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Chapitre 1

Séries numériques

Introduction

Dans le langage courant, les mots série et suite signifient la méme chose. Cependant,
en mathématiques, il est essentiel de reconnaitre la différence. Une série est le résultat
de I'addition d’une suite de nombres.

Nous traitons constamment et sans le savoir des séries lorsque nous écrivons des
expressions comme

1—O 333
3 = 0,333...

puisque cela signifie que

0,333... = 0,3+0,03+0,003+ ...
_ 3,3 .3
-~ 10 102 103 7
400 n
= 3 Z L somme infinie de termes de suite géométrique de raison 1 <1
“~\10 10
1 1
= I X —X T
10 — 6
1 10
= IX — X —
10 9
1
3



1.1 Définitions et généralités

Soit (u,), une suite numérique réelle (ou complexe), c.a.d. Vn € N : u, € R (ou

u, € C). On construit une nouvelle suite (S,,),,, comme suit

La suite (uy,) La suite (5,),
Ug So = ug
Uy S1=1up+wm
Ug So = ug + uy + us
U3 S3 = ug + u1 + us + us
Up, Sp=tug+ur+us+ ... u, =y U

Définition 1 On appelle série numérique de terme générale u, la suite (S,), , notée
> Uy

Sn = Y uy est appelé somme partielle d’ordre n de la série . u,.
k=0 n

Exemple 1 1. St u, =n, Vn € N, alors 0,1,2,3,....,n, ... est une suite et
0,0+1,0+1+204+1424+3,...,0+14+24+3+...4+n,,....

est la série > n.
n>0

1 11
2. Siu, =—,Vn € N alors 1,=, —,...—, ... est une suite et
n 23 n
1 1 1 1 1 1
L1+ 14+=-+=, 14+=-4+=-+..+—, ...
, +2, +2+3, +2+3+ +n,



, 1
est la série > —
n>1"T

Remarque 1 A partir d’'une somme partielle S,,, on peut reconstituer la suite (uy), par
Up = Sn - Sn_l,\V/’I’L 2 1 et Uy = So

Remarque 2 Si (u,), est définie seulement a partir d’un certain ng € N (c.a.d. up,,
Ungt1s Ungt2s-e--- ), il en est de méme pour la série de terme général u,, que l’'on note

n
> uy, avec somme partielle S, = > Upg + Upgi1 + Ungio + oo + Up.
n>ng k=ng

Exemple 2 (quelques séries usuelles) 1. La série géométrique

Soit (uy,), une suite géométrique définie par
up=a etVn € N U,y =ruy, a e R*, r >0 etr#1

on déduit que
VneN :u, =ar"
On défini la série géométrique de terme générale u,, par la somme partielle

n

S, = Zark:a+ar+ar2—|—ar3+...—|—ar”

k=0
= a(l+r+r’+ri+..+1")
1 — Tn+1
= al—,( par division euclidienne)
—r

2. La série harmonique

1 1
Il s’agit de la série de terme général u,, = —,Vn € N*, Soit >~ — de somme partielle
n n>1 N

n

1 1 1 1
=N o
S ’;k to gt

3. Le développement décimal



Tout nombre réel x € |0, 1] s’écrit sous la forme

+o00

Ay, aq (05} Ay,
I N I I 1
=) Tttt T (1)

avec a, € {0,1,2,...,9}, Vn € N. (1) est le développement décimal de = qui est présenté

sz - 2. s 2 an .
par une série numérique de terme général u,, = o et de somme partielle

o _m @
" 106 10 102 7 107

k=1

En effet : On a

x €)0,1[ = = = 0, ajasa3...a,.... (2)

avec a,, € {0,1,2,...,9}, Vn € N.

(2) = x=0,a;+0,0a2+0,00a3 + ... +0, 0...0 a, + ...

=~
n—1 fois
aj ) as n
10 102 * 103 et 107 *
—+o00
= = An
! 10m

Définition 2 (Convergence d’une série numérique) On dit que la série Y u, est
n

convergente (resp. divergente) si la suite (S,), des sommes partielles converge (resp.
diverge).

