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Chapitre I: Introductions aux langages

1.1 Introductions aux langages
La structure de base de la théorie des langages sont les mots, on peut en donner une définition

mathématique:

Définition 1 (Monoide) Un monoide est une structure algébrique consistant en un ensemble muni
d'une loi de composition interne associative (noté ".") et un élément neutre noté ¢.

Définition 2 Le monoide est dit libre s'il posseéde une base (un sous ensemble) dont les éléments
sont indépendants. On a donc existence et unicité d'une factorisation sur un monoide libre.
Définition 3

En TL, la base est appelée alphabet, les éléments de cette base sont appelés lettres, la loi du
monoide est appelée concaténation. Une concaténation de lettre forme un mot, I'élément neutre ¢
est ainsi logiqguement dénommeé le mot vide. Un ensemble de mots est appelé langage.

1.2 Alphabets et mots

Définition 1 Un alphabet, noté X, est un ensemble non vide de symboles (ou lettres).

Exemple: alphabet du langage C: A....Z,0...9,=,<=,), ....

Définition 2 Un mot défini sur un alphabet X, est une suite finie d'élément de X.

Exemple

abb, cba, aaab, bcaaa, ab, sont des mots construits sur l'alphabet X={a, b, c}
On définit:

« X.y (ou simplement xy): la concaténation des deux mots x et y, autrement dit, le mot forme en

faisant suivre les lettres de x par les lettres de y:

» L'opération concaténation n'est pas commutative: xy = yx ,
» La concaténation est une loi de composition interne.

» La concaténation est associative: (xy)z = x(yz)

o L'élément neutre est le mot vide: Vxe X~ & =xe =X,

o x":lemot x concaténé n fois (x® =€, x! =%, x? =xx,x3 =xxx ,...),

. |x|: la longueur du mot x, tel que: |x| = nombre de lettres qui composent X,

Dr. Drif Ahlem Module: Théorie des langages 3
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. |x|a: I'occurrence d'une lettre a dans le mot x, ¢ a d son nombre d'apparition, exemple:
011, =2, |00, =0

o x":le mot obtenu en inversant les lettres de x: si x=a,a,............. a_ alors x® =a_ ... a,

e X7": I'ensemble des mots de longueur supérieure ou égale a 1 que l'on peut construire a partir de
l'alphabet X,

« X':lensemble des mots que I'on peut construire & partir de X, y compris le mot vide:
X=X+ X 4+ X% 4, avec X°={¢} oubien: X" ={gfuX"

Lemme de lévi

Soit X un alphabet et soient a, b, ¢ et d quatre mots quelconques de X~ tel que ab=cd

Il existe trois cas exprimant la relation entre a, b, cetd :

1) Si|al<|c| Alors c=af et b= fd
2) Si|aj=|c|] Alors a=cetb=d

3) Sila]>|c|] Alors a=cf et d="fb

Démonstration du lemme de lévi: voir TD1.

1.3 Opérations définies sur les langages:
Un langage, défini sur un alphabet X, est un ensemble de mots définis sur X. Autrement dit, un

langage est un sous-ensemble de X .

Deux langages particuliers sont indépendants de l'alphabet X: le langage vide (L =®) et le langage
contenant le seul mot vide (L = {} ).

Exemple:

1- Soit X=A0, 1},

a- Soit L le langage sur X formé des mots 0, 00, 1, 11. L s'écrit: L= {0, 00, 1, 11}

b- Soit le langage L sur X tel que L soit formeé de tous les mots qui commencent par 0. L peut
donc s'écrire:

L= {WE X"/ w=0wavec W e X*}.

2- Soit X={a, +, *, (,)}

Soit L le langage sur X formeé des expressions arithmétiques bien parenthésées sur a. Le mot

((at+a)*a) appartient a ce langage.
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Remarque:

Le monoide libre engendré par X est un ensemble infini.

L peut étre fini ou infini.

Exemple:

Les langages des exemples 1-b et 2- sont des ensembles infinis.

Le langage de I'exemplel-a est fini.
Opérations définies sur les langages:
Soient deux langages L, et L,respectivement définis sur les alphabets X, et X,:

e L'uniondel, et L, estle langage défini sur X, X, contenant tous les mots qui sont soit
contenus dans L, , soit contenus dans L,:

L ul,={x/xelouxeL,}

o L'intersectiondel, etL, est le langage défini sur X, X, contenant tous les mots qui sont
contenus a la fois dans L, etL, :

LnL={x/xelLetxel,}

o Lecomplément de L, est le langage défini sur X, contenant tous les mots qui ne sont pas dans L, :

C(L) = {x/xeL}

o Ladifférence del, etL, est le langage défini sur X, contenant tous les mots de L, qui ne sont pas
dansL,:

L-L ={x/xel etx¢L,}

o Le produit ou concaténation de L, etL, est le langage défini sur X, X, contenant tous les mots
formés d'un mot de L, suivid'un motdel,:

L.L ={y/xeletyel,|

o La fermeture itérative de L, (ou fermeture de Kleene ou itéré deL,) est I'ensemble des mots formés
par une concaténation finie de mots de L, :
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L ={x/3k > Oet x,,...,x, €L tels quex = XX,...X,}

L' =suLuLl’uliu..ul"u..

L'=L+L"

L' =LL =LL

Propriétés sur le produit de langage
X alphabet, L, L",L" trois langages sur X :

1) L(L'.L") = (LL)L"

2) L(L'+ L") =LL +LL"

3) L(L'AL")#LL ' ALL"
Propriétés sur I'étoile de langage

Soient L, R deux langages sur X:
1) L' =(L)

2)

L'=L.L

3) L(RL)" = (LR)'L

4) (L+R)" =(L'RYY
5) (L+R) = (R'L)R"

I.4 Description d'un langage

Un langage fini peut étre décrit par I'énumération des mots qui le composent.

Certains langages infinis peuvent étre décrits par I'application d'opérations a des langages
plus simples.

Certains langages infinis peuvent étre déecrits par un ensemble de régles appelé grammaire.
Enfin, certains langages infinis ne peuvent pas étre décrits, ni par Iapplication

d'opérations, ni par un ensemble de regles. On parle alors de langage indécidable.
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1.5 Grammaires

Un langage peut étre défini comme l'ensemble des mots satisfaisant un certain nombre de regles.
Cette vue du concept de langage a son origine dans des essais de formalisation du langage
naturel.

1.5.1 Définition 1

Une grammaire est un quadruplet G=(T,N,S,P)

T: est le vocabulaire terminal, ¢ a dire I'alphabet sur lequel est défini le langage.

N: est le vocabulaire non terminal, ¢ a dire I'ensemble des symboles qui n'apparaissent pas dans
les mots générés, mais qui sont utilisés au cours de la génération. Un symbole non terminal
désigne une "catégorie syntaxique".

S eN: est le symbole de départ ou I'axiome.

P: est un ensemble de regles dites de réécriture ou de production de la forme:

u, >u, avec u, e (TUN)" et u, e(TUN)’

La signification intuitive de ses regles est que: u, peut étre remplacer paru, .

Exemple:
Axiome =S
N={S,EE, T, T F}
T={i.(,),+*}
P={

S—>E
E->TE’
E' 5> +TFE'
E'>v
T>FT
T —>*FT'
T >v
F—i
F—(E)
}
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1.5.2 Terminologie

Le langage défini, ou géneéré, par une grammaire est I'ensemble des mots qui peuvent étre obtenus
a partir du symbole de départ par application des régles de la grammaire. Plus formellement, on
introduit les notions de dérivation entre mots, d'abord en une étape, ensuite en plusieurs étapes:
Définition 2

Soit une grammaireG=(T,N,S,P), une forme non vide u e(TuN)'et une forme

éventuellement vide v (T UN)”, la grammaire G permet de dériver v de u en une étape (noté

u — V) si et seulement si:

- u=xuy

- Vv=Xxvy

-u’— V' est une regle de P.

Exemple:

Quels sont les mots généres par la grammaire de I'exemple précédent?

Définition 3

Une forme v peut étre dérivee d'une forme u en plusieurs étapes:

- u="v: si v peut étre obtenue de u par une succession de 0, 1 ou plusieurs dérivations en une
étape.

- u="v: si v peut étre obtenue de u par une succession de 1 ou plusieurs dérivations en une
étape.

