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Chapitre 1

Séries numériques

Introduction
Dans le langage courant, les mots série et suite signi�ent la même chose. Cependant,

en mathématiques, il est essentiel de reconnaître la di¤érence. Une série est le résultat

de l�addition d�une suite de nombres.

Nous traitons constamment et sans le savoir des séries lorsque nous écrivons des

expressions comme
1

3
= 0; 333:::

puisque cela signi�e que

0; 333::: = 0; 3 + 0; 03 + 0; 003 + :::

=
3

10
+

3

102
+

3

103
+ :::

= 3

+1X
n=1

�
1

10

�n
somme in�nie de termes de suite géométrique de raison

1

10
< 1

= 3� 1

10
� 1

1� 1
10

= 3� 1

10
� 10
9

=
1

3
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1.1 Dé�nitions et généralités

Soit (un)n une suite numérique réelle (ou complexe), c.à.d. 8n 2 N : un 2 R (ou

un 2 C). On construit une nouvelle suite (Sn)n, comme suit

La suite (un) La suite (Sn)n

u0 S0 = u0

u1 S1 = u0 + u1

u2 S2 = u0 + u1 + u2

u3 S3 = u0 + u1 + u2 + u3

:

:

:

:

:

:

un Sn = u0 + u1 + u2 + ::::+ un =
Pn

k=0 uk

:

:

:

:

Dé�nition 1 On appelle série numérique de terme générale un la suite (Sn)n, notéeP
n

un.

Sn =
nP
k=0

uk est appelé somme partielle d�ordre n de la série
P
n

un.

Exemple 1 1. Si un = n, 8n 2 N, alors 0; 1; 2; 3; :::; n; ::: est une suite et

0; 0 + 1; 0 + 1 + 2; 0 + 1 + 2 + 3; :::; 0 + 1 + 2 + 3 + :::+ n; ; ::::

est la série
P
n�0

n:

2. Si un =
1

n
, 8n 2 N� alors 1; 1

2
;
1

3
; :::
1

n
; ::: est une suite et

1; 1 +
1

2
; 1 +

1

2
+
1

3
; :::1 +

1

2
+
1

3
+ :::+

1

n
; ::::
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est la série
P
n�1

1

n

Remarque 1 A partir d�une somme partielle Sn, on peut reconstituer la suite (un)n par

un = Sn � Sn�1;8n � 1 et u0 = S0

Remarque 2 Si (un)n est dé�nie seulement à partir d�un certain n0 2 N (c.à.d. un0,

un0+1, un0+2,......), il en est de même pour la série de terme général un, que l�on noteP
n�n0

un avec somme partielle Sn =
nP

k=n0

un0 + un0+1 + un0+2 + :::+ un.

Exemple 2 (quelques séries usuelles) 1. La série géométrique

Soit (un)n une suite géométrique dé�nie par

u0 = a et 8n 2 N : un+1 = run, a 2 R�, r > 0 et r 6= 1

on déduit que

8n 2 N : un = arn

On dé�ni la série géométrique de terme générale un par la somme partielle

Sn =
nX
k=0

ark = a+ ar + ar2 + ar3 + :::+ arn

= a
�
1 + r + r2 + r3 + :::+ rn

�
= a

1� rn+1
1� r ,(par division euclidienne)

2. La série harmonique

Il s�agit de la série de terme général un =
1

n
;8n 2 N�, Soit

P
n�1

1

n
de somme partielle

Sn =
nX
k=0

1

k
= 1 +

1

2
+
1

3
+ :::+

1

n

3. Le développement décimal

5



Tout nombre réel x 2 ]0; 1[ s�écrit sous la forme

x =
+1X
n=1

an
10n

=
a1
10
+
a2
102

+ :::+
an
10n

+ ::: (1)

avec an 2 f0; 1; 2; :::; 9g, 8n 2 N. (1) est le développement décimal de x qui est présenté

par une série numérique de terme général un =
an
10n

et de somme partielle

Sn =
nX
k=1

ak
10k

=
a1
10
+
a2
102

+ :::+
an
10n

En e¤et : On a

x 2 ]0; 1[) x = 0; a1a2a3:::an:::: (2)

avec an 2 f0; 1; 2; :::; 9g, 8n 2 N.

(2) ) x = 0; a1 + 0; 0a2 + 0; 00a3 + :::+ 0; 0:::0|{z}
n�1 fois

an + :::

) x =
a1
10
+
a2
102

+
a3
103

+ :::+
an
10n

+ :::

) x =
+1X
n=1

an
10n

Dé�nition 2 (Convergence d�une série numérique) On dit que la série
P
n

un est

convergente (resp. divergente) si la suite (Sn)n des sommes partielles converge (resp.

diverge).

I En cas de convergence, la limite S = lim
n!+1

Sn est appelée somme de la série et

notée S =
+1P
n=0

un.

Exemple 3 La série géomértique
P
n�0

arn (voir plus haut) converge vers
a

1� r si jrj <

1 et diverge si jrj > 1 puisque la suite (Sn)n des sommes partielles dé�nie par Sn =

6



nP
k=0

ark = a
1� rn+1
1� r véri�e

lim
n!+1

Sn =

8<:
a

1� r si jrj < 1

1 si jrj > 1

Dé�nition 3 On appelle reste de
P
n

un à l�ordre n, la di¤érence notée Rn entre Sn et

+1P
n=0

un, soit

Rn =

+1X
n=0

un � Sn

Rn =
+1X
n=0

un �
nX
k=0

uk

=
+1X

k=n+1

uk = un+1 + un+2 + un+3 + :::

I Si la série
P
n

un est convergente, il est clair que lim
n!+1

Rn = 0.

Exemple 4 Le reste de la série géomértique
P
n�0

arn tend vers 0 si jrj < 1, en e¤et :

lim
n!+1

Rn = lim
n!+1

(S � Sn) = lim
n!+1

rn+1

1� r = 0 si jrj < 1

Une autre dé�nition équivalente de convergence :

Dé�nition 4 La série
P
n

un converge et sa somme est S si et seulement si

8" > 0, 9n0 2 N tel que 8n, n � n0 ) jRnj = jSn � Sj < "

Exercise 1.1.1 Utiliser cette dé�nition pour montrer que
P
n�0

arn converge vers
a

1� r si

jrj < 1 avec a 2 R�.
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Solution 1 Soit " > 0. On a

jSn � Sj =
����a1� rn+11� r � a

1� r

����
= jaj

����1� rn+1 � 11� r

����
jSn � Sj = jaj jrj

n+1

1� r ; (1� r > 0 puisque jrj < 1)

et comme lim
n!+1

jrjn+1 < 1 = 0 (puisque jrj < 1), alors il existe n0 � 0 tel que

8n, n � n0 ) jrjn+1 < 1� r
jaj "

) jSn � Sj = jaj
jrjn+1

1� r < "

Alors

8" > 0;9n0 2 N tel que 8n, n � n0 ) jSn � Sj < "

On déduit que
P
n�0

arn converge vers
a

1� r si jrj < 1.

Remarque 3 On parle de nature d�une série pour désigner la convergence ou la diver-

gence de cette série.

Remarque 4 La nature d�une série ne change pas si on change un nombre �ni de termes.

Par contre, si la série est convergente sa somme (limite) change.

Remarque 5 Si un = an + ibn est complexe, la série
P
n

un converge si et seulement si

les deux séries réelles
P
n�0

an et
P
n�0

bn convergent. Dans ce cas la somme (limite) de
P
n

un

est donnée par X
n

un =

+1X
n=0

an + i

+1X
n=0

bn

Exercise 1.1.2 Monter que
P
n�1

1

2n
converge vers 1?
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Solution 2 On commence souvent par dé�nir la suite des sommes partielles.