» En cas de convergence, la limite S = liril S, est appelée somme de la série et
n—-—r+odo

+00
notée S = > uy,.

n=0

. 2 —y . a .
Exemple 3 La série géomértique > ar™ (voir plus haut) converge vers 1 si|r| <
n>0 —-T

1 et diverge si |r| > 1 puisque la suite (S,), des sommes partielles définie par S, =



u L—prtt
S ark = a———— wvérifie
1—r

a .

si|r] <1
lim S, = L—r
e o0 si |r| >1

Définition 3 On appelle reste de > u, a lordre n, la différence notée R, entre S, et

+o0
> uy, soit

n=0

“+00

= E U = Upt1 + Upto + Upgs + ..
k=n+1

» Si la série > u, est convergente, il est clair que liI}_l R,=0.
n n—-r+od

Exemple 4 Le reste de la série géomértique >, ar™ tend vers 0 si |r| < 1, en effet :
n>0

n+1

lim R, = lim (S—25,)= lim

n——+00 n—-+00 n—+oo | — 7T

=0si|rl<1

Une autre définition équivalente de convergence :

Définition 4 La série ) u, converge et sa somme est S si et seulement si
n

Ve >0, Ing € N tel que Vn, n > ng = |R,| = |S, — S| < ¢

a

Exercise 1.1.1 Utiliser cette définition pour montrer que » , ar™ converge vers 1
n>0

Ir] <1 avec a € R*.



Solution 1 Soite > 0. On a

1 —pntt a
Sp— S| = —
| | ¢ 1—r 1—r
o[
= |af | ——
1—r
n+1
|S, — S| = |a |I| , (1 =17 >0 puisque |r| <1)
—r
n+1

et comme lm |r|""" <1=0 (puisque |r| < 1), alors il existe ng > 0 tel que

n—-4oo

n+1<1

Vn,n > ng=|r|

,
= ISy =S| = Jal -

Alors

Ve > 0,3dng € N tel que Vn, n > ng = |S, — S| <e

On déduit que Y ar™ converge vers ]

¢ g Ir] < 1.
n>0 -r

Remarque 3 On parle de nature d’une série pour désigner la convergence ou la diver-

gence de cetle série.

Remarque 4 La nature d’une série ne change pas si on change un nombre fini de termes.

Par contre, si la série est convergente sa somme (limite) change.

Remarque 5 Si u,, = a, + ib, est complexe, la série » u, converge si et seulement si

n
les deux séries réelles Y a, et > b, convergent. Dans ce cas la somme (limite) de > u,
n>0 n>0 n

—+00 “+oo
g Uy = g an +1 E b,
n n=0 n=0

est donnée par

1
Exercise 1.1.2 Monter que ) on converge vers 1?7
n>1



Solution 2 On commence souvent par définir la suite des sommes partielles.

noq
SoitSn:Z?, on a :
k=1
_ _ 1 _ 1
S1=3 =3 =1l-3
s=1+1 =1 =1-3
Ss=privl = =1-3
_ 1 1 1 1 __ 15 1
Si=3titsti =% =l
Sn=3+w+m+ .+ =1-2

1
d’ou lim S, =1, on déduit que > — converge vers 1.
n—-+oo n>1 on

1.2 Structure d’espace vectoriel de séries

Soient Y a, et > b, deux séries numériques de termes généreaux a,, et b, respective-
n n
ment.

» L’addition de »_ a, et Y b, est une série numérique de terme général ¢, = a, + b,
n n

définie par

Z Cp = Z a, + Z b, sa somme partielle est S,, = 2": Cp = 2”: ag + Zn: by,
n n n k=0 k=0 k=0

» Soit A € K, (K est le corps R ou C). Le produit de ) a, par A est une série

n

numérique de terme général h, = Aa,, définie par

Z h, = Z Ay, = A Z a, sa somme partielle est S,, = i hip = A i ag
n n n k=0 k=0



On note S l'ensemble des séries numériques et SC ’ensemble des séries numé-

riques convergentes.

Proposition 3 (S,+,.) est un espace vectoriel sur K.
Démonstration 1 Vu en cours de 1ére année.

Proposition 4 SC est un sous espace vectoriel de (S,+,.) sur K.

Démonstration 2 Soient ) u, et ) v, deuz séries convergentes et (S,), et (T,), sont
respectivement les suites des sommes partielles de > u, et > v,, et o € K. On montre

n n
que Y Uy + Y, v, et ad u, sont deux séries convergentes.

1. On a

n—-4oo

Z u, converge = 15 € K tel que lim S, =S

et

n—-+o0o

Z v, converge = 3T € K tel que lim T, =T

donc la suite (Wn)n définie par W,, = S, + T, est convergente, il existe W € K tel que
lim W, =W, dou W =S +T, autrement dit > u, + > v, est convergente.

n—-+00
2. On a
Zun converge = 35 € K tel que liril S, =25
= 35 €K tel que hEIrl (aS,) = as
donc la suite (0,), définie par o, = S, est convergente, il existe 0 € K tel que

lim o, =0, dou o = aS, autrement dit «_ u,, est convergente.

n—-+o0o n

Proposition 5 1. Si Y u, est convergente et Y v, est divergente, alors > u, + Y v,
est divergente.