Définition 4

Le langage généré par une grammaire G =(T,N,S,P)est I'ensemble des mots sur T qui peuvent
étre derives a partir de S:

L(G)=veT /S — v

Remarque:
Une grammaire définit un seul langage. Par contre, un méme langage peut étre engendré par

plusieurs grammaires différentes.
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Département d'informatique 2¢eme année LMD

1.5.3. Hiérarchie de Chomsky
En introduisant des critéres plus ou moins restrictifs sur les régles de production, on obtient des
classes de grammaires hiérarchisées, ordonnées par inclusion. La classification des grammaires,

définie en 1957 par Noam CHOMSKY, distingue quatre classes illustrées dans le tableau suivant :

Langages Grammaires Procédure effective

3 | Rationnels ou réguliers Réguliéres a droite Automates finis

(régulieres a gauche)

2 Algébriques ou non- Algébriques, non-contextuelles Automates a pile
contextuels

1 Contextuels Contextuelles, monotones Machine de Turing a
a—> BOUA—e I’espace linéairement
a,f € (NUT)*, Aaxiome borné
0 Recursivement Contextuelles avec effacement Machine de Turing

énumérables

aucune contrainte

Propriété  Les grammaires de type O englobent les grammaires de type 1 qui englobent les grammaires

de type 2 qui englobent les grammaires de type 3.

type 0

. type 1 : contexiuelle
. type 2 -hors contescte

type 3 rezuliere

A chague type de grammaire est associé un type de langage:

les grammaires de type 3 génerent les langages réguliers,

les grammaires de type 2, les langages hors-contexte et

les grammaires de type 1, les langages contextuels.

Les grammaires de type O permettent de générer tous les langages "décidables”, autrement dit, tous les

langages qui peuvent étre reconnus en un temps fini par une machine.
Dr. Drif Ahlem Module: Théorie des langages 9
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Les langages qui ne peuvent pas étre générés par une grammaire de type 0 sont dits "indécidables".

Enfin, & chaque type de grammaire est associé un type d'automate qui permet de reconnaitre les langages
de sa classe: les langages réguliers sont reconnus par des automates finis, les langages hors-contexte sont
reconnus par des automates a pile, et les autres langages, décrits par des grammaires de type 1 ou 0, sont
reconnus par des machines de Turing. Ainsi, la machine de Turing peut étre considérée comme le modéle
de machine le plus puissant qu'il soit, dans la mesure ou tout langage (ou plus généralement, tout
probléme) qui ne peut pas étre traité par une machine de Turing, ne pourra pas étre traité par une autre

machine.
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Exercice 1: Lemme de lévi

2¢eme gnnée LMD

Soit X un alphabet et soient a, b, ¢ et d quatre mots quelconques de X~ tel que ab=cd

Il existe trois cas exprimant la relation entre a, b, cetd:

1) Si|al<|c| Alors c=af et b= fd
2) Si|aj=|c|] Alors a=cetb=d
3) Sila|>|c|] Alors a=cf et d="fb

- Démontrez le lemme de lévi.

Exercice 2: Application du Lemme de lévi
Soientu, vetw e X .

- Démontrez que: Si u®v® =w?* alors uv =vu.

Exercice 3:

Soit X un alphabet et x, y deux mots quelconques de X

- Démontrez par récurrence que : (x.y)® = y*.xk

Exercice 4: Propriétés sur I'étoile de langage
Soient L, R deux langages sur X, démontrez que:
1) U=(Y

2) U'=L.U

3) L' =LL =LL

4) L(RL) = (LR)"L

5) (L+R)" =(L'R")"
6) (L+R) =(R'L)R"

Dr. Drif Ahlem
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Chapitre 11: Les automates d états finis

I1.1 Introduction

Un automate est composeé de 3 parties:
1. une bande en entrée finie ou infinie sur laquelle va s'inscrire le mot a lire.
2. un organe de commande qui permet de gérer un ensemble d'état.

3. éventuellement une mémoire auxiliaire de stockage.

Bande en entrée

Téte de lecture/ écriture
—

Organe de commande mémoire auxiliaire

L'automate qui reconnait les langages de type:
- Type 3: c'est l'automate d'états finis (AEF)
- Type 2: automates a pile.
- Type 1: automate a borne linéaire.
- Type 0: machine de Turing.
Remarque: On distingue les automates d'états  finis deterministes et indéterministes.
Intuitivement, la différence réside dans le fait d'aboutir a un seul état (déterministe) ou a plusieurs
états (indéterministe) a partir d'un état donné en lisant une lettre.
I1.2 Automates d'états finis déterministes
Définition 1: Un automate fini déterministe est un quintuplet:
A=(X,Q,0,,6,F)
Ou:
X: l'alphabet (d'entrée)
Q: lI'ensemble des états
Qo: I'état initial
o : la fonction de transition
0:QxX —>0Q

F: I'ensemble des états finaux (F = Q)

Dr. Drif Ahlem Module: Théorie des langages 12
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11.3 Représentation d'un automate d'états fini
Il existe plusieurs manieres de représenter un AEF:
a- a travers la définition, ¢ & d en expliquant les cingq parametres:
Exemple: A= ({a,b},{ao, 0,0}, 4o, &, {0, 0 )
Avec 5(qo’a) = 0o, é‘(QO’b) =0y, 5(q11b) = 5(q2’a) = 5(q2 ’b) =0,
b- a travers une représentation matricielle:
q; = 5(Qi , Xj)
X
Q ) (R Xji e, Xm
état initial: g
état final: .
di qj:é‘(qi’xj)
état final:
On
Exemple: A= ({a,b}{do, a0 00,5, {01, 0, )
X
Q a b
état initial: do o}
état final: q 0>
état final: qp (o) 0>
Dr. Drif Ahlem Module: Théorie des langages 13
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c- a travers une représentation graphique

qj:§(qi’xj)

Exemple: A= ({a,b},{d,,0,.9,},d.5.{0,.9, )

a, b

1.4 Fonctionnement d'un automate d'états fini

Afin de pouvoir lire des mots, on étend 5 a 5~ de maniéere unique par:

5 QxX —>Q
(@.x)—0a’
Nous distinguons trois cas sur la longueur de x:
Cas1: |x=0 57(9,X)=q
Cas2: |X=1  &7(q,X)=5(q,x)

Cas3:|¥>1  &(q,x)=05[5(q,a),x] avecx=ax’, ae X, X' e X"

2¢eme gnnée LMD

Le fonctionnement de l'automate se fait a travers une succession de configuration (g, w), qeQ, w

est le mot sur la bande en entrée.

I1.5 Langage reconnu par un AEF
L(A) = {we X"/ (g, W) ——>0 | GreF
11.6 Mots reconnus par un AEF
A=(X.Q,q,,5, F)

fe? L(A), fe X'

1" cas:

(0o, f)——qetge F= f e L(A)
2°™cas:

(9,, f)——qetqe F= f ¢ L(A)

Dr. Drif Ahlem Module: Théorie des langages
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3*™cas:

(95, f)——(g,W)etq eQ, we X" avec 5" (g, w) n'existe pasblocage f eL(A)

Exemple:
Soit A l'automate EF défini par le graphe suivant:

Faisons fonctionner I'automate sur quelques mots:
1/aab 2/aa 3/aaba 4 ¢

(9o, aab) - (q,,ab) — (g,,b) —>q, g, € F donc aab € L(A)
(9o, @3) > (9,,2) > Q, q, ¢ F donc aa ¢ L(A)

(Go, aaba) > (q,,aba) > (q,,ba) - (d,,a)
6(q,,a)n'existe pas il yadonc blocage et ainsi aaba ¢ L(A)

(0o, ) n'existe pas il y a blocage et ¢ ¢ L(A)

I1.7 Minimisation d'un AEF (Automate minimal)

Soit A= (X,Q,q,,5, F) unAEF.

Réduire A implique la construction de I'automate minimal équivalent.

But : obtenir un automate ayant le minimum d'états possible. En effet, certains états peuvent étre
équivalents.

Définitions:

a/ On dit que I'état g (qe Q) est accessible si 3feX /57 (q,, f) =q

Exemple:q, est inaccessible.(aucun arc n'arrive sur lui)

PORC
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b/ On dit que I'état g et p (g,pe Q) sont B —équivalent t si et seulement si:
pAage((VFeX) (5 (p,f)eF=67(q, f)eF)

¢/ Soit une relation R sur Q. On définit une congruence d'automate sur R par translation de la

relation sur les nouveaux états obtenus a travers & sur les lettres de I'alphabet X.

Formellement:
pRg=(VxeX, d(p,x) R 5(q,X) )

Théoreme:
La relation g est une congruence d'automates.

Démonstration:
Soit feX™,f=xw avecxeX etweX"

p LA (5 (pf)eF)=o (g f)eF) < (5 (pxw)eF) <5 (g, xw)eF)

< (57 (p,x),W)eF) =35 (a,x),w)eF) = (5(p,x) B 5(a,%)

Algorithme de minimisation d'un automate:

Soit A automate d'état fini déterministe.

