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Chapitre I: Introductions aux langages 
 
I.1 Introductions aux langages 
La structure de base de la théorie des langages sont les mots, on peut en donner une définition 

mathématique: 

Définition 1 (Monoïde) Un monoïde est une structure algébrique consistant en un ensemble muni 

d'une loi de composition  interne associative (noté ".") et un élément neutre noté . 

Définition 2 Le monoïde est dit libre s'il possède une base (un sous ensemble) dont les éléments 

sont indépendants. On a donc existence et unicité d'une factorisation sur un monoïde  libre. 

Définition 3 

En TL, la base est appelée alphabet, les éléments de cette base sont appelés lettres, la loi du 

monoïde est appelée concaténation. Une concaténation de lettre forme un mot, l'élément neutre  

est ainsi logiquement dénommé le mot vide. Un ensemble de mots est appelé langage. 

I.2 Alphabets et mots 

Définition 1 Un alphabet, noté X, est un ensemble non vide de symboles (ou lettres). 

Exemple: alphabet du langage C: A….Z, 0…9, ==, <,=,( ,), …. 

Définition 2 Un mot défini sur un alphabet X, est une suite finie d'élément de X. 

Exemple 

abb, cba, aaab, bcaaa, ab, sont des mots construits sur l'alphabet X={a, b, c} 

On définit: 

 x.y (ou simplement xy): la concaténation des deux mots x et y, autrement dit, le mot formé en 

faisant suivre les lettres de x par les lettres de y: 

      si nm bbbyaaax ........................ 2121   alors:  nm bbbaaaxyyx ......................... 2121  

 L'opération concaténation n'est pas commutative: yxxy   ,   

 La concaténation est une loi de composition interne. 

 La concaténation est associative: (xy)z = x(yz) 

 L'élément neutre est le mot vide: xxxXx  * , 

 
nx : le mot x concaténé n fois (𝑥0 = 𝜖 , x1 = x,   x2 = xx, x3 = xxx  ,…), 

 

 x : la longueur du mot x, tel que: |x| = nombre de lettres qui composent x, 

http://fr.wikipedia.org/wiki/Structure_%28math%C3%A9matiques%29
http://fr.wikipedia.org/wiki/Structure_alg%C3%A9brique
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 
a

x : l'occurrence d'une lettre a dans le mot x, c à d son nombre d'apparition, exemple: 

000,2011
11
   

 
Rx : le mot obtenu en inversant les lettres de x: si 

121 ............................... aaxalorsaaax m

R

m   

 
X : l'ensemble des mots de longueur supérieure ou égale à 1 que l'on peut construire à partir de 

l'alphabet X, 

 
*X : l'ensemble des mots que l'on peut construire à partir de X, y compris le mot vide: 

.............210*  XXXX  avec  0X  ou bien:    XX *    , 

Lemme de lévi 

Soit X un alphabet et soient a, b, c et d quatre mots quelconques de X
*
  tel que ab=cd 

Il existe trois cas exprimant  la relation entre a, b, c et d :  

1) Si fdbetafcAlorsca   

2) Si dbetcaAlorsca   

3) Si fbdetcfaAlorsca   

 

Démonstration du lemme de lévi: voir TD1. 

I.3 Opérations définies sur les langages:  

Un langage, défini sur un alphabet X, est un ensemble de mots définis sur X. Autrement dit, un 

langage est un sous-ensemble de X
*
.  

Deux langages particuliers sont indépendants de l'alphabet X: le langage vide ( L ) et le langage 

contenant le seul mot vide (  L  ). 

Exemple: 

1- Soit X= {0, 1}, 

a-  Soit L  le langage sur X  formé des mots 0, 00, 1, 11. L s'écrit: L= {0, 00, 1, 11} 

b- Soit le langage L sur X  tel que L soit formé de tous les mots  qui commencent par 0. L peut 

donc s'écrire: 

 ** 0/ XwavecwwXwL  . 

2- Soit X= {a, +, *, (,)} 

Soit L  le langage sur X  formé des expressions arithmétiques bien parenthésées sur a. Le mot 

((a+a)*a) appartient à ce langage. 
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Remarque: 

Le monoïde libre engendré par X  est un ensemble infini. 

L peut être fini ou infini. 

Exemple:  

Les langages des exemples 1-b et 2-  sont des  ensembles infinis. 

Le langage de l'exemple1-a est fini. 

Opérations définies sur les langages:  

Soient deux langages 1L et  2L respectivement définis sur les alphabets  1X et 2X :    

 L'union de 1L  et 2L  est le langage défini sur 21 XX   contenant tous les mots qui sont soit  

contenus dans 1L  , soit contenus dans 2L :  

 

 

 L'intersection de 1L  et 2L  est le langage défini sur 21 XX  contenant tous les mots qui sont 

contenus à la fois dans 1L  et 2L  :  

 

 

 Le complément de 1L  est le langage défini sur 1X contenant tous les mots qui ne sont pas dans 1L :  

 11 /)( LxxLC   

 La différence de 1L  et 2L  est le langage défini sur 1X contenant tous les mots de 1L  qui ne sont pas 

dans 2L : 

 2121 / LxetLxxLL    

 Le produit ou concaténation de 1L  et 2L  est le langage défini sur 21 XX   contenant tous les mots 

formés d'un mot de 1L  suivi d'un mot de 2L :  

 2121 /. LyetLxxyLL   

 La fermeture itérative de 1L  (ou fermeture de Kleene ou itéré de 1L ) est l'ensemble des mots formés 

par une concaténation finie de mots de 1L :  

 

 2121 / LxouLxxLL 

 2121 / LxetLxxLL 
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                  kk xxxxquetelsLxxetkxL ...,...,0/ 2111

*

1   

...... 11
32

11

*

1 
n

LLLLL   

 

 

LLLLL **   

Propriétés sur le produit de langage  

X  alphabet, LLL  ,,  trois  langages sur X : 

 
1) LLLLLL  )().(  

 

2) LLLLLLL  )(  

3) LLLLLLL  )(  

Propriétés sur l'étoile de langage  

Soient L, R deux langages sur X: 

1)  *** )(LL   

2)   *** .LLL   

3) LLRRLL ** )()(   

4) **** )()( RLRL   

5) **** )()( RLRRL   

 

I.4 Description d'un langage  

 Un langage fini peut être décrit par l'énumération des mots qui le composent.  

 Certains langages infinis peuvent être décrits par l'application d'opérations à des langages 

plus simples.  

 Certains langages infinis peuvent être décrits par un ensemble de règles appelé grammaire. 

 Enfin, certains langages infinis ne peuvent pas être décrits, ni par l'application 

d'opérations, ni par un ensemble de règles. On parle alors de langage indécidable.  

 

 

 

 

 

 LLL 0*
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I.5 Grammaires 

Un langage peut être défini comme l'ensemble des mots satisfaisant un certain nombre de règles. 

Cette vue du concept de langage a son origine dans des essais de formalisation du langage 

naturel. 

I.5.1 Définition 1 

Une grammaire est un quadruplet ),,,( PSNTG   

T: est le vocabulaire terminal, ç à dire l'alphabet sur lequel est défini le langage. 

N: est le vocabulaire non terminal, ç à dire l'ensemble des symboles qui n'apparaissent pas dans 

les mots générés, mais qui sont utilisés au cours de la génération. Un symbole non terminal 

désigne une "catégorie syntaxique". 

SN: est le symbole de départ ou  l'axiome. 

P: est un ensemble de règles dites de réécriture  ou de production de la forme: 

21 uu   avec  )(1 NTu  et *

2 )( NTu   

La signification intuitive de ses règles est que: 1u  peut être remplacer par 2u . 

Exemple: 

+ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 

 

 

 

Axiome = S 

N = {S, E, E , T, T  ,F} 

T = {i,(, ) ,+,* } 

P = { 

)(

*

EF

iF

vT

TFT

TFT

vE

ETE

ETE

ES



















   

 



 
Département d'informatique         2ème année LMD 

 

8Dr. Drif Ahlem                                                                                 Module: Théorie des langages                                    

 

I.5.2 Terminologie 

Le langage défini, ou généré, par une grammaire est l'ensemble des mots qui peuvent être obtenus 

à partir du symbole de départ par application des règles de la grammaire. Plus formellement, on 

introduit les notions de dérivation entre mots, d'abord en une étape, ensuite en plusieurs étapes: 

Définition 2 

Soit une grammaire ),,,( PSNTG  , une forme non vide  )( NTu et une forme 

éventuellement vide *)( NTv  , la grammaire G permet de dériver v de u en une étape (noté 

vu  ) si et seulement si: 

- yuxu   

- yvxv   

- vu   est une règle de P. 

Exemple: 

Quels sont les mots générés par la grammaire de l'exemple précédent? 

Définition 3 

Une forme v peut être dérivée d'une forme u en plusieurs étapes: 

- vu * : si v peut être obtenue de u  par une succession de 0, 1 ou plusieurs dérivations  en une 

étape. 

- vu  : si v peut être obtenue de u  par une succession de  1 ou plusieurs dérivations  en une 

étape. 

Définition 4 

Le langage généré par une grammaire ),,,( PSNTG  est l'ensemble des mots sur T qui peuvent 

être dérivés à partir de S: 

vSTvGL ** /)(   

 

Remarque: 

 Une grammaire définit un seul langage. Par contre, un même langage peut être engendré par 

plusieurs grammaires différentes. 
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I.5.3. Hiérarchie de Chomsky 

En introduisant des critères plus ou moins restrictifs sur les règles de production, on obtient des 

classes de grammaires hiérarchisées, ordonnées par inclusion. La classification des grammaires, 

définie en 1957 par Noam CHOMSKY, distingue quatre classes illustrées dans le tableau suivant : 

 

 Langages Grammaires Procédure effective 

3 Rationnels ou réguliers Régulières à droite 

𝐴 → 𝑎,𝐴 → 𝑎𝐵, 𝐴 → 𝜖 

𝐴,𝐵 ∈ 𝑁   𝑎 ∈ 𝑇 

(régulières à gauche) 

Automates finis 

2 Algébriques ou non-

contextuels 

Algébriques, non-contextuelles 

𝐴 → 𝛼 

𝐴 ∈ 𝑁   𝛼 ∈ (𝑁 ∪ 𝑇)∗ 

Automates à pile 

1 Contextuels Contextuelles, monotones 

𝛼 → 𝛽 ou 𝐴 → 𝜖 

𝛼, 𝛽 ∈ (𝑁 ∪ 𝑇)∗ , 𝐴 axiome 

 𝛼 ≤  𝛽  

Machine de Turing à 

l’espace linéairement 

borné 

0 Récursivement 

énumérables 

Contextuelles avec effacement 

𝛼 → 𝛽 

𝛼 ∈ (𝑁 ∪ 𝑇)+𝛽 ∈ (𝑁 ∪ 𝑇)∗ 
aucune contrainte 

Machine de Turing 

 

Propriété    Les grammaires de type 0 englobent les grammaires de type 1 qui englobent les grammaires 

de type 2 qui englobent les grammaires de type 3. 