Soit Sn =
nP
k=1

1

2k
, on a :

S1 =
1
2

= 1
2

= 1� 1
2

S2 =
1
2
+ 1

4
= 3

4
= 1� 1

22

S3 =
1
2
+ 1

4
+ 1

8
= 7

8
= 1� 1

23

S4 =
1
2
+ 1

4
+ 1

8
+ 1

16
= 15

16
= 1� 1

24

:

:

:

:

:

:

:

:

:

Sn =
1
2
+ 1

22
+ 1

23
+ :::+ 1

2n
= 1� 1

2n

d�où lim
n!+1

Sn = 1, on déduit que
P
n�1

1

2n
converge vers 1.

1.2 Structure d�espace vectoriel de séries

Soient
P
n

an et
P
n

bn deux séries numériques de termes généreaux an et bn respective-

ment.

I L�addition de
P
n

an et
P
n

bn est une série numérique de terme général cn = an + bn

dé�nie par

X
n

cn =
X
n

an +
X
n

bn sa somme partielle est Sn =
nX
k=0

ck =

nX
k=0

ak +

nX
k=0

bk

I Soit � 2 K, (K est le corps R ou C). Le produit de
P
n

an par � est une série

numérique de terme général hn = �an dé�nie par

X
n

hn =
X
n

�an = �
X
n

an sa somme partielle est Sn =
nX
k=0

hk = �

nX
k=0

ak
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On note S l�ensemble des séries numériques et SC l�ensemble des séries numé-

riques convergentes.

Proposition 3 (S,+; .) est un espace vectoriel sur K.

Démonstration 1 Vu en cours de 1ère année.

Proposition 4 SC est un sous espace vectoriel de (S,+; .) sur K.

Démonstration 2 Soient
P
n

un et
P
n

vn deux séries convergentes et (Sn)n et (Tn)n sont

respectivement les suites des sommes partielles de
P
n

un et
P
n

vn, et � 2 K. On montre

que
P
n

un +
P
n

vn et �
P
n

un sont deux séries convergentes.

1. On a X
n

un converge) 9S 2 K tel que lim
n!+1

Sn = S

et X
n

vn converge) 9T 2 K tel que lim
n!+1

Tn = T

donc la suite (Wn)n dé�nie par Wn = Sn + Tn est convergente, il existe W 2 K tel que

lim
n!+1

Wn = W , d�où W = S + T , autrement dit
P
n

un +
P
n

vn est convergente.

2. On a

X
n

un converge ) 9S 2 K tel que lim
n!+1

Sn = S

) 9S 2 K tel que lim
n!+1

(�Sn) = �S

donc la suite (�n)n dé�nie par �n = �Sn est convergente, il existe � 2 K tel que

lim
n!+1

�n = �, d�où � = �S, autrement dit �
P
n

un est convergente.

Proposition 5 1. Si
P
n

un est convergente et
P
n

vn est divergente, alors
P
n

un +
P
n

vn

est divergente.

2. Si
P
n

un et
P
n

(un + vn) sont convergentes, alors
P
n

vn est convergente.

10



Démonstration 3 1. Soient (Sn)n et (Tn)n les suites des sommes partielles de
P
n

un etP
n

vn respectivement. En utilisant les résultats connus sur les suites, on obtient

X
n

un converge et
X
n

vn diverge ) (Sn)n converge et (Tn)n diverge

) la suite (Sn + Tn)n diverge

) la série
X
n

(un + vn) diverge

2. Utilisons les propriétés du sous espace vectoriel SC (voir plus haut).

X
n

un converge ) �
X
n

un convergeX
n

(un + vn) et �
X
n

un converge )
X
n

vn =
X
n

(un + vn)�
X
n

un converge

Remarque 6 Si
P
n

un et
P
n

vn sont divergentes, on ne peut pas conclure sur la nature

de
P
n

un +
P
n

vn. Par exemple, si un = 1 et vn = �1, 8n, il est clair que
P
n

un (= +1)

et
P
n

vn (= �1) sont divergentes, par contre
P
n

wn =
P
n

(un + vn) = 0 est convergente !

1.3 Condition nécessaire de convergence

Proposition 6 (Condition nécessaire de convergence) Si la série
P
n

un est conver-

gente, alors son terme général un tend vers zéro. Autrement dit

X
n

un converge =) lim
n!+1

un = 0

Démonstration 4 Soit (Sn)nla suite des sommes partielles de
P
n

un. On sait que un =

Sn � Sn�1, 8n � 1, alors

X
n

un converge ) 9S tel que lim
n
Sn = lim

n
Sn�1 = S

) lim
n!+1

un = S � S = 0

11



La contraposée de l�implication de la proposition ci-dessus, nous donne un test

de divergence e¢ cace !

Proposition 7 Si le terme général un de la série
P
n

un ne tend pas vers zéro,

alors
P
n

un est divergente. Autrement dit

lim
n!+1

un 6= 0 =)
X
n

un diverge

Exemple 5 1. La série géométrique
P
n

rn est divergente si jrj � 1. puisque

jrj � 1) lim
n
rn 6= 0

2.
P
n

n

3n+ 1
diverge puisque lim

n

n

3n+ 1
=
1

3
6= 0.

Remarque 7 La condition lim
n!+1

un = 0 est nécessaire mais pas su¢ sante pour la

convergence de
P
n

un.

Exemple 6 Pour la série
P
n�1

1

n
(appelée série harmonique), on a lim

n!+1

1

n
= 0 maisP

n�1

1

n
est divergente. En e¤et : soit Sn =

nP
p=1

1

p
, on a

S2n � Sn = 1 +
1

2
+
1

3
+ :::+

1

2n
�
�
1 +

1

2
+
1

3
+ :::+

1

n

�
=

1

n+ 1
+

1

n+ 2
+ :::+

1

2n

� 1

2n
+
1

2n
+ :::+

1

2n
=
n

2n

d�où

8n � 1 : S2n � Sn �
1

2

12



Si
P
n�1

1

n
converge on a lim

n!+1
S2n = lim

n!+1
Sn = S alors

0 = S � S � 1

2
contradiction !

donc
P
n�1

1

n
est divergente.

1.4 Le critère de Cauchy

Dé�nition 5 Soit
P
n

un une série numérique et Sn =
nP
k=1

uk sa somme partielle.
P
n

un

converge au sens de Cauchy si et seulement si 8" > 0;9n0 2 N tel que 8p; q :

q > p � n0 ) jSq � Spj < "

)
�����
qX
k=1

uk �
pX
k=1

uk

����� < "
)

�����
qX

k=p+1

uk

����� < "
I Si

P
n

un est convergente, la suite (Sn) admet une limite, elle est en particulier une

suite de Cauchy.

Remarque 8 Dans le cas où un 2 K (espace vectoriel normé complet), (on prend K = R

ou C), on a X
n

un converge, (Sn)n est une suite de Cauchy

1.5 La convergence absolue d�une série

Dé�nition 6 On dit que la série numérique
P
n

un est absolument convergente si la sérieP
n

junj est convergente.

I Une série convergente mais non absolument convergente est dite semi-convergente.

13



Exemple 7 La série alternée
P
n�1

(�1)n

n
est semi-convergente puisqu�elle est

- convergente (sera démontrée plus tard).