1/ Eliminer tous les états inaccessible dans A.

2/ Regrouper les états congruents suivant des classes d'états, a travers la relation de congruence

d'automates 3.

A= (X,Q,q,,S, F)sans états inaccessibles on obtient :
A =(X",Q,qgsH S, F")

PeFet qeF

a/
pﬁOqQ{PéFetng

b/ Si (p B g)et (vWxe X, 5(P,x) B, 6(q,x))alors: B.., = S,

c/ Arrét quand B, ., = B,
X'=X

q, = laclassequi contient q,
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F' =toutes les classes qui contient desétats finaux de départ
Q' = nouveaux nomsd'états attribués achaque classe obtenue
o' = seraobtenu en définissant chaque nouvel état sur X

Théoreme:
A tout AEF déterministe correspond un AEF déterministe minimal.

Exemple: soit 'AEF A({x, v}, {1,2,3,4,5,6,7},1,5,F) avec F={1, 2} et 5 défini par

X

Q x y

état initial: 1 2 5
2 2 4
3 3 2
4 5 3
5 4 6
6 6 1
7 5 7

1/ Faite le graphe de A

2/ Construire I'automate minimal équivalent a A.

Solution : 1/ dessiner le graphe selon la définition de A (tache a faire pendant le cours)
2/ Etape 1: I'état 7 est inaccessible, donc on le supprime.

Etape 2: Appliquons l'algorithme de minimisation:
o 5,:{1,2} ;{3,4,5, 6}

. . oL =2 5@ y)=5
e 3 : Considérons {1, 2}: 5(2.%) =2 méme etat 5(2.y)=4
=18,2
0(3,x)=3 03 y)=2
Considérons {3, 4, 5, 6}: 554 ):()) s 38, 5 554 Z/)) _3 2 et 3 ne sont

pas en relation suivant g, et ainsi 3 et 4 ne seront pas dans la méme classe suivant g,
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Faire toutes les combinaison possible sur les états, les résultats sont les suivants:
o 5,:{1,2} ;{3,4,5, 6}
o {12} ;{3,6}; {45}
e 5,:{1,2} ;{3,6}; {45}
e [, =p, donc Arrét.
Parametres de lI'automate minimal:
X'={x,y}; Q' =1{S,.5,,S,} Avec
S, représentant la classe {1, 2}
S, représentant la classe {3, 6}
S, représentant la classe {4, 5}

S, est I'état initial. 5’ défini ainsi:

X
Q X y
etat initial: S, S, S,
Sl Sl S0

S
i S, Sy

11.8 Automates d'états finis indéterministes

11.8.1 Définition

Soit A un AEF indéterministe; A = (X ,Q,q,,5, F)
La fonction de transition est défini comme suit:

0:QxX ->P(Q)
(@.%) - {a;}

Remarquons que lorsque &(g,x) =g’ nous retrouvons la définition d'un AEF déterministe.
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11.8.2 Représentation d'un AEF indéterministe

Exemple:

A({a, b} {dy,9,,9, },d0, 5,10, )
5(0,8) = {0y, 0}, 5(q;,b) =1a,,0,}, 5(0,.a) =0,

2¢eme gnnée LMD

X

Q a b

état initial: qo {00, 01 }
% {01, 92}
op) 02

11.8.3 Fonctionnement d'un AEF indéterministe:

5 (0,X) =, 6 (4,X) VoeP(Q),xe X"

Exemple:

Le fonctionnement de l'automate précédent pour le mot aab sur I'état qq donne I'ensemble {q., g,}

Ona:

5" (g,,aab) = 57[5(q,, ), ab] = 5" ({d,, 0, ), ab) = 57 (d,, ab) L 57 (q,,ab) = 57[5(q,, @), b]w 57 [5(a,, @), b]
=5"[{d,. 0, 1b]U O =35"(a,,b) U (a,,0) =5 (a5,b) U5 (a,,b)=0, V{0, 0, } =100,

11.8.4 Langage reconnu par un AEF indéterministe

L(A) = {we X"/ (g, W) ——>(c, &) javec o N F = @

Exemple:

1/ (qo, aab) ——{q,,9,} {9,,9,}"F = ® donc aab € L(A)

2/ (0o, @@) > ({0,.9, }: @) > (dy, @)U (0,,8) > {0y, 0, fo et {g,,0,}nF=ad donc aa & L(A)

3/ (qo, abb)

Dr. Drif Ahlem
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11.8.5 Relation entre les AEF déterministes et indéterministes

Pour tout automate fini non déterministe, il est possible de construire un automate fini

déterministe équivalent (c’est-a-dire qui accepte le méme langage).
- Entrée: A= (X,Q,q,,5, F)
- Sortie: A" =(X',Q’, 95,5, F")

Déterminons les différents paramétres de A’

X'=X
do = {0
F'={SeP(Q)/SF = ¢}
Q' =P(Q)

5'=P(Q)xX = P(Q)
(0,X) > {5(S,x)/5(S,x) eQ VS e 5}

Exemple: Reprenons I'exemple précédent:

11.8.6 Déterminisation d'un AFN sans = -transitions

Principe : considérer des ensembles d'états plutét que des états.

1. Partir de I'état initial

2. Rajouter dans la table de transition tout les nouveaux "états" produits, avec leur transition
3. Recommencer 2 jusqu'a ce gu'il n'y ait plus de nouvel "état"

4. Tous les "etats" contenant au moins un état terminal deviennent terminaux

5. Renuméroter alors les états.

Dr. Drif Ahlem Module: Théorie des langages
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11.9 Automates d'états finis indéterministes avec e-transitions
Définition: e-transition
On appelle e-transition, une transition par le symbole & entre deux états.

Remarque: un automate d'états fini ne possede pas de e-transition.

A=(X,Q,q,,5,F) §=Q,(Xule) >PQ)

X
Q a b €
état initial: g {90} {a:}
E {0} {az}
d2 {02}

Définition: g-fermeture
On appelle e-fermeture de I'ensemble d'états Q I'ensemble des états accessibles depuis un état g;
de Q par des e-transitions.

& — fermuture(P) =U,_, &— fermuture(q)

qep

Calcul de I' =-fermeture de

Mettre tous les états de T dans une pile P
Initialiser =-fermeture(T)a T

Tant que P est non vide faire

Soit p I'état en sommet de P

dépiler P

Pour chaque état e tel qu'il y a une =-transition entre p et e faire
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Si e n'est pas déja dans = -fermeture(T)
ajouter e a = -fermeture(T)

empiler e dans P

finsi

finpour

fin tantque
Exemple:

Soit I'AFN

état a b | ¢

0 2/-/0 1
1 34|- |-
2 |-|-1140
3 -1 - |-
4 |--13 2
eo=0

Ona &— fermuture({0}) = {01}, & — fermuture({L, 2}) = {1,2,0}, & — fermuture({3,4}) = {3.4,0,1,2},..

11.10 Déterminisation d'un AFN qui contient =-transitions

1. Partir de I' ¢ -fermeture de I'état initial

2. Rajouter dans la table de transition toutes les ¢ -fermetures des nouveaux "états" produits, avec leurs
transitions

3. Recommencer 2 jusqu'a ce qu'il n'y ait plus de nouvel "état"

4. Tous les "états" contenant au moins un état terminal deviennent terminaux

5. Renuméroter alors les états.
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Exercices de TD

Exercice 1: Automates a construire
Construire, si possible, les automates déterministes qui reconnaissent les langages suivants sur
I'alphabet {a, b}:

o Tous les mots sans b.

« Tous les mots qui se terminent par ab.

« Tous les mots dans lesquels chaque a et suivi d'un b.

« Tout les mots qui contiennent autant de a que de b.