 

A chaque type de grammaire est associé un type de langage:  

les grammaires de type 3 génèrent les langages réguliers,  

les grammaires de type 2, les langages hors-contexte et 

 les grammaires de type 1, les langages contextuels.  

Les grammaires de type 0 permettent de générer tous les langages "décidables", autrement dit, tous les 

langages qui peuvent être reconnus en un temps fini par une machine.  
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Les langages qui ne peuvent pas être générés par une grammaire de type 0 sont dits "indécidables".  

Enfin, à chaque type de grammaire est associé un type d'automate qui permet de reconnaître les langages 

de sa classe: les langages réguliers sont reconnus par des automates finis,  les langages hors-contexte sont 

reconnus par des automates à pile, et les autres langages, décrits par des grammaires de type 1 ou 0, sont 

reconnus par des machines de Turing. Ainsi, la machine de Turing peut être considérée comme le modèle 

de machine le plus puissant qu'il soit, dans la mesure où tout langage (ou plus généralement, tout 

problème) qui ne peut pas être traité par une machine de Turing, ne pourra pas être traité par une autre 

machine. 
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Exercices de TD   
 

Exercice 1: Lemme de lévi 

Soit X un alphabet et soient a, b, c et d quatre mots quelconques de X
*
  tel que ab=cd 

Il existe trois cas exprimant  la relation entre a, b, c et d :  

1) Si fdbetafcAlorsca   

2) Si dbetcaAlorsca   

3) Si fbdetcfaAlorsca   

- Démontrez le lemme de lévi. 

 

Exercice 2: Application du Lemme de lévi 

Soient u, v et w  X
*
. 

- Démontrez que: Si 222 wvu   alors vuuv  . 

 

Exercice 3: 

 Soit X un alphabet et x, y deux mots quelconques de X
*
.  

- Démontrez par récurrence que : RRR xyyx .).(    

 

Exercice 4: Propriétés sur l'étoile de langage  

Soient L, R deux langages sur X, démontrez que: 

1)  *** )(LL   

 

2)   *** .LLL   

3) LLLLL **   

4) LLRRLL ** )()(   

5) **** )()( RLRL   

6) 
**** )()( RLRRL   
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Tête de lecture/ écriture 

Chapitre II: Les automates à états finis 
 
II.1 Introduction 

Un automate est composé de 3 parties: 

1. une bande en entrée finie ou infinie sur laquelle va s'inscrire le mot à lire. 

2. un organe de commande qui permet de gérer un ensemble d'état. 

3. éventuellement une mémoire auxiliaire de stockage. 

          

Bande en entrée 

 

 

                      
                              Organe de commande                     mémoire auxiliaire 

 

 

L'automate qui reconnaît les langages de type: 

- Type 3: c'est l'automate d'états finis (AEF) 

- Type 2: automates à pile. 

- Type 1: automate à borne linéaire. 

- Type 0: machine de Turing. 

Remarque: On distingue les automates d'états  finis déterministes et indéterministes. 

Intuitivement, la différence réside dans le fait d'aboutir à un seul état (déterministe) ou à plusieurs 

états (indéterministe)  à partir d'un état donné en lisant une lettre. 

II.2 Automates d'états finis déterministes 

Définition 1: Un automate fini déterministe est un quintuplet: 

),,,,( 0 FqQXA   

Où: 

X: l'alphabet (d'entrée) 

Q: l'ensemble des états 

q0: l'état initial 

 : la fonction de transition 

QXxQ :  

F: l'ensemble des états finaux ( QF  ) 

 

  



 
Département d'informatique         2ème année LMD 

 

13Dr. Drif Ahlem                                                                                 Module: Théorie des langages                                    

 

 

II.3 Représentation d'un automate d'états fini  

Il existe plusieurs manières de représenter  un AEF: 

a- à travers la définition, ç à d en expliquant les cinq paramètres: 

Exemple:      ),,,,,,,,( 210210 qqqqqqbaA   

Avec ,),( 00 qaq  ,),( 10 qbq  2221 ),(),(),( qbqaqbq    

b- à travers une représentation matricielle: 

  ),( jij xqq   

                  X 

Q 

 

x1    ………                  xj     ………………            xm   

état initial: q0 

 

état final:  . 

                  . 

                  . 

                  qi 

                   . 

état final:   .  

                  qn 

 

 

 

 

 

 

 

                               ),( jij xqq   

                                    

 

Exemple:      ),,,,,,,,( 210210 qqqqqqbaA   

                  X 

Q 

 

a                    b      

état initial: q0 

 

état final:  q1 

                  

état final:  q2 

          

q0                   q1 

 

                       q2 

 

q2                               q2 
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b b a, b 

 

c- à travers une représentation graphique  

),( jij xqq   

 

 

 

 

Exemple:      ),,,,,,,,( 210210 qqqqqqbaA   

a 

 

 

 

 

II.4 Fonctionnement d'un automate d'états fini 

 Afin de pouvoir lire des mots, on étend * à  de manière unique par: 

qxq

QXxQ





),(

: **
 

Nous distinguons trois cas sur la longueur de x: 

Cas 1: qxqx  ),(0 *  

Cas 2: ),(),(1 * xqxqx    

Cas 3: ]),,([),(1 * xaqxqx    avec xax  , a X, *Xx   

Le fonctionnement de l'automate se fait à travers une succession de configuration (q, w), qQ, w 

est le mot sur la bande en entrée. 

II.5 Langage reconnu par un AEF 

 FqwqXwAL  *

0

* ),(/)(  qfF 

II.6 Mots reconnus par un AEF 

),,,,( 0 FqQXA   

f? L(A) , f x
*
 

1
ier

cas: 

  )(, *

0 ALfFqetqfq   

2
ème

cas: 

  )(, *

0 ALfFqetqfq   

 

qi qj xj 

q 0 
Q1 

Q2 
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a b  b 
a 

a 

a 

3
ème

cas: 

  )('),(,),(, ***

0 ALfblocagepasexistenwqavecXwQqetwqfq    

 

 

Exemple: 

Soit A l'automate EF défini par le graphe suivant: 

 

 

 

 

 

 

Faisons fonctionner l'automate sur quelques mots: 

1/aab  2/aa  3/aaba     4/  

 

 

 (q0, aab) 211 ),(),( qbqabq   )(2 ALaabdoncFq    

 

(q0, aa) 11 ),( qaq                      )(1 ALaadoncFq   

 

(q0, aaba)  ),(),(),( 211 aqbaqabaq      

)('),( 2 ALaabaainsietblocagedoncayilpasexistenaq   

 

 (q0, ) n'existe pas il y a blocage  et )(AL  

  

II.7 Minimisation d'un AEF (Automate minimal) 

Soit ),,,,( 0 FqQXA  un AEF. 

Réduire A implique la construction de l'automate minimal équivalent. 

 But : obtenir un automate ayant le minimum d'états possible. En effet, certains états peuvent être 

équivalents. 

Définitions: 

 

a/ On dit que l'état q (q Q) est accessible si qfqXf  ),(/ 0

**   

Exemple:q1 est inaccessible.(aucun arc n'arrive sur lui) 

 

 

 

 

 

 

 

 

q 0 
q1 

q2 

q 0 
q1 
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b/  On dit que l'état q et p (q,p Q) sont équivalent t si et seulement si: 

)),(),(()(( *** FfqFfpXfqp    

 

c/  Soit une relation R sur Q. On définit une congruence d'automate sur R par translation de la 

relation sur les nouveaux états obtenus à travers   sur les lettres de l'alphabet  X. 

 

 

Formellement: 

)),(),(,( xqRxpXxqRp   

Théorème: 

La relation   est une congruence d'automates. 

Démonstration: 

Soit ** , XwetXxavecxwfXf   

)),()),(()),()),(( **** FxwqFxwpFfqFfpqp  
 

)),(),(())),,())),,(( ** xqxpFwxqFwxp    

 

Algorithme de minimisation d'un automate: 

Soit A automate d'état fini déterministe. 

1/  Eliminer tous les états inaccessible dans A. 

2/  Regrouper les états congruents suivant des classes d'états, à travers la relation  de congruence 

d'automates  . 

),,,,( 0 FqQXA  sans états inaccessibles on obtient : 

),,,,( 0 FqQXA    

  

a/    ou
FqetFP

FqetFP
qp








0  

 

b/  Si :)),(),(,()( alorsxqxPXxetqp k   kk  1  

 

c/  Arrêt quand kk  1  

XX   

00 qcontientquiclasselaq   
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départdefinauxétatsdescontientquiclasseslestoutesF   

obtenueclassechaqueàattribuésétatsdnomsnouveauxQ '  

Xsurétatnouvelchaquetdéfinissanenobtenusera  

Théorème: 

A tout AEF déterministe correspond un AEF déterministe minimal. 

 

 

Exemple: soit l'AEF  A({x, y}, {1,2,3,4,5,6,7},1, F, )  avec F={1, 2} et   défini par 

 

 

                  X 

Q 

 

x                    y      

état initial: 1 

                   2 

                             3 

                   4 

                   5 

                   6 

                   7 

2                    5 

2                    4 

 3                   2 

 5                   3      

4                    6 
 

6                        1 
 

5                    7                    

 

1/ Faite le graphe de A 

2/ Construire l'automate minimal équivalent à A. 

Solution : 1/ dessiner le  graphe selon la définition de A (tâche à faire pendant le cours) 

2/  Etape 1: l'état 7 est inaccessible, donc on le supprime. 

     Étape 2: Appliquons l'algorithme de minimisation: 

 0 : {1, 2}   ; {3, 4, 5, 6} 

 :1  Considérons {1, 2}: 
2),2(

2),1(





x

x




 même état           

4),2(

5),1(





y

y




 

                                                          21 1  

              Considérons {3, 4, 5, 6}: 
5),4(

3),3(





x

x




   :3 0   5                

3),4(

2),3(





y

y




 2 et 3 ne sont 

pas en relation suivant 0  et ainsi 3 et 4 ne seront pas dans la même classe suivant 1  
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Faire toutes les combinaison possible sur les états, les résultats sont les suivants: 

 0 : {1, 2}   ; {3, 4, 5, 6} 

 :1 {1, 2}   ; {3, 6}  ;  { 4, 5} 

 :2 {1, 2}   ; {3, 6}  ;  { 4, 5} 

 21    donc Arrêt. 

