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Chapitre 1 : Rappel mathématique

I. Longueurs, surfaces et volumes élémentaires
1) En coordonnées cartésiennes
a) Longueurs élémentaires

dl=dx =dy =dz

b) Surfaces élémentaires

dS =dx.dy =dx.dz =dy.dz

¢) Volume élémentaire

dV =dx.dy.dz

2) En coordonnées cylindriques
a) Longueurs élémentaires

dl=dp = pdf =dz

b) Surfaces élémentaires

dS = pdfBdz = dp.dz = pdBdp

¢) Volume élémentaire
dV = pdf@dpdz
3) En coordonnées sphériques
d) Longueurs élémentaires
dl =dr =rdf = rsinfde
e) Surfaces élémentaires

dS = rdrdf = rsinfdrde = r*sinfpdOdep

f) Volume élémentaire

dV = r?sinfdrdOde
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Application

En utilisant les longueurs, les surfaces et les volumes élémentaires, Calculer :

e Le périphérique P d’un cercle de rayon R.

e La surface latérale S d’un cylindre de rayon R et de hauteur z=h.
e Le volume V d’une sphere de rayon R.

Solution
e Le périphérique du cercle

dl=R.d6

27
P=jdl=j R.dO = 2nR
0

e La surface latérale du cylindrique

dS = Rdfdz

2mh 2n h
S = ﬂ ds = # Rd@dz=Rf defdzz [0]3™.[z]} = 2nRA
00 0 0
e Le volume de la sphere

dV = r?sinfdrdOde
Rm2m

R T 2n
V= ff v = ﬁjg r2sinf@drdfde = frz drfsin@ d@f do
0 0 0

000

1 3 § /4 21 4 3
V= [gr ] [—cosOlF[pls™ = §TL’R
0
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II. Les opérateurs vectoriels
Le gradient
Soit U une fonction (un champ scalaire)
1) En coordonnée cartésiennes : U = U(x,y, z)

Tradu( )_0u9+6u9+6uz
gradiinyz) =oy" ayj 0z

2) En coordonnées cylindriques : U = U(p, 0, 2)

- ou, 1lou_ Ou-
gradU(p,0,z) = %up + ;%Ue + %
3) En coordonnées sphériques : U = U(7,0, @)

— ou_, 1ou_, 1 Ju-
gradU(r.8,9) = 7t + 55t + 5ok

Remarque
Si gradU = A = U= [A.d

III. Flux d’un champ vecteur a travers une surface fermée
1) Vecteur élément de surface

a) Surface fermée
Une surface fermée délimite un volume fini de 1’espace (sphére, cylindre...).
Pour ce type de surface il y’a deux régions : I'intérieur de S et ’extérieur de S. le vecteur élément de

surface est orienté vers 1’extérieur. .
ds

ds = ds.n
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b) Surface s’appuyant sur un contour

Pour une surface s’appuyant sur un contour fermé, il suffit d’orienter le contour pour définir le sens

du vecteur normal a la surface en utilisant la régle de la main droite.

ds

2) Flux d’un champ vecteur a travers une surface

Flux élémentaire

Le flux élémentaire d¢p d’un champ vecteur A (M) a travers une surface ¢lémentaire ds située en un
point M est par définition le produit scalaire de A (M) par ds

dp = A(M).dS = A(M).7.dS

A(M)

i

v v

Le flux total du champ vecteur A (M) a travers la surface S s’obtient par :

¢=fd¢=ﬁ>;ﬁ(1w).ﬁ
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Chapitre 2 : Electrostatique
I. Introduction

L’¢lectrostatique est la branche de physique qui étudie les phénomeénes (champs, potentiel,

forces...) créés par des charges statiques i.e. des charges qui ne sont pas animées d’une vitesse.

Les forces ¢lectrostatiques s’exercant entre ces charges sont gérées par la force de Coulomb qui

présente une certaine analogie avec I’interaction gravitationnelle.
II. La charge électrique

La charge ¢électrique est la propriété physique de la mati¢re qui produit les phénomenes électriques et

magnétiques. C’est une grandeur scalaire (positive ou négative) mesurée par 1’unité : Coulomb.

Par analogie avec I’interaction gravitationnelle, la charge électrique joue le méme réle que celui de

la masse.
II1. Quantification de la charge électrique

A TD’échelle microscopique, I’expérience (Millikan 1910) a montré que la charge électrique est

quantifiée i.e. sa valeur est un multiple de la charge élémentaire e = 1.602.107%° C.

N.B : les particules élémentaires sont des constituants (nanoscopiques) de la matiére (atomes).

Exemple
Particule Symbole Charge Masse
Electron e” —e 9.11.10731 kg
Proton p* +e 1.67.107%7 kg
Neutron n 0 1.67.107%7 kg
Photon y 0 0
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IV.  L’unité de la charge électrique
L’unité de la charge est le coulomb. Elle est définie comme suit :

I A A I.At
= — = = /.
At 1

[q] = [1].[t] = A.T
Donc: 1C = 1A.S dans le systeme S.I

En pratique, la valeur du coulomb est considérée trés grande d’ou la nécessité de travailler avec les

fractions du coulomb qui sont :

1uC = 107¢C
1nC = 107°C
1pC = 10712¢C

V. Conservation (Invariance) de la charge électrique

La charge électrique est une grandeur physique conservée i.e. la charge totale d’un systéme n’est
pas modifiée par le mouvement de charges. Les charges positives et négatives ne peuvent étre créées

ni détruites. Elles se déplacent uniquement d’un corps a un autre.
Exemple
Durant une réaction chimique ou physique, on a :

e Nat+Cl™ - NaCl

sel

+e +(—e) =0

- +
o e + - n +
e, +p n e
electron proton neutron neutrino

Dans une interaction, on a

Z Qinit = Z qr
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Densités de charges électriques

1. Introduction

La charge macroscopique @ d’un corps comporte un nombre important N de charges élémentaires e
telles que Q = N.e. Vue la faible dimension de cette charge ¢lémentaire, on considére qu’a 1’échelle
macroscopique, la répartition Q se fait d’une fagon continue sur le corps matériel. Cette répartition
peut étre modélisée par des densités de charges €lectriques qui dépendent de la géométrie du corps

chargé (filiforme, surfacique, volumique).
II. Densité volumique de charges (p)
Soit un corps matériel de volume ¥ chargé par une quantité p (uniformément dans le volume).

La densité volumique de charges (charge par unité de volume) notée p est donnée par :

p= = Q=pV

<|Q

Si la répartition n’est pas uniforme, on considere un élément de volume dV contenant la charge dg

telle que :

dq
pM) =— = dq=pM).dV

o= [[[ pean.av

En utilisant la méme relation dans le cas ou la répartition est uniforme i.e. p(M) ne dépend pas de M

et p(M) = po
Q =fffp(M).dV=poffde=p0.V

L’unité de p est : C.m™.
Remarque :

e En coordonnées cartésiennes : dV = dx.dy.dz
e En coordonnées cylindriques : dV = p.dp.d6.dz

e En coordonnées sphériques : dV = r2.sin.dr.d0.d¢
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ITI. Densité surfacique de charges (o)
Soit un corps matériel de surface S portant une charge Q répartie uniformément sur la surface.