2. 80> uy, ety (u, +vy,) sont convergentes, alors v, est convergente.

10



et (T,,),, les suites des sommes partielles de ) u, et
n

> vy, respectivement. En utilisant les résultats connus sur les suites, on obtient
n

Démonstration 3 1. Soient (.5,)

n

Zun converge et Zvn diverge = (S,), converge et (T,,), diverge
= la suite (S, +1T,), diverge

= la série Z (un, + vy,) diverge

n

2. Utilisons les propriétés du sous espace vectoriel SC (voir plus haut).

E u, converge = — E Un converge
n n

Z (up + v,) et — Z u, converge = Z Uy = Z (Up + vy) — Z U, converge

n n

Remarque 6 Si ) u, et v, sont divergentes, on ne peut pas conclure sur la nature
de Y un + > v,. Par exemple, si u, =1 et v, = —1, Vn, il est clair que > u, (= +00)

et Y v, (= —00) sont divergentes, par contre Y w, =Y (u, + v,) = 0 est convergente !

1.3 Condition nécessaire de convergence

Proposition 6 (Condition nécessaire de convergence) Sila série Y u, est conver-
n

gente, alors son terme général u, tend vers zéro. Autrement dit

Z U, converge —> lim wu, =0
n—-4o0o
n
Démonstration 4 Soit (S,,), la suite des sommes partielles de ) w,. On sait que u, =

S, — Sn_1, Yn > 1, alors

Z u, converge = S tel que lim .S, =1lim S, =5

= lim u,=5-5=0

n—-+00

11



La contraposée de I'implication de la proposition ci-dessus, nous donne un test

de divergence efficace!

Proposition 7 Si le terme général u, de la série > u, ne tend pas vers zéro,
n

alors > u, est divergente. Autrement dit

n—-4oo

lim u, # 0= Z u, diverge

Exemple 5 1. La série géométrique > r" est divergente si |r| > 1. puisque
n

|r| > 1= limr" #0

n n 1
2. diverge puisque lim =—-#0.
2 5y dverge puisquelimzrm = 5 7
Remarque 7 La condition lirJJra u, = 0 est nécessaire mais pas suffisante pour la

convergence de . uy,.
n

1 1
Exemple 6 Pour la série Y. — (appelée série harmonique), on a lir+n — = 0 mais
n>1"M n—+oo0 1

1 1
> — est divergente. En effet : soit S, = >, —, on a

nZln p:lp
Son—Sn = 1oty w1 (ol Ly 4]
e 23" " o 23" "y
S
 n+1 n+2 77 2n
S 1 n 1 n 1 on
~ 9o2n 2n 7 2n  2n
d’ot

1
VTLZlSQn—Snzi

12



: 1 : .
Si > — converge on a lim Sy, = lim S, =S alors
n>1 n n—-+oo n—-+4oo

1
0=5-S5> 3 contradiction !

1
done > — est divergente.

n>1 N

1.4 Le critére de Cauchy

n
Définition 5 Soit > u, une série numérique et S, = > uy sa somme partielle. > u,
n k=1 n
converge au sens de Cauchy si et seulement si Ve > 0,3ng € N tel que Vp, q :

q > p>ng=15,—95,|<c¢

q p
= Zuk — Zuk <e€
k=1 k=1
q
= Z ug| < e
k=p+1

> Si Y u, est convergente, la suite (S,) admet une limite, elle est en particulier une

suite de Cauchy.

Remarque 8 Dans le cas ot u,, € K (espace vectoriel normé complet), (on prend K = R
ouC), on a

Z u, converge < (Sy,), est une suite de Cauchy

1.5 La convergence absolue d’une série

Définition 6 On dit que la série numérique > u,, est absolument convergente si la série
n

> |un| est convergente.
n

» Une série convergente mais non absolument convergente est dite semi-convergente.

13



—1)"
Exemple 7 La série alternée (=1)
n>1 N

- convergente (sera démontrée plus tard).

est semi-convergente puisqu’elle est

= Y — série harmonique diver-

- non absolument convergente puisque
n>11

n>1

(="

gente (démontrée plus haut).

Remarque 9 La convergence simple et la convergence absolue coincident dans le cas

d’une série a termes positifs.

Proposition 8 Si ) u,, est absolument convergente, alors elle est convergente et on a

Dt
n

< Z|un|
n

Démonstration 5

Z u, est absolument convergente = Z |un| est convergente

n n

= Z |un| est convergente au sens de Cauchy

n

Donc

q

>

k=p+1

q

<Dl <e

k=p+1

Ve > 0,dng €N tel queVp,q:q>p>ny=

= Z u, est convergente au sens de Cauchy

n

= Zun est convergente

n

et comme

14



alors par passage a la limite, on obtient

D
n

< Z’Uﬂ
n

Remarque 10 Pour étudier la nature d’une série a termes de signes variables, on com-

mence toujours par la convergence absolue.