Paramètres de l'automate minimal: 

 yxX , ;  210 ,, SSSQ  Avec  

0S  représentant la classe {1, 2}    

1S  représentant la classe {3, 6}  

2S  représentant la classe {4, 5}  

0S  est l'état initial.     défini ainsi: 

 

                  X 

Q 

 

x                    y      

état initial: 0S  

                  1S  

                            2S  

                   

0S                  2S  

1S                  0S               

 

2S                  1S                  

 

II.8 Automates d'états finis indéterministes 

II.8.1 Définition 

Soit A un AEF indéterministe; ),,,,( 0 FqQXA   

La fonction de transition est défini comme suit: 

 iqxq

QPXxQ

),(

)(: 
 

Remarquons que lorsque qxq ),(  nous retrouvons la définition d'un AEF déterministe. 
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 b 

a b 

a a 

II.8.2  Représentation d'un AEF indéterministe 

Exemple: 

 

 

 

 

     ),,,,,,,( 20210 qqqqqbaA   

 100 ,),( qqaq  ,   211 ,),( qqbq  , 22 ),( qaq   

 

                  X 

Q 

 

a                    b      

état initial: q0 

                  q1 

                            q2 

                   

{q0, q1 } 

 

                    {q1, q2} 

q2 

 

II.8.3  Fonctionnement d'un AEF indéterministe: 

*** ),(),(),( XxQPxqx q      

Exemple: 

Le fonctionnement de l'automate précédent pour le mot aab sur l'état q0 donne l'ensemble {q1, q2} 

On a : 

         

          21212101

*

0

*

10

*

1

*

0

*

1

*

0

*

10

*

0

*

0

*

,,,),(,),(,,

,,,,),(),(),,(),,(),(

qqqqqbqbqbqbqbqq

baqbaqabqabqabqqabaqaabq








 

II.8.4  Langage reconnu par un AEF indéterministe 

   FavecwqXwAL  ),(),(/)( *

0

*  

Exemple: 

1/ (q0, aab)  21

*
,qq    )(, 21 ALaabdoncFqq    

2/ (q0, aa)        101021 ,),(,),,( qqaqaqaqq  et    )(, 10 ALaadoncFqq   

3/ (q0, abb) 

 

 

q 0 
q1 

q2 
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a b 

a a 

a b 

a 
a 

II.8.5  Relation entre les AEF déterministes et indéterministes 

Pour tout automate fini non déterministe, il est possible de construire un automate fini 

déterministe équivalent (c’est-à-dire qui accepte le même langage). 

-  Entrée:  ),,,,( 0 FqQXA   

-  Sortie:  ),,,,( 0 FqQXA    

Déterminons les différents paramètres de A  

XX   

 00 qq   

  FSQPSF /)(  

)(QPQ   

 







SQxSxSx

QPXxQP

),(/),(),(

)()(


 

Exemple: Reprenons l'exemple précédent: 

 

 

 

 

 

L'automate déterministe correspond est : 

 

 

 

 

 

II.8.6 Déterminisation d'un AFN sans -transitions 

Principe : considérer des ensembles d'états plutôt que des états.  

1. Partir de l'état initial 

2. Rajouter dans la table de transition tout les nouveaux "états" produits, avec leur transition 

3. Recommencer 2 jusqu'à ce qu'il n'y ait plus de nouvel "état" 

4. Tous les "états" contenant au moins un état terminal deviennent terminaux 

5. Renuméroter alors les états. 

 

 

q 0 
q1 

q2 

{q 0} 

{q0, q1 } 
 

{q1, q2} 
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  

a a b 

II.9 Automates d'états finis indéterministes avec  -transitions 

Définition: -transition 

On appelle -transition, une transition par le symbole  entre deux états.  

Remarque: un automate d'états fini ne possède pas de -transition. 

),,,,( 0 FqQXA    )()(0 QPXQ    

 

 

 

 

 

                  X 

Q 

 

a                    b                   

état initial: q0 

                  q1 

                            q2 

                   

{q0}                               {q1}               

         

                  {q1}             {q2}                    

 {q2}                       

 

   

Définition: -fermeture 

On appelle -fermeture de l'ensemble d'états Q l'ensemble des états accessibles  depuis un état qi 

de Q par  des -transitions. 

)()( qfermuturePfermuture pq      

Calcul de l' -fermeture de  

:  

Mettre tous les états de T dans une pile P 

Initialiser -fermeture(T) à T 

Tant que P est non vide faire 

Soit p l'état en sommet de P 

dépiler P 

Pour chaque état e tel qu'il y a une -transition entre p et e faire 

q 0 
q1 

q2 
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Si e n'est pas déja dans -fermeture(T) 

ajouter e à -fermeture(T) 

empiler e dans P 

finsi 

finpour 

fin tantque 

 

Exemple: 

Soit l'AFN  

état a b c  

0 2 - 0 1 

1 3 4 - - 

2 - - 1,4 0 

3 - 1 - - 

4 - - 3 2 

 

e0=0  

On a            ,..2,1,0,4,3)4,3(,0,2,1)2,1(,1,0)0(  fermuturefermuturefermuture   

II.10 Déterminisation d'un AFN qui contient -transitions 

1. Partir de l' -fermeture de l'état initial 

2. Rajouter dans la table de transition toutes les -fermetures des nouveaux "états" produits, avec leurs 

transitions 

3. Recommencer 2 jusqu'à ce qu'il n'y ait plus de nouvel "état" 

4. Tous les "états" contenant au moins un état terminal deviennent terminaux 

5. Renuméroter alors les états. 

 

 

 

 

 

 

 

 

 



 
Département d'informatique         2ème année LMD 

 

23Dr. Drif Ahlem                                                                                 Module: Théorie des langages                                    

 

Exercices de TD  

Exercice 1: Automates à construire 

Construire, si possible, les automates déterministes qui reconnaissent les langages suivants sur 

l'alphabet {a, b}: 

 Tous les mots sans b.  

 Tous les mots qui se terminent par ab.  

 Tous les mots dans lesquels chaque a et suivi d'un b.  

 Tout les mots qui contiennent autant de a que de b.  

Exercice 2: Automates à construire 

Construire les automates qui reconnaissent les langages suivants sur l'alphabet {0,1}: 

 (00 + 01)
*
 

 0(10 + 01)
*
 

 

Exercice 3: Automates et Arithmétique Décimale 

Construire les automates sur l’alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} qui acceptent tous les entiers 

naturels représentés en système décimal qui sont: 

1. multiples de 5; 

2. multiples de 3; 

Indication: Un nombre décimal est multiple de 3 si et seulement si la somme de ses chiffres est 

multiple de 3. 
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Exercices de TD  

 

Exercice 1: Automate minimal 

Soit l’automate suivant, définit sur  X={a, b} : 

 

 

 

1. Construire l'automate minimal. 

Exercice 2: Automates non déterministes & déterministes 

1. Construire un automate reconnaissant tous les mots qui finissent par aba. 

2. Déterminiser l’automate obtenu. 

Exercice 3: Automates non déterministes & déterministes 

1. Rendre les automates suivants déterministes: 

2.  

 

b a 

0 1 2

0 

3 

4 5 6 7 

a a a 

a 

b b a 

b a 
b b 

a 
b 
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Exercice 4: -transition 

1. Déterminiser l'automate suivant: 

 

 

Exercice 5: Automates et Arithmétique  

1. Pour le langage *4*3 )()( aaM   sur l’alphabet {a} construire un automate qui le reconnaisse. 

2. Est-ce que M est vide, non-vide et fini, ou bien infini? Si le langage M est fini, donner la liste 

de tous ses mots. 

3. Appliquer ce résultat pour trouver tous les entiers naturels non représentables sous la forme  

3m + 4n avec m, n  N. 

 

 

 

 

 

 

 

 



 
Département d'informatique         2ème année LMD 

 

26Dr. Drif Ahlem                                                                                 Module: Théorie des langages                                    

 

Exercice 6: Programmation d'un automate à'état fini 
_P·X •.QjT ­QjP_. -S×e -Q" _(®a Q§.n g1g 1PW\" T­gÏ ._.]. nSf£._S ~Í_Ó _Ñ_ 

1. Ecrire un programme (en C ou en Pascal) simulant l'AEF suivant: 

 

2. Est ce que ce programme accepte le  mot 000? 

3. Ecrire un programme qui implémente l'AEF représentant les nombres entiers. 
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Chapitre III: Langages réguliers 

 
 
III.1. Langage régulier 

Définition: Un langage L est dit régulier  s’il est accepté par un automate d'états fini A. 

Définition formelle: 

L régulier  )(/ ALLA   

III.2. Expression régulière (ER)  

Soit 𝑋 un alphabet quelconque ne contenant pas les symboles{∗, +, |, . ,  ,  }. 

Une expression régulière est un mot défini sur l’alphabet 𝑋 ∪ {∗, +, |, . ,  ,  } permettant de 

représenter un langage régulier de la façon suivante : 

- L’expression régulière 𝜀 dénote le langage vide (𝐿 = {𝜀}); 

- L’expression régulière 𝑎 (𝑎 ∈ 𝑋) dénote le langage𝐿 = {𝑎}; 

- Si 𝑟 est une expression régulière qui dénote 𝐿 alors (𝑟)∗ (resp. (𝑟)+) est l’expression 

régulière qui dénote 𝐿∗ (resp. 𝐿+); 

- Si 𝑟 est une expression régulière dénotant 𝐿 et 𝑠 une expression régulière dénotant 𝐿′ alors 

(𝑟)|(𝑠) est une expression régulière dénotant 𝐿 + 𝐿′. L’expression régulière (𝑟). (𝑠) (ou 

simplement (𝑟)(𝑠)) dénote le langage 𝐿. 𝐿′. 

Les expressions régulières sont également appelées expressions rationnelles. L’utilisation des 

parenthèses n’est pas obligatoire si l’on est sûr qu’il n’y ait pas d’ambiguïté quant à l’application 

des opérateurs ∗, +, |, .. Par exemple, on peut écrire (𝑎)∗ ou 𝑎∗ puisque l’on est sûr que ∗ 

s’applique juste à 𝑎. Par ailleurs, on convient à utiliser les priorités suivantes pour les différents 

opérateurs : 1)∗, +, 2). et 3)|. 

 

Exemple  : 

1. 𝑎∗ : dénote le langage régulier 𝑎𝑛  (𝑛 ≥ 0) ; 

2. (𝑎|𝑏)∗ : dénote les mots dans lesquels le symbole 𝑎 ou 𝑏 se répètent un nombre quelconque de 

fois. Elle dénote donc le langage de tous les mots sur {𝑎, 𝑏} ; 

3. (𝑎|𝑏)∗𝑎𝑏(𝑎|𝑏)∗ : dénote tous les mots sur {𝑎, 𝑏} contenant le facteur 𝑎𝑏. 
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III.3 Utilisation des expressions régulières 

Les expressions régulières sont largement utilisées en informatique. On les retrouve plus 

particulièrement dans les shell des systèmes d’exploitation où ils servent à indiquer un ensemble 

de fichiers sur lesquels on est appliqué un certain traitement. L’utilisation des expressions 

régulières en DOS, reprise et étendue par WINDOWS, est très limitée et ne concerne que le 

caractère "*" qui indique zéro ou plusieurs symboles ou le caractère " ?" indiquant un symbole 

quelconque. Ainsi, l’expression régulière "f*" indique un mot commençant par f suivi par un 

nombre quelconque de symboles, "*f*" indique un mot contenant f et "*f*f*" indique un mot 

contenant deux f. L’expression "f ?" correspond à n’importe quel mot de deux symboles dont le 

premier et f. Le tableau suivant résume l’utlisation des expressions régulières. 