Exercice 2: Automates a construire
Construire les automates qui reconnaissent les langages suivants sur l'alphabet {0,1}:

e (00+01)
e 0(10 +01)"

Exercice 3: Automates et Arithmétique Décimale

Construire les automates sur 1’alphabet {0, 1, 2, 3,4, 5, 6, 7, 8, 9} qui acceptent tous les entiers
naturels représentes en systéeme décimal qui sont:

1. multiples de 5;

2. multiples de 3;

Indication: Un nombre décimal est multiple de 3 si et seulement si la somme de ses chiffres est

multiple de 3.
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Exercices de TD

Exercice 1: Automate minimal

Soit I’automate suivant, définit sur X={a, b} :

1. Construire lI'automate minimal.

Exercice 2: Automates non déterministes & déterministes

1. Construire un automate reconnaissant tous les mots qui finissent par aba.
2. Déterminiser 1’automate obtenu.

Exercice 3: Automates non déterministes & déterministes

1. Rendre les automates suivants déterministes:

o3
> 0—> 1—-;}-
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Exercice 4: g-transition

1. Déterminiser l'automate suivant:

Exercice 5: Automates et Arithmétique
1. Pour le langage M = (a®)"(a*)" sur I’alphabet {a} construire un automate qui le reconnaisse.
2. Est-ce que M est vide, non-vide et fini, ou bien infini? Si le langage M est fini, donner la liste

de tous ses mots.
3. Appliquer ce résultat pour trouver tous les entiers naturels non représentables sous la forme

3m +4navecm, n € N.
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Exercice 6: Programmation d'un automate a'état fini

1. Ecrire un programme (en C ou en Pascal) simulant I'AEF suivant:

0 )u_/
TN 0 _»f-‘-\_*// 1

o K L)

N/ &:;-.’Q 1

2. Est ce que ce programme accepte le mot 000?

3. Ecrire un programme qui implémente I'AEF représentant les nombres entiers.

Dr. Drif Ahlem
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Chapitre 111: Langages réguliers

I11.1. Langage régulier

Définition: Un langage L est dit régulier s’il est accepté par un automate d'états fini A.
Définition formelle:

L régulier <3 A/L=L(A)

I11.2. Expression réguliere (ER)

Soit X un alphabet quelcongue ne contenant pas les symboles{x, +, |,., (,)}.

Une expression réguliére est un mot défini sur I’alphabet X U {,+,|,., (,)} permettant de

représenter un langage régulier de la fagon suivante :

L’expression réguliére € dénote le langage vide (L = {e});

L’expression réguliére a (a € X) dénote le langageL = {a};

- Si r est une expression réguliére qui dénote L alors (r)* (resp. (1)) est I’expression
réguliére qui dénote L* (resp. L*);

- Si r est une expression réguliere dénotant L et s une expression réguliére dénotant L' alors

(r)|(s) est une expression réguliére denotant L + L. L’expression réguliére (7). (s) (ou

simplement (r)(s)) dénote le langage L. L".

Les expressions régulieres sont également appelées expressions rationnelles. L’utilisation des
parenthéses n’est pas obligatoire si I’on est stir qu’il n’y ait pas d’ambiguité quant a 1’application
des opérateurs *,+,]|,.. Par exemple, on peut écrire (a)* ou a* puisque 1’on est slir que *
s’applique juste a a. Par ailleurs, on convient a utiliser les priorités suivantes pour les différents

operateurs : 1)*, +, 2). et 3)|.

Exemple :
1. a* : dénote le langage régulier a™ (n = 0) ;

2. (a|b)* : dénote les mots dans lesquels le symbole a ou b se répétent un nombre quelconque de
fois. Elle dénote donc le langage de tous les mots sur {a, b} ;

3. (a|b)*ab(a|b)* : dénote tous les mots sur {a, b} contenant le facteur ab.
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111.3 Utilisation des expressions régulieres

Les expressions réguliéres sont largement utilisées en informatique. On les retrouve plus
particulierement dans les shell des systemes d’exploitation ou ils servent a indiquer un ensemble
de fichiers sur lesquels on est appliqué un certain traitement. L’utilisation des expressions
régulieres en DOS, reprise et étendue par WINDOWS, est trés limitée et ne concerne que le
caractére "*" qui indique zéro ou plusieurs symboles ou le caractere " ?" indiquant un symbole
quelconque. Ainsi, I’expression réguliere "f*" indique un mot commencgant par f suivi par un
nombre quelconque de symboles, "*f*" indique un mot contenant f et "*f*f*" indique un mot
contenant deux f. L expression "f ?" correspond a n’importe quel mot de deux symboles dont le

premier et f. Le tableau suivant résume 1’utlisation des expressions régulicres.

Expression Signification
[abc] les symboles a,b ou ¢
[“abc] aucun des symboles a, b et ¢
[a — €] les symboles de a jusqu’a e(a, b, c, d, e)
n’importe quel symbole sauf le symbole fin de ligne
a * a se répetant 0 ou plusieurs fois
a+ a se répétant 1 ou plusieurs fois
a? a se répétant 0 ou une fois
albc le symbole a ou b suivi de ¢
a{2,} a se répétant au moins deux fois
af{,5} a se répetant au plus cing fois
a{2,5} a se répétant entre deux et cing fois
\x La valeur réelle de x (un caractére spécial)
Exemples:

- ["ab] * : les mots qui ne comportent ni a ni b
- [ab] * : tous les mots sur {a, b}
- ([*a] * a[*a] * a["a] *) * les mots comportant un nombre pair de a

- (ab{,4}) = les mots commencant par a ou chaque a est suivi de quatre b au plus.

111.4 Expressions régulieres ambigués

Définition: Une expression réguliére est dite ambigué s’il existe au moins un mot pouvant étre
mis en correspondance avec 1’expression réguliére de plusieurs fagons.
Cette définition fait appel & la correspondance entre un mot et une expression régulicre. Il s’agit,

en fait, de I’opération qui permet de dire si le mot appartient au langage décrit par I’expression
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réguliére. Par exemple, prenons 1’expression réguliere a*b*. Soit a décider si le mot aab est
décrit ou non par cette expression. On peut écrire:

b
“
b*

~{8

Ainsi, le mot est décrit par cette E.R. Il n’y a qu’une seule facon qui permet de le faire
correspondre. Ceci est valable pour tous les mots de ce langage. L’E.R n’est donc pas ambigué.
Considérons maintenant I’expression (a|b)*a(a|b)* décrivant tous les mots sur {a, b}

contenantle facteur a. Soit a faire correspondre le mot aab, on a:

Il existe donc au moins deux fagons pour faire correspondre aab a I’expression précédente, elle
est donc ambigué. L’ambiguité pose un probléme quant a I’interprétation d’un mot. Par exemple,
supposons que, dans I’expression (a|b)*a(a|b)*, I’on veut comparer la partie a gauche du facteur
a a la partie droite du mot. Selon la méthode de correspondance, le résultat est soit vrai ou faux

ce qui est inacceptable dans un programme cohérent.

Comment lever ’ambiguité d’une E.R?

Il n’existe pas une méthode précise pour lever I’ambiguité d’une E.R. Cependant, on peutdire que
cette opération dépend de ce que I’on veut faire avec I’E.R ou plutét d’une hypothesede
reconnaissance. Par exemple, on peut décider que le facteur fixe soit le premier a du mot
areconnaitre ce qui donne 1’expression réguliére : b*a(a|b)*. On peut également supposer

quec’est le dernier a du mot a reconnaitre ce qui donne I’expression réguliere (a|b)*ab”.

I11.5 Grammaires régulieres et les automates a états finis
Le théoréme suivant établit 1’équivalence entre les AEF, les grammaires réguliéres et les

expressions regulieres.

Théoreme: (Théoreme de Kleene) Soient A,., 1’ensemble des langages réguliers (générés par
des grammaires reguliéres), A,, ’ensemble des langages décrits par toutes les expressions
régulieres et Aypr I’ensemble de tous les langages reconnus par un AEF. Nous avons,alors,
I’¢égalité suivante :

Areg = Arat = AAEF
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Le théor¢me annonce que 1’on peut passer d’une représentation a une autre du fait
del’équivalence entre les trois représentations. Les sections suivantes expliquent comment passer
d’une représentation a une autre.

111.5.1 Arbre de dérivation et grammaires réguliéres

Soit une grammaire G =(T,N,S, P) avec des productions avec un seul non-terminal par partie

gauche.
T: est le vocabulaire terminal,

N: est le vocabulaire non terminal,

SeN: est le symbole de départ ou I'axiome.

P: est un ensemble de regles de production de la forme:

« un arbre de dérivation pour un mot w engendré par G est un arbre dont :
* la racine est étiquetée par I’axiome S

* les feuilles sont étiquetées par des éléments de T U (¢}

* les noeuds internes le sont par des ¢léments de N

« un noeud interne étiqueté B a des fils étiquetés de gauche a droite

o4, Oy, ...0, s’il existe dans P une production :

B—-aa,.q,

 w est formé de la concaténation des feuilles lues dans un parcours de I’arbre.

Exemple :
G=(T,N,S,P) avec:
N={AB}
T={ab} A
A
A
/"/ \\\.
A —aA /ﬁt\
_ A —bB g h B
B B —>hB 7 \\\_
B
B¢ N
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111.5.2 Grammaire linéaire a droite

Une grammaire G =(T,N,S, P) est réguliére a droite si les éléments de P sont de la forme :

Asa laeT”

111.5.3 Grammaire linéaire a gauche
Une grammaire G =(T,N,S, P) est réguliére a gauche si les éléments de P sont de la forme .

