1
an2
. . .
ann


︸ ︷︷ ︸

n×n

(1.10)

Pour calculer le déterminant de la matrice A, nous suivons l’algorithme suivant :
1. Prenant un élément aij de la matrice A.
2. Enlever la ligne et la colonne contenant aij .
3. On peut alors définir une matrice de n− 1 lignes et de n− 1 colonnes, notée Aij .
4. On peut alors développer le calcul du déterminant de la matrice A suivant la ligne i comme

suit : det A =
∑n
j=1 aij (−1)i+j det (Aij).

Exemple 3 :
Soit la matrice A définie comme suit :

A =

 1 2 3
−2 −4 −5
3 5 6


︸ ︷︷ ︸

3×3

(1.11)

Le déterminant de la matrice A est calculé en utilisant l’algorithme présenté ci-avant :

det A = 1×
∣∣∣∣∣ −4 −5

5 6

∣∣∣∣∣+ (−2)×
∣∣∣∣∣ −2 −5

3 6

∣∣∣∣∣+ 3×
∣∣∣∣∣ −2 −4

3 5

∣∣∣∣∣ = 1 6= 0 (1.12)

Donc, la matrice A est une matrice régulière.

Propriétés du déterminant d’une matrice
1. Si la matrice A est d’ordre n× n, alors det α.A = αn det A.
2. det (A.B) = det A . detB.
3. det AT = det A.

1.4 Définition et calcul de la matrice inverse

1.4.1 Définitions

Définition 1 : on appelle une matrice inverse de la matrice carrée A toute matrice carrée, notée
A−1, telle que A.A−1 = A−1A = In. In est une matrice identité.

Théorème 1 : Toute matrice régulière possède une matrice inverse.

Propriétés :
à det A−1. det A = det In = 1.
à det A−1 = 1

det A .
à (A.B)−1 = B−1.A−1.

à
(
A−1)T =

(
AT
)−1

.

à A.X = B ⇒ X = A−1. B.
à Y.A = B ⇒ Y = B.A−1.
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1.4.2 Calcul de l’inverse d’une matrice carrée

Nous présentons dans ce cours la méthode de calcul basée sur l’utilisation de la matrice adjointe.
Soit la matrice carrée A d’ordre n :

A =


a11
a21
. . .
an1

a12
a22
. . .
an2

a13
a23
. . .
an3

. . .

. . .

. . .

. . .

a1n
a2n
. . .
ann


︸ ︷︷ ︸

n×n

où le déterminant de cette matrice est différent

de zéro, det A = ∆ 6= 0.
Composons ensuite pour la matrice A ce qu’on appelle la matrice adjointe :

Ã =


A11
A21
. . .
An1

A12
A22
. . .
An2

A13
A23
. . .
An3

. . .

. . .

. . .

. . .

A1n
A2n
. . .
Ann


︸ ︷︷ ︸

n×n

La matrice inverse alors est :

A−1 =


A11
∆
A21
∆
. . .
An1
∆

A12
∆
A22
∆
. . .
An2
∆

A13
∆
A23
∆
. . .
An3
∆

. . .

. . .

. . .

. . .

A1n
∆
A2n
∆
. . .
Ann
∆


︸ ︷︷ ︸

n×n

(1.13)

Afin de bien élucider la méthode de calcul, nous présentons l’exemple suivant :

Exemple 4 : Nous reprenons dans cet exemple la matrice définie dans l’exemple 3. Soit la
matrice A définie comme suit :

A =

 1 2 3
−2 −4 −5
3 5 6


︸ ︷︷ ︸

3×3

(1.14)

Comme nous l’avons illustré dans l’exemple précédent, le déterminant de cette matrice est égal
à 1. Donc, c’est une matrice régulière qui possède une matrice inverse.
Pour calculer la matrice inverse de la matrice A, nous commençons alors par calculer la matrice
adjointe transposée :

ÃT =



+
∣∣∣∣∣ −4 −5

5 6

∣∣∣∣∣ −
∣∣∣∣∣ −2 −5

3 6

∣∣∣∣∣ +
∣∣∣∣∣ −2 −4

3 5

∣∣∣∣∣
−
∣∣∣∣∣ 2 3

5 6

∣∣∣∣∣ +
∣∣∣∣∣ 1 3

3 6

∣∣∣∣∣ −
∣∣∣∣∣ 1 2

3 5

∣∣∣∣∣
+
∣∣∣∣∣ 2 3
−4 −5

∣∣∣∣∣ −
∣∣∣∣∣ 1 3
−2 −5

∣∣∣∣∣ +
∣∣∣∣∣ 1 2
−2 −4

∣∣∣∣∣


(1.15)

ÃT =

 1 −3 2
3 −3 1
2 −1 0


Après avoir calculé la transposée de la matrice adjointe, la matrice adjointe est égale à :

Ã =

 1 3 2
−3 −3 −1
2 1 0

 (1.16)

La matrice inverse peut être déterminée en devisant la matrice adjointe par le déterminant. Et
comme le déterminant est égal à 1, la matrice inverse est égale alors à la matrice adjointe.
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1.5 Normes de matrices
La norme est un opérateur qui permet de quantifier un scalaire, un vecteur, une fonction

vectorielle (ex : un vecteur de signaux temporels), une matrice.

1.5.1 Norme euclidienne d’un vecteur

Elle se définit en effet, pour un vecteur v, par :

‖v‖2 =
√
< v, v > =

√√√√ K∑
k=1

v2
k (1.17)

Exemple 5 :

v =
[

1 5
√

5
]

La norme de ce vecteur est :

‖v‖2 =
√

12 52 (
√

5)2 = 5.57.

1.5.2 Norme d’une matrice

Plusieurs normes différentes peuvent être utilisées par exemple :

‖M‖2 =

√√√√ n∑
i=1

p∑
j=1
|Mi,j |2 (1.18)

1.6 Valeurs et vecteurs propres de matrice
λ est valeur propre de A si et seulement si :

P (λ) = det(λIn −A) = 0 (1.19)

Une matrice de dimension n a nécessairement n valeurs propres λi, i = 1, ..., n. Pour simplifier,
l’on supposera que celles-ci sont distinctes. Lorsque A est réelle, les valeurs propres constituent
un ensemble auto-conjugué. Autrement dit, si λ est valeur propre de A, sa quantité conjuguée
l’est aussi. Tous ces scalaires constituent un ensemble de cardinal n appelé spectre de A et
parfois noté λ(A).
Il existe n vecteurs vi, i = 1, ..., n non nuls, appelés vecteurs propres à droite, tels que :

Avi = λivi ∀i ∈ {1, ..., n} (1.20)

Exemple 6 :
Soit la matrice

A =
[

3 −1
2 0

]
Son polynôme caractéristique est égal à :

P (λ) = det(λI2 −A) = det

([
λ− 3 1
−2 λ

])
= (λ− 1)(λ− 2)

Les racines de ce polynôme sont λ1 = 1 et λ2 = 2. Ce sont les valeurs propres de A et elles sont
distinctes. On peut calculer une matrice V = [v1 v2] des vecteurs propres à droite Eq.1.20.

V =
[

1 2
1 1

]
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1.7 Méthode des moindres carrés linéaires

Des situations courantes en sciences biologiques, économiques, techniques est d’avoir à sa dis-
position deux ensembles de données de taille n, y1, y2, ..., yk et x1, x2, ..., xk, obtenus expérimen-
talement et généralement entachées d’erreurs de mesure y∗1, y∗2, ..., y∗k. La méthode des moindres
carrés (Estimation paramétrique par minimisation du critère quadratique) permet de comparer
ces données mesurées à un modèle mathématique, par exemple on peut retenir a priori :

à l’approximation linéaire qui dépend d’un seul paramètre a : y = ax ;
à l’approximation par une loi de puissance qui dépend aussi d’un seul paramètre a : y = xa ;
à l’approximation affine qui dépend de deux paramètres a et b : y = ax+ b ;
à l’approximation polynomiale de degré 2 qui dépend trois paramètres a, b et c : y = ax2 +

bx+ c ;
à etc.

Système

Modèle

xk
y
∗

k

Figure 1.1: Système et Modèle

1.7.1 Principes généraux

Position du problème
Soit y = f (θ, x) le modèle mathématique d’un système, avec :

Ü f : structure de la loi mathématique.
Ü θ : ensemble de I coefficients ou paramètres de la loi, tel que : θ = (θ1, θ2, . . . , θI).
Ü x : variable indépendante (le plus souvent, x est le temps).
Ü y : réponse du système à des sollicitations ou des excitations.

Supposons que nous disposons de k mesures de y∗ (xk), éventuellement recueillies après l’exci-
tation du système. L’objectif de l’identification paramétrique est de déterminer les paramètres
θ de la loi mathématique décrivant le système, tout en supposant que :

å La loi f est connue.
å Les erreurs de modélisation sont nulles.

Comme les mesures y∗ (xk) sont entachées de bruit, il est impossible, en pratique, d’obtenir les
valeurs exactes de θ. Pour pallier ce problème, on se contente d’estimer (donner des valeurs
approximatives) les valeurs des paramètres du modèle. Pour ce faire, nous définissons θ̂ comme
étant l’ensemble des paramètres estimés qui sont des variables aléatoires. Par conséquent, la
sortie estimée peut être définie comme suit :

ŷk = f
(
θ̂, xk

)
(1.21)

Le résidu ou l’erreur entre la sortie réelle du système et celle estimée est donnée par :
ek = y∗k − ŷk = y∗k − f

(
θ̂, xk

)
(1.22)



1.7. MÉTHODE DES MOINDRES CARRÉS LINÉAIRES 11

y
∗

k

xk

e1

e2

e3

e4

ep

ŷk

ek

Figure 1.2: évolution de la sortie réelle et la sortie estimée.

Intuitivement, la meilleure valeur de θ̂ est celle qui minimise l’ensemble des résidus. Notons ici
que les erreurs d’estimation peuvent prendre des valeurs positives comme elles peuvent prendre
des valeurs négatives.
Ainsi, l’estimation paramétrique consiste à chercher la valeur de θ̂ qui minimise mieux l’ensemble
des résidus. Toutefois, vu le nombre de résidus qui peut être très élevé, nous allons définir un seul
critère à minimiser qui cumule et prend en compte l’ensemble des résidus. Notons également que
le critère choisi doit éviter toute sorte de compensation de résidus. Plusieurs types de critères
existent en littérature. Toutefois, dans le cadre de ce cours, nous nous contentons de présen-
ter le critère quadratique (1.23). Ce dernier offre une multitude de propriétés mathématiques
intéressantes que nous allons aborder ci-après.

J =
K∑
k=1

(ek)2 (1.23)

Notons ainsi que la minimisation du critère (1.23) est appelée la méthode des moindres carrés
(moindres pour minimaux) introduite par "Gauss" vers 1800.

1.7.2 Modèle linéaire par rapport aux paramètres (LP)

Nous désignons par un modèle linéaire par rapport aux paramètres, tout genre de modèle ma-
thématique dont les effets des paramètres θ sont séparables de ceux des variables indépendantes
x. Soit

y = f (θ, x) = ϕ1 (x) .θ1 + ϕ2 (x) .θ2 + · · ·+ ϕI (x) .θI (1.24)

L’équation(1.24) peut être reformulée comme suit :

y =
[
ϕ1 (x) ϕ2 (x) · · · ϕI (x)

]
︸ ︷︷ ︸

ϕT (x)

.


θ1
θ2
...
θI


︸ ︷︷ ︸

θ

(1.25)

Soit encore y = ϕT (x) .θ.
Notons que l’expression ϕT (x) peut être non linéaire et complexe.

1.7.3 Critère quadratique pour les modèles LP

Comme nous l’avons mentionné ci-avant, l’intérêt du critère quadratique réside dans le fait qu’il
possède des propriétés mathématiques intéressantes, surtout pour ce qui est des modèles LP.
Soient la sortie estimée et l’erreur d’estimation sont définie comme suit :
ŷk = ϕT

k
.θ̂ et ek = y∗k − ŷk.