- non absolument convergente puisque
P
n�1

����(�1)nn

���� = P
n�1

1

n
série harmonique diver-

gente (démontrée plus haut).

Remarque 9 La convergence simple et la convergence absolue coincident dans le cas

d�une série à termes positifs.

Proposition 8 Si
P
n

un est absolument convergente, alors elle est convergente et on a

�����X
n

un

����� �X
n

junj

Démonstration 5

X
n

un est absolument convergente )
X
n

junj est convergente

)
X
n

junj est convergente au sens de Cauchy

Donc

8" > 0;9n0 2 N tel que 8p; q : q > p � n0 )
�����

qX
k=p+1

uk

����� �
qX

k=p+1

jukj < "

)
X
n

un est convergente au sens de Cauchy

)
X
n

un est convergente

et comme

8n 2 N : jSnj =
�����
nX
k=0

uk

����� �
nX
k=0

jukj

14



alors par passage à la limite, on obtient�����X
n

un

����� �X
n

junj

Remarque 10 Pour étudier la nature d�une série à termes de signes variables, on com-

mence toujours par la convergence absolue.

1.6 Calcul de la somme d�une série convergente

Lorsqu�une série converge, il est naturel de chercher à calculer sa somme ; cela n�est

pas généralement possible et, même si possible, ce n�est pas toujours facile. Les techniques

de calcul de telles sommes sont très variées mais les outils pour y parvenir sont peu. La

plupart de ces méthodes nous seront fournies par les séries entières et les séries de Fourier,

que nous verrons dans les chapitres trois et quatre.

1.6.1 Séries géométriques

On connait déjà la somme d�une série géométrique de raison r ; en e¤et, si an = tn,

avec t 2 R véri�ant jtj < 1, alors

Sn =
nX
k=0

ak =
nX
k=0

tk =
1� tn+1
1� t �! 1

1� t quand t �! +1

autrement dit la série
P
n�0

ak converge si jtj < 1 et a pour somme

+1X
n=0

an =

+1X
n=0

tn =
1

1� t

En particulier, on a par exemple :

15



- pour t =
1

2
, on a

+1X
n=0

1

2n
= 2

- pour t = �1
2
, on a

+1X
n=0

(�1)n

2n
=
2

3

en général
+1X
n=0

1

an
=

a

a� 1 si jaj > 1

1.6.2 Séries télescopiques

Dé�nition 7 Une série télescopique (ou somme télescopique) désigne une somme dont

les termes s�annulent de proche en proche. Si (an)n est une suite, la série télescopique

correspondante est la série de terme général an+1 � an. La formule de télescopage s�écrit

alors
nX
k=0

(ak+1 � ak) =
nX
k=1

(ak � ak�1) = an � a0

Exemple 8 (Terme général rationnel) Soit la série de terme général an =
1

n (n+ 1)
,

n 2 N�. On a

an =
1

n
� 1

n+ 1

soit

Sn =
nX
k=1

1

k (k + 1)

=
nX
k=1

�
1

k
� 1

k + 1

�
= 1� 1

2
+
1

2
� 1
3
+
1

3
� 1
4
+ :::+

1

n� 1 �
1

n
+
1

n
� 1

n+ 1

= 1� 1

n+ 1

16



d�où la somme de la série est donnée par

+1X
n=1

1

n (n+ 1)
= lim

n

�
1� 1

n+ 1

�
= 1

Exemple 9 (Autres cas) Soit la série de terme général an = arctan
1

n2 + n+ 1
, n 2

N.

Rappelons que, pour tout (a; b) 2 R :

arctan a+ arctan b =
a+ b

1� ab avec ab < 1 (*)

Ecrivons

an = arctan
1

n2 + n+ 1
= arctan

(n+ 1) + (�n)
1� (n+ 1) (�n)

D�après (�) avec a = n+ 1 et b = �n, on obtient

an = arctan (n+ 1) + arctan (�n) = arctan (n+ 1)� arctann

d�où

Sn =
nX
k=0

arctan
1

k2 + k + 1

=
nX
k=0

(arctan (k + 1)� arctan k)

= arctan (n+ 1)

on déduit que la série converge et sa somme et donnée par

+1X
n=0

arctan
1

n2 + n+ 1
= lim

n!+1
Sn =

�

2

17



1.7 Séries à termes positifs

Dans toute cette section on suppose que la série
P
n

un est à termes positifs, c.à.d.

8n : un � 0. Dans ce cas la suite (Sn)n des sommes partielles est croissante puisque

8n 2 N� : Sn � Sn�1 = un � 0

Nous allons développer des outils en vu d�étudier la nature de ces série à termes

positifs.

1.7.1 Critère de majoration

Proposition 9 Une série à termes positifs
P
n

un est convergente si et seulement si la

suite (Sn)n est majorée.

Démonstration 6 (Sn)n est croissante et majorée donc convergente.

Exemple 10 Montrer que
P
n�1

1

n2
est convergente.

Solution 10 Soit Sn =
nP
p=1

1

p2
. On a

Sn = 1 +
nX
p=2

1

p2

� 1 +

nX
p=2

1

p (p� 1)

� 1 +

nX
p=2

�
1

p� 1 �
1

p

�
= 2� 1

n

d�où

0 � Sn � 2�
1

n
< 2

donc (Sn)n est majorée, on déduit que
P
n�1

1

n2
est convergente.
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1.7.2 Critère de comparaison

Proposition 11 (Comparaison directe) Soit
P
n

an et
P
n

bn deux séries à termes po-

sitifs telles que 8n 2 N : 0 � bn � an. Alors

X
n

an converge )
X
n

bn convergeX
n

bn diverge )
X
n

an diverge

Exemple 11 Montrer que
P
n�0

sin
1

2n
est convergente.

Solution 12 Pour n assez grand sin
1

2n
� 0. On a

8n 2 N : 0 � sin 1
2n
� 1

2n

et

X
n�0

1

2n
série géométrique convergente (r =

1

2
< 1))

X
n�0

sin
1

2n
est convergente

Dé�nition 8 (Négligeabilité) On dit que an est négligeable devant bn au voisinage de

l�in�ni (n! +1) si

lim
n!+1

an
bn
= 0 avec bn 6= 0 pour n assez grand

et on écrit (notation de Landau)

an = o (bn) (n! +1)

ou (notation de Hardy)

an � bn (n! +1)
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Dé�nition 9 (Equivalence) On suppose que bn ne s�annule pas pour n assez grand.

On dit que an est équivalent à bn en +1, et on note an � bn
n!+1

, lorsque

an � bn = o (bn) (n! +1)

autrement dit

lim
n!+1

an
bn
= 1

Dé�nition 10 (Domination) On dit que an est dominé par bn en +1, ou que bn
domine an en +1, lorsqu�il existe des constantes N et C telles que

8n > N : janj < C jbnj

et on écrit (notation de Bachmann)

an = O (bn) (n! +1)

ou (notation de Hardy)

an � bn (n! +1)

La comparaison directe des séries positives a pour corollaire immédiat des résultats

de comparaison par les relations de négligeabilité, d�équivalence et de domination.

Corollaire 1 (Comparaison par o, O et �) Soient
P
n

an et
P
n

bn deux séries à termes

positifs ou nuls.

1. On suppose que an = o (bn) ou an = O (bn). On a :

- Si
P
n

bn converge, alors
P
n

an converge.

- Si
P
n

an diverge, alors
P
n

bn diverge.

2. Si an > 0, bn > 0 et an � bn
n�+1

, alors
P
n

an et
P
n

bn sont de même nature.