 
Expression Signification 

[𝑎𝑏𝑐] les symboles 𝑎,𝑏 ou 𝑐 

[^𝑎𝑏𝑐] aucun des symboles 𝑎, 𝑏 et 𝑐 

[𝑎 −  𝑒] les symboles de 𝑎 jusqu’à 𝑒(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) 

. n’importe quel symbole sauf le symbole fin de ligne 

𝑎 ∗ 𝑎 se répétant 0 ou plusieurs fois 

𝑎 + 𝑎 se répétant 1 ou plusieurs fois 

𝑎? 𝑎 se répétant 0 ou une fois 

𝑎|𝑏𝑐 le symbole 𝑎 ou 𝑏 suivi de 𝑐 

𝑎{2, } 𝑎 se répétant au moins deux fois 

𝑎{, 5} 𝑎 se répétant au plus cinq fois 

𝑎{2, 5} 𝑎 se répétant entre deux et cinq fois 

\𝑥 La valeur réelle de 𝑥 (un caractère spécial) 

  

Exemples: 

- [^𝑎𝑏] ∗ : les mots qui ne comportent ni 𝑎 ni 𝑏 

- [𝑎𝑏] ∗ : tous les mots sur {𝑎, 𝑏} 

- ([^𝑎]  ∗  𝑎[^𝑎]  ∗  𝑎[^𝑎] ∗) ∗ les mots comportant un nombre pair de 𝑎 

- (𝑎𝑏{, 4}) ∗ les mots commençant par 𝑎 où chaque 𝑎 est suivi de quatre 𝑏 au plus. 

III.4 Expressions régulières ambiguës 

 
Définition: Une expression régulière est dite ambiguë s’il existe au moins un mot pouvant être 

mis en correspondance avec l’expression régulière de plusieurs façons. 

Cette définition fait appel à la correspondance entre un mot et une expression régulière. Il s’agit, 

en fait, de l’opération qui permet de dire si le mot appartient au langage décrit par l’expression 
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régulière. Par exemple, prenons l’expression régulière 𝑎∗𝑏∗. Soit à décider si le mot 𝑎𝑎𝑏 est 

décrit ou non par cette expression. On peut écrire: 

𝑎𝑎 
𝑎∗

𝑏 
𝑏∗

 

 

Ainsi, le mot est décrit par cette E.R. Il n’y a qu’une seule façon qui permet de le faire 

correspondre. Ceci est valable pour tous les mots de ce langage. L’E.R n’est donc pas ambiguë. 

Considérons maintenant l’expression (𝑎|𝑏)∗𝑎(𝑎|𝑏)∗ décrivant tous les mots sur {𝑎, 𝑏} 

contenantle facteur 𝑎. Soit à faire correspondre le mot 𝑎𝑎𝑏, on a : 

𝑎𝑏𝑎𝑎𝑏 = 𝑎𝑏 . 𝑎.
(𝑎|𝑏)∗

𝑎𝑏 
(𝑎|𝑏)∗

 

𝑎𝑏𝑎𝑎𝑏 = 𝑎𝑏𝑎 .𝑎.
(𝑎|𝑏)∗

𝑏 
(𝑎|𝑏)∗

 

 

Il existe donc au moins deux façons pour faire correspondre 𝑎𝑎𝑏 à l’expression précédente, elle 

est donc ambiguë. L’ambiguïté pose un problème quant à l’interprétation d’un mot. Par exemple, 

supposons que, dans l’expression (𝑎|𝑏)∗𝑎(𝑎|𝑏)∗, l’on veut comparer la partie à gauche du facteur 

𝑎 à la partie droite du mot. Selon la méthode de correspondance, le résultat est soit vrai ou faux 

ce qui est inacceptable dans un programme cohérent. 

Comment lever l’ambiguïté d’une E.R? 

Il n’existe pas une méthode précise pour lever l’ambiguïté d’une E.R. Cependant, on peutdire que 

cette opération dépend de ce que l’on veut faire avec l’E.R ou plutôt d’une hypothèsede 

reconnaissance. Par exemple, on peut décider que le facteur fixe soit le premier 𝑎 du mot 

àreconnaître ce qui donne l’expression régulière : 𝑏∗𝑎(𝑎|𝑏)∗. On peut également supposer 

quec’est le dernier 𝑎 du mot à reconnaître ce qui donne l’expression régulière (𝑎|𝑏)∗𝑎𝑏∗.  

III.5 Grammaires régulières et les automates à états finis 

Le théorème suivant établit l’équivalence entre les AEF, les grammaires régulières et les 

expressions régulières. 

Théorème: (Théorème de Kleene) Soient Λ𝑟𝑒𝑔  l’ensemble des langages réguliers (générés par 

des grammaires régulières), Λ𝑟𝑎𝑡  l’ensemble des langages décrits par toutes les expressions 

régulières et Λ𝐴𝐸𝐹  l’ensemble de tous les langages reconnus par un AEF. Nous avons,alors, 

l’égalité suivante : 

Λ𝑟𝑒𝑔 = Λ𝑟𝑎𝑡 = Λ𝐴𝐸𝐹  
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Le théorème annonce que l’on peut passer d’une représentation à une autre du fait 

del’équivalence entre les trois représentations. Les sections suivantes expliquent comment passer 

d’une représentation à une autre. 

III.5.1 Arbre de dérivation et grammaires régulières  

Soit une grammaire ),,,( PSNTG   avec des productions avec un seul non-terminal par partie 

gauche. 

T: est le vocabulaire terminal, 

N: est le vocabulaire non terminal,  

SN: est le symbole de départ ou  l'axiome. 

P: est un ensemble de règles de production de la forme: 

• un arbre de dérivation pour un mot w engendré par G est un arbre dont : 

• la racine est étiquetée par l’axiome S 

• les feuilles sont étiquetées par des éléments de T ∪  {ε} 

• les noeuds internes le sont par des éléments de N 

• un noeud interne étiqueté B a des fils étiquetés de gauche à droite 

1, 2, …n , s’il existe dans P une production : 

nB  ...21  

• w est formé de la concaténation des feuilles lues dans un parcours de l’arbre. 

Exemple : 

),,,( PSNTG   avec : 

 N = { A, B } 

T = { a, b } 

 























B

bBB

bBA

aAA

p  
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III.5.2 Grammaire linéaire à droite 

Une grammaire ),,,( PSNTG   est régulière à droite si les éléments de P sont de la forme : 

 

NANB
TA

BA
p 








 ,

/ *


 

III.5.3 Grammaire linéaire à gauche 

Une grammaire ),,,( PSNTG   est régulière à gauche si les éléments de P sont de la forme : 

NANB
TA

BA
p 








 ,

/ *


 

Il existe un algorithme pour passer d’une grammaire  régulière à gauche à une grammaire 

régulière à droite engendrant le même langage. 

 

 

III.6. Algorithme de passage de l’automate à la grammaire 

Pour tout automate, il existe une expression régulière reconnaissant le même langage. L’automate 

permet d’établir un système d’équations aux langages de la manière suivante : 

),,,,( 0 FqQXA   

),,,( PSNTG   

T=X 

N=Q , qi ,qj ∊Q 

S=q0 























Pq

écritonalorsFqSi

Paqq

écritonalorsqaqSi

p

i

i

ji

ji

)(

:)(

)(

:)),((





 

 

 

III.7. Algorithme de passage de la grammaire à l’automate 

Pour toute expression régulière, il existe un automate reconnaissant le même langage. Il existe 

deux méthodes permettant de réaliser cette tâche. La première fait appel à la notion de dérivée 

tandis que la deuxième construit un automate comportant des ∊-transitions  en se basant sur les 

propriétés des langages réguliers. 

Méthode de Thompson 

La méthode de Thompson permet de construire un automate en procédant à la décomposition 

de l’expression régulière selon les opérations utilisées. Soit une grammaire régulière à droite G, 

alors l’algorithme à utiliser est le suivant : 
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),,,( PSNTG   

),,,,( 0 FqQXA   

T=X, FN=Q, S=q0 

 

 

FqécritonalorsGLSi

RARF

TRavecRAécritonalorsASi

TavecBAécritonalorsBASi









0

*

)(:

),(/

),(:

),(:









 
 

Remarque : il y a des renommages implicites dans la construction. 

  

III.8. Transformation d’une grammaire linéaire à droite à une grammaire de Kleene 
Grammaire de Kleene : 

),,,( PSNTG   










aA

TaetNBAavecBaA
p

,
 

PSGLSi  )()(   

Transformation : 

),,,(),,,( PSNTGPSNTG   

  SSANNTT i  ,,  

 







































AGLSi

BA

AA

AA

p

alorsBASi

nn

n

)(

.

.

.

...

1

221

11

21
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Exercices de TD  
 
Exercice 1: Passage de l'automate à la grammaire 

Soit l'automate A suivant, définit sur  X={a, b} :  

 

1. Donner la grammaire linéaire à droite qui correspond à l'automate A. 

2.  Donner le langage engendré par la grammaire obtenue. 

Exercice 2: Passage de la grammaire à l'automate  

1. Donner l'automate d'états finis qui correspond à la grammaire suivante: 

    PSBSbaG ,,,,,  

 

 

2. Construire l'automate pour la grammaire suivante : 

Exercice 3: Grammaire de Kleene  

1. Construire l'automate pour la grammaire suivante : 

 

Exercice 4: Langages Réguliers 

Répondre par: vrai ou faux ? 

a. Il existe un nombre fini de langages réguliers. 

b. Tout langage fini est régulier. 

c. Si le complément de L est fini, alors L est régulier. 

d. Les deux énoncés suivants sont logiquement équivalents : 

• L est régulier ; 

• L est reconnu par un automate d'état fini. 

e. Le langage: {0
n
1

2n
 | 0 < n < 1000 et n est pair} est régulier. 

f. La classe des langages réguliers est fermée pour l’union, l’intersection et le complément. 

G. Si L2 est régulier, alors tout langage L1 tel que L1  L2 est régulier. 

Exercice 5: Expression régulière 

1. Donner une grammaire régulière reconnaissant l'expression régulière:  

a. aab(a /b)
*
 bb(ab/ba)

+
 

b. (abbc/baba)
+
 aa (cc/bc)

*
        

S0 a a 

b 

S1 S2 

b 

S3 









babBB

aBS
p

/
:


























/

/:

aAA

bBB

bAS

aBS

p  





















aaaA

abSA

aabbS

abaaAS

p :  
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Chapitre IV: Langages algébriques 
 

IV.1. Introduction 
Les langages algébriques représentent la couche qui suit immédiatement celle des langages 

réguliers dans la hiérarchie de Chomsky. Remarquons, cependant, que le niveau de complexité 

est inversement proportionnel au type du langage et, par conséquent, le nombre d’algorithmes 

existants tend à diminuer en laissant la place à plus d’intuition. 