Supposons que les mesures sont non bruitées, donc y∗k = yk, telle que yk la sortie exacte., on
peut alors écrire :
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ek = yk − ŷk = ϕT
k
. θ − ϕT

k
. θ̂ = ϕT

k
.
(
θ − θ̂

)
(1.26)

Soit θ̂ = θ + dθ, on peut alors développer l’erreur comme suit :
ek = −ϕT

k
. dθ (1.27)

Ainsi, le critère quadratique J peut être reformulé comme suit :

J =
K∑
k=1

(ek)2 =
K∑
k=1

(
−ϕT

k
. dθ

)2
(1.28)

En développant l’équation (1.28), on peut écrire alors :

J =
K∑
k=1

(ek)2 =
K∑
k=1

dθT .
(
ϕ
k
. ϕT

k

)
. dθ (1.29)

J =
K∑
k=1

(ek)2 = dθT .

(
K∑
k=1

.
(
ϕ
k
. ϕT

k

))
. dθ = dθT . R . dθ (1.30)

Afin de bien élucider les propriétés du critère quadratique, nous supposons dans un premier
temps que le nombre de paramètres est égal à 1, c’est-à-dire I = 1. Alors, l’équation (1.30) peut
être reformulée comme suit :
J = dθ2. R avec la matrice R est positive.
En se basant sur l’équation (1.30) nous pouvons constater que le critère J est une parabole
(figure 1.3).

0

0

J

θ̂
θ

dθ̂

Figure 1.3: Allure du critère quadratique.

En ce qui concerne le cas général où le nombre de paramètre est différent de un, le critère
quadratique J est un paraboloïde centré sur θ. En substance, dans le cas des systèmes LP, le
critère quadratique J est parabolique. Par conséquent, un seul et unique optimum est possible.

1.7.4 Modèle LP et moindres carrés

Dans cette section, nous présentons la méthode des moindres carrés qui permet de déterminer
le vecteur des paramètres estimés θ̂.
Dans le cas des systèmes LP, le critère quadratique est défini comme suit :

J =
K∑
k=1

(
y∗k − ϕTk . θ̂

)2
(1.31)
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Notre objectif est de déterminer θ̂ = θMC qui minimise le critère (1.31). Autrement dit, déter-
miner θMC tel que :

∂J

∂θ̂i
= 0 pour i = 1, 2, . . . , I (1.32)

L’équation (1.32) peut être reformulée comme suit :

(
J

′

θ̂

)
θMC

= 0 tel que J ′
θ =


∂J
∂θ1
∂J
∂θ2...
∂J
∂θI

 est le gradient du critère J par rapport à θ̂.

Cas élémentaire (cas monovariable)

Considérons le cas monovariable, alors :
ŷk = ϕk. θ̂ (1.33)

Et

J =
K∑
k=1

(
y∗k − ϕk. θ̂

)2
(1.34)

En développant le critère (1.34), nous pouvons écrire :

J =
K∑
k=1

(
(y∗k)

2 − 2. ϕk. θ̂. y∗k + ϕ2
k. θ̂

2
)

=
K∑
k=1

(y∗k)
2 − 2. θ̂.

K∑
k=1

ϕk. y
∗
k + θ̂2.

K∑
k=1

ϕ2
k (1.35)

L’équation (1.35) est bien l’équation d’une parabole (avec ou sans perturbation). Le minimum
de cette parabole est obtenu analytiquement comme suit :

∂J

∂θ̂
= −2.

K∑
k=1

ϕk.y
∗
k + 2θ̂.

K∑
k=1

ϕ2
k = 0 (1.36)

A partir de l’équation (1.36), nous pouvons déterminer θMC minimisant le critère J . θMC est
donnée alors par l’expression suivante :

θMC =
(

K∑
k=1

ϕ2
k

)−1

.
K∑
k=1

ϕk. y
∗
k (1.37)

Remarque : supposons que la sortie du système est entachée de bruit, l’expression de la sortie
devient donc :

y∗k = yk + bk (1.38)

avec bk est une variable aléatoire qui représente le bruit de mesure.
Dans ce cas, le vecteur des paramètres estimés devient :

θMC =
(

K∑
k=1

ϕ2
k

)−1

.

(
K∑
k=1

ϕk. yk +
K∑
k=1

ϕk. bk

)
(1.39)

En développant yk, l’équation (1.39) peut être reformulée comme suit :

θMC =
(

K∑
k=1

ϕ2
k

)−1

.

(
K∑
k=1

ϕ2
k. θ +

K∑
k=1

ϕk. bk

)
(1.40)

Alors,

θMC = θ +
(

K∑
k=1

ϕ2
k

)−1

.

(
K∑
k=1

ϕk. bk

)
= θ + ∆θ (1.41)

A cause du bruit bk, θMC est différent de θ.

Cas général (cas multivariables)
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Dans cette section, nous abordons le cas d’un système avec plusieurs paramètres. Nous avons
alors :

J =
K∑
k=1

(
y∗k − ϕTk . θ̂

)2
=

K∑
k=1

ε2
k (1.42)

Afin de déterminer θMC minimisant le critère quadratique, nous calculons le gradient de J . Nous
obtenons alors :

J
′
θ = −2.

K∑
k=1

εk. ϕk = −2.
K∑
k=1

(
y∗k − ϕTk . θ̂

)
. ϕ

k
(1.43)

Nous obtenons θMC minimisant mieux le critère quadratique, lorsque J ′
θ = 0, soit :

− 2.
K∑
k=1

(
y∗k − ϕTk . θ̂

)
. ϕ

k
= 0 (1.44)

En développant l’équation (1.44), nous obtenons :
K∑
k=1

(
y∗k. ϕk

)
=

K∑
k=1

(
ϕT
k
. θ̂. ϕ

k

)
(1.45)

L’expression (1.45) est équivalente à :
K∑
k=1

(
ϕ
k
. y∗k

)
=

K∑
k=1

(
ϕ
k
.ϕT
k
. θ̂
)

(1.46)

Nous pouvons alors déterminer θMC comme suit :

θMC =
(

K∑
k=1

(
ϕ
k
.ϕT
k
.
))−1

.
K∑
k=1

ϕ
k
. y∗k (1.47)

Notons ici que l’expression (1.47) du vecteur des paramètres estimés θMC est très utile pour
l’écriture des algorithmes récursifs. Toutefois, il existe d’autres écritures équivalentes. Dans la
section suivante, nous présentons la formulation matricielle de θMC .

Cas général : formulation matricielle

Soit le vecteur des sorties Y ∗ tel que :

Y ∗ =


y∗1
y∗2
...
y∗K

 (1.48)

Nous pouvons écrire alors,

Y ∗ =


y∗1
y∗2
...
y∗K

 =


ϕT1 . θ̂

ϕT2 . θ̂...
ϕT
K
. θ̂

 =


ϕT1
ϕT2...
ϕT
K

 .θ̂ = φ. θ̂ (1.49)

Où φ est une matrice d’ordre K × I. De même, l’erreur d’estimation peut être calculée comme
suit :

ε = Y ∗ − φ.θ̂ (1.50)

Ainsi, le critère quadratique peut être reformulé comme suit :
J = εT .ε (1.51)

En développant J , nous pouvons obtenir :
J = Y ∗

T
. Y ∗ − 2. Y ∗T

. φ. θ̂ + θ̂
T
. φT .φ. θ̂ (1.52)

Rappelons quelques outils nécessaires pour calculer le gradient :
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Rappel : soit f une fonction, telle que f = XT . A. Y , où A est une matrice symétrique, Alors : ∂f
∂Y =

(
XT .A

)T
= AT .X

∂f
∂X = A.Y

(1.53)

Afin d’obtenir l’expression de θMC minimisant le critère, nous calculons le gradient du critère
J , nous obtenons alors :

J ′θ̂ = −2. φT .Y ∗ + 2. φT . φ. θ̂ = 0 (1.54)

D’où l’estimation du vecteur des paramètres au sens des moindres carrés peut être reformulée
comme suit :

θMC =
(
φT . φ

)−1
.φT .Y ∗ (1.55)

Finalement, notons que l’intérêt d’utiliser la méthode des moindres carrés pour l’estimation
paramétrique des systèmes LP réside dans le fait que le minimum du critère J est obtenu de
manière analytique. De plus, la solution obtenue est unique (sommet d’un paraboloïde).

1.7.5 Qualité de l’approximation

Si maintenant on cherche la fonction d’approximation x = ây , on procède de la même
manière :

e =
n∑
k=1

(xk − g(yk))2 =
n∑
k=1

(xk − âyk)2 =
n∑
k=1

x2
k − 2âxkyk + â2y2

k (1.56)

d’où :

∂e

∂â
=

n∑
k=1
−2xkyk + 2ây2

k (1.57)

qui s’annule pour :

â =

n∑
k=1

xkyk

n∑
k=1

y2
k

(1.58)

Ce qui définit la fonction d’approximation :

x =

n∑
k=1

xkyk

n∑
k=1

y2
k

y (1.59)

Si l’approximation est parfaite, les deux fonctions d’approximation y = ax et x = ây sont
l’inverse l’une de l’autre et donc a.â = 1. On définit alors le nombre R2 = a.â, appelé coefficient
de détermination. Plus ce coefficient est proche de 1, meilleure est l’approximation. Il permet
donc d’en apprécier la qualité. On utilise aussi le nombre R =

√
R2 affecté du signe de a. Il est

appelé coefficient de corrélation. Coefficient de détermination :

R2 =
(
n∑
k=1

xkyk)2

n∑
k=1

x2
k

n∑
k=1

y2
k

(1.60)
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Transformations linéaires et
Echantillonnage

Nous abordons dans ce chapitre deux types de transformation nécessaires pour le traitement
du signal, à savoir, la transformée de Fourier et la transformée de Laplace. Généralement, nous
désignons par le mot signal, toute manifestation d’une grandeur physique mesurable (tension
électrique, la pression d’une fluide, . . .etc). Plusieurs classifications de signaux existent dans la
littérature. Nous présentons quelques unes dans la section suivante.

Mots clés : Classification des signaux, Transformée de Fourier, Transformée de Laplace,
Echantillonnage, théorème de Shannon.

17
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2.1 Classification des signaux

2.1.1 Signaux déterministes et signaux aléatoires

Les signaux déterministes sont des signaux dont le modèle mathématique est connu, donc leur
évolution dans le temps peut être prédite à tout moment. Par contre, les signaux aléatoires sont
des signaux dont le modèle mathématique n’est pas connu, donc leur évolution dans le temps
est imprévisible.

2.1.2 Signaux continus et signaux discrets

Les signaux continus sont des fonctions d’une ou plusieurs variables continues (définies dans
des espaces continus, par exemple, l’ensemble des nombres réels). Par contre, les signaux à
variation temporelle discrète sont des fonctions d’une ou plusieurs variables discrètes (définies
pour certaines valeurs seulement).

2.1.3 Signaux pairs et signaux impairs

Un signal x (t) est dit pair s’il satisfait x (−t) = x (t) pour tout t. Par contre, un signal impair
est dit impair, s’il satisfait x (−t) = −x (t).

Exemple 1 :

1. x (t) = cos (t) ⇒ x (−t) = cos (−t) = cos (t) signal pair.

2. y (t) = sin (t)⇒ x (−t) = sin (−t) = − sin (t) signal impair.

2.1.4 Signaux périodiques et signaux apériodiques

Un signal périodique x (t) est une fonction du temps qui satisfait la condition :

x (t) = x (t+ T0) pour tout t (2.1)

T0 est la plus petite constante positive non nulle qui vérifie la condition (2.1). T0 est la période.
De même, le rapport f = 1

T0
est la fréquence fondamentale. Par conséquent, la pulsation du

mouvement, elle est donnée par : ω0 = 2πf = 2π
T0
.