A— oB
p:{ BeN,AeN

A— Ba
p= . BeN/AeN
A-oa laeT

Il existe un algorithme pour passer d’une grammaire réguliére a gauche a une grammaire
réguliére a droite engendrant le méme langage.

I11.6. Algorithme de passage de ’automate a la grammaire
Pour tout automate, il existe une expression réguliére reconnaissant le méme langage. L’automate
permet d’établir un systéme d’équations aux langages de la maniére suivante :

A:(X!Qqu’é" F)

G=(T,N,S,P)
T=X
N=Q, gi g €Q
S:qO

Si (6(q;,@) =q;) alors on écrit :
(0; >aq;)eP

Si(qg; € F)alors on écrit :
(0, >¢ )eP

I11.7. Algorithme de passage de la grammaire a ’automate

Pour toute expression réguliére, il existe un automate reconnaissant le méme langage. Il existe
deux méthodes permettant de réaliser cette tache. La premiére fait appel a la notion de dérivée
tandis que la deuxieme construit un automate comportant des e-transitions en se basant sur les
propriétés des langages réguliers.

Méthode de Thompson
La méthode de Thompson permet de construire un automate en procédant a la décomposition

de I’expression réguliére selon les opérations utilisées. Soit une grammaire réguliére a droite G,

alors I’algorithme a utiliser est le suivant :
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G=(T,N,S,P)
A=(X,Q,q0,5, F)
T=X, FLN=Q, S=qp

Si:A—a B alors on écrit S(A,a)=B avecaeT’
Si:A— «a alors on écrit 6(A,a)=R avecReT
F={R/8(Aa)=R}

Si:¢ e L(G)alors on écrit q, € F

Remarque : il y a des renommages implicites dans la construction.

I11.8. Transformation d’une grammaire linéaire a droite a2 une grammaire de Kleene

Grammaire de Kleene :
G=(T,N,S,P)

A—aB avec ABeN etacT
A—>a

SieelL(G)=(S—¢&)eP
Transformation :

G=(T,N,S,P)>G'(T',N’,S',P")
T'=T,N'=NU{A}S'=S

Si A-> aa,..a,B alors
A— oA
A - a,A,

A ,—aB

SieeL(G)>A—>¢
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Exercices de TD
Exercice 1: Passage de I'automate & la grammaire :>
Soit l'automate A suivant, définit sur X={a, b} :

1. Donner la grammaire linéaire a droite qui correspond a l'automate A.

2. Donner le langage engendré par la grammaire obtenue.

Exercice 2: Passage de la grammaire a I'automate

1. Donner l'automate d'états finis qui correspond a la grammaire suivante:
G =({a,b},{s,B},S,P)

|S—aB
P 1B abB/b s s aB

S — bA

2. Construire l'automate pour la grammaire suivante: P 14 B —> bB/ &
A —> aA/ =

Exercice 3: Grammaire de Kleene L
S — abaaA

S — aabb
A — abs
A — aaa

1. Construire I'automate pour la grammaire suivante :

Exercice 4: Langages Reguliers

Répondre par: vrai ou faux ?

a. Il existe un nombre fini de langages réguliers.

b. Tout langage fini est régulier.

c. Si le complément de L est fini, alors L est régulier.

d. Les deux énoncés suivants sont logiquement équivalents :

* L est régulier ;

« L est reconnu par un automate d'état fini.

e. Le langage: {0"1*" | 0 < n < 1000 et n est pair} est régulier.

f. La classe des langages réguliers est fermée pour I’union, 1’intersection et le complément.
G. Si L2 est régulier, alors tout langage L1 tel que L1 L2 est régulier.
Exercice 5: Expression réguliere

1. Donner une grammaire réguliere reconnaissant l'expression réguliere:
a. aab(a /b)” bb(ab/ba)”

b. (abbc/baba)” aa (cc/bc)”
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Chapitre 1V Langages algébriques

IV.1. Introduction

Les langages algébriques représentent la couche qui suit immédiatement celle des langages

réguliers dans la hiérarchie de Chomsky. Remarquons, cependant, que le niveau de complexité

est inversement proportionnel au type du langage et, par conséquent, le nombre d’algorithmes

existants tend a diminuer en laissant la place a plus d’intuition.

IV.2. Définition des grammaires hors-contextes

Soit une grammaire G = (T, N, S, R)
e T :symboles terminaux

e N : symboles non-terminaux

e S € N:axiome (symbole de départ)

La grammaire G est non-contextuelle (context-free in english), ou algébrique, si les productions

sontde laforme R ¢ N X (N UT)": regles

Une régle s’écrit A > caaveCc AE Neta € (NUT)"

Desregles A » aet A — f s’écrivent A - «a|f

Exemple: Expressions mathématiques
e N={SE}etT ={+++vV ,()123..}
e Regles:
S->F
E-E+E
E—->ExE
E—->E—+E
E - (E)
E->+VE
E->1]2|3..
» Une dérivation possible :

SO E->E+E—>E-E+E..>1+2+3%9
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V. 2 .1. Dérivations
La derivation est 1’opérations qui générent le langage pour une grammaire.
» Unmota € (N UT)"se dérive enunmot g € (N U T)”si
e « se décompose en a;Aa,avec A € N
e [3se décompose en a;ya, avecy € (N UT)*
e A — y € R(c’est une regle)
> Exemple .E+E~+FE->E+E*E~+E
e oy =E+
o a,=+F
e A=F
o y=ExE
e F>FExEER

Suite de dérivations
» Par transitivite
e Chaine de dérivations a » .. >y =« 5 y
e Fermeture transitive, cl6ture (étoile de Kleene)
e Siy € (N U T)*alors y est une proto-phrase de G
» Ordre des dérivations
e Possibilité d’analyses pour 1 + 2 + 3
e Dérivation gauche : réécrit le non-terminal le plus a gauche
E-E+E->1+E->1+E+E->1+2+E->1+2+3

e Dérivation droite : réécrit le non-terminal le plus a droite
E-E+E->E+3->E+E+3->E+2+3->1+2+3

IV. 2.2. Langage généré
Un langage généré par une grammaire hors-contexte est dit langage hors-contexte. Notons que

nous nous intéressons, en particulier, a ce type de langages du fait que la plupart des langages de

programmation sont hors-contextes.

Soit G une grammaire, alors le langage généré par G estL(G) = {m € T*|S i>m}.
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1V. 2.3. Arbre de dérivation

Une représentation graphique de la derivation est définit comme suit:
e Racine : symbole initial = S

e Nceud : symbole non-terminal € N
e Feuille : symbole terminale T
e Relation parent-enfants : dérivation (régle)

» Les deux arbres suivants illustrent la dérivation a droite et a gauche de 1 + 2 * 3

% \/t SN N s :\/ N
E /"\i;/' \£) E) ., \E
— L — €L T /\/H
g N N o) N . 0N ™
\ E { ) \E) (3 ) (1 (B (= [ E)
N N \_T_/ NS NS S R N
1 [/j2'\. r>[\ /‘I'\
N N \_‘_2,/' "\.'?/'
dérivation gauche dérivation droite

1V. 2.4. Notion d’ambiguité

Une grammaire est dite ambigué si elle peut générer au moins un mot de plus d’une maniére. En
d’autres termes, si on peut trouver un mot généré par la grammaire et possédant au moins deux
arbres de dérivation, alors on dit que la grammaire est ambigué.

La grammaire de I’exemple précedent est ambigué car le mot 1 + 2 = 3posséde deux arbres de
dérivation. D’une maniére générale, pour lever I’ambiguité d’une grammaire, il n’y a pas de
méthodes qui fonctionnent a tous les coups. Cependant, 1’idée consiste généralement a introduire
une hypothése supplémentaire (ce qui va changer la grammaire) en espérant que le langage

géneré soit le méme.