La densité surfacique de charges (charge par unité de surface) notée o est donnée par :

a=§ = (@=o0.5

Si la répartition n’est pas uniforme, on considére un élément de surface dS contenant la charge dg
telle que :

d
o(M) = d—g = dq=o(M).dS

0= ff o(M). dS

En utilisant la méme relation dans le cas ou la répartition est uniforme i.e. (M) ne dépend pas de M

eta(M) = g,
Q =fffa(M).dS=poffde=ao.S

L’unité de o est : C.m™.
Remarque :

¢ En coordonnées cartésiennes (x,y,z) :
dS = dx.dy dans le plan (xoy)
dS = dx.dz dans le plan (x0z)
dS = dy.dz dans le plan (yoz)

e En coordonnées polaires (p,09) :

dS = p.dp.do
e En coordonnées cylindriques (p, 0, z):
dS = p.dp.do
dS =dp.dz
dS = p.df.dz

e En coordonnées sphériques (7,0, @) :
dS =r2.sinf.d6.de
dS =r.sinf.dr.de
dS =r.dr.do
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IV. Densité linéique (linéaire) de charges (1)

Soit un corps matériel unidimensionnel de longueur L portant une charge Q répartie uniformément en

longueur.

La densité lin¢ique de charges (charge par unité de longueur) notée A est donnée par :

Az% = Q=AL

Si la répartition n’est pas uniforme, on considere un élément de longueur dL contenant la charge dg

telle que :

d
AM) = d—z = dq=A(M).dL

Q= f)L(M).dL

En utilisant la méme relation dans le cas ou la répartition est uniforme i.e. A(M) ne dépend pas de M

et /1(M) = /10

Q =f,1(M).dL =/10de = Ao.L

L’unité de A est : C.m™.
Remarque :

¢ En coordonnées cartésiennes (x,y,z) :
dL = dx suivant I’axe (x'0x)
dL = dy suivant I’axe (y'0y)
dL = dz suivant ’axe (z'02)

En coordonnées polaires (p, 0) :

dL =dp
dL = p.db
e En coordonnées cylindriques (p, 0, z):
dL =dp
dL =dz
dL = p.d6
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e En coordonnées sphériques (1,0, @) :

dL =dr
dL =r.sinf.d¢p
dL =r.d6

V. La charge électrique ponctuelle

La charge ¢électrique ponctuelle est la charge portée par un systéme matériel dont les dimensions sont

suffisamment petites.
VI. Applications
Exercices 1

On suppose que la terre est sphérique de rayon R = 6400 km et porte une charge négative

Q = —107°.

1) les charges sont réparties uniformément en surface avec une densité surfacique o7 . Calculer or.
2) On considere maintenant que les charges négatives sont réparties uniformément dans le sol sur une

profondeur p = 50 km .

Quelle est dans ce cas la densité volumique pr ?
Exercice 2

Soit un fil de centre O dirigé suivant (0z), de longueur 2L portant une charge Q répartie linéairement

(figure ci-dessous).

1) Donner ’expression de la densité linéique de la charge moyenne 4,,,, si 1’on suppose que la
répartition est uniforme.
2) Cette distribution de charges n’est pas uniforme et suit la loi :
Aocos = pour |z| <L
Az) = { 0 oL P ||
0 pour|z| > L
Exprimer la charge élémentaire dq située en z sur une portion de fil dz. En déduire I’expression de 4,

en fonction de Q et L.

10
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z4
:
1
1
1
1
L
Ofx---------------- >
y
L

Solutions

Exercice 1

1) o7 = % avec S = 4mR?

— Qr 2
r= o = —194Cm
2 pr == avecV=Vp -V,
V. —4 R3
T = 37T
4
Vp == m(R — P)?
4
v =2nlR - (R = P)’]
pr =—3.9.107"C.m™3
Exercice 2
Q

1) lmoy ~ 3L
2) dg = A(2).dL = Ao.cosEdz

SIi— = SIN——SN\——

[2/10 . nz L ZAOL[, L ) <—T[L)]
2L1_ s 2L 2L

Q= qu—f Ao- cos—dz—

_ 4ol
T

Jo= 770

11
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Interactions électrostatiques

I. Force électrostatique (loi de Coulomb 1785)
Enoncée de la loi de Coulomb pour des charges ponctuelles : la force ¢lectrostatique entre deux
charges ponctuelles est proportionnelle a la valeur des charges et inversement proportionnelle au
carré de la distance qui les sépare. Cette interaction est portée par la droite qui joint les deux charges.
Si les charges sont de mémes signes, il y’a répulsion et si elles sont de signes contraires, il y’a
attraction.
La loi de Coulomb
Pour la formulation mathématique de la loi de Coulomb, on considére deux charges ponctuelles g, et
q» placées respectivement aux oints M, et M, telle que la distance MM, = r.

La force €lectrostatique ﬁlz exercée par la charge g, sur la charge g, est donnée par :

= q1-92 _,
Fip = Kr_2u12

1

=9.10° Nm?C~2.

La constante de proportionnalité : K = pym—
0

Elle dépend des unités choisies et la nature du milieu contenant les charges. En effet :
e Danslevide: € = ¢,.
e Dans un milieu qui différe du vide : € = gy¢&,- ou &, la permittivité relative du milieu
considéré.

De la méme fagon, la charge g, exerce une force ﬁ21 sur la charge g, telle que :

2 z2-q91 q2-q1 _,
Fp = Kmum = Kr_2u21
Il est claire que : 1312 = —17"21 (3°™ Joi de Newton : principe des actions réciproques)

12
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—_
Fyq
Ml/
ST S
.
Mz ’,’/
F,, ’
12
qz

Principe de superposition des forces
Enoncée : la force électrostatique appliquée sur une charge q; par N charges ponctuelle est la
résultante vectorielle des forces individuelles appliquées par chaque charge.

i= i=N

= = 1 ql'qk —
k § ik 47T€0 - rzik ik

=2

Pl
~
#
&

=
i*
Exemple

Soit la répartition des charges de la figure ci-dessous :

Ml MZ
qd1@_ ¥ )
AN el p!
N
\\\ ,,/,
N e
~ Pid
\\\ /”
\\\ 0/’/
Ul
©
Q"
\
\
\
\
\
\
\
\
\
\
q3 'M’%

Calculer la force électrostatique appliquée sur la charge Q au point O :

La force ¢€lectrostatique subie par la charge Q en O est :

FQ = FlO +F20 +F30 =

1 [%-Qa + qz.Qﬁ + CI3-Q1_i]
4rey L(M;.0)2 70 T (M,.0)2 20 T (M;.0)2 3

ﬁ':Q[qlﬁ+qzﬁ+q3ﬁ]
O 4mey (M. 0)2 70 T (M,.0)2 20 T (M5.0)2 30

13
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Champ et potentiel électrostatiques

1. Introduction

En électrostatique, les effets générés par un corps chargé sont décrits par deux grandeurs
mathématiquement interdépendantes [’une est un champ vectoriel (champ électrique) et I’autre

représente un champ scalaire (potentiel électrique).

La connaissance de ces deux grandeurs en tout point de I’espace permet de décrire toutes les
perturbations électrostatiques induites par le corps chargé dans son environnement et par conséquent

toutes les actions subies par les charges avoisinantes.
II. Champ électrique créé par une charge ponctuelle

Le champ électrostatique créé en un point M de 1’espace par une charge ponctuelle Q placée en point

O est défini par :

La force subie par une charge test placée au point M s’exprime par :
F(M) = q.E(M)
Principe de superposition des champs électriques

Le champ électrique créé en point O par N charges ponctuelles est la résultante vectorielle des
champs individuels créés par toutes les charges.