Cependant, tout signal pour lequel il n’existe pas de valeur T0 qui vérifie la condition (2.1)
est appelé apériodique.

Exemple 2 : Soit le signal x (t) = cos (3t). Il s’agit de trouver la période du signal x (t).
En appliquant la formule (2.1), alors

x (t+ T0) = cos (3 (t+ T0))
= cos (3t+ 3T0)
= cos (3t) . cos (3T0)− sin (3t) . sin (3T0) = cos (3t)

(2.2)

La condition (2.2) est vérifiée si :{
sin (3T0) = 0
cos (3T0) = 0 ⇒ 3T0 = 2π ⇒ T0 = 2π

3 .

Le signal x (t) est périodique et sa période est T0 = 2π
3 .
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2.1.5 Signaux à énergie finie et à puissance finie

Un signal s (t) est dit à énergie finie non nulle, s’il vérifie :∫ +∞

−∞
s2 (t) dt <∞ (2.3)

Un signal s (t) est dit à puissance moyenne non nulle, s’il satisfait :

0 < lim
t→∞

1
T

∫ T/2
−T/2

s2 (t) dt <∞ (2.4)

Nota :

1. Un signal à énergie finie est un signal à puissance moyenne nulle.
2. Un signal à puissance moyenne finie est un signal à énergie infinie.

Exemple 3 :
Soit le signal s (t) = A. L’énergie de ce signal est :∫ +∞

−∞
A2 dt = A2t

∣∣∣+∞
−∞

= +∞ (2.5)

Sa puissance se calcule ainsi :

lim
T→∞

1
T

∫ T/2
−T/2

A2dt = lim
T→∞

1
T
A2t

∣∣∣T/2
−T/2

= A2 (2.6)

Alors, le signal s (t) = A est un signal à puissance moyenne infinie.

2.2 Rappel sur les signaux sinusoïdaux

Les signaux sinusoïdaux sont les signaux périodiques fondamentaux qu’on rencontre souvent
dans plusieurs disciplines scientifique et phénomènes physiques (électricité, vibration, mécanique,
. . .,etc). La forme générale est la suivante :

s (t) = a. sin (2πf0.t) (2.7)

Avec f0 = 1
T0

est la fréquence fondamentale.

0

s(t)

T0

t

a

Figure 2.1: Signal sinusoïdal défini à l’origine.

Si on choisi l’origine des temps arbitraire à l’instant t0. Dans ce cas, le signal sinusoïdal est défini
comme suit :

s (t) = a. sin (2πf0.t− ϕ0) avec ϕ0 est la phase. (2.8)

0

s(t)

T0

t

a

Figure 2.2: Forme générale d’un signal sinusoïdal.
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Comme nous pouvons aussi donner une autre représentation graphique de nature différente,
appelée représentation fréquentielle ou spectrale. Elle contient deux parties ; l’amplitude en
fonction de la fréquence et la deuxième concerne la phase en fonction de la phase.

0 f0 f

a

0 f0 f

'0

Figure 2.3: Représentation fréquentielle d’un signal sinusoïdale.

Nota : La représentation fréquentielle d’un signal composé de plusieurs signaux sinusoïdaux
consiste à représenter chaque signal séparément. A titre d’exemple, soit le signal suivant :

s (t) = a1. sin (2πf1.t) + a2. sin (2πf2.t− ϕ2) + a3. sin (2πf3.t) (2.9)

La représentation graphique du signal (2.9) est la suivante :

0 f2
f

a1

0 f2 f

'0

a3

a2

f3f1 f1 f3

Figure 2.4: Représentation fréquentielle d’un signal composé.

2.3 Rappel sur la décomposition en séries de Fourier

La décomposition en séries de Fourier est une approche qui permet de représenter n’importe
quel signal périodique sous la forme suivante :

s (t) =
∞∑
n=0

an. cos (2πnf0. t) + bn. sin (2πnf0. t) (2.10)

Ou sous la forme suivante :
s (t) = a0 +

∞∑
n=1

an. cos (2πnf0. t) + bn. sin (2πnf0. t) (2.11)

avec :
a0 = 1

T0

∫
(T0)

s (t) dt (2.12)

an = 2
T0

∫
(T0)

s (t) . cos (2πnf0. t) dt (2.13)

bn = 2
T0

∫
(T0)

s (t) . sin (2πnf0. t) dt (2.14)

Exemple 4 : Soit le signal pair et périodique s (t) défini comme suit (figure 2.5) :

0

s(t)

T0

t

Figure 2.5: Représentation graphique du signal s(t).
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s (t) =
{
−t pour − T0

2 ≤ t ≤ 0
t pour 0 < t ≤ T

2
(2.15)

L’objectif est de déterminer les coefficients de la série de Fourier. Nous commençons par a0.

a0 = 1
T0

[∫ 0

−T0/2
−t dt+

∫ T0/2

0
t dt

]
= T0

4 (2.16)

En ce qui concerne les coefficients an, ils sont calculés comme suit :

an = 2
T0
.

[∫ 0

−T0/2
−t . cos (2πnf0 . t) dt+

∫ T0/2

0
t. cos (2πnf0 . t) dt

]
(2.17)

En utilisant l’intégration par partie, nous pouvons obtenir le résultat suivant :

an = 1
π2n2f0

. [cos (πn)− 1] =
{

0 si n est pair
−2

π2n2f0
ailleurs

(2.18)

Pour ce qui est des coefficients bn sont calculés comme suit :

bn = 2
T0
.

[∫ 0

−T0/2
−t. sin (2πnf0. t) dt+

∫ T0/2

0
t. sin (2πnf0.t) dt

]
(2.19)

En utilisant l’intégration par partie, nous obtenons le résultat suivant :
bn = 1

2πnf0
.

[
cos

(
2πnf0.

T0
2

)
− cos

(
2πnf0.

T0
2

)]
= 0 (2.20)

La décomposition en série de Fourier du signal (2.15) peut être écrite comme suit :

s (t) = T0
2 −

2
π2f0

. cos (2πf0. t)−
2

9π2f0
cos (6πf0. t)−

2
25π2f0

cos (10πf0. t)− . . . . . . (2.21)

2.3.1 Propriétés des séries de Fourier

Ü Les signaux pairs n’ont que des termes en cosinus, tous les coefficients bn sont nuls.
Ü Les signaux impairs n’ont que des termes sinus, tous les coefficients an sont nuls.
Ü Le spectre ou la représentation fréquentielle d’un signal périodique est un spectre discret

(spectre de raies).

2.3.2 Représentation complexe

En se basant sur les relations qui existent entre les signaux sinusoïdaux el les exponentiels
complexes, nous pouvons reformuler les séries de Fourier trigonométriques comme suit :

s (t) =
+∞∑

n=−∞
S (nf0) . ej2πnf0.t (2.22)

Tel que :

S (nf0) = 1
T
.

∫ T/2

−T/2
s (t) .e−j2πnf0.tdt (2.23)

La relation entre les cœfficients complexes et ceux trigonométriques est donnée par :
S (+nf0) = an − jbn

2 n 6= 0 n : positive (2.24)

S (−nf0) = an + jbn
2 n 6= 0 n : négative (2.25)

S (0) = a0 (2.26)

Pour ce qui est de l’inverse :
an = S (+nf0) + S (−nf0) pour n 6= 0 (2.27)
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bn = −S (+nf0) + S (−nf0)
j

pour n 6= 0 (2.28)

a0 = S (0) (2.29)

2.4 Transformée de Fourier
La transformée de Fourier est la généralisation de la série de Fourier aux signaux non pério-

dique. La transformée de Fourier d’un signal s (t)est définie comme suit :

F [s (t)] = S (f) =
∫ +∞

−∞
s (t) .e−j2πftdt (2.30)

De même, on peut définir la transformée de Fourier inverse comme suit :
F−1 [S (f)] = s (t) =

∫ +∞

−∞
S (f) .ej2πftdf (2.31)

Comme on peut écrire la Transformée de Fourier sous la forme suivante :
S (f) = |S (f)| ejθ(f) (2.32)

La forme (2.32) constitue la représentation spectrale du signal s (t) qui fait apparaître le spectre
d’amplitude |S (f)| et le spectre de phase θ (f) tel que :

θ (f) = arctg

(=m (S (f))
<e (S (f))

)
(2.33)

Comme il existe une autre écriture de la transformée de Fourier qui consiste à le mettre sous la
forme complexe suivantes :

S (f) = <e (S (f)) + j.=m (S (f)) (2.34)

2.4.1 Conditions d’existence de la transformée de Fourier

Comme nous l’avons mentionné ci-avant, la transformée de Fourier est la généralisation de
la série de Fourier aux signaux ou fonctions apériodiques. Toutefois, ce n’est pas toutes les
fonctions du temps possèdent forcément une Transformée de Fourier. Seules les fonctions ou
signaux vérifiant les conditions ci-dessous possèdent une Transformée de Fourier :

— Fonction ou signaux absolument convergents :∫ +∞

−∞
s (t) dt <∞ (2.35)

— Le nombre d’extremums de la fonction s (t)soit fini dans un intervalle de temps fini ; On
désigne par les extremums d’une fonction les maximums et les minimums.

— Le nombre de discontinuité de la fonction s (t) soit fini dans tout intervalle de temps fini.

2.4.2 Quelques propriétés de la transformée de Fourier

Linéarité

Si X (f) = F [x (t)] et Y (f) = F [y (t)] on peut alors écrire :
F [a.x (t) + b.y (t)] = a.X (f) + b.Y (f) (2.36)

Ceci est une conséquence directe de la propriété de linéarité de l’opération de l’intégration. No-
tons que a et b sont deux constantes arbitraires.

Dérivation
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Si S (f) = F [s (t)], on peut alors écrire :

F

[
d s (t)
dt

]
= j2πf. S (f) (2.37)

Translation
Si S (f) = F [s (t)], on peut alors écrire :

F [s (t− t0)] = S (f) . e−j2πf t0 (2.38)

Similitude
Si S (f) = F [s (t)], on peut alors écrire :

F [s (a t)] = 1
|a|
.S
(
f/a
)

(2.39)

Où a est une constante arbitraire.

2.4.3 Théorème de Perceval

Si s (t) est un signal qui vérifie les conditions d’existence de la Transformée de Fourier, alors :

E =
∫ +∞

−∞
(s (t))2 . dt =

∫ +∞

−∞
(S (f))2 . df (2.40)

Autrement dit, l’énergie du signal dans le domaine temporel est égale à celle calculée dans le
domaine fréquentiel.

Exemple 5 :
Soit l’impulsion rectangulaire suivante :

s (t) =
{

1 |t| ≤ τ/2
0 ailleurs

(2.41)

L’objectif est de calculer la transformée de Fourier de l’impulsion rectangulaire et son spectre
d’amplitude.

S (f) =
∫ +∞

−∞
s (t) . e−j2πf . tdt =

∫ +τ/2

−τ/2
e−j2πf . tdt (2.42)

S (f) =
[
e−j2πf .

τ/2 − e+j2πf . τ/2

j2πf

]
= 1
πf

sin (πf . τ) (2.43)

S (f) = τ sin c (πf . τ) (2.44)

Le spectre d’amplitude est donné comme suit (figure 2.6) :

Figure 2.6: Spectre d’amplitude du signal.
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2.5 Transformée de Laplace

Soit f (t) une fonction ou un signal qui dépend du temps. Sa transformée de Laplace F (s) est
définie par :

F (s) = L [f (t)] =
∫ +∞

−∞
f (t) . e−s. t dt (2.45)

Telle que s : une variable complexe, soit s = σ + jω.
Notons que la transformée de Laplace est un outil très important dans l’analyse des systèmes,
des signaux et des fonctions. Elle permet de simplifier de façon considérable les calculs tels que
les calculs des dérivées et des intégrales.
La notation ”s” (variable de Laplace) est utilisée dans les pays anglo-saxons alors que la notation
”p” est utilisée notamment en France et en Allemagne.
Généralement, on divise la transformée de Laplace en deux types : la transformée de Laplace
fonctionnelle et la transformée de Laplace opérationnelle.