V.3 Simplification des grammaires hors-contextes

Une grammaire est propre si elle est :

—e-libre,

— dépourvue de symboles inutiles,

—sans cycle

e-libre signifie qu’il n’y a pas de production donnant €, par symbole inutile on entend & la fois
ceux qui n’ont pas de contribution et ceux qui sont inaccessibles. Les cycles impliquent des

productions singuliéres qui peuvent engendrer des boucles inutiles dans une dérivation.
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e Symboles improductifs

e A estimproductifs’il n’y a pas de m € T* tel que A Sm

e Symboles inaccessibles

e A estinaccessible s’iln’y apasde a et 5 tel que S 5 aAp

e e-productions

e Une e-production est une dérivation telle que A Se

e Production simple

e A — B estune production simplesiA € NetB € N

Pour toute grammaire, il existe une grammaire équivalente sans symboles improductifs ni
inaccessibles, sans e-productions ni productions simples. En effet, on procéde comme suit afin

de nettoyer la grammaire:

1. Elimination des symboles improductifs
» Calcul des symboles productifs
o SOitPy=0Qeti=1
e SoitP,={A€EN,Ja €T* A - a € R}
e TantqueP, # P,_4
e P.,=P,U{A€EN,Ja € (TUP), A a€R}
o [«—i+1

Les symboles de N\P sont improductifs. On enléve, donc, ces symboles et les regles dans
lesquels ils figurent.
2. Elimination des symboles inaccessibles
» Calcul des symboles accessibles
e SoitCy=0,C ={S}teti=1
e TantqueC; + C;_4
e Cy1=CU{AEN,Ja,BE(NUT)" X €EC;,X > alB € R}

Les symboles de N\C sont inaccessible. On enleve, donc, ces symboles et les régles dans
lesquels ils figurent. Une grammaire sans symboles improductifs et sans symbole inaccessible est

dite grammaire réduite.
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3. Elimination des e-productions
» Calcul des symboles annulables
e Soit Uy=0eti=1
o SoitU; ={A€EN,A—>€€R}
e Tantque P, # P,_4
o U, =UU{A€EN,Ja € (U),A—> aER}
o [«i+1

Les symboles de U sont annulables. On modifie les productions contenant des variables
annulables .
» Modification de la grammaire
e Remplacer les regles A - aXp ou X € U par A - aXB|af (avec combinaisons
possibles de X dans les régles)
e Supprimer toutes les regles A — € (sauf pour S)

e Supprimer toutes les regles A - A

La grammaire ainsi obtenue est équivalente a la grammaire de depart (au mot vide pres
éventuellement).

4. Equivalences et productions simples

» Productions simples, dérivations et classes d’équivalences

e Production simple : toute regle A - B avec B € N

e Soit larelation>telleque A > Bsi A 5B

e Soit larelation=telleque A~ BsiA>BetB>A

e C(lasses d’équivalences
e Si A = B, tout ce qui est dérive de A peut I’étre de B
e Relation réflexive, symétrique et transitive
e [’ensemble des classes est une partition de N

» Modification de la grammaire
e On conserve les productions non-simples

e Pour chaque classe d’équivalence

=Choisir un symbole qui remplace tous les autres

=Pour chaque dérivation A —» B
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Exemple :

e Pour chaque B — (3, ajouter A - f

Simplifier la grammaire suivante:

G ={ab,c}L{STUV,W,ZX}S,P)

-

o0k own

ogakrwnE

oukrwnE

oukrwdE

S -

S->T|U
U - aYb|V
V-w
X->Wla
Y7
Z->cle

e Symboles productifs :{X,Z,Y,U, S} =retirer T, V et W

S->U
U- a¥Yb

X-a

Y7

Z->cle

e Symboles accessibles :{S,U,Y, Z} = retirer X

S-U
U- aYb

Y- Z
Z —>cle
e ¢-productions :{Z, Y} = modifier 6, 2

S->U
U - aYblab

A
Z—-cC
e Productions simples :S - U etY — Z = modifier 1, 2,5, 6

S — a¥Yblab

Yo

La grammaire obtenue est la suivante:
G = ({a,b,c},{S,Y},S,P)

1.
2.

S — aYblab
Y—>c
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IV.4 . Forme normale de Chomsky
Théoreme: Pour tout langages hors-contexte il existe une grammaire en forme normale de
Chomsky qui le générent.
G = (T,N,S,R) est sous la forme normale de Chomesky (FNC) si toutes régles de la production
sont de la forme:

A - BC avec A,B,C €N

A—->aaveca €T

IV.4 .1 Mise sous forme normale de Chomsky
L’intérét de la forme normale de Chomsky est que les arbres de dérivations sont des arbres
binaires ce qui facilite 1’application de pas mal d’algorithmes. Il est toujours possible de
transformer n’importe quelle grammaire hors-contexte pour qu’elle soit sous la forme normale de
Chomsky. Notons d’abord que si la grammaire est propre, alors cela facilitera énormément la
procédure de transformation. Supposons que G = (T, N,S,R) est une grammaire proper, on la
tronsforme en une grammaire que G’= (T, NS’ R’ sous FNC comme suit:
1. Pour chaque terminal a, créer
e Unsymbole Z,
e UneregleZ, » a
2. Pour chaque régle A —» a ou |a| > 1
e Tout terminal a de a est remplacé par Z,
3. Pour chaque régle A - a ou |a| > 2
a. Ondécompose :a = 41,4, ... A,
b. On cree les non-terminaux Y;,Y; ...Y,_,
c. Onremplace A —» «a par
A - AY;
Y =AY,

Yn—2 - An—lAn
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Exemple:

S - aB|bA A - a|laS|bAA B — b|bS|aBB
devient :

S — Z,B|Z,A

Zb - b

Z, > a

A - al|Z,S|Z,X

X - AA

B - b|C,S|Z,Y

Y - BB

IV.5 . La forme normale de Greibach

Soit G = (TN, S, R) une grammaire hors-contexte. On dit que G est sous la forme normale
de Greibach si toutes ses régles sont de I’une des formes suivantes :

A - alA, ... A,,a €T, A; €N —{S}

A-aa€T

L’intérét pratique de la mise sous forme normale de Greibach est qu’a chaque dérivation, on
détermine un preéfixe de plus en plus long forme uniquement de symboles terminaux. Cela permet
de construire plus aisément des analyseurs permettant de retrouver 1’arbre d’analyse associé a un
mot généré.

IVV.5 .1 Récursivité

Théoréme (Elimination de la récursivité directe a gauche) : Tout langage non contextuel sans le
mot vide peut étre engendré par une grammaire sans symbole inutile ni production vide ni

production unitaire ni récursivité directe a gauche.

» Symbole récursif : A 5 aApB
4. Si a = €, A est récursif a gauche

5. Si B = €, A est récursif a droite
*
6. Si —=ne comporte qu'une dérivation : récursivité directe

*
7. Si »comporte plusieurs dérivations : récursivité indirecte

Une grammaire récursive comporte un symbole récursif.
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Exemple : grammaire indirectement récursive a gauche
e A-B

e B->CD
o (- AE
Suppression de la récursivité directe a gauche
e Remplacer toute régle A — Aa|b
e A — bA’

e A'>adle

Dr. Drif Ahlem
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Exercices de TD

Exercice 1: Grammaire réduite : élimination des symboles improductifs & des symboles
inaccessibles

1. Construire une grammaire réduite équivalente a la grammaire suivante :
G =({a,b},{AB,C,D,E,F,G,H},AP)

A— AB/B/C

B—>bB/aDF/¢

C —>bC/abE/e
D—>bB/CD

Exercice 2: Grammaire propre : grammaire sans cycle & libre de ¢

1. Donner une grammaire propre équivalente a la grammaire suivante :
G =({a,b},{S, A},S,P)

_{S — Ab

A—aAle

Exercice 3: Simplification de grammaires

1. Construire une grammaire réduite équivalente a la grammaire suivante :
S— AB]|a

A—a

2. Montrer que pour toute grammaire algébrique G n’engendrant pas le mot vide, il existe une

grammaire algébrique propre et réduite G' engendrant le méme langage.

3. Donner une grammaire propre et réduite équivalente a la grammaire suivante :

S->YY|bWTY
T-b|Wa

Y ->WW|Tb
W-¢ | aS

Exercice 4: Exemples de langages algébriques
1. Construire des grammaires pour les langages suivants :
Ly ={a"b" | n>0}

L= fwefa bf [ Wh= Mh}
Lz ={a" b” | n =p}

Ly = fvew’/w, w’ e fa, bf et ov/= w7}
Ls = fvw’/w, w’e fa, bf, /= /et w’=w}
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Exercice 5: Forme normale de Chomsky

1. Transformez la grammaire hors contexte G (T, N, S, P) suivante en FNC :
N ={S, T}

T={a, b}

P={S-—>SSS/T/e, T —>alaT /bbT }

2. Soit la grammaire hors contexte G = ({S, N, M}, {0, 1, a, b, *}, R, S) définie par les regles
suivantes :
S>M*M

M —al/b/N

N —>O0ON/IN/¢
Transformez G en FNC.

Exercice 6: Forme normale de Greibach

1. Mettre la grammaire suivante sous forme normale de Greibach :
Al — A2 A3

A, > A3 A |b

A3 —)Al A2| a

2. Mettre la grammaire suivante sous forme normale de Greibach :

S—>(L)/a
L—->L,S/S
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Chapitre V: Automate a pile

V.1 . Introduction

Les langages algébriques sont spécifiés par des grammaires algébriques. Les automates a pile

sont nécessaires pour reconnaitre les langages algébriques.

langage spécification modéle exécutable
régulier expression réguliére AFD
algébrique grammaire algébrique automate a pile

V.2. Automates a pile généraux
Avant de définir les automates a pile, nous présentons quelques exemples pour reconnaitre un langage
algebrique.