Exemple 12 La série
P
n

n2 + n

n3 + 1
est divergente puisque

n2 + n

n3 + 1
� 1

n
n�+1

et
P
n

1

n
est diver-

gente.
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Remarque 11 Pour les séries à termes quelconques, le critère d�équivalence n�est plus

valable, puisqu�on peut avoir an � bn
n�+1

avec
P
n

an et
P
n

bn de nature di¤érente, comme le

montre le contre-exemple suivant : en e¤et, prenons an =
(�1)np
n
+
1

n
; il est clair que

an � bn =
(�1)np
n

n�+1

nous avons montrer que
P
n�1

(�1)np
n

est une série alternée convergente, par contre
P
n

an

est divergente puisque
P
n�1

1

n
est la série harmonique divergente.

Proposition 13 (Comparaison logarithmique) Soient
P
n

an et
P
n

bn deux séries à

termes strictement positifs telles que pour tout n 2 N on ait

an+1
an

� bn+1
bn

Corollaire 2 - Si
P
n

bn converge, alors
P
n

an converge.

- Si
P
n

an diverge, alors
P
n

bn diverge.

1.7.3 Test intégral : comparaison d�une série à une intégrale

Proposition 14 Soient a un réel et f : [a;+1[ ! [0;+1[ une fonction continue et

décroissante ; posons, pour n � a, an = f (n). Alors la série
P
n

an converge si et seulement

si la suite
�R n
a
f (t) dt

�
n
a une limite quand n tend vers +1. On peut même dire que

la série
P
n

an et l�intégrale impropre
R +1
a

f (t) dt sont de même nature.

I En cas de convergence, on a un encadrement du reste Rn :Z +1

n+1

f (t) dt � Rn �
Z +1

n

f (t) dt

Comme application de cette proposition, nous allons étudier la nature de deux types

de séries :
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1. Les séries de Riemann dont le terme général est donné par

an =
1

n�
; � 2 R, n 2 N�

2. Les séries de Bertrand dont le terme général est donné par

an =
1

n� (lnn)�
; (�; �) 2 R2 et n � 2

Corollaire 3 (Séries de Riemann) La série
P
n�1

1

n�
converge si � > 1 et diverge si

� � 1.

Démonstration 7 Il su¢ t de comparer
P
n�1

1

n�
à l�intégrale

R +1
1

dt

t�
.

Exemple 13 1.
P
n�1

1

n2
est une série de Riemman convergente puisque � = 2 > 1:

2.
P
n�1

1p
n
est une série de Riemman divergente puisque � =

1

2
< 1:

Corollaire 4 (Séries de Bertrand) La série
P
n�2

1

n� (lnn)�
converge si � > 1 ou � =

1 et � > 1 et diverge si � < 1 ou � = 1 et � � 1.

Exemple 14 1.
P
n�2

1

n (lnn)2
converge puisque � = 1 et � = 2 > 1:

2.
P
n�2

lnn

n
=
P
n�2

1

n (lnn)�1
diverge puisque � = 1 et � = �1 � 1:

1.7.4 Règle de Cauchy

Proposition 15 (Règle de Cauchy) Soit
P
n

an une série à termes positifs ou nuls

telle que

lim
n!+1

n
p
an = l

- Si l < 1, la série
P
n

an converge ;

- Si l > 1, la série
P
n

an diverge ;
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- Si l = 1, cas douteux, on ne peut pas conclure ; toutefois, si la suite
�
n
p
an
�
n
tend

vers 1 par valeurs supérieures, alors la série diverge.

Exemple 15 La série
P
n

�
1� 1

n

�n2
converge puisque lim

n!+1
n

s�
1� 1

n

�n2
= lim

n!+1

�
1� 1

n

�n
=

1

e
< 1.

1.7.5 Règle de D�Alembert

Proposition 16 (Règle de D�Alembert) Soit
P
n

an une série à termes strictement

positifs telle que

lim
n!+1

an+1
an

= l

- Si l < 1, la série
P
n

an converge ;

- Si l > 1, la série
P
n

an diverge ;

- Si l = 1, cas douteux, on ne peut pas conclure ; toutefois, si la suite
�
n
p
an
�
n
tend

vers 1 par valeurs supérieures, alors la série diverge.

Exemple 16 La série
P
n

n!

nn
converge puisque si an =

n!

nn
, on a

lim
n!+1

an+1
an

= lim
n!+1

(n+ 1)!

(n+ 1)n+1
� n

n

n!

= lim
n!+1

nn

(n+ 1)n

= lim
n!+1

1�
1 +

1

n

�n = 1

e
< 1

Remarque 12 Lorsque l = 1, on peut conclure en écrivant un développement limité à

l�ordre 1 en x =
1

2
de
an+1
an

, c�est l�objet de la proposition suivante

Proposition 17 (Critère de Raabe-Duhamel) Soit
P
n

an une série à termes stric-

tement positifs telle que
an+1
an

= 1� �
n
+ o

�
1

n

�
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alors
P
n

an converge si � > 0 et diverge si � < 1.

Exemple 17 La série
P
n

enn!

nn
est divergente ? En e¤et :

an+1
an

=
e�

1 +
1

n

�n , lim
n!+1

an+1
an

=
e

e
= 1

alors

an+1
an

=
e

en ln(1+
1
n)

= e1�n ln(1+
1
n) =

n�+1
e1�n(0+

1
n
� 1
2n2

+o( 1
n2
)) = e

1
2n
+o( 1n) = 1 +

1

2n
+ o

�
1

n

�

d�où
an+1
an

= 1 +
1

2n
+ o

�
1

n

�
, avec � = �1

2
< 0

on déduit que
P
n

enn!

nn
est divergente.

1.7.6 Règle de Riemman

Proposition 18 Soit
P
n

an une série à termes strictement positifs.

- S�il existe � > 1 tel que lim
n!+1

n�an = 0 alors
P
n

an converge.

- S�il existe � � 1 tel que lim
n!+1

n�an 6= 0 alors
P
n

an diverge.

Exemple 18 La série
P
n

e�2
p
n est convergente, puisque

lim
n!+1

n2e�2
p
n = lim

n!+1
e
2
p
n

0@ lnnp
n
�1

1A

= lim
n!+1

e�2
p
n = 0 avec � = 2 > 1
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1.8 Séries à termes quelconques

1.8.1 Séries alternées

Dé�nition 11 Une série alternée est une série à termes réels de type
P
n

(�1)n an avec

an de signe constant.

Exemple 19 1.
P
n�0

(�1)n = 1� 1 + 1� 1 + ::: est une série alternée divergente.

2.
P
n�1

(�1)n

n
= �1+ 1

2
� 1
3
+
1

4
+ :::est une série alternée convergente (démontré plus

tard).

Proposition 19 (Critère des séries alternées) La série alternée
P
n

(�1)n an avec an >

0;8n 2 N, est convergente, si la suite (an)n est décroissante et tend vers 0. En outre,

on a la majoration suivante des restes,

Rn =
+1X

k=n+1

an � an+1

Autrement dit, l�erreur commise en remplaçant la somme de la série par la somme

partielle d�ordre n est majorée par la premier terme négligé.

Exemple 20 1. La série
P
n�1

(�1)n

n
est convergente puisque (an)n tel que an =

1

n
est

décroissante et lim
n!+1

an = 0.