2.5.1 Transformée de Laplace fonctionnelle

Dans cette section, nous nous intéressons uniquement au calcul de la transformée de Laplace
appliquée généralement sur des fonctions. Dans ce qui suit, nous passons en revue quelques
exemples sur des fonctions connus 1.

Transformée de Laplace d’une fonction échelon
Soit la fonction échelon définie comme suit :

u (t) =
{

0 si t < 0
K si t ≥ 0 (2.46)

Si K = 1, la fonction u (t) est appelée ainsi la fonction échelon unitaire.
La transformée de Laplace de la fonction u (t) est donnée par :

L [u (t)] =
∫ +∞

0
K. e−st dt = −K.e

s t

s

∣∣∣∣∣
+∞

0
= K

s
(2.47)

Transformée de Laplace d’un exponentiel décroissant

Etant donné la fonction suivante :

f (t) =
{

0 si t < 0
e−a t ≥ 0 si t ≥ 0 (2.48)

La transformée de Laplace de la fonction f (t) est calculée comme suit :

L [f (t)] =
∫ +∞

0
e−a t e−s t dt =

∫ +∞

0
e−(a+s) t dt = 1

s+ a
(2.49)

Transformée de Laplace d’une fonction sinusoïdale

Soit la fonction sinusoïdale suivante :

f (t) =
{

0 si t < 0
sin (ω t) si t ≥ 0 (2.50)

La transformée de Laplace de cette fonction est donnée par :

L [sin (ω t)] =
∫ +∞

0

(
e(jω t) − e−(jω t)

2j

)
e−st dt =

∫ +∞

0

e−(s−jω)t − e−(s+jω)t

2j dt

L [sin (ω t)] = ω

s2 + ω2 (2.51)

1. Annexe 1 : Table des transformées de Laplace
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2.5.2 Transformée de Laplace opérationnelle

Dans cette section, nous allons montrer comment sont effectuées des opérations telles que l’ad-
dition, la multiplication, la dérivé, l’intégrale dans le domaine de Laplace.
Transformée de Laplace d’une multiplication par une constante

Soit F (s) = L [f (t)], alors on peut écrire :
L [K . f (t)] = K.F (s) (2.52)

Transformée de Laplace d’une addition (soustraction)

L’opération de l’addition (soustraction) dans le domaine temporel correspond à une addition
dans le domaine de Laplace. Autrement dit, Soient, F1 (s) = L [f1 (t)], F2 (s) = L [f2 (t)], F3 (s) =
L [f3 (t)], on peut écrire alors :

L [f1 (t) + f2 (t) + f3 (t)] = F1 (s) + F2 (s) + F3 (s) (2.53)

Transformée de Laplace de la dérivation

La dérivation dans le domaine du temps correspond à multiplier F (s) par la variable de Laplace
s et puis soustraie la valeur initiale de f (t) (donc f (0)). On obtient alors :
Soit F (s) = L [f (t)], alors on peut écrire :

L

[
df (t)
dt

]
= s. F (s)− f (0) (2.54)

Exemple 6 :

Soit l’équation différentielle de 1ère ordre, linéaire et à coefficients constants :
ẏ = −a y + b x (2.55)

La transformée de Laplace de l’équation (2.55) est calculée comme suit :
L [ẏ] = L [−a y + b x]
s . Y (s)− y (0) = −a Y (s) + bX (s)
s . Y (s) + a Y (s) = y (0) + bX (s)
Y (s) (s+ a) = y (0) + bX (s)
Y (s) = y(0)+bX(s)

(s+a)

(2.56)

Transformée de Laplace de l’intégration

L’intégration dans le domaine du temps correspond à diviser par la variable de Laplace s dans
le domaine de Laplace.
Soit F (s) = L [f (t)], alors on peut écrire :

L

[∫ +∞

−∞
f (t) dt

]
= F (s)

s
(2.57)

2.6 Propriétés fondamentales de la Transformée de Lapalce

Nous présentons dans cette section quelques propriétés de la Transformée de Laplace.

Ü Linéarité : L [a f (t) + b g (t)] = aF (s) + bG (s).

Ü Dérivée : L
{
df(t)
dt

}
= s F (s)− f (0).

Ü Intégrale : L
[∫+∞
−∞ f (t) dt

]
= F (s)

s .

Ü Retard temporel : L [f (t− τ)] = F (s) e−s τ .
Ü Translation de la transformée : L

[
e−a t f (t)

]
= F (s+ a).
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Ü Convolution : L [f (t) ∗ g (t)] = F (s) .G (s).

Ü Théorème de la valeur initiale : lim
s→∞

s . F (s) = lim
t→0

f (t).

Ü Théorème de la valeur finale : lim
s→0

s . F (s) = lim
t→∞

f (t).

2.7 Echantillonnage. Thèorème de Shannon

2.7.1 Echantillonnage

Il est possible de transformer un signal continu en un signal discret. Ce processus est appelé
échantillonnage ou discrétisation (voir figure 2.7). L’échantillonnage consiste à prélever les va-
leurs d’un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs dis-
crètes nommées échantillons. Dans cette partie, l’échantillonnage impulsionnel (idéal) est évo-
qué.

Temps(sec)

Temps(sec)

Figure 2.7: Signaux à temps continu et discret

Exemple 1
Considérons une pompe à insuline à commande automatique (voir figure 2.8) un algorithme de
contrôle numérique est utilisé pour activer le fonctionnement de l’insuline pompe.

Figure 2.8: Contrôleur à temps discret pour la régulation glycémique.

Impulsion de Dirac
L’impulsion de Dirac, notée δ(t) et vérifie :
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δ(t) = 0, si t 6= 0 (2.58)
+∞∫
−∞

δ(u)du = 1. (2.59)

Par convention, δ(t) est représentée par une flèche de hauteur égale à la surface de l’impul-
sion :

0 t

δ(t)

1

0 t

δ(t− τ )

1

0 t

1:5 ∗ δ(t− τ )

τ τ

Figure 2.9: Impulsion de Dirac

Produit d’une fonction par un Dirac
Le produit d’un fonction f(t) par une distribution de Dirac δ(t− τ) s’écrit :

x(t)δ(t− τ) = x(τ)δ(t− τ) (2.60)
+∞∫
−∞

x(τ)δ(t− τ)dt = x(τ). (2.61)

x(t)

x(t)
x(t)

x(0)

x(0)

x(0)
x(0)

Figure 2.10: Le produit d’une fonction x(t) par δ(t− τ), avec τ = 0

Peigne de Dirac (train d’impulsions)
Soit maintenant le train d’impulsions unitaires distantes dans le temps de Te, se produisant à
partir de l’instant 0 sur un horizon infini de temps, et dessiné sur la figure 2.11. Du point de vue
mathématique, ce train d’impulsion δ(t − nTe), se produisant à l’instant t = nTe. On appelle
P (t), "Peigne" de Dirac, l’ensemble de ces impulsions.

P (t) =
+∞∑

n=−∞
δ(t− nTe) (2.62)
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Figure 2.11: Train d’impulsions unitaires discrètes ("Peigne" de Dirac)

Produit dune fonction continue par un Peigne de Dirac

x∗(t) = x(t)P (t) (2.63)
=

∑+∞
n=−∞ x(nTe)δ(t− nTe) (2.64)

Le signal x∗(t) est donc composé d’une suite d’impulsions de Dirac d’aire x(nTe).

x
∗(t)

x
∗(t)

x(t)

x(t)

Figure 2.12: x∗(t) représente le produit d’une fonction x(t) par un Peigne de Dirac)

Par la suite, x∗(t) sera le modèle mathématique du signal échantillonné.

Signal échantillonné réel xe(t)
On peut considérer que le signal échantillonné réel, notée xe(t), est obtenu à partir de x(t) grâce
à un interrupteur fermé périodiquement, pendant la durée τ , à la fréquence Fe (Fe = 1

Te
).

x(t) x(t) xe(t)
x(t)

x(nTe)

Figure 2.13: Echantillonnage bloqueur

Nota :
— x(t), x∗(t), xe(t) sont des signaux temporels
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— x(t), xe(t) sont des signaux physiques, tandis que x∗(t) est un signal idéalisé, nécessaire
aux développements mathématiques.

Spectre d’un signal échantillonné x∗(t)

Ü Spectre x(t)

X(ω) = TF [x(t)] =
+∞∫
−∞

x(t)e−jωtdt (2.65)

Figure 2.14: Spectre d’amplitude de x(t)

Ü Spectre de P (t)

P (ω) = TF [P (t)] = 2π
Te

+∞∑
k=−∞

δ(ω − kωe) (2.66)

Figure 2.15: Spectre de P (t)

Ü Spectre de x∗(t)

X∗(ω) = TF [x∗(t)] =
+∞∑

k=−∞
X(ω − kωe) (2.67)

On faisons l’hypothèse que ωe >> ωF .
Le spectre du signal échantillonné x∗(t) est périodique, de période ωe.
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Figure 2.16: Interprétation géométrique du spectre de x∗(t)

2.7.2 Thèorème de Shannon

Pour pouvoir reconstituer X(ω) à partir de X∗(ω) (à 1
Te
), il faut que la pulsation (fréquence)

d’échantillonnage ωe soit au moins le double de la plus grande pulsation, ωmax, du spectre de x(t).

ωe ≥ 2ωmax (2.68)

Ü Repliement du spectre
Lorsque la condition (2.68) précédente n’est plus respectée, les «motifs» correspondant
aux différentes valeurs de k se chevauchent : on dit qu’il se produit un repliement du
spectre.

Ü Filtre anti-repliement
Pour éviter ce recouvrement spectral nuisible, on doit éliminer préalablement la partie
inutile (ou nuisible) du signal à échantillonner à l’aide d’un filtre passe-bas analogique (à
forte atténuation lors de sa bande passante). Ce filtre porte le nom de filtre anti-repliement
(ou antialiasing en anglais)

x(t) xf (t) xe(t)

Figure 2.17: Une partie de la chaîne d’acquisition de données avec filtre anti-repliement
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Systèmes linéaire et filtrage

Dans le cadre de ce chapitre, nous aborderons quelques notions élémentaires qui concernent les
filtres linéaires. Trois types de filtres seront abordés, à savoir, les filtres passes bas, les filtres
passes hauts et les filtres passes bandes. Afin de permettre d’appréhender le contenu de ce cha-
pitre, nous présenterons dans ce qui suit un rappel sur les systèmes.

Mots clés : Systèmes linéaires, Fonction de transfert, Filtres linéaires, Diagramme de Bode.

31
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3.1 Rappel sur les systèmes

3.1.1 Notion de système

Un système, agrégation d’éléments interconnectés, est constitué naturellement ou artificiellement
afin d’accomplir une tâche prédéfinie. Son état est affecté par une ou plusieurs variables. Le
résultat de l’action des entrées est la réponse du système qui peut être caractérisée par le
comportement d’une ou plusieurs variables de sorties.
Un système est généralement représenté schématiquement par un schéma fonctionnel qui
consiste en un rectangle auquel nous ajoutons des flèches entrantes représentant les signaux
d’entrée u (t). L’action des entrées du système produit de manière causale des effets mesurés par
les signaux de sortie y (t), et d représentant les signaux les perturbations (voir figure 3.1)

Figure 3.1: Système comportant m entrées, p sorties et r perturbations

Remarques :

— La notion de système est indissociable de celle de signal.
— Un système est dit multivariable s’il possède plusieurs entrée/sorties sinon il est dit nono-

variable.
— Les entrées affectant le système peuvent être de nature différente. Premièrement, celles

qui ont pour but d’exercer des actions entrainant le fonctionnement désiré du système, ce
sont dans ce cas les commandes. Deuxièmement, celles qui troublent le fonctionnement
désiré, ce sont alors les perturbations.