Exemple 1:
Pour reconnaitre {a"b™|n > 0} :
» Un automate a nombre fini d'états pour lire des a puis des b.

» Un compteur ¢ pour compter les a et décompter les b.

» Arrét quand le ruban est vide et état final et ¢ vaut 0.

alc:=c+l b[c>1] /ci=c1
TN "
0 l/ :t| b[c>1] /ci=c1 '/ \‘
Ci= -~ .-'I = - \
2 g ) oo \l
\\i / \_ /
[c=0]

[c=0

—

Exemple 2 :
Pour reconnaitre {m € X*|m est un palindrome} :

» Un compteur ne suffit pas !
» 1l faut mémoriser les symboles lus puis les consulter.

» Mémorisation par empilement, vérification par dépilement.
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a / empiler luA

e "“\I

| \,'\, a_ l)
.—PI ql *I:J -
pile "\ /
vide | ] €

%

o
b / empiler [uB

Exemple 3 :
Soit le langage {a"b™|n = 0} :

» On empile luA quand on lit un a.

» On depile IuA quand on lit un b.

a [top = luA] / depiler [uA
7N

\" [pile vide]
e )
/-.»

N
N
b [top = luB] / depiler [uB

-

» Arrét quand le ruban est vide et état final et la pile est vide.

a/empiler luA

2¢eme gnnée LMD

b [top = [uA] / depiler luA

pile .'/-_\\ / \‘
wde Y ¥ b [top = luA] / depiler luA f \r
_H\ qa ] > Jp
\EI__./ \ I/
[pile vide] [pile vide]

V.3. Définition d’un automate a pile
Automate a nombre fini d'états

ensemble d'états Q

états initial g

ensemble d'états finaux F € Q
alphabet d'entrée ¥

Automate a Pile

contient des eléments de 1’alphabet de pile Z ex

Dr. Drif Ahlem

exemple des palindromes :

ex:{q1,q2}
ex: g,

ex : {q,}
ex : {a, b}

: {lu4, luB}
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Relation de transition :

Pour un AF, une transition c'est:
» Quand on est dans I'état g € Q ;

» etquel’onaa € ) sous la téte de lecture ;
» ouqu’on transite sur € ;
> alors on passe dans I'état ¢’ € Q.

qga-q

g€ —q
Pour un automate a pile, une transition c'est :

» Quand on est dans I'état g € Q ;
» etquel’onaa € X sous la téte de lecture ;

ou qu’on effectue une e-transition ;
et que le sommet de pileestz € Z ;

On passe dans l'état g’ € Q ;

YV V V VY

et on modifie le sommet de pile en le remplagant par des éléments de Z ou €.

q,a,z— qIJleZ
9,624,z
q,a,z—(q,€

Modification de la pile:

4,4,z q 212, Empiler z,
q,€,Z—q,Z Ne pas toucher a la pile
q,a,zZ—q ,€ Dépiler z
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V.3.1 Notation graphique

(g1. a. luA) — (qo. IUAIUA)

a [luA] / empllel luA

< N
[ d1 ) | G2 )
\“"'&.ﬁ /)\ %

a [lu_l-?;]_f e_mpller luA

V.3.2 Exemple des palindromes

2¢eme gnnée LMD

a [lué]__/__gnpiler luA
< N
\ ™

"N
|\/ 0 (4 !
\_ y N
a [l}l_/_%,luB} / empiler luA
S NN
|91 2
\_ \ /

L’automate a pile des palindromes est représenté graphiquement par le graphe :

a [luA, luB, z.] / empiler [uA

4 \\ ab[uAluBz ]

"

[IuA B, ZJ_]

_|,,|\ql/
\ /

b [luA, luB, z1] / emp|ler luB

!
|

7’ _'\f‘ ™~

a [luA] / depiler luA

e o \

g2 ':' le[z1] / depiler z,;

\___/
b [luB] / depiler luB

Dans ce qui suit nous expliquons les différentes transitions sur la pile :

- Dans I'état g € Q ; avec a € X sous la téte de lecture (Z-transition) ; et avec luA € Z en sommet

de pile ; alors on reste dans I'état g, € Q ; et on dépile : on remplace luA par €.

q2,a,luld - g5, €

Dr. Drif Ahlem
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- Dans l'état g; € Q et avec a sous la téte de lecture ; et quel que soit le sommet de pile: si on
viens de lire un a (resp. b) : luA (resp. luB) ; si on n'a encore rien lu : pile initiale (vide). Pas de
transition sur pile vide : symbole initial de pile z, € Z

- Dans I'état gq; € Q, avec a sous la téte de lecture ; et avec luA, luB ou z, en sommet de pile ;
alors on reste dans gq; € Q ; et on empile [luA : on remplace le sommet x par x luA

q1, a, luA - qq, luA luA

q1,a,luB = q¢,luB luA

q1, 4,z = q1,2; luA

- Dans l'état g; € Q ; sans toucher la téte de lecture (e-transition) ; et avec [uA, luB ou z, en
sommet de pile ; alors on passe dans g, € Q et on ne touche pas a la pile.

q1,€ A - g5, luA

qu, €,z 2 4z, Z;
q1,€ luB = q,, luB

Pour terminer on vide la pile (e-transition)
42,62, = qz,€

Récapitulatif:

q1,a,lul - q1,lul luA q1,a,Z, = q1,2; luA q1,a,luB = qq, luB luA
q1,b, luA - qq, luA luB q1,b,z, = q1,z, luB q1, b, luB - qq,luB luB
q1,a,lul - q,, luA q1,4,Z, = q2,Z; q1,a,luB - q,, luB
q1, b, luA - q,,luA q1,b,z, = q, 2, q1,b, luB - q,, luB
q1,€ A - g5, luA q1,€,Z, = q2,Z; q1,€ luB = q,, luB
q2,a,luld - g5, € q2,b,luB = q,, € q2,€,Z, = (€

V4. Définition formelle (Automate a pile (AP))
Un automate a pile Aestun tuple(%,Z,z,,Q,qq, F,A) ou :

» ZXest un alphabet d'entrée fini (les terminaux);
» Zest un alphabet de pile fini;

» z, € Zest le symbole initial de pile,

» Qest un ensemble fini d'états,

» (o € Qest I'état initial;
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» F < Qest I'ensemble des états finaux;
» Ac QxS Ufe}) xZ x Q x Z*est larelation de transition.

On pourrait choisir AS Q x QG U{e}) X Z* xQ x Z*.

V.5. Exécution et configurations
Une exécution est une suite de configurations.
Pour un AF, une configuration est :

» mot restant a lirem € X*;

> état courantq € Q .

Pour un AP, configuration definie par :
» le mot restant a lire m € X*;

» 1’état courant q € Q;

> le contenu de la pile de Z*, lu du bas vers le haut de la pile.

Exemple: (abbb, q1,z; luA luA)

lud
lud

V.5.1 Définition (configuration)
Une configuration ¢ d'un AP(Z,Z,z,,0Q, qo, F,A) est un élémentde Z* X Q X Z*,
Le passage dans A d'une configuration c; a une configuration c, s'écrit :
1 k4 0y
On note + la cléture réflexive et transitive de 4.
Deux modes de transition pour changer de configuration :
» sur une ) -transition;

> sur une e-transition.
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V.5.2 Changement de configuration sur X-transition

Exemple :

Transition q4, b, luA — q4, luA luB

Configuration (bba, q1, z, luA)

On aura alors :

(bba, q4,z, WWA) 4 (ba,qq,z, lUA luB)

Définition (c; +4 ¢, sur X-transition)

A passe d'une configuration ¢; = (my,qq, @) ac, = (My, gz, @) Si:
> il existe une transition (g1, x,z) = (g2, 2) € A,
» my estde la forme xm, ;

> a4 estde laforme B,z ;

>

a, est de la forme B8, ;

ay a;
XMy, Gy, Fa | Mz, G2, Pz
By B4
Transition q4, b, luA - q4, luA luB
Configuration (bba, q1, z, luA)
_ % 1 . luA) + (ba,ql E iﬁfﬁ_ﬁ;
(bba.ql,z, ) & (ba,ql, z, [uA luB)
g Ly g o
ay L)

Z
XMy, 4y, Fa | M2, qo, pe
By B4

V.5.3 Définition (cq 4 ¢ sur e-transition)
A passe d'une config ¢; = (m, q1, 1) acy, = (M, q,, @) Si:
» il existe une transition (qq,€,2) = (q,,B2) €A ;

» ay estde laforme 3,z (z sommet de pile) ;

» a, est de laforme B,f,.
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aq 2%

m,q1, I_A m, qZJ

Exemple :

Transition q4, €, luB — q,, luB
Configuration (ba, q1,z, luA luB)

On aura alors :

(ba,qq,z, lWA) v (ba,q,,z, lUA luB)
On ne touche pas a la téte de lecture.