1 i=N
E(0) = Z . =ZE.
)= ey Lm0y o = 2B
1= L

N.B : 'unité du champ électrique est le Volt/m

14
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Exemple

Soit la répartition des charges de la figure ci-dessous :

Calculer la force électrostatique appliquée sur la charge Q au point O :

La force €lectrostatique subie par la charge Q en O est :

q qz

q
+ —_—
4, [(Ml. 0)2 ‘M0 T 1. 0)2

E(0) = E1(0) + E»(0) + E5(0) = U0 +

Application

Soient les charges q4, g, qc telles que g4 = g = 2q et qc = —q (g > 0). (figure ci-dessous)

1) Calculer la force exercée par q, sur qc.

2) Calculer la force exercée sur g, par les autres charges.

3) Calculer le champ électrostatique au point O E (0).

%

S
v
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Solution

1)
- 1 CIA-qCﬁ
AC T 4me, (AC)? AC
. AC  -21+2) -1, 1
u = p— = =
COlAC T vz V242
2

F —
Ac = 16\/—7150( 1))

2) Fy = Fgyg + Fcq = Fga — Fyc

BA ™ 4ne, (BA)? B4

Upy
- qz S
ba l6me,
Donc

=o' ) 7
f— —_—— l —
4= 16me, N A
3) Le champ électrostatique E (0) au point O.

E(0) = Ey+Ez + E;  (principe de superposition)

R 1 da 4p 4B-94
B
O = e [(AO)Z A0+(BO)2 BO+(co)2u“’]
2 o1 12q 2q, —q
E(0) _4nso[4 =D+ l+(60)2(_D]
a \ Y.
E(0) 161150] v/

16
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Potentiel électrostatique

I.  Potentiel électrostatique créé par une charge ponctuelle

Soit une charge ponctuelle Q soumise a une force électrostatique F exercée par une autre charge

ponctuelle g.

D’apres les lois de la mécanique, la variation de 1’énergie potentielle dans le cas d’une force

conservative est donnée par :

Puisque la force électrique est conservative et par analogie, on peut définir I’énergie potentielle

¢lectrostatique telle que :

AU = AEp

"
électrostatique mécanique

Donc

17
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M, 2 Q T2
> UM —-Um)] = | au =j ¢ K> dr = Kqu ~dr
M, 71 r 71 r
Alors
—17"2 1 1
Uy 00t = Kao || = Kao |-~
UM) UM, _KQ KQ
q q &1 T2
On pose :
U
V==
q
Donc
KQ KQ
Vi—Vy=———==
1 2 T T,
K
Vl = _Q
= "1
V. ke
2=,

Dans le cas général, on déduit :

KQ
V(r) =—+cte
r
A I’infini, le potentiel est considéré nul, d’ou
V(ir—>0)=0 =cte=0

Alors, le potentiel électrostatique créé par une charge ponctuelle O en un point M distant de Q par

est donné par :

K
V(r) = TQ

Ilestclaireque:siQ <0 = V(r)<o0

siQ>0 = V(r)>0
18
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II.  Principe de superposition des potentiels électrostatiques

Enoncée : le potentiel €lectrostatique créé en un point M par N charges ponctuelles Q; ; est la somme

algébrique des potentiels individuels créés par chaque charge.

&1 a1
M
¥
T qz
I3
an 43
V(M)=V1+V2+ _____ V3
N N
van =y E=3,
i=1 i=1
L’unité du potentiel est le volt V.
ITI. Application
Quatre charges ponctuelles identiques g4 = qg = qc = qp = —q (q > 0) sont fixées aux

sommets A, B, C, D d’un carré de coté a.

Calculer le potentiel électrostatique au centre O du carré.

A B
qda @ @ qs
Y '
N e
\;rl\‘l T'B//
N ,
A e
N ’
N ’
A 7
a /'\
/, 0 \\
. N
e N
// \;r'c
/’ rD \\
e Y
’ N
, N
qp @ ®qc
D
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Solution

D’apres le schéma, on a

a
rA:TB:TC:rD:_
V2

V(0)=V,+Vg+V.+V, (principe de superposition)

Kq, Kqz Kqc K —4+2K
V() =—4 =8, 20, 2D T Vouts
74 TR e Tp a
IV. Relation entre le champ et le potentiel électrostatiques
Ona
—AU =F.dl=q.E.dl
——=FE.dl
q
—dV = E.dl
Onsaitque: dV = gradV.——l>
—gradV.——l) =E.dl
Donc
E = —gradV.EI)
—_— — MZ —_— —
dv(M) = —-E.dl = V(M) —V(M,) = f E.dl
My
Application

Soit le potentiel électrostatique V(x,y,z) donnée par :V(x,y,z) = x> + xyz — 2yz*

Trouver I’expression du champ électrostatique E (x,y,2)
E(x,y,2) = —gradV = ——1——] — —
E(x,y,2) = —(2x + y2)T — (xz — 222)] — (xy — 4y2)k

20
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V. Champ et potentiel électrostatiques créés par une distribution continue de charges

Si la distribution de charges est continue, on la décomposera en charges élémentaires dg, chacune

étant définie autour d’un point P.

Le champ électrostatique élémentaire créé par dg en un point M est donnée par :

— dq
dEM) = 4 TPz Yo
Sil’onpose: PM =r
P d
dE (M) = 13

—2 Upm
41ey 12

Le champ électrostatique total est la somme continue

B(M) = j TEM) = 7 j o

De la méme fagon, le potentiel élémentaire dV (M) créé en M par dq s’écrit (avec un potentiel nul a

I’infini) :
d
av(M) =—=1
4rteg T
Le potentiel électrostatique total est la somme continue
1 d
V(M) = j av (M) = &
4rteg ) 1

21
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1) Cas d’une distribution volumique de charges

dq =
P

dq
4me, ) (PM)Z“PM

BM) = f dE(M) =

dq = pdv

EOD =4, Hf p(ggL?; "d

De la méme fagon, le potentiel est donné par :

o= fargn= 2 [ 282

Si la distribution est uniforme i.e. p(M) = cte = p,, on aura :

E() = 4neo fff (PM)ZﬁPM

VM) = 4me, fﬁ
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2) Cas d’une distribution surfacique de charges

dE (M)

[ =7
ds-” p

dq = odS

1 o(M).dS _
4me, (PM)2 “PM

dE(M) =

L1 ({o(M).dS
E(M)_4nsoff (PM)? Ypm

De la méme fagon, le potentiel s’écrit

1 dq 1 oM)dS
4me, PM  4me, PM

V(M) = de(M) _ 47350 H dﬂ;%s

dv(M) =
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3) Cas d’une distribution linéique de charges

dE (M)

dL

Par analogie, on obtient

R 1 [AM).dL
EM) =0 | oz tem

1 [ A(M)dL
V(M)_zmeof PM

Remarque

Dans le cas d’une distribution uniforme : p(M), a(M), A(M) sont prises constantes.