IV.2. Définition des grammaires hors-contextes  

Soit une grammaire 𝐺 = (𝑇,𝑁, 𝑆, 𝑅) 

 T : symboles terminaux  

 N : symboles non-terminaux  

  𝑆 ∈ 𝑁: axiome (symbole de départ) 

La grammaire G est non-contextuelle  (context-free in english), ou algébrique, si les productions 

sont de la forme 𝑅 ⊂ 𝑁 × (𝑁 ∪ 𝑇)∗: règles 

 

Une règle s’écrit 𝐴 → 𝛼 avec 𝐴 ∈ 𝑁 et 𝛼 ∈ (𝑁 ∪ 𝑇)∗ 

Des règles 𝐴 → 𝛼 et 𝐴 → 𝛽 s’écrivent  𝐴 → 𝛼|𝛽 

 

Exemple: Expressions mathématiques 

 𝑁 = {𝑆, 𝐸} et 𝑇 = {+,∗,÷,  ,  ,  , 1,2,3… } 

 Règles : 

𝑆 → 𝐸 

𝐸 → 𝐸 + 𝐸 

𝐸 → 𝐸 ∗ 𝐸 

𝐸 → 𝐸 ÷ 𝐸 

𝐸 → (𝐸) 

𝐸 →  𝐸 

𝐸 → 1 2 3… 

 Une dérivation possible : 

𝑆 → 𝐸 → 𝐸 + 𝐸 → 𝐸 ÷ 𝐸 + 𝐸… → 1 ÷ 2 + 3 ∗  9 
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IV. 2 .1. Dérivations 

La derivation est l’opérations qui génèrent le langage pour une grammaire.  

 Un mot𝛼 ∈ (𝑁 ∪ 𝑇)∗se dérive en un mot 𝛽 ∈ (𝑁 ∪ 𝑇)∗si 

 𝛼 se décompose en 𝛼1𝐴𝛼2avec  𝐴 ∈ 𝑁 

 𝛽se décompose en 𝛼1𝛾𝛼2 avec 𝛾 ∈ (𝑁 ∪ 𝑇)∗ 

 𝐴 → 𝛾 ∈ 𝑅(c’est une règle) 

 Exemple :𝐸 + 𝐸 ÷ 𝐸 → 𝐸 + 𝐸 ∗ 𝐸 ÷ 𝐸 

 𝛼1 = 𝐸 + 

 𝛼2 =÷ 𝐸 

 𝐴 = 𝐸 

 𝛾 = 𝐸 ∗ 𝐸 

 𝐸 → 𝐸 ∗ 𝐸 ∈ 𝑅 

Suite de dérivations 

 Par transitivité 

 Chaîne de dérivations  𝛼 → 𝛽… → 𝛾 = 𝛼
∗
→ 𝛾 

 Fermeture transitive, clôture (étoile de Kleene) 

 Si𝛾 ∈ (𝑁 ∪ 𝑇)∗alors 𝛾 est une proto-phrase de 𝐺 

 Ordre des dérivations 

 Possibilité d’analyses pour 1 + 2 + 3 

 Dérivation gauche : réécrit le non-terminal le plus à gauche 

𝐸 → 𝐸 + 𝐸 → 1 + 𝐸 → 1 + 𝐸 + 𝐸 → 1 + 2 + 𝐸 → 1 + 2 + 3 

 Dérivation droite : réécrit le non-terminal le plus à droite 

𝐸 → 𝐸 + 𝐸 → 𝐸 + 3 → 𝐸 + 𝐸 + 3 → 𝐸 + 2 + 3 → 1 + 2 + 3 

IV. 2.2. Langage généré 

Un langage généré par une grammaire hors-contexte est dit langage hors-contexte. Notons que 

nous nous intéressons, en particulier, à ce type de langages du fait que la plupart des langages de 

programmation sont hors-contextes.  

Soit 𝐺 une grammaire, alors le langage généré par 𝐺 est𝐿 𝐺 = {𝑚 ∈ 𝑇∗|𝑆
∗
→𝑚}. 
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IV. 2.3. Arbre de dérivation 

Une représentation graphique de la derivation est définit comme suit: 

 Racine : symbole initial = 𝑆 

 Nœud : symbole non-terminal ∈ 𝑁 

 Feuille : symbole terminal∈ 𝑇 

 Relation parent-enfants : dérivation (règle) 

 Les deux arbres suivants illustrent la  dérivation à droite et à gauche  de 1 + 2 ∗ 3 

 
 

IV. 2.4. Notion d’ambiguïté 

Une grammaire est dite ambiguë si elle peut générer au moins un mot de plus d’une manière. En 

d’autres termes, si on peut trouver un mot généré par la grammaire et possédant au moins deux 

arbres de dérivation, alors on dit que la grammaire est ambiguë.  

La grammaire de l’exemple précedent est ambiguë car le mot  1 + 2 ∗ 3possède deux arbres de 

dérivation. D’une manière générale, pour lever l’ambiguïté d’une grammaire, il n’y a pas de 

méthodes qui fonctionnent à tous les coups. Cependant, l’idée consiste généralement à introduire 

une hypothèse supplémentaire (ce qui va changer la grammaire) en espérant que le langage 

généré soit le même. 

IV.3 Simplification des grammaires hors-contextes  

Une grammaire est propre si elle est : 

–∊-libre, 

– dépourvue de symboles inutiles, 

– sans cycle 

∊-libre signifie qu’il n’y a pas de production donnant ∊, par symbole inutile on entend à la fois 

ceux qui n’ont pas de contribution et ceux qui sont inaccessibles. Les cycles impliquent des 

productions singulières qui peuvent engendrer des boucles inutiles dans une dérivation. 
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 Symboles improductifs 

 𝐴 est improductif s’il n’y a pas de 𝑚 ∈ 𝑇∗ tel que 𝐴
∗
→𝑚 

 Symboles inaccessibles 

 𝐴 est inaccessible s’il n’y a pas de 𝛼 et 𝛽 tel que 𝑆
∗
→ 𝛼𝐴𝛽 

 𝝐-productions 

 Une 𝜖-production est une dérivation telle que 𝐴
∗
→𝜖 

 

 Production simple 

 𝐴 → 𝐵 est une production simple si 𝐴 ∈ 𝑁 et 𝐵 ∈ 𝑁 

Pour toute grammaire, il existe une grammaire équivalente sans symboles improductifs ni 

inaccessibles, sans 𝜖-productions ni productions simples.  En effet, on procède comme suit  afin 

de nettoyer la grammaire: 

1. Élimination des symboles improductifs 

 Calcul des symboles productifs 

 Soit 𝑃0 = ∅ et 𝑖 = 1 

 Soit 𝑃1 = {𝐴 ∈ 𝑁, ∃𝛼 ∈ 𝑇∗, 𝐴 → 𝛼 ∈ 𝑅} 

 Tant que 𝑃𝑖 ≠ 𝑃𝑖−1 

 𝑃𝑖+1 = 𝑃𝑖 ∪ {𝐴 ∈ 𝑁, ∃𝛼 ∈ (𝑇 ∪ 𝑃𝑖)
∗, 𝐴 → 𝛼 ∈ 𝑅} 

 𝑖 ← 𝑖 + 1 

 Les symboles de 𝑁\𝑃 sont improductifs. On enlève, donc, ces symboles et les règles dans 

lesquels ils figurent. 

2. Élimination des symboles inaccessibles 

 Calcul des symboles accessibles 

 Soit 𝐶0 = ∅, 𝐶1 = {𝑆} et 𝑖 = 1 

 Tant que 𝐶𝑖 ≠ 𝐶𝑖−1 

 𝐶𝑖+1 = 𝐶𝑖 ∪ {𝐴 ∈ 𝑁, ∃𝛼, 𝛽 ∈  𝑁 ∪ 𝑇 ∗, 𝑋 ∈ 𝐶𝑖 , 𝑋 → 𝛼𝐴𝛽 ∈ 𝑅} 

Les symboles de 𝑁\𝐶 sont inaccessible. On enlève, donc,  ces symboles et les règles dans 

lesquels ils figurent.  Une grammaire sans symboles improductifs et sans symbole inaccessible est 

dite grammaire réduite. 
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3. Élimination des 𝝐-productions 

 Calcul des symboles annulables 

 Soit  𝑈0 = ∅ et 𝑖 = 1 

 Soit 𝑈1 = {𝐴 ∈ 𝑁, 𝐴 → 𝜖 ∈ 𝑅} 

 Tant que 𝑃𝑖 ≠ 𝑃𝑖−1 

 𝑈𝑖+1 = 𝑈𝑖 ∪ {𝐴 ∈ 𝑁, ∃𝛼 ∈ (𝑈𝑖)
∗, 𝐴 → 𝛼 ∈ 𝑅} 

 𝑖 ← 𝑖 + 1 

Les symboles de 𝑈 sont annulables.  On modifie les productions contenant des variables 

annulables . 

 Modification de la grammaire 

 Remplacer les règles 𝐴 → 𝛼𝑋𝛽 où 𝑋 ∈ 𝑈 par 𝐴 → 𝛼𝑋𝛽|𝛼𝛽 (avec combinaisons 

possibles de 𝑋 dans les règles) 

 Supprimer toutes les règles 𝐴 → 𝜖 (sauf pour 𝑆) 

 Supprimer toutes les règles 𝐴 → 𝐴 

La grammaire ainsi obtenue est équivalente à la grammaire de depart (au mot vide près 

éventuellement). 

4. Équivalences et productions simples 

 Productions simples, dérivations et classes d’équivalences 

 Production simple : toute règle 𝐴 → 𝐵 avec 𝐵 ∈ 𝑁 

 Soit la relation≥ telle que 𝐴 ≥ 𝐵 si 𝐴
∗
→ 𝐵 

 Soit la relation≈telle que 𝐴 ≈ 𝐵 si 𝐴 ≥ 𝐵 et 𝐵 ≥ 𝐴 

 Classes d’équivalences 

 Si 𝐴 ≈ 𝐵, tout ce qui est dérivé de 𝐴 peut l’être de 𝐵 

 Relation réflexive, symétrique et transitive 

 L’ensemble des classes est une partition de 𝑁 

 Modification de la grammaire 

 On conserve les productions non-simples 

 Pour chaque classe d’équivalence 

⇒Choisir un symbole qui remplace tous les autres 

⇒Pour chaque dérivation 𝐴
∗
→ 𝐵 
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 Pour chaque 𝐵 → 𝛽, ajouter 𝐴 → 𝛽 

Exemple :   Simplifier  la grammaire suivante: 

𝐺 = ({𝑎, 𝑏, 𝑐}, {𝑆, 𝑇, 𝑈, 𝑉,𝑊, 𝑍, 𝑋}, 𝑆, 𝑃) 
1.   𝑆 → 𝑇|𝑈 

2.   𝑈 → 𝑎𝑌𝑏|𝑉 

3.   𝑉 → 𝑊 

4.   𝑋 → 𝑊|𝑎 

5.   𝑌 → 𝑍 

6.   𝑍 → 𝑐|𝜖 

 

 Symboles productifs : 𝑋, 𝑍, 𝑌, 𝑈, 𝑆 ⇒retirer 𝑇, 𝑉 et 𝑊 

1.   𝑆 → 𝑈 

2.   𝑈 → 𝑎𝑌𝑏 

3.    