2. L�erreur faite en remplaçant
+1P
n=1

(�1)n

n2
par la somme des 100 premiers est infé-

rieure à 10�4. En e¤et :

la série
+1P
n=1

����(�1)nn2

���� = +1P
n=1

1

n2
série de Riemman convergente (� = 2 > 1) et on a

R100 =

+1X
k=101

1

n2
=

1

1012
+

1

1022
+ ::::: � 1

1012
= 0:000098 < 10�1
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1.8.2 Règle d�Abel

Théorème 1 (d�Abel) Soient (an)n une suite réelle et (bn)n une suite réelle ou com-

plexe satisfaisant les conditions ci-après :

1. il existe un réel positif M tel que, pour tous entiers p et q avec p < q, on ait

jbp+1 + bp+2 + :::+ bqj �M ;

2. la suite (an)n est décroissante et tend vers zéro.

Alors la série
P
n

anbn converge.

Exemple 21 Etudier la convergence de la série
P
n�1

sinn

n
.

Solution 20 Posons an = sinn et bn =
1

n
. Il est clair que (an)n est décroissante et tend

vers zéro. Pour tout n 2 N�, on a

Sn =
nX
k=1

sin k =
1

2i

nX
k=1

�
eik � e�ik

�
=

1

2i

 
nX
k=1

�
ei
�k � nX

k=1

�
e�i
�k!

=
1

2i

�
1� ei(n+1)
1� ei � 1� e

�i(n+1)

1� e�i

�

=
1

2i

�
1� ei(n+1) + ei � e�in

1� ei

�
=
1

2i

0@1� ei(n+1) + ei � e�in
e
i
2

�
e�

i
2 � e i2

�
1A

d�où

jSnj = jb1 + b2 + :::+ bnj �
2���e i2 � e� i

2

��� = 1��sin 1
2

�� , (ici p = 0, q = n et M =
1��sin 1
2

��)
d�après le théorème d�Abel la série

P
n�1

sinn

n
est convergente.
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Chapitre 2

Suites et séries de fonctions

2.1 Suites de fonctions

Dans tout ce qui suit dans cette section, D est une partie non vide de R.

Dé�nition 12 On appelle suite de fonctions dé�nies sur D à valeurs dans R, toute

application n! fn telle que pour tout n 2 N

fn : D !R
x 7�!fn(x)

I Cette suite est notée (fn)n et pour tout x 2 D, (fn (x))n est une suite de nombres

réels.

Exemple 22 (xn)n,
��
1 +

x

n

�n�
n
et (arctan (nx))n sont des suites de fonctions.

2.1.1 La convergence simple d�une suite de fonctions

Dé�nition 13 Une suite de fonctions (fn)n dé�nies sur D converge simplement vers

la fonction f si pour tout x 2 D, la suite numérique (fn (x))n converge vers f (x) et

on écrit

8x 2 D : lim
n!+1

fn (x) = f (x)
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f est dite limite simple de la suite (fn)n sur D.

Une dé�nition équivalente est donnée de la façon suivante :

Dé�nition 14 La suite de fonctions (fn)n dé�nies sur D converge simplement vers

la fonction f si et seulement si :

8x 2 D, 8" > 0;9N=N (x; ") 2 N tel que n � N ) jfn (x)� f (x)j < " (CS)

Exemple 23 1. Soit (fn)n une suite de fonctions dé�nies sur [0; 1] par

8n 2 N, fn (x) = xn

(fn)nconverge simplement vers la fonction f dé�nie par

f (x) =

8<: 0 si x 2 [0; 1[

1 si x = 1

(clair puisque x = 1 ) 8n 2 N : fn (1) = 1 ! f (x) = 1 et 0 � x < 1 ) 8n 2 N :

fn (x) = x
n ! f (x) = 0).

2. Soit (fn)n une suite de fonctions dé�nies sur R par

8n 2 N�, fn (x) = 1 +
x

n

(fn)nconverge simplement vers la fonction constante f dé�nie sur R par f (x) = 1

(lim
n

�
1 +

x

n

�
= 1;8 2 R).

3. Soit (fn)n une suite de fonctions dé�nies sur R par

8n 2 N�, fn (x) =
�
1 +

x

n

�n
(fn)nconverge simplement vers la fonction f dé�nie sur R par f (x) = ex (limn

�
1 +

x

n

�n
=

ex;8 2 R).
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2.1.2 La convergence uniforme d�une suite de fonctions

Dé�nition 15 Soit (fn)n une suite de fonctions dé�nies sur D. (fn)nconverge unifor-

mément vers f sur D, si

lim
n
sup
x2D

jfn (x)� f (x)j = 0

f est dite limite uniforme de la suite (fn)n sur D.

Une dé�nition équivalente est donnée de la façon suivante :

Dé�nition 16 La suite de fonctions (fn)n converge uniformément vers la fonction

f sur D si et seulement si :

8" > 0;9N=N (") 2 N tel que n � N ) 8x 2 D, jfn (x)� f (x)j < ", (CU)

Cette dé�nition s�écrit encore :

8" > 0;9N=N (") 2 N tel que n � N ) sup
x2D

jfn (x)� f (x)j < "

Remarque 13 1. La di¤érence entre convergence simple et uniforme est que dans (CS)

le N=N(x; ") dépend de " et x, alors que dans (CU) le N=N(") dépend de " seule-

ment mais commun à tous les x 2 D.

2. Pour prouver la convergence uniforme (resp. non uniforme) d�une suite de fonctions

dé�nies sur D, on suit les étapes suivantes :

a) Etudier la convergence simple pour déterminer f ,

b) Calculer an = sup
x2D

jfn (x)� f (x)j (s�il existe),

c) Démontrer que lim
n
an = 0 (resp. lim

n
an 6= 0). Il est parfois plus rapide dans cette

étape de majorer (resp. minorer) an par une suite bn qui tend vers 0 (resp. qui ne tend

pas vers 0).

Proposition 21 Si (fn)n converge uniformément vers f sur D alors elle converge sim-

plement vers f .
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Démonstration 8 Soit x0 2 D quelconque. On a

0 � jfn (x0)� f (x0)j � sup
x2D

jfn (x)� f (x)j (*)

Si (fn)n converge uniformément vers f sur D on a limn sup
x2D

jfn (x)� f (x)j = 0; alors

(�) =) lim
n
jfn (x0)� f (x0)j = 0

=) lim
n
fn (x0) = f (x0)

ce qui donne la convergence simple de (fn)n.

Remarque 14 La reciproque de cette proposition n�est pas vraie. Un contre exemple :

Nous avons vu plus haut que la suite (xn)n converge simplement sur [0; 1[ vers la fonction

f dé�nie par

f (x) =

8<: 0 si x 2 [0; 1[

1 si x = 1

On montre qu�elle converge uniformément vers la fonction nulle (f = 0) sur [0; 1[, mais

pas sur l�intervalle fermé [0; 1]. En e¤et : Pour tout a tel que 0 � a < 1, on a

8x 2 [0; a] =) 0 � x � a < 1

=) lim
n
xn = 0 et lim

n
sup
0�x�a

jxn � 0j = lim
n
an = 0

Mais

sup
x2[0;1]

jxn � 0j = 1 6= 0

Exercise 2.1.1 Soit la suite dé�nie sur R par fn (x) = 1 +
x

n
.