— La relation entre les entrées et les sorties du système constitue le modèle mathématique
du système.

3.1.2 Systèmes linéaires

Définition
Un système linéaire est un système pour lequel les relations entre les grandeurs d’entrée et celles
de sortie peuvent se mettre sous la forme d’un ensemble d’équations différentielles à coefficients
constants. D’un point de vue purement automatique, les systèmes linéaires réalisables doivent
vérifier :

1. Le principe de superposition (additivité).
2. Le principe d’homogénéité (proportionnalité).

Principe de superposition
On dit qu’un système de type entrée-sortie relève du principe de superposition si :

— En additionnant deux entrées quelconques, la sortie est la somme des deux sorties corres-
pondantes.

— En additionnant plusieurs entrées quelconques, la sortie est la somme des sorties corres-
pondantes.
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Autrement dit, si y1 est la réponse à l’entrée e1, et si y2 est la réponse à l’entrée e2 alors la
réponse au signal d’entrée e = e1 + e2 est égale à y = y1 + y2.

Principe d’homogénéité ou proportionnalité à la cause
Si y est la réponse à l’entrée e, alors λ.y est la réponse à l’entrée λ.e. Notons ici, que l’effet de
proportionnalité n’est effectif que lorsque le système a atteint sa position d’équilibre ou lorsque
le régime permanant s’établit.

3.1.3 Systèmes continus

Un système est continu, par opposition à un système discret, lorsque les variations des grandeurs
physiques qui le caractérisent sont des fonctions continues du temps, on parle dans ce cas d’un
système analogique.

3.1.4 Systèmes invariant

Un système est dit un système invariant lorsque ses caractéristiques ne se modifient pas dans le
temps.

Figure 3.2: Représentation schématique d’un système invariant.

3.1.5 Systèmes dynamiques et systèmes instantanés

Systèmes instantanés
Un système instantanée est un système pour lequel les sorties dépendent uniquement et instan-
tanément des grandeurs d’entrée.

Exemple 1 :
Soit le circuit électrique suivant :

Ü u (t) est la tension d’entrée.
Ü i (t) est le courant électrique.
Ü R est la résistance.

Figure 3.3: Exemple d’un système instantané.

Notons ici que la sortie du système (le courant i (t)) dépends instantanément de la grandeur
d’entrée, à savoir la tension u (t).

Systèmes dynamiques
Un système dynamique est un système dont les grandeurs de sortie dépendent de valeurs instan-
tanées et antérieures des grandeurs d’entrée, on parle dans ce cas d’effet de mémoire ou d’inertie.
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Exemple 2 :
Considérons le circuit électrique suivant :

Figure 3.4: Exemple d’un systèmes dynamique.

3.1.6 Fonction de transfert d’un système

La fonction de transfert est une technique qui se base sur la transformée de Laplace. Elle permet
de décrire la relation entre les signaux d’entrée et les signaux de sortie. Considérons un système
dynamique continu linéaire invariant qui possède une entrée e (t) et une sortie y (t). Supposons
également qu’il est régi par une équation différentielle de n degré.

an.
dny

dtn
+an−1.

dn−1y

dtn−1 + . . .+a1.
dy

dt
+a0. y = bm.

dme

dtm
+ bm−1.

dm−1e

dtm−1 + . . .+ b1.
de

dt
+ b0. e (3.1)

En appliquant la transformée de Laplace, tout en supposant nulles les différentes conditions
initiales, nous obtenons alors :

an.s
n.Y (s) + an−1.s

n−1.Y (s) + . . .+ a1.s.Y (s) + a0.Y (s) = bm.s
m.E (s) + bm−1.s

m−1.E (s) +
. . .+ b1.s.E (s) + b0.E (s)

(3.2)
Soit,[

an.s
n + an−1.s

n−1 + . . .+ a1.s+ a0
]
.Y (s) =

[
bm.s

m + bm−1.s
m−1 + . . .+ b1.s+ b0

]
.E (s)

(3.3)
L’équation (3.3) peut être alors reformulée comme suit :

Y (s)
E (s) = bm.s

m + bm−1.s
m−1 + . . .+ b1.s+ b0

an.sn + an−1.sn−1 + . . .+ a1.s+ a0
(3.4)

Cette fraction rationnelle (3.4) de deux polynômes de la variable complexe s est appelée fonction
de transfert du système et elle est communément notée :

F (s) = Y (s)
E (s) (3.5)

3.2 Filtres linéaires
Un filtre linéaire est un système linéaire dynamique invariant qui laisse passer certaines fré-
quences du signal d’entrée et arrête (atténue) le reste. Focalisons-nous dans cette partie sur la
réponse en régime harmonique d’un système linéaire. C’est-à-dire, étudier le comportement
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d’un filtre lorsque l’entrée du système est un signal sinusoïdal. Dans ce cas, la variable de Laplace
s sera remplacée par j2πf = jω. La fonction de transfert devient alors :

F (jω) = Y (jω)
E (jω) (3.6)

Le module de la fonction de transfert est défini alors par :

|F (jω)| = |Y (jω)|
|E (jω)| (3.7)

A partir du module, nous pouvons définir le gain en Décibel :

GdB = 20 log10 (|F (jω)|) (3.8)

Nous pouvons également définir l’argument de la fonction de transfert Arg (F (jω)) comme étant
la phase entre le signal d’entrée E (jω) et le signal de sortie.

3.2.1 Représentation graphique et caractérisation fréquentielle de la fonction
de transfert d’un filtre linéaire (diagramme de Bode)

Le diagramme de Bode est une méthode graphique d’analyse. Il est composé de deux courbes :

1. La courbe de gain : elle consiste à tracer directement le gain GdB en fonction de la fréquence
ω ou f avec une échelle logarithmique pour ω.

2. La courbe de phase : elle consiste à tracer l’argument de la fonction de transfert du filtre
sur la même échelle de fréquence que celle utilisée dans la courbe de gain.

En ce qui concerne l’échelle logarithmique de fréquence, elle s’agit du logarithme de décimal.
Elle permet, entre autres, d’étirer les basses fréquences et de contracter les hautes fréquences.
La fréquence de coupure d’un filtre, notée ωc, est la fréquence qui vérifie la relation suivante :

|H (jωc)| =
Hmax√

2
(3.9)

Elle correspond aussi à
20. log10 |H (jωc)| = 20. log |Hmax| − 20. log

√
2 (3.10)

Exemple 3 : Considérons la courbe de gain suivante :

Figure 3.5: courbe du gain.
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Figure 3.6: courbes de module d’un filtre passe-bas idéal.

3.2.2 Filtres idéaux

— Filtre passe-bas idéal
Un filtre passe-bas doit « laisser-passer » uniquement les composantes de fréquence infé-
rieure à une fréquence donnée ωc (fréquence de coupure). Les courbes de modules de ce
filtre sont représentées comme suit :

— Filtre passe-haut idéal
Un filtre passe-haut idéal doit « laisser-passer » uniquement les composantes de fréquence
supérieure à une fréquence donnée ωc (fréquence de coupure). Les courbes de gain de ce
filtre sont données ci-après :

Figure 3.7: courbes de module d’un filtre passe-haut idéal.

— Filtre passe-bande idéal
Un filtre passe-bande idéal doit « laisser-passer » uniquement des composantes de fréquence
comprise entre deux fréquences données ωc1 et ωc2 (fréquence de coupure basse et fréquence
de coupure haute). Les courbes de module de ce filtre sont les suivantes : Notons ici que les

Figure 3.8: courbes de module d’un filtre passe-bande idéal.

filtres idéaux sont des filtres irréalisables. Dans ce qui suit, nous passons en revue quelques
filtres réels réalisables.
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3.2.3 Filtres réels

— Filtre passe-bas du premier ordre
Un filtre passe-bas réel du premier ordre est caractérisé par la fonction de transfert sui-
vante :

H (s) = H0
1 + τs

(3.11)

En régime harmonique, la fonction de transfert du filtre s’écrit alors :

H (jω) = H0
1 + j ωωc

(3.12)

Avec ωc = 1
τ est la fréquence de coupure. Le module de la fonction de transfert du filtre

est :
|H (jω)| = |H0|√

1 +
(
ω
ωc

)2
(3.13)

GdB = 20. log10 |H0| − 20. log10

√
1 +

(
ω
ωc

)2
(3.14)

En ce qui concerne l’argument de la fonction de transfert est donné comme suit :

Arg (H (jω)) = Arg (H0)− arctan
(
ω

ωc

)
(3.15)

Afin de tracer le diagramme de Bode, nous procédons à la détermination de quelques points
importants : Pour ω → 0, |H (j0)| = |H0| ⇒ GdB = 20. log10 |H0| = G0.

Arg (H (j0)) = Arg (H0) .

Pour ω = ωc, |H (jωc)| = |H0|√
2 , GdB = G0 − 3dB.

Arg (H (jωc)) = Arg (H0)− π

4 .

Pour ω = 10ωc, |H (j10ωc)| = |H0|√
1+100 ≈

H0
10 , GdB = G0 − 20dB.

Arg (H (j10ωc)) = Arg (H0)− arctan (10) .

Pour ω → +∞, |H (j∞)| = 0, GdB = 20. log10 (0) = −∞.

Arg (H (j∞)) = Arg (H0)− π

2 .

Le tracé asymptotique du diagramme de Bode du filtre considéré est représenté ci-après :
— Filtre passe-bas du deuxième ordre

Un filtre passe-bas réel du second ordre est caractérisé par la fonction de transfert suivante :

H (s) = H0

(1 + τs)2 ⇒ H (jω) = H0(
1 + j ωωc

)2 (3.16)

Avec ωc = 1
τ est la fréquence de coupure. Pour ce qui est du module de la fonction de

transfert, on peut écrire alors :

|H (jω)| = |H0|

1 +
(
ω
ωc

)2 ⇒ GdB = G0 − 20. log10

(
1 +

(
ω
ωc

)2
)

(3.17)
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Figure 3.9: diagramme de Bode d’un filtre passe-bas du premier ordre.

En ce qui concerne l’argument de la fonction de transfert :

Arg (H (jω)) = Arg (H0)− 2 arctan
(
ω
ωc

)
(3.18)

Afin de tracer le diagramme de Bode, nous déterminons quelques points importants : Pour
ω → 0, |H (j0)| = |H0| ⇒ GdB = 20. log10 |H0| = G0.

Arg (H (j0)) = Arg (H0) .

Pour ω = ωc, |H (jωc)| = |H0|
2 , GdB = G0 − 6dB.

Arg (H (jωc)) = Arg (H0)− π

2 .

Pour ω = 10ωc, |H (j10ωc)| = |H0|√
1+1000 ≈

H0
100 , GdB = G0 − 40dB.

Arg (H (j10ωc)) = Arg (H0)− arctan (100) .

Pour ω → +∞, |H (j∞)| = 0, GdB = 20. log10 (0) = −∞.

Arg (H (j∞)) = Arg (H0)− π.

Le tracé asymptotique du diagramme de Bode du filtre considéré est présenté ci-après :
En comparant les deux filtres (filtre passe-bas du premier ordre et le filtre passe-bas du
second ordre), nous pouvons constater que celui du second ordre est meilleur en termes
d’atténuation des hautes fréquences (fréquences supérieure à ωc). Ceci est dû à une pente
d’atténuation de l’ordre de −40dB/décade.

— Filtre passe-haut du premier ordre
Un filtre passe-haut réel du 1er ordre est caractérisé par la fonction de transfert suivante :

H (s) = K. s

τ + s
⇒ H (jω) =

K.j
(
ω
ωc

)
1 + j

(
ω
ωc

) (3.19)
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Figure 3.10: diagramme de Bode d’un filtre passe-bas du second ordre.

avec ωc = τ est la fréquence de coupure du filtre. Le module de la fonction de transfert du
filtre est déterminé comme suit :

|H (jω)| = K.