4.   𝑋 → 𝑎 

5.   𝑌 → 𝑍 

6.   𝑍 → 𝑐|𝜖 

 Symboles accessibles : 𝑆, 𝑈, 𝑌, 𝑍 ⇒ retirer 𝑋 

1.   𝑆 → 𝑈 

2.   𝑈 → 𝑎𝑌𝑏 

3.    

4.    

5.   𝑌 → 𝑍 

6.   𝑍 → 𝑐|𝜖 

 𝜖-productions : 𝑍, 𝑌 ⇒ modifier 6, 2 

1.   𝑆 → 𝑈 

2.   𝑈 → 𝑎𝑌𝑏|𝑎𝑏 

3.    

4.    

5.   𝑌 → 𝑍 

6.   𝑍 → 𝑐 

 Productions simples :𝑆 → 𝑈 et 𝑌 → 𝑍 ⇒ modifier 1, 2, 5, 6 

1.   𝑆 → 𝑎𝑌𝑏|𝑎𝑏 

2.    

3.    

4.    

5.   𝑌 → 𝑐 

La grammaire obtenue est la suivante: 

𝐺 = ({𝑎, 𝑏, 𝑐}, {𝑆, 𝑌}, 𝑆, 𝑃) 
 

1.   𝑆 → 𝑎𝑌𝑏|𝑎𝑏 

2.   𝑌 → 𝑐 
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IV.4 . Forme normale  de Chomsky 

Théorème: Pour tout langages hors-contexte il existe une grammaire en forme normale de 

Chomsky qui le génèrent. 

𝐺 = (𝑇,𝑁, 𝑆, 𝑅) est sous la forme normale de Chomesky (FNC) si toutes règles de la production 

sont de la forme: 

𝐴 → 𝐵𝐶  avec 𝐴, 𝐵, 𝐶 ∈ 𝑁 

𝐴 → 𝑎 avec 𝑎 ∈ 𝑇 

IV.4 .1  Mise sous forme normale de Chomsky 

L’intérêt de la forme normale de Chomsky est que les arbres de dérivations sont des arbres 

binaires ce qui facilite l’application de pas mal d’algorithmes. Il est toujours possible de 

transformer n’importe quelle grammaire hors-contexte pour qu’elle soit sous la forme normale de 

Chomsky. Notons d’abord que si la grammaire est propre, alors cela facilitera énormément la 

procédure de transformation. Supposons que 𝐺 = (𝑇,𝑁, 𝑆, 𝑅)  est une grammaire proper, on la 

tronsforme en une grammaire que 𝐺 = (𝑇, 𝑁, 𝑆, 𝑅)  sous FNC comme suit:  

1. Pour chaque terminal 𝑎, créer 

 Un symbole 𝑍𝑎  

 Une règle 𝑍𝑎 → 𝑎 

2. Pour chaque règle 𝐴 → 𝛼 où  𝛼 > 1 

 Tout terminal 𝑎 de 𝛼 est remplacé par 𝑍𝑎  

3. Pour chaque règle 𝐴 → 𝛼 où  𝛼 > 2 

a. On décompose :𝛼 = 𝐴1, 𝐴2 …𝐴𝑛  

b. On crée les non-terminaux  𝑌1, 𝑌2 …𝑌𝑛−2 

c. On remplace 𝐴 → 𝛼 par 

𝐴 → 𝐴1𝑌1 

𝑌1 → 𝐴2𝑌2 

… 

𝑌𝑛−2 → 𝐴𝑛−1𝐴𝑛  

 

 

 

 

 



 
Département d'informatique         2ème année LMD 

 

41Dr. Drif Ahlem                                                                                 Module: Théorie des langages                                    

 

 

Exemple: 
𝑆 → 𝑎𝐵|𝑏𝐴   𝐴 → 𝑎|𝑎𝑆|𝑏𝐴𝐴  𝐵 → 𝑏|𝑏𝑆|𝑎𝐵𝐵 

devient : 

𝑆 → 𝑍𝑎𝐵|𝑍𝑏𝐴   

𝑍𝑏 → 𝑏  

𝑍𝑎 → 𝑎 
𝐴 → 𝑎|𝑍𝑎𝑆|𝑍𝑏𝑋 

𝑋 → 𝐴𝐴 

𝐵 → 𝑏|𝐶𝑏𝑆|𝑍𝑎𝑌  

𝑌 → 𝐵𝐵 

 

 

IV.5 . La forme normale de Greibach 

Soit G = (T,N, S, R) une grammaire hors-contexte. On dit que G est sous la forme normale 

de Greibach si toutes ses règles sont de l’une des formes suivantes : 

𝐴 → 𝑎𝐴1𝐴2 …𝐴𝑛 , 𝑎 ∈ 𝑇, 𝐴𝑖 ∈ 𝑁 − {𝑆} 

𝐴 → 𝑎, 𝑎 ∈ 𝑇 

 

L’intérêt pratique de la mise sous forme normale de Greibach est qu’à chaque dérivation, on 

détermine un préfixe de plus en plus long formé uniquement de symboles terminaux. Cela permet 

de construire plus aisément des analyseurs permettant de retrouver l’arbre d’analyse associé à un 

mot généré.  

IV.5 .1 Récursivité 

Théorème (Élimination de la récursivité directe à gauche) : Tout langage non contextuel sans le 

mot vide peut être engendré par une grammaire sans symbole inutile ni production vide ni 

production unitaire ni récursivité directe à gauche. 

 Symbole récursif : 𝐴
∗
→ 𝛼𝐴𝛽 

4. Si 𝛼 = 𝜖, 𝐴 est récursif à gauche 

5. Si 𝛽 = 𝜖, 𝐴 est récursif à droite 

6. Si 
∗
→ne comporte qu’une dérivation : récursivité directe 

7. Si 
∗
→comporte plusieurs dérivations : récursivité indirecte 

Une grammaire récursive comporte un symbole récursif. 
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Exemple : grammaire indirectement récursive à gauche 

 𝐴 → 𝐵 

 𝐵 → 𝐶𝐷 

 𝐶 → 𝐴𝐸 

Suppression de la récursivité directe à gauche 

 Remplacer toute règle 𝐴 → 𝐴𝑎|𝑏 

 𝐴 → 𝑏𝐴′ 

 𝐴′ → 𝑎𝐴′|𝜖 
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Exercices de TD   
 
Exercice 1: Grammaire réduite : élimination des symboles improductifs & des symboles 

inaccessibles 

1. Construire une grammaire réduite équivalente à la grammaire suivante : 

   ),,,,,,,,,,,( PAHGFEDCBAbaG   

 

 

Exercice 2: Grammaire propre : grammaire sans cycle & libre de   

1. Donner une grammaire propre équivalente à la grammaire suivante : 

    ),,,,,( PSASbaG   









/
:

aAA

AbS
P  

Exercice 3: Simplification de grammaires 

1. Construire une grammaire réduite équivalente à la grammaire suivante : 

S → AB | a 

A → a 

2. Montrer que pour toute grammaire algébrique G n’engendrant pas le mot vide, il existe une 

grammaire algébrique propre et réduite G′ engendrant le même langage. 

3. Donner une grammaire propre et réduite équivalente à la grammaire suivante : 

S → Y Y | bWTY 

T → b | Wa 

Y → WW | Tb 

W →  | aS 

 

Exercice 4: Exemples de langages algébriques 

1. Construire des grammaires pour les langages suivants : 

 L1 = {a
n
 b

n
  | n ≥ 0} 

 L2 = {w ∈ {a, b}* | |w|a = |w|b} 

L3 = {a
n
 b

p
 | n  p} 

L4 = {wcw′ | w, w′ ∈ {a, b}* et |w| = |w′|} 

L5 = {ww′ | w, w′ ∈ {a, b}*
, |w| = |w′| et w′  w} 





















CDbBD

abEbCC

aDFbBB

CBABA

P

/

//

//

//

:



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Exercice 5: Forme normale de Chomsky 

1. Transformez la grammaire hors contexte  G (T, N, S, P) suivante en FNC : 

N = {S, T} 
T = {a, b} 
P = { bbTaTaTTSSSS //,//    } 

 

2. Soit la grammaire hors contexte  G = ({S, N, M}, {0, 1, a, b, *}, R, S) définie par les règles 

suivantes : 

/1/0

//

*

NNN

NbaM

MMS







 

Transformez G en FNC. 

Exercice 6: Forme normale de Greibach 

1. Mettre la grammaire suivante sous forme normale de Greibach : 

A1 → A2 A3 

A2 → A3 A1 | b 

A3 →A1 A2| a 

 

2. Mettre la grammaire suivante sous forme normale de Greibach : 

 

SSLL

aLS

/,

/)(




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Chapitre V: Automate à pile 
 

V.1 . Introduction 
 

Les langages algébriques sont spécifiés  par des grammaires  algébriques. Les automates à pile 

sont nécessaires pour reconnaître les langages algébriques. 

 
langage spécification modèle exécutable 

régulier expression régulière AFD 

algébrique grammaire algébrique automate à pile 

 

V.2. Automates à pile généraux 

Avant de définir les automates à pile, nous présentons quelques exemples pour reconnaitre un langage 

algébrique. 

Exemple 1 : 

Pour reconnaitre  𝑎𝑛𝑏𝑛  𝑛 ≥ 0  : 
 Un automate à nombre fini d'états pour lire des a puis des b. 

 Un compteur c pour compter les a et décompter les b. 

 Arrêt quand le ruban est vide et état final et c vaut 0. 

 
Exemple 2 : 

 

Pour  reconnaître  𝑚 ∈ Σ∗ 𝑚 𝑒𝑠𝑡 𝑢𝑛 𝑝𝑎𝑙𝑖𝑛𝑑𝑟𝑜𝑚𝑒  : 
 

 Un compteur ne suffit pas ! 

 Il faut mémoriser les symboles lus puis les consulter. 

 Mémorisation par empilement, vérification par dépilement. 
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Exemple 3 : 

Soit le langage  𝑎𝑛𝑏𝑛  𝑛 ≥ 0  : 
 

 On empile luA quand on lit un a. 

 On dépile luA quand on lit un b. 

 Arrêt quand le ruban est vide et état final et la pile est vide. 