1. Montrer que (fn)n converge simplement sur R.

2. Etudier la convergence uniforme de (fn)n sur R.
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Solution 22 1. (fn)n converge simplement sur R vers la fonction f = 1, puisque

8x 2 R : lim
n

�
1 +

x

n

�
= 1

2. On a

sup
x2R

jfn (x)� f (x)j = sup
x2R

���1 + x
n
� 1
��� = sup

x2R

jxj
n
= +1

Mais, pour tout a > 0,

lim
n
sup
jxj�a

jfn (x)� f (x)j = lim
n
sup
jxj�a

���1 + x
n
� 1
��� = lim

n
sup
jxj�a

jxj
n
= lim

n

a

n
= 0

On déduit que (fn)n converge uniformément sur tout [�a; a] � R, mais pas sur R.

Proposition 23 (Critère de suite non uniformément convergente) Soit (fn)n une

suite de fonctions dé�nies sur D et f : D �! R. S�il existe une suite (tn)n de D telle que

lim
n
[fn (tn)� f (tn)] 6= 0

alors (fn)n ne converge pas uniformément vers f sur D.

Dé�nition 17 (Suite uniformément de Cauchy) Soit (fn)n une suite de fonctions

dé�nies sur D. On dit que (fn)n est uniformément de Cauchy sur D si et seulement si

8" > 0;9 N=N (") 2 N tel que 8p; q 2 N : p � N et q � N ) sup
x2D

jfp (x)� fq (x)j < "

Le théorème suivant établit le lien entre la convergence uniforme d�une suite de fonc-

tions et l�uniforme de Cauchy :

Théorème 2 (Critère de Cauchy) Une suite (fn)n converge uniformément sur D si

et seulement si elle est uniformément de Cauchy sur D.

Remarque 15 Le critère de Cauchy prouve la convergence uniforme d�une suite de fonc-

tions sans faire appel à sa limite.
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2.1.3 Propriétés de la limite d�une suite de fonctions

Nous verrons que, sans aucune condition supplémentaire, la convergence uniforme

conserve le passage à la limite ainsi que la continuité. En revanche, pour l�intégrabilité,

des conditions sont imposées. Quant à la dérivabilité, elle est transmise à la limite sous

l�hypothèse de la convergence uniforme de la suite des dérivées.

Continuité de la limite

Contrairement à la limite simple, la limite uniforme d�une suite de fonctions

continues hérite la continuité.

Théorème 3 (Continuité de la limite) Soit (fn)n une suite de fonctions dé�nies sur

D qui converge uniformément vers une fonction f et soit x0 2 D.

Si, pour tout n 2 N, fn est continue en x0 (resp. sur D), alors f est continue en x0
(resp. sur D).

Démonstration 9 Soit x0 2 D et " > 0.

fn converge uniformément sur D ) 9N" 2 N tel que 8n � N", 8x 2 D : jfn (x)� f (x)j <
"

3

en particulier, on a

jfN" (x)� f (x)j <
"

3
(1)

et

jfN" (x0)� f (x0)j <
"

3
(2)

et comme fn (en particulier fN") est continue en x0, alors

9�" > 0 tel que : jx� x0j < �" ) jfN" (x)� fN" (x0)j <
"

3
(3)
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(1) ; (2) et (3) =) jf (x)� f (x0)j � jf (x)� fN" (x)j+ jfN" (x)� fN" (x0)j+ jfN" (x0)� f (x0)j

<
"

3
+
"

3
+
"

3
= "

On déduit que f est continue en x0.

Un corollaire directe du théorème ci-dessus.

Corollaire 5 La limite uniforme d�une suite de fonctions continues est une fonction

continue.

Remarque 16 On peut utiliser le théorème ci-dessus pour montrer qu�une suite de fonc-

tions continues ne converge pas uniformément.

Exemple 24 Nous avons vu plus haut que la suite n 7�! xn de fonctions continues sur

[0; 1], converge simplement sur [0; 1] vers la fonction x 7�! f (x) =

8<: 0 si 0 � x < 1

1 si x = 1
qui n�est pas continue sur [0; 1]. Ce qui prouve que cette suite n�est pas uniformément

convergente sur [0; 1].

Intégrabilité de la limite

Contrairement à la limite simple, la limite uniforme d�une suite de fonctions

intégrable au sens de Riemann hérite l�intégrabilité.

Théorème 4 (Intégrabilité de la limite) Soient a; b 2 R (a < b) et (fn)n une suite

de fonctions dé�nies et continues sur un intervalle [a; b] et qui converge uniformément

vers une fonction f sur [a; b]. Pour tout n 2 N et t 2 [a; b], posons Fn (t) =
R t
a
fn (s) ds.

Alors la suite de fonctions (Fn)n converge uniformément vers F sur [a; b] où F (t) =R t
a
f (s) ds.

En particulier, on a

lim
n

Z b

a

fn (s) ds =

Z b

a

lim
n
fn (s) ds
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Démonstration 10 Soit " > 0. (fn)n converge uniformément sur [a; b], alors

9N" 2 N tel que 8n � N", 8s 2 [a; b] : jfn (s)� f (s)j <
"

b� a

et comme, pour tout t 2 [a; b]

jFn (t)� F (t)j =
����Z t

a

(fn (s)� f (s)) ds
���� � Z t

a

jfn (s)� f (s)j ds

<

Z t

a

"

b� ads =
" (t� a)
b� a � " (puisque t � b)

Donc (Fn)n converge uniformément vers F sur [a; b].

Remarque 17 1. Dans le théorème ci dessus, on peut remplacer la condition de conti-

nuité sur [a; b] par une condition faible à savoir "borneé et intégrable au sens de Riemann

sur [a; b]".

2. Le théorème ci-dessus, montre que la convergence uniforme permet d�intervertir la

limite uniforme et l�intégrale. Par contre la convergence simple ne le permet pas. Comme

le montre le contre exemple suivant :

Soit fn (x) = 2n2e�n
2x2, x 2 [0; 1]. On peut montrer facilement que lim

n
fn (x) = 0,

donc (fn)n converge simplement vers f = 0. D�une part on aZ 1

0

lim
n
fn (x) dx =

Z 1

0

(0) dx = 0

et d�une autre part, on a

Z 1

0

fn (x) dx =

Z 1

0

2n2e�n
2x2dx = �

h
e�n

2x2
i1
0
= 1� e�n2 �! 1 6= 0 (quand n �! +1)

c.à.d.

lim
n

Z 1

0

fn (x) dx 6=
Z 1

0

lim
n
fn (x) dx

Tout ça est dû au fait que (fn)n n�est pas uniformément convergente sur [0; 1]. En
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e¤et :

lim
n
sup
0�x�1

jfn (x)� f (x)j = lim
n
sup
0�x�1

���2n2e�n2x2 � 0��� = lim
n

�
2n2
�
6= 0

Dérivabilité de la limite

Pour avoir un résultat pour (fn)n similaire à ceux de la continuité et l�intégrabilité,

on éxige la convergence uniforme de la suite des dérivées (f 0n)n.

Théorème 5 (Dérivabilité de la limite) Soit (fn)n une suite de fonctions de classe

C1 sur le segment [a; b] telle que

1. Il existe x0 2 [a; b] tel que la suite numérique (fn (x0))n converge ;

2. La suite des dérivées (f 0n)n converge uniformément vers une fonction g sur [a; b].

Alors

I. (fn)n converge uniformément vers une foncion f sur [a; b] ;

II. La fonction f est de classe C1 sur [a; b] de dérivée g (c.à.d. f 0 = g).

I Sous les conditions du théoème ci-dessus, nous avons montré que

�
lim

n!+1
fn (x)

�0
= lim

n!+1
f 0n (x)

Démonstration 11 I. Montrons que (fn)n est uniformément convergente sur

[a; b] ?