4) Energie potentielle (interne) d’une distribution de charges ponctuelles

Cas de deux charges

24
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Cas de trois charges

qs

1 ) ) )
<Q1 q> + q1-93 + q> Q3>

41y \ 113 713 723

Cas de N charges
U= lz Z L a4
2LuLla4Tey 1)
i
N.B:le coefﬁcient% : pour ne pas compter deux fois la méme interaction.

VII. Lignes de champ

Les lignes de champ son les courbes ou a chaque point le champ électrique est tangent.

ea1)

Ilustration des lignes de champ

Dans le cas d’une charge ponctuelle, les lignes de champ sont des droites qui convergent ou divergent
de la position de la charge responsable du champ. Le champ électrique est alors a symétrie sphérique

(toutes les directions son équivalentes).

e Si la charge est positive, les lignes de champ divergent du point source vers 1’infini (champ

divergent).

e Si la charge est négative, les lignes de champ convergent vers le point source (champ convergent).

25
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N.B : le faisceau des lignes de champ définit une cartographie du champ électrique.
Les équipotentielles (surfaces équipotentielles)
Une surface équipotentielle est une surface ou a chaque point, le potentiel prend la méme valeur.

Les surfaces équipotentielles sont perpendiculaires aux lignes de champ.

Surfaces équipotentielles

Lignes de champ

26
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Théoréeme de Gauss

I. Flux du champ électrique
Le flux élémentaire du champ électrique a travers 1’élément de surface ds est donné par :
d¢ = E(M).dS

Le flux total du champ électrique a travers la surface fermée S est :

¢=jd¢=§£§(1w).d§

E(M)

II. Théoréme de Gauss

Lorsque la distribution de charges possede une symétrie quelconque (sphérique, cylindrique...), le
théoreme de Gauss est un outil mathématique trés puissant qui permet de relier le flux du champ
¢lectrostatique a travers une surface fermée appelée ‘surface de Gauss (S.G)’ avec la charge

¢lectrique qui se trouve a I’intérieur de cette surface.

Si I’on note par Q;;,; la charge se trouvant a I’intérieur de cette surface, le théoréme de Gauss s’écrit :

¢ — #EES: — Qint
s.

G &o

&p est la permittivité diélectrique du milieu.

27
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Cas particuliers

o SiE est perpendiculaire a la surface : E Il dS , le théoréme de Gauss s’écrit :

b = E.Is’zﬁE.dS:Q""t
S.

5.G G €o
e La surface de Gauss est une surface équipotentielle ou a chaque point le champ E est constant.
On peut écrire alors :

b = E.ﬁzﬁE.dszE#.dszE.szQi"t
S. S.

el G G €o

28
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ITI. Application
Soit une sphere de rayon R portant une charge positive répartie sur sa surface avec une densité
surfacique uniforme o.
En appliquant le théoréme de Gauss, calculer le champ ¢€lectrostatique a I’intérieur et a I’extérieur de
la sphere.

En déduire le potentiel électrostatique dans les deux cas précédents.

Solution
1°" cas : a Pintérieur de la sphére
Dans ce cas, la surface de Gauss est choisie comme étant la surface d’une sphéere de rayon 7 tel que

r < R.

En appliquant le théoreme de Gauss :

¢= E’.EsizQint
5.6 €o
Qine =0
- — S 0
#E.dS=E.SG > ES;=0 {E‘;i_o
int —

29
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2°" cas : a Pextérieur de la sphére

La surface de Gauss est choisie comme étant la surface d’une sphére de rayon r tel que r > R.

Dans ce cas :

ﬁ; E.dS=E.S; = E.4nr?
S.G

Qint = 0.5 = 0.4mR?
En appliquant le théoreme de Gauss, on aura :

£ am? 0. 4mR? g oR? 1
Anrli= ——— = r = —
[ EO ( )ext 80 rz

Le champ E () ext @ une symétrie radiale, donc il s’écrit :

. oR? 1
E(M)ext = 5_0 T_z Uy

3éme

cas : a la surface de la surface (r = R)

Pourr = R = E(R)zgi
0

30
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1) Le potentiel

dv = —E.dl
En coordonnées sphériques, on a : di = dri, + rdOuy + rsin@dfpﬁ(p

1% cas : a Pintérieur de la sphére : 7 < R

—

dv=-Edi=0 = Vine(r) = cte = Cy

2°™ cas : 4 Pextérieur de la sphére : 7 > R

- — O—Rz 1
AVpye = —E.dl = —E,yt(r).dr = Bt dr
oR? 1
Vext(r) = deext = __80 1"_2 dr
oR?1

Vext(r) = S_; + G
0

2
Ona: Ve —>®)=0 = lim_ o= +C=0 = (=0
0
Donc
. ()_aRzl
ext\T) = & T

A la surface de la sphére (r = R),ona: Vi ;(R) =Vor(R) = C; =—

&o
oR

Vine(r) = .
0

Représentation de V(r) et E(1) :

»

V(r),E(r)1

oR

€o

o

€o

Electrostatique
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IV. Champ électrique créé par une charge distribuée uniformément sur un plan infini
Soit un plan infini portant une charge uniforme de densité o (figure ci-dessous).

Calculons le champ électrostatique créé par cette charge dans 1’espace.

V4

s

|
l““
%)

w

A
1
1
1
1
1
1
1
1
1
1
1
1

+
+
—F
+
+
<

N + + +
+ + + + +
/// El i l
X "
ds;
En appliquant le théoreme de Gauss :

¢ — E’ES? — Qint

8.G €0

Dans ce cas, on choisit comme surface fermée de Gauss le cylindre qui passe perpendiculairement
par le plan (P).

Le flux est séparé en trois parties :

- Flux a travers S;.
- Flux atravers S,.
- Flux a travers S;.

b=¢1+ o+ 3
_ - — - —> - —> _ant
¢=qpE.dS; +qp E.dS, + E.dS3—£
N ——— 0
=0, carﬁLS3
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d) :E.Sl +E.Sz

Sl = Sz = S
L g5 = dim
&o
Qint = 0.5

g.S
= 2E.S=—

Il est clair que E ne dépend pas de distance a partir du plan. Donc il est uniforme.

—

dv = —E.dI
dl = dxi+ dyj + dzk
E =Ek

dV = —E.dl = —Edz

V(z) = f —E.dl=—7z + cte
2&,

V. Champ électrique créé par une distribution volumique non uniforme de charges
Application
On considére dans le vide une sphere de rayon R et de centre O portant une charge avec une densité

volumique donnée par I’expression :

.r.Z
p(r) = py (1 - kﬁ) k et p, sont des constantes

1) Déterminer I’expression du champ ¢€lectrique en tout point de 1I’espace. On notera OP = r.
2) Montrer qu’a I’'intérieur de la sphére, le champ é€lectrique présente un maximum pour un rapport
"'/p donné

3) Calculer la constante k dans le cas ou le champ est extremum pour r/ R= %

Solution
1) L’expression du champ électrique dans I’espace

En appliquant le théoréme de Gauss
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¢ — E:ES? — Qint
5G €o

On choisit la surface de Gauss une sphere centrée sur O et de rayon r.