 

 

V.3.  Définition  d’un automate à pile 

Automate à nombre fini d'états exemple des palindromes : 

ensemble d'états Q ex :  𝑞1, 𝑞2  

états initial q0 ex : q1 

ensemble d'états finaux 𝐹 ⊆ 𝑄 ex :  𝑞2  

alphabet d'entrée  ex :  𝑎, 𝑏  

Automate à Pile   

contient des éléments de l’alphabet de pile Z ex  :  𝑙𝑢𝐴, 𝑙𝑢𝐵  
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Relation de transition : 

Pour un AF, une transition c'est: 

 Quand on est dans l'état 𝑞 ∈ 𝑄 ; 

 et que l’on a 𝑎 ∈ ∑ sous la tête de lecture ; 

 ou qu’on  transite sur 𝜖 ; 

 alors on passe dans l'état 𝑞′ ∈ 𝑄. 

             𝑞, 𝑎 → 𝑞′ 

             𝑞, 𝜖 ⟶ 𝑞′ 

Pour un automate à pile, une transition c'est : 

 Quand on est dans l'état 𝑞 ∈ 𝑄 ; 

 et que l’on a 𝑎 ∈ Σ sous la tête de lecture ; 

 ou qu’on effectue une 𝜖-transition ; 

 et que le sommet de pile est 𝑧 ∈ 𝑍 ; 

 On  passe dans l'état 𝑞′ ∈ 𝑄 ; 

 et on  modifie le sommet de pile en le remplaçant par des éléments de Z ou 𝜖. 

             𝑞, 𝑎, 𝑧 → 𝑞′ , 𝑧1𝑧2 

             𝑞, 𝜖, 𝑧 → 𝑞′ , 𝑧 

            𝑞, 𝑎, 𝑧 → 𝑞′ , 𝜖 

Modification de la pile: 

𝑞, 𝑎, 𝑧 → 𝑞′ , 𝑧1𝑧2 Empiler 𝑧2 

𝑞, 𝜖, 𝑧 → 𝑞′ , 𝑧 Ne pas toucher à la pile 

𝑞, 𝑎, 𝑧 → 𝑞′ , 𝜖 Dépiler 𝑧 
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V.3.1 Notation graphique 

 

 
 

V.3.2 Exemple des palindromes 

L’automate à pile des palindromes est représenté graphiquement par le graphe : 

 
 
 

Dans ce qui suit nous expliquons  les différentes transitions sur la pile :  

- Dans l'état 𝑞 ∈ 𝑄 ; avec 𝑎 ∈ Σ sous la tête de lecture (Σ-transition) ; et avec 𝑙𝑢𝐴 ∈ 𝑍 en sommet 

de pile ; alors on reste dans l'état 𝑞2 ∈ 𝑄 ; et on dépile : on remplace 𝑙𝑢𝐴 par 𝜖. 

𝑞2, 𝑎, 𝑙𝑢𝐴 → 𝑞2, 𝜖 
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- Dans l'état 𝑞1 ∈ 𝑄 et avec 𝑎 sous la tête de lecture ; et quel que soit le sommet de pile: si on 

viens de lire un 𝑎 (resp. 𝑏) : 𝑙𝑢𝐴 (resp. 𝑙𝑢𝐵) ; si on n'a encore rien lu : pile initiale (vide). Pas de 

transition sur pile vide : symbole initial de pile 𝑧⊥ ∈ 𝑍 

- Dans l'état 𝑞1 ∈ 𝑄, avec a sous la tête de lecture ; et avec 𝑙𝑢𝐴, 𝑙𝑢𝐵 ou 𝑧⊥ en sommet de pile ; 

alors on reste dans 𝑞1 ∈ 𝑄 ;  et on empile 𝑙𝑢𝐴 : on remplace le sommet 𝑥 par 𝑥 𝑙𝑢𝐴 

𝑞1, 𝑎, 𝑙𝑢𝐴 → 𝑞1, 𝑙𝑢𝐴 𝑙𝑢𝐴  

𝑞1, 𝑎, 𝑙𝑢𝐵 → 𝑞1, 𝑙𝑢𝐵 𝑙𝑢𝐴  

𝑞1, 𝑎, 𝑧⊥ → 𝑞1, 𝑧⊥  𝑙𝑢𝐴 

- Dans l'état 𝑞1 ∈ 𝑄 ;  sans toucher la tête de lecture (𝜖-transition) ; et avec  𝑙𝑢𝐴, 𝑙𝑢𝐵 ou 𝑧⊥ en 

sommet de pile ;  alors on passe dans 𝑞2 ∈ 𝑄 et on ne touche pas à la pile. 

𝑞1, 𝜖, 𝑙𝑢𝐴 → 𝑞2, 𝑙𝑢𝐴 
𝑞1, 𝜖, 𝑧⊥ → 𝑞2, 𝑧⊥  

𝑞1, 𝜖, 𝑙𝑢𝐵 → 𝑞2, 𝑙𝑢𝐵 

 

Pour terminer on vide la pile (𝜖-transition) 

𝑞2, 𝜖, 𝑧⊥ → 𝑞2, 𝜖 
 

Récapitulatif: 
 

𝑞1, 𝑎, 𝑙𝑢𝐴 → 𝑞1, 𝑙𝑢𝐴 𝑙𝑢𝐴             𝑞1, 𝑎, 𝑧⊥ → 𝑞1, 𝑧⊥  𝑙𝑢𝐴                 𝑞1, 𝑎, 𝑙𝑢𝐵 → 𝑞1, 𝑙𝑢𝐵 𝑙𝑢𝐴 

 

𝑞1, 𝑏, 𝑙𝑢𝐴 → 𝑞1, 𝑙𝑢𝐴 𝑙𝑢𝐵             𝑞1, 𝑏, 𝑧⊥ → 𝑞1, 𝑧⊥  𝑙𝑢𝐵                 𝑞1, 𝑏, 𝑙𝑢𝐵 → 𝑞1, 𝑙𝑢𝐵 𝑙𝑢𝐵 

 

𝑞1, 𝑎, 𝑙𝑢𝐴 → 𝑞2, 𝑙𝑢𝐴                    𝑞1, 𝑎, 𝑧⊥ → 𝑞2, 𝑧⊥                              𝑞1, 𝑎, 𝑙𝑢𝐵 → 𝑞2, 𝑙𝑢𝐵    

 
 𝑞1, 𝑏, 𝑙𝑢𝐴 → 𝑞2, 𝑙𝑢𝐴                  𝑞1, 𝑏, 𝑧⊥ → 𝑞2, 𝑧⊥                            𝑞1, 𝑏, 𝑙𝑢𝐵 → 𝑞2, 𝑙𝑢𝐵 
 
𝑞1, 𝜖, 𝑙𝑢𝐴 → 𝑞2, 𝑙𝑢𝐴                         𝑞1, 𝜖, 𝑧⊥ → 𝑞2, 𝑧⊥                               𝑞1, 𝜖, 𝑙𝑢𝐵 → 𝑞2, 𝑙𝑢𝐵 
 
𝑞2, 𝑎, 𝑙𝑢𝐴 → 𝑞2, 𝜖                            𝑞2 , 𝑏, 𝑙𝑢𝐵 → 𝑞2, 𝜖                                𝑞2, 𝜖, 𝑧⊥ → 𝑞2, 𝜖 
 
 

V.4. Définition formelle (Automate à pile (AP)) 

Un automate à pile A est un tuple(Σ, 𝑍, 𝑧⊥ , 𝑄, 𝑞0, 𝐹, ∆) où : 

 

 Σest un alphabet d'entrée fini (les terminaux); 

 𝑍est un alphabet de pile fini; 

 𝑧⊥ ∈ 𝑍est le symbole initial de pile, 

 𝑄est un ensemble fini d'états, 

 𝑞0 ∈ 𝑄est l'état initial; 
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 𝐹 ⊆ 𝑄est l'ensemble des états finaux; 

 Δ ⊆ 𝑄 ×  ∑ ∪  𝜖  × 𝑍 × 𝑄 × 𝑍∗est la relation de transition. 

On pourrait choisir Δ ⊆ 𝑄 ×  ∑ ∪  𝜖  × 𝑍∗ × 𝑄 × 𝑍∗. 

 

V.5. Exécution et configurations 

Une exécution est une suite de configurations. 

Pour un AF, une configuration est : 

 mot restant à lire 𝑚 ∈ Σ∗; 

 état courant 𝑞 ∈ 𝑄 . 

Pour un 𝐴𝑃, configuration définie par : 

 le mot restant à lire 𝑚 ∈ Σ∗; 

 l’état courant 𝑞 ∈ 𝑄; 

 le contenu de la pile de 𝑍∗, lu du bas vers le haut de la pile. 

Exemple: (𝑎𝑏𝑏𝑏, 𝑞1, 𝑧⊥  𝑙𝑢𝐴 𝑙𝑢𝐴) 

 
 
 

V.5.1 Définition (configuration) 

Une configuration 𝑐 d'un 𝐴𝑃(Σ, 𝑍, 𝑧⊥ , 𝑄, 𝑞0, 𝐹, ∆) est un élément de Σ∗ × 𝑄 × 𝑍∗. 

Le passage dans 𝐴 d'une configuration 𝑐1 à une configuration 𝑐2 s'écrit : 

𝑐1 ⊢𝐴 𝑐2 

On note ⊢𝐴
∗  la clôture réflexive et transitive de ⊢𝐴. 

Deux modes de transition pour changer de configuration : 

 sur une ∑-transition; 

 sur une 𝜖-transition. 
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V.5.2 Changement de configuration sur 𝚺-transition 

Exemple : 

Transition 𝑞1, 𝑏, 𝑙𝑢𝐴 → 𝑞1, 𝑙𝑢𝐴 𝑙𝑢𝐵 

Configuration (𝑏𝑏𝑎, 𝑞1, 𝑧⊥  𝑙𝑢𝐴) 

On aura alors : 

(𝑏𝑏𝑎, 𝑞1, 𝑧⊥  𝑙𝑢𝐴) ⊢𝐴 (𝑏𝑎, 𝑞1, 𝑧⊥  𝑙𝑢𝐴 𝑙𝑢𝐵) 

Définition (𝒄𝟏 ⊢𝑨 𝒄𝟐 sur 𝚺-transition) 

𝐴 passe d'une configuration 𝑐1 =  𝑚1, 𝑞1, 𝛼1  à 𝑐2 = (𝑚2, 𝑞2, 𝛼2) si : 

 il existe une transition (𝑞1, 𝑥, 𝑧) → (𝑞2, 𝛽2) ∈ ∆; 

 𝑚1 est de la forme 𝑥𝑚2 ; 

 𝛼1 est de la forme 𝛽1𝑧 ; 

 𝛼2 est de la forme 𝛽1𝛽2 ; 

 

Transition 𝑞1, 𝑏, 𝑙𝑢𝐴 → 𝑞1, 𝑙𝑢𝐴 𝑙𝑢𝐵 

  

 Configuration (𝑏𝑏𝑎, 𝑞1, 𝑧⊥  𝑙𝑢𝐴) 

 

 
 

 
 

V.5.3 Définition (𝒄𝟏 ⊢𝑨 𝒄𝟐 sur 𝝐-transition) 

𝐴 passe d'une config 𝑐1 =  𝑚, 𝑞1, 𝛼1  à 𝑐2 = (𝑚, 𝑞2, 𝛼2) si : 

 il existe une transition (𝑞1, 𝜖, 𝑧) → (𝑞2, 𝛽2) ∈ ∆ ; 

 𝛼1 est de la forme 𝛽1𝑧 (𝑧 sommet de pile) ; 

 𝛼2 est de la forme 𝛽1𝛽2. 
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 𝑚, 𝑞1 ,

𝛼1

𝑧

𝛽1

 ⊢𝐴  𝑚, 𝑞2,

𝛼2

𝛽2

𝛽1

  

 

Exemple : 

Transition 𝑞1, 𝜖, 𝑙𝑢𝐵 → 𝑞2, 𝑙𝑢𝐵 

Configuration (𝑏𝑎, 𝑞1, 𝑧⊥  𝑙𝑢𝐴 𝑙𝑢𝐵) 

On aura alors : 

(𝑏𝑎, 𝑞1, 𝑧⊥  𝑙𝑢𝐴) ⊢ (𝑏𝑎, 𝑞2, 𝑧⊥  𝑙𝑢𝐴 𝑙𝑢𝐵) 

On ne touche pas à la tête de lecture. 