(
ω
ωc

)
√

1 +
(
ω
ωc

)2
⇒ GdB = 20. log10 (K)+ 20. log10

(
ω
ωc

)
− 20. log10

(√
1 +

(
ω
ωc

)2
)

(3.20)
En ce qui concerne l’argument de la fonction de transfert, il est déterminé comme suit :

Arg (H (jω)) = π

2 − arctan
(
ω
ωc

)
(3.21)

Afin de pouvoir tracer le diagramme de Bode, nous déterminons quelques points impor-
tants : Pour ω → 0, |H (j0)| = 0⇒ GdB = 20. log10 (0) = −∞.

Arg (H (j0)) = π

2 .

Pour ω = ωc, |H (jωc)| = K√
2 , GdB = G∞ − 3dB.

Arg (H (jωc)) = π

4 .

Pour ω = ωc/10, |H (jωc/10)| ≈ K
10 , GdB = G∞ − 20dB. Pour ω → +∞, |H (j∞)| = K,

GdB = 20. log10 (K) = G∞.
Arg (H (j∞)) = 0.

Le tracé asymptotique du diagramme de Bode du filtre considéré est présenté ci-après :
— Filtre passe-bande du premier ordre

Un filtre passe-bande du premier ordre est caractérisé par une fonction de transfert qui
possède quelques spécificités qu’on doit définir :
— ω0 est la pulsation ou la fréquence centrale du filtre.
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Figure 3.11: diagramme de Bode d’un filtre passe-haut du premier ordre.

— Tmax est le module de la fonction de transfert pour ω = ωc (on considère que Tmax >
0).

— Q est le facteur de qualité du filtre définit par la bande passante ∆ω = ω0/Q (plus
Q est grand, plus la bande passante ∆ω est étroite et plus le filtre est sélectif).

La fonction de transfert s’écrit alors comme suit :

H (jω) = Tmax

1 +Q. j
(
ω
ω0
− ω0

ω

) (3.22)

Le module de la fonction de transfert est déterminé de la façon suivante :

|H (jω)| = Tmax√
1 +Q2

(
ω
ω0
− ω0

ω

)2
(3.23)

En ce qui concerne l’argument de la fonction de transfert, il est calculé de la manière
suivante :

Arg (H (jω)) = − arctan
[
Q
(
ω
ω0
− ω0

ω

)]
(3.24)

Dans ce qui suit, nous déterminons quelques points importants pour tracer le diagramme
de Bode. Pour ω → 0, |H (j0)| = 0⇒ GdB = 20. log10 (0) = −∞.

Arg (H (j0)) = π

2 .

Notons que pour les basses fréquences le filtre passe-bande se comporte de façon similaire à
celle d’un filtre passe-haut. Pour ω → +∞, |H (j∞)| = 0, GdB = 20. log10 (Tmax) = Gmax.

Arg (H (j∞)) = −π2 .

Contrairement à son comportement en basse fréquence, le filtre passe-bande se comporte
en hautes fréquences comme un filtre passe-bas. Pour ω = ω0, |H (jω0)| = Tmax, GdB =
G∞ − 3dB.

Arg (H (jω0)) = 0.
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Pour ω = ω0/10 et ω = 10. ω0,

|H (jω0/10)| ≈ Tmax√
1 + 100. Q2 , GdB = 20. log10 (Tmax)− 20. log10

(√
1 + 100. Q2

)
.

Le tracé asymptotique du diagramme de Bode du filtre considéré est représenté ci-après :
Donnons dans le paragraphe suivant, un exemple de filtre passe-bas dans le cas d’un

Figure 3.12: diagramme de Bode d’un filtre passe-bande du premier ordre.

système mécanique.
Exemple 4 : La suspension d’une automobile est habituellement assurée par quatre systèmes
identiques indépendants montés entre le châssis du véhicule et chaque arbre de roue. La suspen-
sion d’un véhicule permet :

1. aux roues de suivre les inégalités du sol sans communiquer au châssis des efforts trop
importants, ceci en filtrant les sollicitations de la route.

2. d’assurer le maintien du contact des roues avec le sol (la tenue de la route).
Le confort vibratoire du conducteur ainsi que des passagers dépend essentiellement de deux
paramètres :

1. la fréquence des oscillations.
2. et l’accélération verticale qu’ils subissent.

Les principaux éléments constitutifs d’une suspension sont indiqués sur la figure 3.13 :
— le pneu (1) avec son amortisseur (caoutchouc)
— le ressort (2)
— l’amortisseur (3)
— le siège (4) avec son amortisseur (mousse).

On suppose que la masse mv du châssis et des passagers est également répartie entre les quatre
systèmes de suspension. On désigne par m la masse supportée par chacun des systèmes, qui
sera appelé « suspension » par la suite (on parle aussi de « modèle de quart de voiture »).
Modèle de suspension simplifié :
Les pneus et les sièges sont considérés comme entièrement rigides et n’interviennent pas dans
l’étude. Les pneus sont supposés rester en contact avec la route. On utilise le modèle de suspen-
sion simplifié de la figure 3.14. La suspension est constituée :

1. d’un ressort métallique de constante de raideur k et de longueur à vide L0,
2. d’un amortisseur à piston à huile fixé parallèlement au ressort, exerçant une force résistante

de frottement visqueux de coefficient f .
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Figure 3.13: les éléments constitutifs d’une suspension.

Figure 3.14: modèle simplifié d’une suspension.
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On désigne par zv (t) les variations de la hauteur du châssis par rapport à l’équilibre. On sup-
pose que le profil de la route impose au centre de la roue un déplacement vertical zc (t) par
rapport à sa position d’équilibre. Étudions un système idéal Masse-Ressort-Amortisseur, avec
une masse m fixe (dans le sens où le corps garde la même masse tout au long de l’étude), une
constante de raideur k, et un coefficient d’amortissement f :

Fr = −k (zv (t)− zc (t)) (3.25)

Fa = −f (żv (t)− żc (t)) (3.26)

D’après la conservation de la quantité de mouvement :

− k (zv (t)− zc (t))− f (żv (t)− żc (t)) = mz̈v (t) (3.27)

En utilisant la transformé de Laplace, la fonction de transfert du système s’écrit comme suit :

H (s) = Zv (s)
Zc (s) =

1 + 2ξ
ωn
s

1 + 2ξ
ωn
s+ s2

ωn

(3.28)

Pour les valeurs numériques suivante : mv = 1260 kg, soit m = 315 kg, k = 29.5 kN/m, f =
1850Ns/m, nous traçons le diagramme de Bode de la fonction de transfert H (s) (Figure 3.15).
Nous pouvons alors constater que le système présenté se comporte comme un filtre passe-bas.

Figure 3.15: diagramme de Bode de la suspension.
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4

Réponse temporelle des systèmes
linéaires

Nous passons en revue dans ce chapitre deux types de réponses temporelles, à savoir, la réponse
impulsionnelle et la réponse indicielle. Deux types de systèmes seront étudiés ; les systèmes li-
néaires du premier ordre et les systèmes linéaires du second ordre.

Mots clés : Réponse impulsionnelle, Réponse indicielle.
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4.1 Système du premier ordre
C’est un système régi par une équation différentielle du premier ordre à coefficients constants :

y (t) + τ
dy (t)
dt

= K. e (t) (4.1)

avec y (t) et e (t) sont respectivement la sortie et l’entrée du système. En appliquant la trans-
formée de Laplace sur l’équation (4.1) tout en supposant que la condition initiale y

(
0+) = 0 est

nulle, nous pouvons alors obtenir :

Y (s) . (1 + τs) = K.E (s) (4.2)

La fonction de transfert d’un système linéaire du premier ordre est donnée donc :

H (s) = Y (s)
E (s) = K

1 + τ. s
(4.3)

avec K et τ sont respectivement le gain statique et la constante de temps. Dans ce qui suit,
nous étudions la réponse temporelle du système du premier ordre pour deux types d’entrée ; la
réponse à une impulsion de Dirac et la réponse à un échelon.

4.1.1 Réponse à une impulsion de Dirac (réponse impulsionnelle)

Soit le signal d’entrée e (t) est une impulsion de Dirac δ (t) définie comme suit :

δ (t) =
{

+∞ t = 0
0 ailleurs

(4.4)

Notons que la transformée de Laplace de l’impulsion de Dirac est égale à 1. Alors, la sortie du
système est définie comme suit :

Y (s) = H (s) . E (s) = K

1 + τ. s
. 1 = K

τ
.

1
1
τ + s

(4.5)

En appliquant la transformée de Laplace inverse, la réponse temporelle du système peut être
déterminée comme suit :

y (t) = K

τ
. e−

t/τ (4.6)

Le tracé de la réponse impulsionnelle (4.6) d’un système du premier ordre est présenté dans la
figure suivante :

Figure 4.1: réponse impulsionnelle d’un système du premier ordre.
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4.1.2 Réponse à un échelon (réponse indicielle)

Dans cette section, nous considérons que le signal d’entrée e (t) est un échelon u (t). La fonction
échelon est une fonction réelle de la variable réelle t définie par :

u (t) =
{

+A si t > 0
0 si t < 0 (4.7)

La transformée de Laplace de la fonction échelon est définie comme suit :

TL [u (t)] = U (s) = A

s
(4.8)

Dans ce cas, la sortie du système du premier ordre peut être calculée de la façon suivante :

Y (s) = H (s) . E (s) = K

1 + τ.s
.
A

s
= K.A

s. (1 + τ.s) = K.A/τ

s.
(

1
τ + s

) (4.9)

En utilisant la transformée de Laplace inverse, la réponse temporelle du système du premier
ordre à une entrée de type échelon peut être écrite comme suit :

y (t) = K.A

(
1− e−

t
τ

)
(4.10)

Nous présentons dans ce qui suit quelques points caractéristiques de la réponse indicielle d’un
système du premier ordre.
— Pour t = τ ⇒ y (t) = K.A

(
1− e−1) = 0.63.K.A.

— Pour t = 2.τ ⇒ y (t) = K.A
(
1− e−2) = 0.86.K.A.

— Pour t = 3. τ ⇒ y (t) = K.A
(
1− e−3) = 0.95.K.A.

On définit alors le temps de réponse à 95% obtenu pour t = 3.τ : tr à 95% = 3. τ . Comme on
définit également la valeur finale lorsque le temps tend vers l’infinie : *

lim
t→+∞

y (t) = lim
t→+∞

K.A

(
1− e−

t
τ

)
= K.A (4.11)

Ainsi, l’erreur statique est définie comme suit :

ε = A−K.A = (1−K) .A (4.12)

Le tracé graphique de la réponse indicielle d’un système du premier ordre est donné dans la
figure suivante :

Figure 4.2: réponse indicielle d’un système du premier ordre.
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4.1.3 Application 1

Un thermomètre utilisé pour mesurer la température des patients (figure 4.3) peut être
modélisé à l’aide de l’équation différentielle :

C
dT

dt
= Tr(t)− T (t)

R
(4.13)

où C est la capacité thermique du thermomètre, R la résistance thermique, T (t) la tempéra-
ture mesurée et Tr(t) la température de référence. Ainsi, cette équation peut être réécrite pour
correspondre au format général

dT

dt
+ 1
RC

T (t) = Tr(t)
RC

(4.14)

étant T (t) la sortie système et Tr(t) l’entrée de référence et avec une valeur initiale de T (t) = T0.
Pour obtenir une réponse du système avec RC = 20sec à partir de T0 = 20◦C (Condition Initiale
CI)et pour un signal d’entrée échelon Tr(t) = 38◦C. En appliquant la transformation de Laplace,
on obtient :

T (s) = 0.05
s+ 0.05Tr(s) + 1.25

s+ 0.05 = Y1(s) + Y2(s) (4.15)

with Tr(s) = 38
s the input signal in Laplace domain.