Sachant que dans le cas d’une symétrie sphérique E |l dS

Le flux du champ électrique s’écrit :

p=qpE.dS=¢ = E.dS=¢=E#dS=E.S=E.4nr2
S.G S.G S.G

Pour la charge électrique, on distingue deux régions :

1" région : r <R

[ 0

dV = r?sinfdrdfde

2T
Qint = fff Po <1 — )r sin@drdfd¢
000
r T 2T
Qint = Po- f( >T2d7‘ fsm@d@ f do
0 0 0
r3 krs]
Qint = Po- 3 _§R2 [~cos6]5. [p]5" =
r3 krd
th 4”.00 3 _gﬁ
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D’apres le théoréme de Gauss, on a :

po(r Kk r3
Eine(r) = <§ —§ﬁ>

2™ région : r > R

- -

S~ -

e [ o

Rm2m

Qint = fff Po <1 - )r sinfdrdfde
000
R T 2T
Qint = Po- f(l— R2>T2dr fsdeB fd(p
0 0 0
5 R
Qint = Po- |5 — gﬁ . [—COS@]g. [QD]%T[ =
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R® kR® . (1 k
Qine = 4mpo | 7~ —cpz | = 4mPoR (g—g)

D’apres le théoréme de Gauss, on a :

41p, 1 k

2 3(_-__
E.4mrs = o R <3 5)
poR3 /1 K\ 1
Boxt(r) = = G-3) =

AE: (1) po (1 3kr? 1 3kr?
dr g \3 5 R? 3 5 R?
r?2 5
= @ —=— =
2 9k

T 1
2. Pour = =,onaura:
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Dipole électrique

I. Définition

Le dipdle électrique est un systéme composé de deux charges de signes opposés (—q, +q) placées en

deux points 4 et B distant de d (figure ci-dessous).

P

® ! — >
—q 0 +q
S >

Dipéle électrique
II. Moment dipolaire électrique

Le moment dipolaire électrique est grandeur vectorielle qui caractérise le dipdle électrique. Elle est

donnée par :

=
Il

)
QUL

Ou d = AB
Le dipdle électrique est orienté de la charge négative vers la charge positive.
III. Potentiel électrique créé par un dipole électrique

Pour calculer le potentiel créé par un dipdle €lectrique, on consideére un point M situé a une distance »

(r >» d) du centre du dipdle O (figure ci-dessous).
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1 1
V=Vv*t+V- = 1 <———)
4teg\ry 1

T, —T
V= q ( 2 1)
4teg\ 111,

Considérons le point C la projection du point B sur le segment AM et en tenant compte des

approximations, on peut écrire :
AC =d.cosO =1, —n;
d<r = r.rp,=r?
Par conséquent :

- q d.cos6 1 p.cosb
" 4me, 12 4meg, 12
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IV. Champ électrique créé par un dipole électrique
Le champ électrique créé par un dipdle électrique est obtenu a partir de la relation suivante :
E = —gradv
En coordonnées polaires :

E) S Er +§9 = Er”l_,t).,- +E9ag

OV 1oV
gracy =5y W T e e

Donc

vV 2 p.cos6
or 4me, 13
1oV 1 p.sin

g = ———

rof 4me, 13

E, =

V. Interaction du dipéle électrique avec un champ électrique

Si ’on place un dipole électrique de moment p dans un champ extérieur E uniforme, les charges qui

le composent subissent des forces opposées : F~ = —F*

=

Le dipole est soumis a I’action d’un moment de couple T tel que :

r=|F||=F.AD
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Sachantque: F = q.E et AD =d.sina
Alors: I =q.E.d.sina = p.E.sina

Donc I’expression vectorielle du moment de couple s’écrit sous la forme :

—

F'=pAE

Il est clair que dans ’interaction d’un dipole avec un champ électrique, le moment de couple tend a

aligner le dipdle parallélement au champ électrique.
VI. L’énergie potentielle

L’¢énergie potentielle d’un dipole électrique placé dans un champ électrique E est donnée par la

somme des énergies potentielles de chaque charge.

Ep=qV*-V")

Vt—v-=-E.d
Ep = —qE d
Donc
Ep=-P.E

N.B : les propriétés du dipole électrique expliquent les phénomenes de polarisation des diélectriques.

VII. Application

On considére un dipole électrique formé de deux charges (-g, +¢q) séparées d’une distance d telles

que:q =2nCetd =9mm

1) Calculer le module du moment dipolaire.
2) Calculer I’énergie interne.
3) Le dipdle est placé dans un champ électrique uniforme E = 50 kV /m .
Exprimer en joules puis en €lectron-volts 1’énergie potentielle maximale de ce dipdle qui résulte

de I’interaction avec le champ électrique. (on donne : 1eV = 1.6. 107 %joules).
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Solution

2) f=q.d = p=gq.d=18.10"12C.m.
3) L’énergie interne est I’énergie d’interaction entre les deux charges :

1 . -1 ¢?
= b2 A 4106 joules
4mtey 11, 4mey d

soit U = —25.10%% eV

1) L’énergie potentielle
Ep = —B.E = —p.E.cosa
Cette énergie est maximale pour: cosa = —1 (@ = m)
Ep .. =Dp-E=09.10"° joules
Ep . =56.10"% eV
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Chapitre 3 Les conducteurs

Chapitre 3 : Les conducteurs
I. Introduction

Un conducteur est un milieu matériel dans lequel les charges libres sont susceptibles de se déplacer

sous I’action d’un champ électrique.

Un conducteur est dit en équilibre €lectrostatique si aucune charge ne se déplace a I’intérieur. Ce
qui revient a dire que les charges a I’intérieur d’un conducteur en €quilibre ne sont soumises a

aucune force (champ).

II. Propriétés des conducteurs en équilibre

e Champ (lignes de champ) : En tout point a I’intérieur d’un conducteur en €quilibre, le
champ électrique est nul Eint =0.

e Potentiel : un conducteur en équilibre est un volume équipotentiel V;,,; = cte. En effet :

AVine = _Ezint-a) =0 (Eint = 6)
= Viye = cte

e Distribution de charges : a I’intérieur d’un conducteur en équilibre, la charge électrique
est nulle. Si le conducteur est chargé, les charges non compensées sont nécessairement
localisée a la surface du conducteur. En effet, en utilisant le théoréme de gauss, on

démontre :

¢ = #Em.ﬁ “m o S Qe =0
S.G €o

En résumé : un conducteur en équilibre €lectrostatique est caractéris¢ par :

Epne=0
Qint =0
Vine = cte

III. Relation entre le champ Electrique au voisinage immédiat du conducteur et charge

superficielle (Théoréme de Coulomb)
Considérons un conducteur de forme quelconque.
Pour calculer le champ électrique au voisinage immédiat de la surface externe du conducteur, on

applique le théoréme de Gauss en choisissant comme surface de Gauss un cylindre dont une base
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se trouve a I’intérieur de la surface et I’autre base a une certaine profondeur de sorte que la charge

superficielle soit totalement a 1’intérieur du cylindre (figure ci-dessous).

=1
—

)

ds,
Au voisinage le champ électrique est perpendiculaire a la surface i.e. Ellds

¢ — # E:ES: A Qint
S.G

€o

Le flux est séparé en trois parties :

- Flux a travers S;.
- Flux a travers S,.

- Flux a travers S;.

b =¢1+ P+ 3
_ = —_ = —_ = _ _ ant
¢ = Eoye.-dS, + Eine-dS, + Eoyr.dS; = -
0
=0, car ﬁint=3 =0, car ELS3
¢ = # Eext-dSy = Egxt. S = =
€o €o
o
= E=—
€o
Soit vectoriellement : E= 817_1’
0
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Par conséquent : a la traversée de la surface d’un conducteur, le champ électrique varie de la manicre

suivante :

»
»

L'intérieur La couche superficielle L'extérieur

IV. Pouvoir des pointes

A proximité d’une pointe, le champ électrostatique est tres intense. Cela résulte du fait que la densité

surfacique de charges est tres élevée au voisinage d’une pointe.