Il su¢ t de montrer que (fn)n est uniformément de Cauchy. Soit " > 0 �xé. D�après

l�hypothèse 2, la suite des dérivées (f 0n)n est uniformément de Cauchy sur [a; b], alors

9 N = N (") 2 N tel que 8p; q 2 N : p � N et q � N ) 8x 2 [a; b] :
��f 0p (x)� f 0q (x)�� < "

2 (b� a)

Pour chaque couple p; q � N , appliquons le théorème des accroissements �nis entre x
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et x0 à la fonction fp � fq pour tout x 2 [a; b], il existe t0 entre x et x0 tel que

j(fp (x)� fq (x))� (fp (x0)� fq (x0))j = j(x� x0)j
��f 0p (t0)� f 0q (t0)��

� j(x� x0)j sup
a�t�b

��f 0p (t)� f 0q (t)��
� "

2 (b� a) j(x� x0)j

<
"

2
(puisque j(x� x0)j � b� a)

donc

jfp (x)� fq (x)j < jfp (x0)� fq (x0)j+
"

2

(puisque j(fp (x)� fq (x))j�j(fp (x0)� fq (x0))j � j(fp (x)� fq (x))� (fp (x0)� fq (x0))j).

D�après l�hypothèse 1, la suite (fn (x0))n est de Cauchy, il existe donc N
0 = N 0 (") 2 N

tel que

p � N 0 et q � N 0 ) jfp (x0)� fq (x0)j <
"

2

On en déduit que

p; q � max fN;N 0g ) 8x 2 [a; b] : jfp (x)� fq (x)j <
"

2
+
"

2
= "

Ceci prouve la convergence uniforme de la suite (fn)n vers une fontion f sur [a; b].

II. Montrons que f est de classe C1 sur [a; b] et que f 0 = g ?

Posons pour tout x 2 [a; b] et n 2 N, Fn (x) =
R x
x0
f 0n (s) ds (= fn (x) � fn (x0)). La

suite (f 0n)n des dérivées véri�e bien les conditions du théorème 4 (d�intégrabilité), donc

(Fn)n converge uniformément vers la fonction x 7! F (x) =
R x
x0
g (s) ds. Autrement dit :

d�une part on a

lim
n
(fn (x)� fn (x0)) = F (x)

et d�une autre part, on a

lim
n
(fn (x)� fn (x0)) = f (x)� f (x0)
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L�unicité de la limite implique que

f (x) = F (x) + f (x0) =

Z x

x0

g (s) ds+ f (x2)

La fonction f est donc une primitive de g ; elle est donc dérivable et on f 0 = g:

Remarque 18 Remarquons que la convergence uniforme de la suite de fonctions (fn)n

(sans la convergence uniforme de la suite de dérivées (f 0n)n) ne su¢ t pas à assurer

la dérivabilité de la limite. Voici un exemple :

Exemple 25 Soit la suite de fonctions (fn)n dé�nies sur R par fn (x) =

r
x2 +

1

n2
,

n 2 N�. Il est clair que (fn)n est de classe C1 sur R. On montre que (fn)n converge

uniformément sur R vers la fonction x 7! jxj, qui n�est pas dérivable en 0. En e¤et :

Pour tout x 2 R,

lim
n
fn (x) =

p
x2 = jxj =

8>>><>>>:
�x si x < 0

0 si x = 0

+x si x > 0

, non dérivable en 0 donc sur R.

On montre que

fn (x)� jxj �
1

n

en e¤et :

fn (x)� jxj =
r
x2 +

1

n2
� jxj

=

1

n2r
x2 +

1

n2
+ jxj

(le conjugué)

�
1

n2r
x2 +

1

n2

�
1

n2r
1

n2

=
1

n
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D�où

8x 2 R : jfn (x)� jxjj �
1

n
=) lim

n
sup
x2R

jfn (x)� jxjj = 0

Ce qui implique la convergence uniforme de la suite (fn)n vers la fonction x 7! jxj qui

n�est pas dérivable en 0.

I Ce résultat de la non dérivabilité de la limite est dû à la convergence non

uniforme de la suite de dérivées (f 0n)n. En e¤et : Pour tout n 2 N� et x 2 R, on a

f 0n (x) =
xr

x2 +
1

n2

il est clair que (f 0n)n est une suite de fonctions continues sur R, par contre sa limite est

discontinue sur R, puisque

lim
n
f 0n (x) =

x

jxj =

8<: 1 si x > 0

�1 si x < 0

On en déduit que (f 0n)n ne converge pas uniformément sur R.
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2.2 Séries de fonctions

Dans tout ce qui suit dans cette section, D est une partie non vide de R et (fn)n une

suite de fonctions dé�nies sur D.

Les séries de fonctions constituent une famille particulière parmi les suites de fonc-

tions. Cette section est une traduction en tremes de séries des résultats et des dé�nition

déjà rencontrés lors de l�étude des suites de fonctions.

2.2.1 Dé�nitions et propriétés

Dé�nition 18 La série de fonctions associée à (fn)n, notée
P
n

fn est la suite (Sn)n des

sommes partielles dé�nies sur D, par

8x 2 D : Sn (x) =
nX
p=0

fp (x)

Le reste de
P
n

fn est la suite (Rn)n dé�nie par

8x 2 D : Rn (x) =
+1X
p=n+1

fp (x)

Dé�nition 19 Soient (Sn)n et (Rn)n la suite des sommes partielles et le reste de la sérieP
n

fn, respectivement. On a les dé�nitions de convergence suivantes :

1.
P
n

fn converge simplement sur D si et seulement si (Sn)n converge simplement sur

D, c.à.d.

8x 2 D : lim
n
Sn (x) = S (x) où S : D �! R

autrement dit

8x 2 D : lim
n
Rn (x) = 0
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I Dans ce cas la limite S est appelée somme de la série
P
n

fn et on écrit

8x 2 D : S (x) =
+1X
n=0

fn (x)

2.
P
n

fn converge uniformément sur D si et seulement si (Sn)n converge uniformément

sur D, autrement dit

lim
n
sup
x2D

jRn (x)j = 0

Proposition 24 (Condition nécessaire de convergence uniforme)

X
n

fn converge uniformément sur D =) lim
n
sup
x2D

jfn (x)j = 0

Dé�nition 20 (Série uniformément de Cauchy) Soit
P
n

fn une série de fonctions

dé�nies sur D. On dit que
P
n

fn est uniformément de Cauchy sur D si et seulement si

8" > 0;9 N=N (") 2 N tel que 8p; q 2 N : p > q � N ) sup
x2D

�����
pX

k=q+1

fk (x)

����� < "
Le théorème suivant établit le lien entre la convergence uniforme d�une série de fonc-

tions et l�uniforme de Cauchy :

Théorème 6 (Critère de Cauchy) Une série
P
n

fn converge uniformément sur D si

et seulement si elle est uniformément de Cauchy sur D.

Remarque 19 Le critère de Cauchy est de grande utilité prouver la convergence uni-

forme d�une série de fonctions sans faire appel à sa somme.

2.2.2 Règle d�Abel

Comme pour les séries numériques (voir chapitre 1), nous avons l�analogue de la règle

d�Abel.
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Théorème 7 (Règle d�Abel) Soit (fn)n une suite de fonctions dé�nies sur D où fn (x) =

"ngn (x) véri�ant les conditions suivantes :

1. la suite de nombres ("n)n tend vers zéro et la série
P
n

j"n+1 � "nj est convergente ;

2. il existe M > 0 tel que, pour tout p 2 N, on a

8x 2 D : jgp (x) + gp+1 (x) + :::+ gp+n (x)j �M .