Figure 4.3: Thermomètre utilisé pour mesurer la température des patients

La figure 4.4 montre les graphiques correspondant aux différentes parties des réponses obte-
nues.

4.2 Système du second ordre
Il s’agit d’un système régi par une équation différentielle à coefficients constants du second ordre.

a2
d2y (t)
dt2

+ a1
dy (t)
dt

+ a0 y = b e (t) (4.16)

avec y (t) et e (t) sont respectivement la sortie et l’entrée du système. Si toutes les conditions
initiales sont supposées nulles, la transformée de Laplace de l’équation différentielle (4.16) est
déterminée comme suit : [

a2 s
2 + a1 s+ a0

]
. Y (s) = bE (s) (4.17)

La fonction de transfert décrivant le fonctionnement d’un système du second ordre est donnée
par :

H (s) = Y (s)
E (s) = b

a2 s2 + a1 s+ a0
(4.18)

L’équation (4.18) peut être mise sous les deux formes canoniques suivantes :

H (s) = Y (s)
E (s) = K.ω2

0
s2 + 2m.ω0 s+ ω2

0
(4.19)
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(b) Réponse forcée
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Figure 4.4: Réponses du système

avec ω0 est la pulsation propre et m est le coefficient d’amortissement. Comme nous pouvons
aussi la mettre sous la forme canonique suivante :

H (s) = Y (s)
E (s) = G

1 + 2m
ω0
s+ 1

ω2
0
s2 (4.20)

Afin de mettre en évidence les formes canoniques, nous présentons l’exemple suivant.

Exemple 1 : Soit la fonction de transfert suivante :

H (s) = 6
4 s2 + 7 s+ 8 (4.21)

Mettons la fonction de transfert (4.21) sous la forme canonique (4.19). Soit,

H (s) = 3
4 .

2
(s2 + 7/4 s+ 2) (4.22)

Par identification, nous pouvons dire que ω2
0 = 2, m = 7

√
2

16 et K = 3
4 . En ce qui concerne

l’analyse temporelle d’un système du second ordre, nous présentons dans ce qui suit les réponses
impulsionnelle et indicielle.

4.2.1 Réponse à une impulsion de Dirac (réponse impulsionnelle)

Dans cette section, nous considérons que l’entrée est une impulsion de Dirac. Nous supposons
également que la constante K = 1. Ainsi, la sortie du système dans le domaine de Laplace est
définie comme suit :

Y (s) = H (s) . E (s) = ω2
0

s2 + 2mω0 s+ ω2
0
. 1 = ω2

0
D (s) (4.23)



50 4. RÉPONSE TEMPORELLE DES SYSTÈMES LINÉAIRES

Calculons alors le déterminant du polynôme D (s) :

∆∗ = (mω0)2 − ω2
0 = ω2

0 (m− 1) (4.24)

En analysant le déterminant (4.24), quatre cas de figures sont possibles.

1. Cas de deux racines réelles (système amorti m>1)

Supposons que ∆∗ > 0, dans ce cas nous avons deux racines p1 et p2 définis comme suit :
p1 = ω0

(
−m+

√
m2 − 1

)
et p1 = −ω0

(
m+

√
m2 − 1

)
Ainsi, la fonction de transfert du

système peut être reformulée da la manière suivante :

Y (s) = ω2
0

(s− p1) (s− p2) = ω2
0

(
A

s− p1
+ B

s− p2

)
(4.25)

Par identification, nous pouvons déterminer les constante A et B. Nous obtenons ainsi le
résultat suivant :

Y (s) = ω2
0

2ω0
√
m2 − 1

.

( 1
s− p1

− 1
s− p2

)
(4.26)

En utilisant la transformée de Laplace inverse, nous obtenons la réponse impolsionnelle :
y (t) = ω0

2
√
m2−1

(
e+p1 t − ep2 t

)
avec p1 < p2 < 0 Le tracé de la réponse impulsionnelle d’un

système du second ordre amorti est donné dans la figure suivante.

Figure 4.5: réponse impulsionnelle d’un système du second ordre amorti.

2. Cas de deux racines complexes conjuguées (système non amorti m<1)
Dans ce cas, les racines du polynôme D (s) sont définies comme suit :{

p1 = −mω0 + j ω0
√

1−m2

p2 = −mω0 − j ω0
√

1−m2 (4.27)

Les deux racines (4.27) peuvent être reformulées comme suit :{
p1 = σ + j ωn
p2 = σ − j ωn

(4.28)

avec σ = −mω0 et ωn = ω0
√

1−m2. Ainsi, la sortie du système dans le domaine de
Laplace devient alors :

Y (s) = ω2
0

(s−p1) (s−p2)

= ω2
0

(s−σ−j ωn) (s−σ+j ωn)

(4.29)
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En développant l’équation (4.29), nous pouvons obtenir la formule suivante :

Y (s) = ω2
0

(s + mω0)2 + ω2
0 (1−m2)

(4.30)

Cette dernière peut être écrite de la manière suivante :

Y (p) = ω0√
1−m2

.
ωn

(s+ a)2 + ω2
n

(4.31)

avec ω2
2 = ω2

0
(
1−m2) et a = mω0. En appliquant la transformée de Laplace inverse,

nous obtenons alors :

y (t) = ω0√
1−m2

e−mω0 t sin
((
ω0
√

1−m2
)
. t
)

(4.32)

Le tracé de la réponse impulsionnelle d’un système du second ordre non amorti est présenté
dans la figure suivante.

Figure 4.6: réponse impulsionnelle d’un système du second ordre nonamorti.

3. Cas de deux racines réelles multiples ( m=1) La réponse impulsionnelle pourm = 1
est donnée comme suit :

Y (s) = K ω2
0

s2 + 2mω0 s+ ω2
0

(4.33)

Le déterminant dans ce est nul : ∆∗ = 0, donc les deux racines sont :

p1 = p2 = −ω0 (4.34)

Dans ce cas, la réponse impulsionnelle dans le domaine de Laplace s’écrit comme suit :

Y (s) = K ω2
0

(p+ ω0)2 (4.35)

En utilisant la transformée de Laplace inverse, la réponse impulsionnelle dans le domaine
temporel s’écrit comme suit :

y (t) = K ω2
0 t e

−ω0 t (4.36)

4. Cas de deux racines réelles multiples ( m=0) Dans ce cas la réponse impulsionnelle
dans le domaine de Laplace s’écrit :

H (s) = K ω2
0

s2 + ω2
0

(4.37)
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En utilisant la transformée de Laplace inverse, nous pouvons déduire la réponse impul-
sionnelle temporelle :

y (t) = K ω0 sin ω0 t (4.38)

Le tracé de la réponse impulsionnelle pour m = 0 est présenté dans la figure suivante :

Figure 4.7: réponse impulsionnelle d’un système du second ordre avec m=0.

4.2.2 Réponse à un échelon (réponse indicielle)

Comme pour le cas de la réponse impulsionnelle, nous avons quatre cas de figure pour la réponse
indicielle d’un système du second ordre.

1. Deux racines réelles (système amorti m>1)
Dans ce cas de figure, la réponse impulsionnelle dans le domaine de Laplace s’écrit :

Y (s) = H (s) . E (s) = ω2
0

s2 + 2mω0 s + ω2
0
.
A

s
(4.39)

En se basant sur les propriétés de la transformée de Laplace, nous pouvons remarquer que
la réponse indicielle est l’intégrale de la réponse impulsionnelle entre 0 et t.

y (t) = ω0

2
√
m2 − 1

.

∫ t

0

(
ep1 t − ep2 t

)
dt (4.40)

En calculant l’intégrale (4.40), nous obtenons alors :

y (t) = 1 + 1
2
√
m2 − 1

.

e(−mω0+ω0
√
m2− 1) t

−m+
√
m2 − 1

+ e(−mω0− ω0
√
m2− 1) t

m+
√
m2 − 1

 (4.41)

Le tracé de la réponse indicielle d’un système du second ordre avec un facteur d’amortis-
sement supérieur à 1 est donné dans la figure suivante.

2. Deux racines complexes conjuguées (système non amorti m<1)
La réponse indicielle dans le domaine de Laplace d’un système du second ordre avec un
facteur d’amortissement m < 1 est donnée comme suit :

Y (s) = H (s) . E (s) = ω2
0

s2 + 2mω0 s + ω2
0
.
A

s
(4.42)
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Figure 4.8: réponse indicielle d’un système du second ordre amorti.

En intégrant la réponse impulsionnelle, nous pouvons obtenir la réponse indicielle dans le
domaine temporelle :

y (t) = 1 − 1√
1 − m2

. e−mω0 t sin
(
ω0
√

1−m2 t+ ϕ
)

(4.43)

avec ϕ = ar cos (m). Le tracé de la réponse indicielle d’un système du second ordre non-
amorti est donné dans la figure suivante.

Figure 4.9: réponse indicielle d’un système du second ordre amorti.

3. Deux racines multiples (m=1)
Dans ce cas, la réponse indicielle dans le domaine de Laplace s’écrit :

Y (s) = H (s) . E (s) = K ω0

s (s + ω0)2 .
1
s

(4.44)

L’équation (4.44) peut être reformulée comme suit :

Y (s) = H (s) . E (s) = K

s (τ s + 1)2 (4.45)

avec τ = 1
ω0
. En utilisant la transformée de Laplace inverse, nous obtenons :

y (t) = K
(
1 − (1 + ω0 t) e−t ω0

)
(4.46)
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4. Deux racines multiples (m=0)
Dans ce cas, la réponse indicielle dans le domaine de Laplace s’écrit comme suit :

Y (s) = H (s) . E (s) = ω0
s2 + ω2

0
.
K

s
(4.47)

En utilisant la transformée de Laplace inverse, nous obtenons la réponse indicielle dans le
domaine temporelle d’un système du second ordre avec un facteur d’amortissement m = 0.

y (t) = K (1 − cos ω0t) (4.48)

Figure 4.10: réponse indicielle d’un système du second ordre avec m = 0.

4.2.3 Spécifications sur le régime transitoire

à tr : temps de réponse à ±5%.
à D1 : dépassement maximal en %, avec D1 = 100 ∗ ymax−y∞

y∞
;
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Figure 4.11: Analyse transitoire
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4.2.4 Application 2

Un capteur de pression sanguine (figure 4.12) peut être modélisé comme un système de
second ordre dont la dynamique est donnée par des pôles réels situés à s1 = −1 et s2 = −10 et
un gain statique Ks = 10. La fonction de transfert du système est donnée par :

Figure 4.12: Un transducteur de pression sanguine

H(s) = 10
(s+ 1)(s+ 10) (4.49)

La réponse en sortie y(t) de ce système est illustrée à la figure 4.13, dont la forme est similaire
à celle des systèmes du premier ordre, mais un peu plus lente au début.
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Figure 4.13: Réponse indicielle du modèle du transducteur de pression sanguine
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5

Rétroaction/asservissement

Dans le domaine biomédical, nombreux sont les appareils dont leur fonction est assuré par une
rétoaction ou asservissement, par exemple dans les pompes à insuline pour maintenir constant le
niveau de sucre d’une personne diabétique. Dans ce chapitre, quelques exemples seront considérés
pour mettre en évidence certaines applications de régulation dans le domaine biomédical. Afin de
permettre d’appréhender le contenu de ce chapitre, nous présenterons dans ce qui suit quelques
notions sur les systèmes de régulation.

Mots clés : Rétroaction, Asservissement, Applications en génie biomédical.
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La rétroaction (en anglais feedback) est l’action en retour d’un effet sur sa propre origine :
la séquence de causes et d’effets forme donc une boucle dite boucle de rétroaction.
Les rétroactions sont très importantes dans de nombreux domaines, aussi bien pour les systèmes
physiques, chimiques et biologiques que dans de nombreuses technologies.