Le phénomene peut étre expliqué en considérant un conducteur sphérique de rayon R ou le champ

¢lectrique a une symétrie radiale. D’ou :

A la surface, la charge vaut :

Avec: S = 4mR?

= _ qurf - qurfiq

E . = =
- et Sey T A4me, Rz YT
O__qurf
47 R?
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Par conséquent : pour une charge de surface donnée, la densité de charge est plus importante pour

les rayons les plus faibles et le champ électrique peut atteindre des valeurs trés élevées.
Cette propriété s’appelle : pouvoir des pointes
Applications : les parafoudres.

V. Pression électrostatique

Si I’on apporte des charges électriques (positives ou négatives) sur une bulle de savon, on constate
que celle-ci se délatte. En effet, les charges a la surface d’un conducteur sont soumises a des forces

répulsives de la part des autres charges.

La force exercée peut etre calculée en multipliant le champ électrique a la surface du conducteur par

la charge.
F=Q.E
o Qo oS
= — = F=—=
280 280 280
Q=05
F _ o? _p
S 2

C’est la pression électrostatique.
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Applications des conducteurs

Les condensateurs
1. Définition

Le condensateur est un systeme constitué¢ de deux conducteurs €lectriques en influence totale. Les
deux conducteurs dans ce cas s’appellent les armatures du condensateur. L’espace entre les
armatures est le vide ou rempli d’un milieu isolant (di¢lectrique). Lorsque le condensateur est soumis
a une différence de potentiel (d.d.p) il se charge i.e. les deux plaques acquiérent des charges ¢gales et
opposées. Par conséquent, le condensateur est considéré comme un appareil qui sert a emmagasiner

de I’énergie ¢électrique.
II. Capacité d’un condensateur

Soit le condensateur C schématisé dans la figure ci-dessous

R e e e e S

try

La capacité du condensateur est une grandeur positive. Pour la calculer, il faut connaitre la d.d.p entre

les armatures du condensateur telle que :
A o Q
V+_V_ :VA_VB S _f Edl:E

Avec: Q = Q4 = +Q lacharge du condensateur.

Q

C=—-—
Va—Vp

L’unité de la capacité est le Farad : F
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Les fractions du Farad

1uF =107°F
InF =10"°F
1pF = 10712 F

III. Capacités de quelques condensateurs simples

1) Le condensateur plan

A +Q

+ + + + +++++
SH+F 4+

xV

L’intensité du champ entre les armatures est donné par :

E=—
&o

ViV = _o0.5.d Q.d
A B_so .S .S
Q.d
V.=V === &.S
VA VB |74 gOS N Cz(zl

Q=CYV
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2) Le condensateur sphérique

Soit un condensateur sphérique composé de deux sphéres de rayons R; et R, (figure ci-dessous)

Pour calculer le champ électrique entre les armatures, on applique le théoréme de Gauss

Dans ce cas, la surface de Gauss est sphérique de rayon r.

¢ — # E)ES? — Qint
S.G

&o
0;
E, S — int
€o
Qi Qi
E 4mr? = int _ int .
o 4mtegr
Soit vectoriellement
E _ ant —
Aegr? "

Le potentiel est donné par :
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Dans ce cas dl = dri,

Ry ; R; —
V=—f E.dr=—th.f ar Q@ B~k (Qint = —Q)

Ry drmeg Jp, T2  4me, Ry.R,
Q Ri.R,;

= C=—==4
v~ TR TR,

3) Le condensateur cylindrique

On considére deux cylindres conducteurs coaxiaux, de rayons R; et R, avec R; <R, (figure ci-

dessous)

Calculons le champ ¢€lectrique entre les armatures du condensateur.

On applique le théoreme de Gauss : (surface de Gauss est celle d’un cylindre de rayon » et de

longueur /)

b = # B s = Qint
S.G €o
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¢ = #EBE E.S = E.2mrl = 2nt
5.G €o
Qint
E=E(r)=
) 2meyrl
Soit vectoriellement
E(r) = ﬂfi (coordonnées cylindriques)
2megrl P
- —> R2 - — RZ
v =-Edl = Vy-Vg=—[Edi=—["Edr
Rz, —Q; Redr  Q; R
Vy—Vy = — nt_ g = mtf ar _ Qme | o
a7k 'le 2meyrl r 2mepl Jp, T 2megl nR2 (Qnt Q)
Q 2mepl
A77B Inp?

1

50



Chapitre 3 Les conducteurs

IV. Association des condensateurs

1. Association en série

G G2 Cs Cy
V
VeVt Vot Ve b et =2y G WO
G, G G Cn  Ceq

Puisque le méme courant qui passe par tous les condensateurs, on peut écrire :

Q=0,=0;,=05 = = Qu
Alors :
V—Q(1+1+1+ +1)—Q
Cl CZ C3 CN Ceq
1_1+1+1+ +1
Ceq Cl CZ CS CN

2. Association en paralléle

Cn .
l
|
[
Cs .
B
C .
2 iy
C .
1 iy
% .
N R
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i: i1+i2 +i3 + o lN
= Ceq. V= Cl' V1 + CZ'VZ + C3.V3 +CN'VN

Dans ce cas, on a la méme tension entre les bornes de chaque condensateur

V=V,=V,=Vs o cecc....=Vy
Alors
CeqV=V.(C; +C3 +C5 .o ceeeee ... . +Cy)
Ceq=C1+C+C3 ... ....+Cy
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Chapitre 4 : L’électrocinétique
I. Notion du courant

Par analogie entre le courant électrique et le courant d’eau dans une conduite, la notion d’intensité
correspond a celle du débit : quantité d’¢lectricité débitée par unité de temps.

Si a travers une section donnée S du conducteur, passe une quantité de charge dg pendant un temps
dt, I’intensité du courant est :

dq
=%

Dans le systéme international, I’unité de I’intensité du courant est I’ Ampere notée 4 qui correspond

au passage d’une charge de un Coulomb par seconde (14 = %).

Lorsque la vitesse du déplacement des charges est constante, le courant est dit stationnaire.
II. Vecteur densité de courant

Considérons un conducteur métallique, cylindrique, de section S et d’axe 0x.

Soit dg la quantité de charges qui traverse la section dS.

Désignons par :

¥ la vitesse de déplacement des charges.

p la densité volumiques de charges.

A
\4

La quantité de charges dg qui traverse la section perpendiculaire a I’axe dS, occupe pendant un temps
dt un volume cylindrique dV tel que :

dV =dx.dS = v.dt.dS
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La valeur de cette quantité de charges est: dq = p.dV = p.v.dt.dS (13’ [ IS"))
Dans le cas ol dS n’est pas paralléle a ¥, on a :
dq = p.B.dS.dt

Par définition le vecteur densité de courant f est donné par :

Donc :

Donc I’intensité du courant est le flux du vecteur densité de courant f a travers la surface S.
Si n désigne le nombre de charge par unité de volume, la densité de charges s’écrit sous la forme :

p=ngq

Par conséquent :

S~
Il
S

B
<

III. Laloi d’Ohm

C’est une loi expérimentale de la physique. Son énoncé est comme suit : pour un conducteur
métallique a température constante, le rapport entre la différence de potentielle (d.d.p) entre deux

points du conducteur et le courant qui le traverse, est constant.

