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Convergence des méthodes itératives de résolution des systèmes linéaires 

Exemple : Etudier la convergence   de Jacobi et de Gauss-Seidel pour la résolution du 

système 𝐴𝑥 = 𝑏  
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1. 𝑑𝑒𝑡(𝐴) = 18 ≠ 0 donc 𝐴 est inversible et le système 𝐴𝑥 = 𝑏 admet une solution 

unique. 

2.  Méthode de Jacobi, La matrice A n’est pas a diagonale strictement dominante 

donc on calcule la matrice de Jacobi : 
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La méthode de Jacobi est convergente si et seulement si 𝜌(𝐽) < 1. 

𝜌(𝐽) =rayon spectral de J  est le plus grand des modules des valeurs propres de J  

Calculons les valeurs propres de la matrice J : 

Le nombre 𝜆 est une valeur propre de la matrice 𝐴 si et seulement si 

𝑃𝐴(𝜆) = det(𝐴 − 𝜆𝐼) = 0 

Autrement dit, les valeurs propres sont les racines du  polynôme caractéristique de  𝐴. 

𝑃𝐽(𝜆) = det(𝐽 − 𝜆𝐼) = 𝑑𝑒𝑡
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                           = 𝑑𝑒𝑡
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det(𝐽 − 𝜆𝐼) = �
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Donc 𝑃𝐽(𝜆) = −𝜆3 = −𝜆3 − 5
4
𝜆 ⟺ spec(J) = �0,∓√5

2
i� ⟺ 𝜌(𝐽) = √5

2
> 1. 

Alors la méthode de Jacobi diverge. 

3. Méthode de Gauss-Seidel, La matrice A n’est pas a diagonale strictement 

dominante donc on calcule la matrice de Gauss-Seidel : 

𝐺𝑆 = (𝐷 − 𝐸)−1𝐹 = �
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Pour calculer la matrice inverse de (𝐷 − 𝐸) on peut utiliser la définition  

(𝐷 − 𝐸)−1 =
1

det(𝐷 − 𝐸)
(𝑐𝑜𝑚(𝐷 − 𝐸))𝑡 

Mais puisque la matrice 𝐷 − 𝐸 est triangulaire inferieure, on peut utiliser la propriété 

suivante : (𝐷 − 𝐸)𝑥 = 𝑦 ⟺ 𝑥 = (𝐷 − 𝐸)−1𝑦 
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Alors : 

𝐺𝑆 = (𝐷 − 𝐸)−1𝐹 =

⎝

⎜
⎜
⎛

1
2

0 0

−
1
2

1
2

0

0
1
4

1
2⎠

⎟
⎟
⎞
�

0 −1 −1
0 0 −2
0 0 0

� =

⎝

⎜
⎜
⎛

0
1
2

−
1
2

0 −
1
2

−
1
2

0 0 −
1
2⎠

⎟
⎟
⎞

 

La méthode de Gauss-Seidel est convergente si et seulement si 𝜌(𝐺𝑆) < 1. 

Calculons les valeurs propres de la matrice GS : 

 

𝑃𝐺𝑆(𝜆) = det(𝐺𝑆 − 𝜆𝐼) = 𝑑𝑒𝑡
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det(𝐺𝑆 − 𝜆𝐼) =
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Donc 𝑃𝐺𝑆(𝜆) = det(𝐺𝑆 − 𝜆𝐼) = 0 ⟺−𝜆�− 1
2− 𝜆� �− 1

2− 𝜆� = 0 ⟺ spec(GS) = {0,−0.5,−0.5} ⟺

𝜌(𝐺𝑆) = 0.5 < 1 

Alors la méthode de Gauss-Seidel converge. 
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