5.1 Objectif

La régulation doit garantir le fonctionnement du procédé selon un objectif détaillé. Cet
objectif, traduit en une consigne, est assuré en maîtrisant une ou plusieurs grandeurs mesurées
quelles que soient les perturbations subies par le procédé.

5.2 Boucle de régulation

5.2.1 Étapes nécessaires

Pour réaliser une boucle, ou une chaîne, de régulation, trois étapes sont nécessaires (figure
5.1) :

— l’observation de la grandeur à maîtriser, faite par le capteur-transmetteur ;

— la réflexion sur l’action à entreprendre, qui est fonction de l’écart en rapport avec l’objectif
fixé, effectuée par le régulateur ;

— l’action sur une grandeur incidente, à l’aide d’un actionneur, vanne ou moteur.

5.2.2 Terminologie employée

— Grandeur réglée : grandeur à maîtriser.

— Grandeur incidente : grandeur ayant une influence sur la grandeur réglée.

— Grandeur réglante : grandeur incidente commandée par le régulateur.

— Grandeur perturbatrice : grandeur incidente non contrôlée.

5.2.3 Régulation en chaîne ouverte

L’observation n’est pas celle de la grandeur à maîtriser mais celle d’une grandeur incidente.
La réflexion est l’étape où la commande prend en compte une relation préétablie entre la grandeur
observée et la grandeur réglante. L’action modifie alors la grandeur à maîtriser.

Avantages

— Pas de problème de stabilité.

— Simple et rapide à mettre en place.

— Coût d’étude faible.

Inconvénients

— Impossibilité de réguler un procédé intégrateur.

— L’objectif n’est pas toujours atteint car l’effet des perturbations n’est pas pris en compte.

— On ne maîtrise ni le temps de réponse ni la précision
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5.2.4 Régulation en boucle fermée

L’observation se porte sur la grandeur à maîtriser. L’étape de réflexion détermine l’écart
entre la consigne et la grandeur à maîtriser. En fonction de cet écart et des règles d’évolution
fixées, on en déduit l’action à entreprendre. L’action modifie la grandeur réglante et finalement
la grandeur à maîtriser.
Avantages

— L’effet des perturbations est pris en compte.

— Le temps de réponse défini est atteint.

— La précision définie est atteinte.

— Un procédé intégrateur régulé devient autoréglant.

— La linéarité du procédé est améliorée.

Inconvénients

— La stabilité doit être étudiée.

— Étude et mise au point peuvent être complexes.

— Coût d’étude important.

Nota : Plus performante, la régulation en boucle fermée est la plus employée industriellement
car la rétroaction continue fournie par le capteur permet au contrôleur de mettre à jour ses
actions. Cependant, la configuration en boucle ouverte peut également être trouvée dans certains
systèmes de contrôle simples et bon marché. Dans une configuration en boucle ouverte, aucun
retour n’est fourni (notez que le capteur disparaît) et le contrôleur est câblé pour produire une
réponse fixe à la référence donnée. De toute évidence, ce type de systèmes de contrôle ne peut
pas gérer les perturbations et ne convient que pour des systèmes simples.

Rétroaction (Feedback)

Comporte une contre-réaction

ou retour d'information.

Figure 5.1: Schéma de principe d’un système en boucle fermée
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5.2.5 Régulation de maintien, ou « régulation »

La mesure doit être maintenue à une valeur constante égale à la consigne quelles que soient
les perturbations subies par le procédé. La vitesse de rejet de l’effet perturbateur pour une
tolérance donnée évalue sa performance.

5.2.6 Régulation de poursuite, ou « asservissement »

La mesure doit suivre toute évolution de la consigne. La rapidité d’obtention de la consigne
et la valeur du dépassement de celle-ci qualifient sa performance. Un asservissement agit sur une
ou plusieurs caractéristiques de la grandeur asservie telles que :

— la position : asservissement de position ;
— la vitesse : asservissement de vitesse ;
— la concentration : asservissement de concentration ;
— l’accélération : asservissement d’accélération.

5.3 Qualités d’une régulation
1. La première qualité à assurer d’une régulation est la stabilité puisque toute instabilité

conduit à la perte de contrôle du procédé. L’amortissement quantifie le degré de stabilité
dans l’espace temporel.

2. La précision, statique ou dynamique, est souvent la deuxième qualité attendue d’une
régulation.

3. La rapidité est une qualité opposée à la précision dynamique et liée à l’amortissement.

Exemple 1 :

Figure 5.2: Analyse des qualités d’une régulation de température.

Pour chaque essai X1 et X2, on passe d’un régime stable à un autre régime stable : les deux
régulations de poursuite sont stables. La rapidité de la réponse de X1 et X2 est définit par la
vitesse à laquelle une valeur stable en sortie est atteinte. C’est le temps de réponse. Concernant
la précision, la mesure X1 est plus précise car la mesure X2 n’atteint pas la consigne.
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5.4 Régulateur PID

Un régulateur, également connu sous le nom de compensateur, est constitué d’un compara-
teur pour observer l’écart entre la mesure et la consigne, et d’un correcteur dont l’algorithme
permet d’obtenir une loi d’évolution de la mesure du procédé conforme au cahier des charges. Le
correcteur a une action PID (Proportionnelle, Intégrale et Dérivée) et, associé à un comparateur,
forme un régulateur PID (figure 5.3).

I
W (t) e(t)

y(t)

P

D

u(t)

Figure 5.3: Schéma fonctionnel régulateur PID

5.5 Applications en biomédical

Des progrès considérables ont été accomplis dans le traitement de problèmes complexes tels
que le contrôle des organes artificiels, l’ingénierie de réadaptation, le matériel médical, la robo-
tique médicale et d’autres systèmes médicaux grâce à l’application de techniques d’ingénierie de
contrôle biomédical et de technologies de l’information de pointe. Les techniques de réadapta-
tion aident les personnes handicapées à améliorer la qualité de la vie, telles que les appareils
électriques fonctionnels, les prothèses motorisées et les bras ou les jambes multifonction. De
plus, pour garantir l’équilibre du corps humain, beaucoup de variables physiologiques doivent
être contrôlées et régulées. C’est par exemple le cas de la pression artérielle, de l’acidité du sang,
du taux sanguin de sucre, de la fréquence cardiaque, de la température corporelle, du rythme
respiratoire, etc. On présente ci-après quelques exemples de systèmes de régulation automatique
dans le domaine biomédical. Ceux-ci sont également appelés systèmes asservis. Indépendamment
de leur complexité, nous pouvons identifier les éléments suivants dans tout système de contrôle :

5.5.1 Application 1 : Boucle de régulation de Glucose-Insuline

Un système de contrôle en boucle fermée pour maintenir le niveau glycémique (diabète type
1) peut être représenté à par sa forme simplifiée, par le schéma bloc montré par la figure 5.4.
Pour un diabétique Type 1, l’organe responsable de la régulation de cette concentration du
Glucose (le pancréas) se trouve pratiquement en état d’échec d’où l’importance de cette boucle
qui consisté essentiellement à la proposition d’un pancréas artificiel dont la fonction pancréatique
est remplacée par un régulateur. Le système glucose-insuline représente le système sous contrôle,
avec injection d’insuline et niveau glycémique en entrée et en sortie, respectivement. Un capteur
de glucose est nécessaire pour convertir la concentration en glucose en tension, tandis qu’un
système d’administration par pompe à insuline permet de maintenir le niveau de glucose contrôlé
par l’injection d’insuline. Un circuit électronique basé sur des amplificateurs opérationnels est
utilisé comme contrôleur (par exemple contrôleur PID) afin de minimiser l’écart de glucose entre
le niveau souhaité et le niveau mesuré. Ce système de contrôle automatique empêche le patient
de subir des épisodes dangereux hypoglycémiques et hyperglycémiques.
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Figure 5.4: Contrôle en boucle fermée de la glycémie.

5.5.2 Application 2 : Boucle de régulation d’un système de perfusion ’Pousse-
seringues’

La perfusion est une technique médicale permettant de délivrer des liquides à une personne
directement dans son sang par l’intermédiaire d’une veine, généralement l’une de celles du bras.
Un cathéter, sorte de tuyau souple, est introduit dans une veine périphérique, ou parfois une
grosse veine pour permettre la diffusion de plus gros débit. La perfusion intraveineuse permet
de :

Ü Délivrer des fluides et des électrolytes, afin de restaurer les pertes de liquide.
Ü Administrer des médicaments/drogues (effet thérapeutique).
Ü Assurer une nutrition parentérale.
Ü Faire des transfusions (injection de l’un des constituants du sang).
Ü Maintenir un équilibre hémodynamique.
Ü L’administration intraveineuse permet d’avoir une distribution immédiate et de maintenir

un niveau constant de médication.
Les composants du pousse-seringues électrique sont : (voir figure 5.5)
— Unité Centrale (UC) (Gérer le fonctionnement des PSE) ;
— Le moteur mécanique (Alimente le mouvement de la seringue) ;
— Le capteur de force (Mesure de la force pour pousser la seringue) ;
— Le capteur de position (Pour mesurer le déplacement linéaire de la seringue) ;
— La batterie (Pour alimenter le moteur (Rechargeable)) ;
— La carte d’alimentation (Pour alimenter le moteur mécanique) ;
— Le capot (Contient les boutons de réglage (débit et la vitesse)).

Figure 5.5: Pousse-seringues électrique.

Le contôle et l’automatisation du système de perfusion de médicament pour l’administration
d’une anesthésie par voie intraveineuse peut être représenté par le schéma bloc montré par la
figure 5.6.
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Figure 5.6: Schéma fonctionnel d’un système de perfusion de médicament à rétroaction contrô-
lée [4].

5.5.3 Application 3 : Robotique médicale

En ce qui concerne l’ingénierie de la réadaptation, la robotique médicale influe considéra-
blement sur ce domaine à l’heure actuelle. Les technologies robotiques améliorent les processus
médicaux ou chirurgicaux en améliorant la précision, la stabilité et la dextérité, et les robots
sont aujourd’hui capables d’améliorer la rééducation des patients handicapés (voir figure 5.7).

à Pourquoi les robots manipulateurs ?

4 la rapidité ; la précision ; la répétabilité ;
4 le suivi de trajectoire automatique ;
4 la capacité à satisfaire des contraintes de position, vitesse et effort ;
4 l’enregistrement automatique des gestes effectués.

Figure 5.7: Contrôle en boucle fermée du membre supérieur en rééducation
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Annexes

Annexe A : Table de transformées de Laplace

f(t) L[f(t)] = F (s)

1 1
s

(1)

eatf(t) F (s− a) (2)

U(t− a) e−as

s
(3)

f(t− a)U(t− a) e−asF (s) (4)

δ(t) 1 (5)

δ(t− t0) e−st0 (6)

tnf(t) (−1)nd
nF (s)
dsn

(7)

f ′(t) sF (s)− f(0) (8)

fn(t) snF (s)− s(n−1)f(0)−

· · · − f (n−1)(0) (9)

∫ t

0
f(x)g(t− x)dx F (s)G(s) (10)

tn (n = 0, 1, 2, . . . ) n!
sn+1 (11)

tx (x ≥ −1 ∈ R) Γ(x+ 1)
sx+1 (12)

sin kt k

s2 + k2 (13)

cos kt s

s2 + k2 (14)

eat
1

s− a
(15)
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Annexe B : TD
4 TD 1 : Algèbres matricielles -Rappels-
4 TD 2 : Estimation par Moindes Carrés (MC)
4 TD 3 : Analyse temporelle des systèmes linéaires (1er & 2ème ordre)
4 TD 4 : Filtrage linéaire

Annexe C : TP
4 TP1 : Régression et interpolation
4 TP2 : Transformée de Fourier (TF)
4 TP3 : Echantillonnage et théorème de Shannon
4 TP4 : Régulation de débit
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