Cette constante est appelée la résistance R du conducteur.

V=R.I

L’unité de R est ’Ohm (} telle que :
1q = 1V
14
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IV. Association des résistances
1) Association en série

A

Puisque le méme courant qui traverse toutes les résistances, la tension entre les points A et B s’écrit :

N
VA_VBzReQ'I = Req=ZRi
i=1

2) Association en paralléle

I R
R
L 2
—>—{
R
I3 3
—>—
1 1
1 1
1 1
1 1
1 1
1 1
| R :
: [N N 1
——]
14

Ona:
1211+12+13 ......... +IN

D’autre part et en utilisant la loi d’Ohm, le courant total est donné par :

VvV Vs Vy

= T B
Req Rl Rl R3 RN
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Puisque la tension entre les bornes de chaque résistance, on trouve :

D’ou

V. Effet Joule

La circulation d’un courant / a travers un conducteur €lectrique entraine une perte d’énergie qui se

traduit par un échauffement.

Pour calculer 1’énergie dissipée pendant le passage du courant : considérons la quantité de charges dg

qui passe d’un point 4 a un point B du conducteur. Le travail des forces électrique est :
dW = (V, — Vp).dgq
dq =1.dt
dW = (V, — V). 1.dt
Si R est la résistance du conducteur :
Vy—Vg=R.I
Et par conséquent
dW = R.1%.dt
Cette énergie est dissipée sous forme de chaleur : c’est ’effet Joule .

Elle correspond a une puissance P donnée par :

P—dW—RIZ—VZ
~dt " R

Comme V et [ sont constants, la puissance reste constante au cours du temps.
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Circuit électrique
I. Définition

Un circuit électrique est un ensemble simple ou complexe de conducteurs et de composants

¢lectriques parcourus par un courant électrique.

L’¢étude électrocinétique d’un circuit consiste a déterminer, a chaque point (endroit) I’intensité du
courant et la tension. Pour cela, on utilise les caractéristiques des composants et des lois simples

d’étude de circuits.
II. Force électromotrice (f.e.m)
Les chutes de tension qui créent les courants sont appelées force électromotrice.

Le dispositif qui crée une chute de tension permanente est appelé générateur.

+i E 4+||—|£|—

Générateur idéal Générateur réel

En reliant les bornes d’un générateur par un ou plusieurs matériaux conducteurs, on réalise un circuit

fermé dans lequel le courant peut circuler.

Le circuit est dit ouvert si un corps isolant (air, bakélite) interrompt le circuit.

Le circuit peut contenir un certain nombre d’appareils aux propriétés différentes :
Générateurs : batteries, piles, générateurs de tension...

Récepteurs : résistances, bobines, condensateurs...

Appareils de mesure : voltmetre, amperemetre, oscilloscope...

Appareils de sécurité : disjoncteurs, fusibles...

Appareils de manceeuvre : inverseurs. ..

57



Chapitre 4 Electrocinétique

III. Réseaux électriques

Un réseau ¢€lectrique est constitué d’un ensemble de dipdles linéaires reliés par des fils conducteurs

de résistance négligeable.
Le réseau est formé de branches reliées entre elles par des nceuds et forment des mailles.

= Plusieurs dipdles reliés en série forment une branche.
= Un point du réseau reliant au moins trois branches est appelé nceud.
= Un maille est un parcours fermé constitué¢ de branches et ne passant qu’une seule fois par un

noeud.

Fig. 3 réseau électrique

D’apres le schéma ci-dessus,

=  BC est une branche.
= A, B, C, D sont des nccuds.
=  ABCDA est une maille.
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IV. Convention de signes

Lorsque le sens de la maille est choisi, tout courant qui circule dans le méme sens est considéré

positif. Inversement, tout courant circulant dans le sens contraire est pris négatif.

Pour un générateur, la tension entre ses bornes est considéré négative si le sens de la maille traverse

le générateur du pole négatif (-) au pole positif (+). Dans le cas contraire la tension est considérée
positive.

R

R
— 3

—

+| 1

+V

V. Analyse des réseaux - lois de Kirchhoff

1) Enoncé de la premiére loi (loi des nceuds)

La somme des courants entrants dans un nceud est égale a la somme des courants sortants.

Ly

D’apréslaloidesnceuds : Iy + I3 + [, + 1, = 1, + I + I

I. Enoncé de la deuxiéme loi (loi des mailles)

Dans une maille, la somme des d.d.p entre les bornes des éléments qui la constituent est nulle

Considérons la maille ABCDA.
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VI. Applications

Exercice 1 : Pont de Wheatstone
, o s s . ) S e, R
Démontrer qu’a I’équilibre du pont, la relation suivante est vérifiée : = R—3

2 X

R
7 Y.
Ig
A c
R, Ry
] D L

E
|

Exercice 2

Trouver les valeurs manquantes dans les circuits suivants :

Uy=03V  U,=? Uy=05V R, = 1500
i H | {1 I ey
R, = 1000 R, =500 A
R, = 2500 I

L =?
L =?

Lior =7
>

<

N ——
—
<

Upor = 1V

Exercice 3

Calculer les valeurs des courants circulants dans les différentes branches.

11 B I3 |:|
R, = 10Q R; = 15Q
U, = 20V, 20
Uy =10V,10 ___ _ Us=10V,10




Chapitre 4 Electrocinétique

Solutions
Exercice 1
A l,équilibre, IG = 0 [—3 VA = VD

N {VAB = VAD o {Il'Rl = Iz.Rz ......... (1)

VBC S VDC 11.R3 == IZ'RX ......... (2)

1 Ri _ R,
— & —=— = R{i.Ry=R,.R
2) Rs _ Ry 1- Ry 2- X3

Exercice 2

* Ut0t=U1+U2+U3 =>U2=Ut0t_U1_U3=0.2V
L] 11:0

U 4
U:RZ'ItOt = Itot:R_ZZ%:0.08A
e En utilisant le diviseur de courant, on aura :
L=1I Ry

Exercice 3

En utilisant la loi des mailles

La maille ABCDA

Ri.L+Ui+7r.I; +R. I, —U; +1,.1, =0 (r,:larésistance interne de U,)
La maille AEFBA
R3.13 + U3 +T3.I3 + Rz.Iz - UZ + Tz.Iz == 0

On peut écrire alors apres simplification:

{1111 + 712 = 10 ......... (1)
71, +16l5 = 10 ........ 2

Et d’aprés la loi des nceuds,ona: I, = I; + I3

On obtient le systéme d’équations suivant :

1L + 7L, =10 o .. .. (1) I, =043 4
71, + 1615 = 10 ... .. 2 ={L=0734
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Chapitre 5 : Magnétostatique

1. Introduction

Comme pour 1’¢lectricité, les premicres observations des phénoménes du magnétisme remontent a
I’antiquité. Des corps naturels tels que la magnétite (oxyde de fer Fe;0,) ont la propriété d’attirer des

corps ferreux. Ce sont les aimants naturels.

La magnétite était une pierre provenant de la région de Magnésie en Grece d’ou I’origine des mots

magnétique et magnétisme...