Exécution: 

Pour le langage  𝑎𝑛𝑏𝑛  𝑛 ≥ 0  : 

∆=  

𝑞𝑎 , 𝑎, 𝑧⊥ → 𝑞𝑎 , 𝑧⊥  𝑙𝑢𝐴
𝑞𝑎 , 𝑏, 𝑙𝑢𝐴 → 𝑞𝑏 , 𝜖
𝑞𝑏 , 𝑏, 𝑙𝑢𝐴 → 𝑞𝑏 , 𝜖

𝑞𝑎 , 𝑎, 𝑙𝑢𝐴 → 𝑞𝑎 , 𝑙𝑢𝐴 𝑙𝑢𝐴
𝑞𝑎 , 𝜖, 𝑧⊥ → 𝑞𝑎 , 𝜖
𝑞𝑏 , 𝜖, 𝑧⊥ → 𝑞𝑏 , 𝜖

  

 

 
(𝑞𝑎 , 𝑎𝑎𝑏𝑏, 𝑧⊥) ⊢𝐴

∗ (𝑞𝑏 , 𝜖,   ) 

(𝑞𝑎 , 𝜖, 𝑧⊥) ⊢𝐴
∗ (𝑞𝑎 , 𝜖,   ) 

 

V.6. Les critères d'acceptation 

Dans nos exemples, on accepte un mot si ruban vide et pile vide. Ce sont des cas particuliers. 

Il y a deux critères d'acceptation possible:  

 acceptation par état final (pour toute pile quand on s'arrête) ; 

 acceptation par pile vide (pour tout état quand on s'arrête). 

Ces deux critères  sont  équivalents. 
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V.6.1 Acceptation par état final 

Un mot𝑚 ∈ Σ∗ est accepté par état final par un AP𝐴 = (Σ, 𝑍, 𝑧⊥ , 𝑄, 𝑞0, 𝐹, ∆)si pour la 

configuration(𝑚, 𝑞0, 𝑧⊥), il existe un état 𝑞𝑓 ∈ 𝐹et un mot𝑧 ∈ 𝑍∗tel que(𝑚, 𝑞0, 𝑧⊥) ⊢𝐴
∗ (𝜖, 𝑞𝑓 , 𝑧) 

 

Exemple : 

L'exemple des palindromes sans vider la pile en 𝑞2 : 

 
On remplace𝑞2, 𝜖, 𝑧⊥ → 𝑞2 , 𝜖 par  𝑞2, 𝜖, 𝑧⊥ → 𝑞𝑓 , 𝑧⊥ 

(𝑞1, 𝑎𝑏𝑏𝑎, 𝑧⊥) ⊢∗ (𝑞𝑓 , 𝜖, 𝑧⊥): acceptation. 

 

 

V.6 .2 Langage accepté 

Le langage accepté par état final par un AP est l'ensemble des mots acceptés par cet automate 
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Exercices de TD   
 

Exercice 1:  

Construire un automate à pile reconnaissant par pile vide le langage: 

L = {a
n
 b

p
 | 0 < n <= p<= 2n}. 

 

Exercice 2:  

Les langages suivants sont-ils algébriques ? Si oui, donner un automate à pile reconnaissant le 

langage: 

1.  L1 = {w ∈ {a, b}* | |w|a = |w|b} 

2.  L2 = {w ∈ {a, b}* | |w|a =2 |w|b} 

3.  L3= {a
p
, p premier} 

4.  L4= {a
i
b

j
, j=i

2
} 

5. L5 = {bin (i) bin (i + 1); où bin (i) est l'écriture en base 2 de i} 

 

Exercice 3:  

Soit le langage L ={ a
n
b

m
c

k 
 avec n+m =k}  ou n+k=m 

1. Construire un automate à pile déterministe qui reconnait L. 

2. Expliquez son principe de fonctionnement. 

3. Vérifiez que l’automate prend en compte les cas où n=0, m=0 et k=0. 

4. Donnez la suite de configurations pour le mot aabbbccccc (abbbbccc). 
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Chapitre VI: Machine de Turing 

VI.1. Introduction 

 Automate : 

     Modèle abstrayant la notion de calcul sans écriture 𝐿 est décidable par automate si pour 

tout mot 𝑤 de 𝐿, on peut répondre à la question « 𝑤 appartient-il à 𝐿 ? » en lisant le mot et en 

utilisant la mémoire finie. 

 Machine de Turing : 

     Modèle analogue avec une notion plus élaborée de calcul 𝐿 est décidable par automate si 

pour tout mot w de L, on peut répondre à la question « 𝑤 appartient-il à  ? » en lisant le mot et 

en utilisant la mémoire finie mais aussi en écrivant des informations sur un support illimité. 

VI.2. Machine de Turing 

Caractéristiques d’un automate fini: 

 Etats : mémoire finie, 

 Lecture des symboles, 

 Programme : fonction de transition d’états 

 

 

Caractéristiques d’une machine de Turing: 

 Etats : mémoire finie, 

 Lecture des symboles du ruban, 

 Ecriture sur le ruban 
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 Programme : 

fonction de transition d’états et de déplacement et d’écriture 

Support illimité de l’information : Ruban 

 

 

VI.3. Définition formelle d’une Machine de Turing (MT) 

Une machine de Turing à un ruban infini est septuplet (𝑄, Γ, Σ, 𝛿, 𝑞0, 𝐵, 𝐹) où  

 𝑄 ensemble fini d’état, 

 Γalphabet fini des symboles du ruban, 

 Σ ⊂ Γalphabet fini des symboles d’entrée, 

 𝐵 ∈ Γ\Σsymbole particulier dit « blanc » 

 𝑞0état initial 

 𝐹ensemble des états acceptants 

 𝛿relation de transition 

La MT est déterministe si pour chaque configuration, elle a au plus une possibilité d’évolution. 

 

VI.3.1Relation de transition 

𝜹 ⊂ 𝑸 × 𝜞 × 𝑸 × 𝜞 ×  ←,→  

Notation d’une règle : 
𝑞, 𝜎 → 𝑞′ , 𝜎 ′ , 𝑚 

Prédécesseur : 

 𝑞 : état courant de la machine 

 𝜎symbole lu sur le ruban 

Successeur : 

 𝑞’ : nouvel état de la machine 

 𝜎 ′symbole à écrire sur le ruban 

 𝑚 déplacement de la tête de lecture 

Relation de transition : sous forme de table ou de diagramme. 
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VI.3.2 Notion de configuration 

La configuration d’une MT décrit l’« état général » de la machine : état du ruban,  état courant de 

la machine et position de la tête de lecture. 

(f,q,p) 
 𝑓: ℕ → Γ le ruban 

 𝑞 ∈ 𝑄 l’état de la machine 

 𝑝 ∈ ℕ la position sur le ruban 

La relation de transition permet alors de calculer chaque élément de la nouvelle configuration. 

 

 

Exemple : Le tableau suivant illustre la fonction de transition : 

 

 
 

VI.3.3 Langage reconnu 

Le langage accepté par 𝑀 = (𝑄, Γ, Σ, 𝛿, 𝑞0, 𝐵, 𝐹) est défini par : 

 

𝐿 𝑀 = {𝑤 ∈ Σ∗tels que: 

 l’état initial de 𝑀 est 𝑞0 

 le mot 𝑤 est écrit sur le ruban 

 la tête de lecture est positionnée sur la première lettre de 𝑤 

 𝑀 atteint un état acceptant de 𝐹 en un nombre fini d’étape 

IV.4. Classe de langages  

Une MT s’arrête lorsque 

 elle atteint un état final 

 elle ne peut plus effectuer de transition 
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VI.4.1 Langage récursif 

Un langage reconnu par une MT qui s’arrête sur tous les mots en entrée est dit langage récursif. 

VI.4.2 Langage récursivement énumérable 

Un langage reconnu par une MT qui s’arrête sur tous les mots du langage (et peut ne pas s’arrêter 

sur les autres) est dit langage récursivement enumerable,  engendré par une grammaire de type 0. 

VI.5. Fonction calculée par une machine de Turing 

VI.5.1 Fonction calculée  

La sortie d’une MT est le mot inscrit sur le ruban lorsque la MTs’arrête. 

La fonction calculée𝑓 par une MT 𝑀 est définie par : 

A toute entrée𝑥 sur laquelle 𝑀 s’arrête, on associe la sortie:𝑓 (𝑥)  =  𝑦 

Aucune image n’est associée au mot 𝑥 sur lequel 𝑀 ne s’arrête pas. 

VI.5.2 Machine de Turing  équivalente 

On peut imaginer beaucoup de variantes de MT : 

 sur un « demi » ruban. 

 sur deux ou plusieurs rubans. 

 la tête de lecture peut être stationnaire. 

 non-déterminisme. 

 écrire ou non de symbole blanc. 

La machine de Turing semble bien représenter une notion de « calcul » par une « procédure 

effective ». 

VI.5.3 Machine de Turing universelle 

Une machine de Turing universelle est capable de simuler le comportement de n’importe quelle 

autre machine de Turing. 

 

Exercice: 

1. L’ensemble des machines de Turing est-il dénombrable ? 

2. Existe-il un ensemble de fonctions non-dénombrables ? 

3. Existe-t-il des fonctions non calculables ? 
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VI.5.4 Fonctions calculable 

 Modélisation de la notion de calcul et procédure effective 

 Ce n’est pas un résultat que l’on peut démontrer 

 Fonctions calculables par MT = fonctions définies par 𝜆-calculde Chruch 

 Base de la théorie de la calculabilité 

 Alonzo Church (1903 -1995), mathématicien, logicien américain. 
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