Alors la série
P
n

fn est uniformément convergente sur D.

Exemple 26 On montre que la série dé�nie par

X
n�0

fn (x) =
X
n�0

(�1)n x
n

n
, x 2 [0; 1] (*)

est uniformément convergente sur [0; 1]. En e¤et :

Posons , "n =
1

n
et gn (x) = (�1)n xn. On a :

1. "n �! 0 et la série

X
n

j"n+1 � "nj =
X
n

���� 1

n+ 1
� 1

n

���� =X
n

1

n (n+ 1)
�
X
n

1

n2
converge.

2. Et comme gn (x) = (�x)navec j�xj � 1 est le terme général d�une série géométrique

convergente, alors pour tout p 2 N,

jgp (x) + gp+1 (x) + :::+ gp+n (x)j = xp
1� (�x)n+1

1 + x
� 1, 8x 2 [0; 1] (ici M = 1).

On en déduit que la série
P
n

fn dé�nie par (�) est uniformément convergente sur [0; 1].

2.2.3 Convergence normale

En plus de la convergence simple et uniforme, on dispose d�une notion de convergence

plus forte spéci�que aux séries de fonctions, c�est la convergence normale :
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Dé�nition 21 Soit
P
n

fn une série de fonctions dé�nies sur D. On dit que
P
n

fn converge

normalement sur D, si et seulement si la série numérique
P
n

kfnk1converge, où

kfnk1 = sup
x2D

jfn (x)j.

Remarque 20 1. Pour montrer qu�il ya convergence normale, on cherche à majorer

jfn (x)j par un réel an, tel que
P
n

an converge.

2. Pour montrer qu�il n�ya pas de convergence normale, on cherche à minorer jfn (x)j

par un réel bn, tel que
P
n

an diverge.

Exemple 27 La série
P
n

sinnx

n2
converge normalement sur R. En e¤fet,

8x 2 R :
����sinnxn2

���� � 1

n2

d�où

kfnk1 �
1

n2
terme général d�une série de Riemann convergente

d�où
P
n

kfnk1converge (par comparaison). On en deduit que
P
n

sinnx

n2
converge norma-

lement sur R.

Exercise 2.2.1 Montrer que la série
P
n

e�nx

2n
converge normalement sur [0;+1[ !

On montre grâce au critère de Cauchy uniforme que la convergence normale entraîne

la convergence uniforme.

Theorem 25 Toute série normalement convergente sur D est uniformément convergente

sur D.

Démonstration 12 Soient " > 0 et
P
n

fn une série normalement convergente sur D. La

série numérique
P
n

kfnk1converge, elle est donc de Cauchy, il existe donc N 0 = N 0 (") 2
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N tel que

p > q � N 0 )
pX

k=q+1

kfkk1 <
"

2

)
�����

pX
k=q+1

fk (x)

����� �
pX

k=q+1

jfn (x)j <
"

2
, 8 x 2 D

(puisque jfn (x)j � kfnk1 = sup
x2D

jfn (x)j , pour tout x 2 D et n 2 N)

) sup
x2D

�����
pX

k=q+1

fk (x)

����� < "
alors

P
n

fn est uniformément de Cauchy sur D, elle est donc uniformément convergente

sur D.

Theorem 26 Toute série normalement convergente sur D est absolument convergente

sur D.

Démonstration 13 Directe du fait que

8 x 2 D : jfn (x)j � kfnk1

Remarque 21 Une série de fonctions peut être uniformément convergente sans y être

normalement convergente. Voici un exemple :

Exemple 28 Soit
P
n

fn telle que

fn (x) = (�1)n
xn

n
, x 2 [0; 1]

D�une part, on a kfnk1 = sup
0�x�1

xn

n
=
1

n
d�où

P
n

kfnk1 =
P
n

1

n
est la série harmo-

nique divergente, donc
P
n

fn n�est pas normalement convergente sur [0; 1].

D�une autre part,
P
n

fn est uniformément convergente sur [0; 1] (d�après l�exercice

du théorème de régle d�Abel ci-dessus).
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2.2.4 Propriétés de la somme d�une série de fonctions

On ne peut pas trouver, en général, une expression explicite de la somme d�une sé-

rie de fonctions convergente. En revanche, nous savons prouver, en utilisant les critères

précédents l�existence d�une telle somme. La plupart des résultats sur les propriétés de

la somme (continuité, intégrabilité et dérivation) des séries de fonctions sont obtenus en

appliquant directement ceux appliqués déjà sur les suites de fonctions.

Continuité de la somme

Théorème 8 (Continuité de la somme) Soit
P
n

fn une série de fonctions dé�nies

sur D. Soit x0 2 D, on suppose que :

1. Pour tout n 2 N, fn est continue en x0 (resp. sur D) ;

2.
P
n

fn converge uniformément sur D.

Alors la somme x 7�! S (x) =
+1P
n=0

fn (x) est continue en x0 (resp. sur D).

Démonstration 14 Il su¢ t d�appliquer le théorème de continuité de la limite de la suite

de fonctions (de sommes partielles) dé�nie sur D, par Sn (x) =
nP
p=0

fp (x).

I Ce théorème a¢ rme que la somme d�une série de fonctions continues uniformément
convergente est continue.

Intégrabilité terme à terme

Théorème 9 (Intégrabilité terme à terme) Soit (fn)n une suite de fonctions conti-

nues sur le segment [a; b], (a < b). Si la série de fonctions
P
n

fn converge uniformément

sur [a; b]. Pour tout n 2 N et x 2 [a; b], posons Fn (x) =
R x
a
fn (t) dt, alors :

1. la somme x 7�! S (x) =
+1P
n=0

fn (x) est continue sur [a; b] ;

2. la série
P
n

Fn converge uniformément vers F sur [a; b] où F (x) =
R x
a
S (t) dt.
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En particulier nous avons, pour tout x 2 [a; b], l�égalité

+1X
n=0

Z x

a

fn (t) dt =

Z x

a

+1X
n=0

fn (t) dt

Démonstration 15 Il su¢ t d�appliquer le théorème d�intégrabilité de la limite de la

suite de fonctions (de sommes partielles) dé�nie sur D, par Sn (x) =
nP
p=0

fp (x).

Remarque 22 1. Dans le théorème ci dessus, on peut remplacer la condition de conti-

nuité sur [a; b] par une condition faible à savoir "borneé et intégrable au sens de Riemann

sur [a; b]".

2. Le théorème ci-dessus, montre que la convergence uniforme permet d�intervertir la

somme uniforme "
P
" et l�intégrale "

R
".

Dérivation terme à terme

Théorème 10 (Dérivation terme à terme) Soit (fn)n une suite de fonctions de classe

C1 sur le segment [a; b], (a < b) telle que :

1. Il existe x0 2 [a; b] tel que la série numérique
P
n

fn (x0) converge ;

2. La suite des dérivées
P
n

f 0n converge uniformément sur [a; b].

Alors

I. la série
P
n

fn converge uniformément sur [a; b] ;

II. La somme de
P
n

fn est de classe C1 sur [a; b] de dérivée
+1P
n=0

f 0n, c.à.d.

8x 2 [a; b] :
 
+1X
n=0

fn (x)

!0
=

+1X
n=0

f 0
n (x)

Démonstration 16 Il su¢ t d�appliquer le théorème de dérivation de la limite de la suite

de fonctions (de sommes partielles) dé�nie sur D, par Sn (x) =
nP
p=0

fp (x).
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