L’aimant est caractérisé par un pole nord (rouge) et un pole sud (bleu ou blanc).

Aimant

S N

Boussole

N.B : il n’y a pas de monopole (charge) magnétique par analogie a la charge électrique.

II. Champ magnétique

Il est connu qu’au voisinage d’une charge électrique, il y a un champ électrique, au voisinage de la

terre il y a un champ gravitationnel et de la méme fagon au voisinage d’un aimant ou d’un circuit

(charges en mouvement) il y a un champ magnétique nomme¢ B.

Les lignes du champ magnétique sortent du pole nord de 1’aimant et rentrent par le pole sud.
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Les lignes du champ magnétique

III.  Action d’un champ magnétique sur le mouvement d’une charge électrique
Force de Lorentz
Soit un fil conducteur parcouru par un courant /.
e Sil’on place au voisinage du fil une charge électrique q animée d’une vitesse ¥, on constate

que cette charge est soumise a une force perpendiculaire a son sens de déplacement.
e Lorsque v = 0 la force F = 0. Cela veut dire que la force F n’est celle de Coulomb.

e Sil’on remplace la charge g par une particule non chargée (¢=0) en mouvement (¥ # 6), on

constate que cette particule ne subit aucune force.

De ce qui précede, on constate que la force en question est la force de Lorentz donnée par :
F=qVAB

U : la vitesse de la charge g.

B:le champ magnétique.

L’unité de B dans le systeme S./ est le Tesla. Dans le systéme C.G.S I'unité de B est le Gauss.

N.B :F, % et B constituent un triédre direct (ils sont donnés par la régle de la main droite)

Généralisation

Si une charge q se déplace en présence d’un champ magnétique B et d’un champ électrique E.,la

force de Lorentz agissant sur la charge est :
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Application

Dans un repere (O, x, y, z), une particule de charge q, de masse infiniment petite m, pénétre dans une

zone de I’espace ou régne un champ magnétique B=Bk. A t=0, la particule est en O avec la vitesse

v(0) = ¥, = vyl = cte

1. Montrer que le mouvement de la particule est circulaire uniforme.

2. Exprimer le rayon de la trajectoire en fonction de B, m, ¢, v
Solution
1. Ona:% 1 B.
Puisque la masse est négligeable, la seule force agissant sur la particule est celle de Lorentz Ij"L.

L’application du théoréme de I’énergie cinétique donne :
AE; = z W(ﬁ) = W(ﬁL) =0 (car v = cte)

Donc Fj, ne travaille pas et par conséquent le mouvement est uniforme.
2. Rayon de courbure

D’apres le P.F.D
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IV.  Action d’un champ magnétique sur un courant
Force de Laplace :

Lorsqu’un fil conducteur, parcouru par un courant I, est placé dans un champ magnétique B , chaque

¢lément di du fil subit I’action d’une force qui s’appelle la force de Laplace ¢lémentaire dF donnée

par:
dF =IdiAB
C
di
B,’ ﬁLap
I
A

La force résultante de Laplace est :

FLa,,=j dF=j IdinB
A A

Remarques

e Le fil conducteur étant orienté, I’intensité du courant / est une grandeur algébrique : elle

positive si le courant circule dans le méme sens positif choisi pour le conducteur.
e L’ensemble (1 di, B F ) forme un triédre direct.

e Dans le cas ou le champ magnétique est uniforme, la force de Laplace s’écrit sous la forme :

C
ﬁLap=1<f a>A§:mA§
A

e Dans le cas particulier, pour un fil conducteur rectiligne de longueur L placé dans un champ

magnétique uniforme perpendiculaire au fil, la force de Laplace est donnée par :

Frap =IACAB=1L.B
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V. Laloi de Biot et Savart

C’est la loi qui exprime le champ magnétique créé par un courant électrique.
Soit un ¢lément d’un circuit €électrique de longueur dl parcouru par un courant I crée a une distance r

un champ magnétique dB tel que :

. Idinig
dB = Fo [N Ur
4t r?

Le champ magnétique total est :

B = del‘Of . r
- 4 ), 1T

VI. Dipole magnétique

On se place dans les mémes conditions que pour le calcul du champ électrique créé par un dipole

¢lectrique.

Soit une boucle filiforme parcouru par un courant I et décrivant une surface S. Le moment

magnétique de cette boucle est :

X
Il
-~
%1}
Il
—
)
S
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S

Moment magnétique

Les composantes du champ électrique créé par un dipdle électrique sont données par :

1 2P
—4n80r—3cost9
1 P .
=47T£0T—351n9

r

Si I’on calcule le champ magnétique créé par la boucle, on obtient :

_Ho 2M 9
r —E—3COS
Ho .
0 =ET—351n9

Par conséquent, une boucle (spire) de trés faible rayon parcourue par un courant, constitue un dipole

magnétique.
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VII.  Applications
Exercice 1 (Force de Laplace)

Soit le circuit schématisé dans la figure ci-dessous. La pile E=4.5V,r=1F =45V, r = 1Q. La
résistance du barreau R = 2(), |§| = 50 mT et MN= 25 Cm.

N
B R
F
—
__E
T “Z)
IL
M

1) Indiquer les vecteurs T,ﬁ, Fen justifiant leurs orientations.
2) Calculer I’intensité du courant /.

3) Déterminer I’intensité de force de Laplace appliquée sur le barreau MN.
Exercice 2 (loi de Biot et Savart)
Une spire de rayon R est parcourue par un courant d’intensité I.

Soient M le point de coordonnées (0, 0, z) et P un point de la spire repéré par I’angle 8 associé a

1’élément de courant Idi.

1) Calculer le champ magnétique dB (M) créé par I’élément de courant [ didela spire.

2) Déduire le champ total B (M) au point M.
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y A
ZA
M
I
0 >
y
0
x p di
Solutions
Exercice 1

1) L’intensité de /

E=(+RI = I=

2) L’intensité de la force

r+R

—_

dF = IdiAB

=154

N
ﬁLapzlg Zl’)AﬁzlmAﬁ = ||F||=1.MN.B=0.018N
M

Exercice 2

D’apres la loi de Biot et Savart, on a :

r=PM
PM
Y=

. Idinig
B = s

4 712

B - o Idi APM
4w PM3
69
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D’apres le schéma, on a : PM = PO + OM

a5 = yOIEl)/\(P_O)+W))
T 4m PM3

= _ Ho IﬁAﬁ+IﬁAW
4\ PM3 PM3

3
PM = (R? + 72)2

4

— uy( IdIAPO  IdiAOM
d 3 + 3
(R2+22)2  (R? + 22)

En coordonnées cylindriques :

OP = —Ril,
OM = zk
di = R.d0.1,

Le champ total :

. _A Lo I1di APO Idi AOM
B(M)z[dB(M):Ef —3+f Ldin oM
c ¢ (RZ+22)7 Jc (R? +22)2

—

dl APO = —R2.d0(iiy A ii,) = —R?.d6(—k) = R%.d0.k

& . 1di A OM _ . \
IANOM =R.z.d60.u, = j ——==0 (il y a une symétrie par rapporta )
C (R?+ z%)2
- IR? - IR? -
B(M) =“°—3(j d9>k =”°—32nk =
4m(R? + z2)2 C 4 (R? + z2)2

- IR? _
B(M) = ”O—k

3
2(R?% + z2)2
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