Exécution:

Pour le langage {a"b"|n = 0} :

a [z, JuA] / empiler [uA b [luA] / depiler luA
7 /’H\
¢ b [luA] / depiler luA b

—* da I.Qb

k__/l; h
N \ J

e [z1] / depiler z; elzi]/ depller z)

(qa,aabb,z,) =4 (qp, €, )

(qarer ZJ.) |_:1 (Qalei )

V.6. Les critéres d'acceptation
Dans nos exemples, on accepte un mot si ruban vide et pile vide. Ce sont des cas particuliers.

Il'y a deux critéeres d'acceptation possible:
» acceptation par état final (pour toute pile quand on s'arréte) ;

» acceptation par pile vide (pour tout état quand on s'arréte).

Ces deux critéres sont équivalents.
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V.6.1 Acceptation par état final
Un motm € X* est accepté par état final par un APA = (%, Z,z,, Q, q,, F, A)si pour la

configuration(m, qo, z, ), il existe un état g, € Fet un motz € Z*tel que(m, qo,z,) Fa (€, g5, 2)

Exemple :

L'exemple des palindromes sans vider la pile en g :

a [luA, luB, z1| / empiler luA a [luA] / depiler [uA
. TN\
\J a,b[luA luB ZJ_] |I'/_,__ 4
y N ‘?" N elz] \
_..:. G1 - _"_____ I | »| df —b
f”;r e [luAluB,z1] ’[\ /'r f
\ -/ N4
b [luA, luB, z; | / empiler luB b [luB] / depiler luB

On remplaceq,, €,z, — qz,€ par q,,€,z, = 45,7,
(q1,abba,z,) v (qy,€,z,): acceptation.

V.6 .2 Langage accepté

Le langage accepteé par état final par un AP est I'ensemble des mots acceptés par cet automate

F(a) =

z,) i (6.q5.2))
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Exercices de TD

Exercice 1:
Construire un automate a pile reconnaissant par pile vide le langage:
L={a"b’|0<n<=p<=2n}.

Exercice 2:

Les langages suivants sont-ils algébriques ? Si oui, donner un automate a pile reconnaissant le
langage:

1 Li=Medbf [ wh= i}

2. Ly = fv e fa, bf [ p=2 fup}

3. Ly={a", p premier}

4. L,={a't, j=i%}

. Ls ={bin (i) bin (i + 1); ou bin (i) est I'écriture en base 2 de i}

ol

Exercice 3:

Soit le langage L ={ a"b™c* avec n+m =k} ou n+k=m

1. Construire un automate a pile déterministe qui reconnait L.

2. Expliquez son principe de fonctionnement.

3. Vérifiez que 1’automate prend en compte les cas ou n=0, m=0 et k=0.

4. Donnez la suite de configurations pour le mot aabbbccccc (abbbbccc).

Dr. Drif Ahlem Module: Théorie des langages

54



Département d'informatique

2¢eme gnnée LMD

Chapitre VI: Machine de Turing

VI.1. Introduction
» Automate :

Modele abstrayant la notion de calcul sans écriture L est décidable par automate si pour

tout mot w de L, on peut répondre a la question « w appartient-il a L ? » en lisant le mot et en

utilisant la mémaoire finie.

» Machine de Turing :

Modele analogue avec une notion plus élaborée de calcul L est décidable par automate si

pour tout mot w de L, on peut répondre a la question « w appartient-il & ? » en lisant le mot et

en utilisant la mémoire finie mais aussi en écrivant des informations sur un support illimité.

V1.2. Machine de Turing

Caractéristiques d’un automate fini:
» Etats : memoire finie,
» Lecture des symboles,

» Programme : fonction de transition d’états

états || a | b
— 1121
2113 |4
41
4114)|4

al al b| a al al bl all ala

.'-'.
£ Y

1 2

Caractéristiques d’une machine de Turing:
> Etats : mémoire finie,
» Lecture des symboles du ruban,

> Ecriture sur le ruban

Dr. Drif Ahlem

Module: Théorie des langages

55



Département d'informatique 2¢eme année LMD

» Programme :

fonction de transition d’états et de déplacement et d’écriture

Support illimité de I’information : Ruban

alal bl a

s
A

1
V1.3. Définition formelle d’une Machine de Turing (MT)

Une machine de Turing a un ruban infini est septuplet (Q,T, %, 8, qy, B, F) ou
Q ensemble fini d’état,

Ialphabet fini des symboles du ruban,

Y c l'alphabet fini des symboles d’entrée,
B € I'\Zsymbole particulier dit « blanc »
qoétat initial

Fensemble des états acceptants

YV V.V V ¥V V VY

orelation de transition

La MT est déterministe si pour chaque configuration, elle a au plus une possibilité d’évolution.

V1.3.1Relation de transition
6CcQXTIXQXT X {«,—>}

Notation d’une régle :
q,0 > q', a',m
Prédécesseur :
» q : etat courant de la machine

» osymbole lu sur le ruban

Successeur :
» q’:nouvel état de la machine

> o 'symbole & écrire sur le ruban

» m déplacement de la téte de lecture

Relation de transition : sous forme de table ou de diagramme.

Dr. Drif Ahlem Module: Théorie des langages 56



Département d'informatique

V1.3.2 Notion de configuration

2¢eme gnnée LMD

La configuration d’une MT décrit I’« état général » de la machine : état du ruban, état courant de

la machine et position de la téte de lecture.

(f.a,p)
» f:N =T leruban

» q € Q I’état de la machine

» p € N la position sur le ruban

La relation de transition permet alors de calculer chaque élément de la nouvelle configuration.

Exemple : Le tableau suivant illustre la fonction de transition :

‘ Ancien état ‘ Symbole lu H Symbole écrit ‘ Mouv. ‘ Nouvel état

O O — arrét
1 a b — 1
b a — 1
| [a[a[b[a] [ |
M
1
EDDDEEE
1\

V1.3.3 Langage reconnu
Le langage accepté par M = (Q,T',%, 6, qo, B, F) est défini par :
L(M) = {w € X tels que:

» 1’état initial de M est q,

> le mot w est écrit sur le ruban

> la téte de lecture est positionnée sur la premiére lettre de w

» M atteint un état acceptant de F en un nombre fini d’étape

IV.4. Classe de langages
Une MT s’arréte lorsque
> elle atteint un état final

» elle ne peut plus effectuer de transition
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V1.4.1 Langage recursif

Un langage reconnu par une MT qui s’arréte sur tous les mots en entrée est dit langage récursif.
V1.4.2 Langage récursivement énumérable
Un langage reconnu par une MT qui s’arréte sur tous les mots du langage (et peut ne pas s’arréter

sur les autres) est dit langage récursivement enumerable, engendré par une grammaire de type 0.

V1.5. Fonction calculée par une machine de Turing

V1.5.1 Fonction calculée

La sortie d’une MT est le mot inscrit sur le ruban lorsque la MTs’arréte.

La fonction calculéef par une MT M est définie par :

A toute entréex sur laquelle M s’arréte, on associe la sortie:f (x) = y

Aucune image n’est associée au mot x sur lequel M ne s’arréte pas.

V1.5.2 Machine de Turing équivalente
On peut imaginer beaucoup de variantes de MT :
» sur un « demi » ruban.
» sur deux ou plusieurs rubans.
> la téte de lecture peut étre stationnaire.
» non-déterminisme.

» écrire ou non de symbole blanc.

La machine de Turing semble bien représenter une notion de « calcul » par une « procédure
effective ».

V1.5.3 Machine de Turing universelle

Une machine de Turing universelle est capable de simuler le comportement de n’importe quelle

autre machine de Turing.

Exercice:
1. L’ensemble des machines de Turing est-il dénombrable ?
2. Existe-il un ensemble de fonctions non-dénombrables ?

3. Existe-t-il des fonctions non calculables ?
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V1.5.4 Fonctions calculable
» Modélisation de la notion de calcul et procédure effective
» Ce n’est pas un résultat que I’on peut démontrer
> Fonctions calculables par MT = fonctions définies par A-calculde Chruch
> Base de la théorie de la calculabilité
» Alonzo Church (1903 -1995), mathématicien, logicien américain.
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