1.6 Calcul de la somme d’une série convergente

Lorsqu’une série converge, il est naturel de chercher a calculer sa somme; cela n’est
pas généralement possible et, méme si possible, ce n’est pas toujours facile. Les techniques
de calcul de telles sommes sont trés variées mais les outils pour y parvenir sont peu. La
plupart de ces méthodes nous seront fournies par les séries entiéres et les séries de Fourier,

que nous verrons dans les chapitres trois et quatre.

1.6.1 Séries géométriques

On connait déja la somme d’une série géométrique de raison r; en effet, si a,, = t",

avec t € R vérifiant |t| < 1, alors

n

- 1 — ¢ tt 1
Snzzak:Ztk: T —>1_tquandt—>+oo
k=0 k=0

autrement dit la série > aj converge si |[t| < 1 et a pour somme
n>0

+0o0 +0o0 1

En particulier, on a par exemple :

15



—pourtzé,ona

+oo
1
> 5 -2
2n
n=0
- t=—=
pour 5’ on a
on
n=0
en général
“+00
1 .
— = sifa] >1
" am a —

1.6.2 Séries télescopiques

Définition 7 Une série télescopique (ou somme télescopique) désigne une somme dont
les termes s’annulent de proche en proche. Si (ay), est une suite, la série télescopique

correspondante est la série de terme général a,1 — a,. La formule de télescopage s’écrit

alors
Z (ars1 — ax) = Z (ar — ap—1) = an — ag
k=0 k=1
, » . . P P 7z 1
Exemple 8 (Terme général rationnel) Soit la série de terme général a,, = m,
n(n
n€N*. Ona
1 1
ap = — —
" n n+1
so0it
- 1
o=y
— k(k+1)
-2l
— E k+1
_ 1 1 n 11 1 1 1 1 n 1 1
B 2 2 3 3 4 n—1 n n n+l
1
= 1—
n+1

16



d’ou la somme de la série est donnée par

S | , 1
) PRy GRS U B
nn+1) =n n+1

n=1

Exemple 9 (Autres cas) Soit la série de terme général a, = arctan —————— n €
n“+n+1
N.
Rappelons que, pour tout (a,b) € R :
b
arctana + arctan b = 5 avee ab <1 (*)
—a
Ecrivons
]_ —
a, = arctan —— = arctan (n i ) + ( n)
n?+n+1 1—(n+1)(—n)
D’apreés (x) avec a =n+1 et b= —n, on obtient

a, = arctan (n + 1) + arctan (—n) = arctan (n + 1) — arctann

d’ot

- 1
Sn = kZ:OaI'Ctanm

n

- Z (arctan (k + 1) — arctan k)
k=0
= arctan(n + 1)

on déduit que la série converge et sa somme et donnée par
+oo
7

Zarctan;— lim S, = —
n2+n+1_nﬂ+oo "9

n=0

17



1.7 Séries a termes positifs

Dans toute cette section on suppose que la série Y u, est a termes positifs, c.a.d.

n
Vn : u, > 0. Dans ce cas la suite (S,,), des sommes partielles est croissante puisque
VneN":S,—S5,_.1=u,>0

Nous allons développer des outils en vu d’étudier la nature de ces série a termes

positifs.

1.7.1 Critére de majoration

Proposition 9 Une série a termes positifs > u, est convergente si et seulement si la
n

suite (S,), est majorée.
Démonstration 6 (.5,), est croissante et majorée donc convergente.

1
Exemple 10 Montrer que — est convergente.
n>1 N

n

1
Solution 10 Soit S, = ). —. Ona
p=1 p

S = 1+ =

d’ot

1
donc (Sy),, est majorée, on déduit que ) — est convergente.
n>1"M

18



1.7.2 Critére de comparaison

Proposition 11 (Comparaison directe) Soit > a, et > b, deux séries a termes po-

sitifs telles que Yn € N : 0 < b, < a,. Alors

Zan converge = an converge

n n

an diverge = Zan diverge

1
Exemple 11 Montrer que » sin on est convergente.
n>0

1
Solution 12 Pour n assez grand sin on >0. On a

1 1
VYneN:0<sin— < —
n <singn < o

et

L 1 1
Z on série géométrique convergente (r = 3 <1l)= Zsm on est convergente

n>0 n>0

Définition 8 (Négligeabilité) On dit que a, est négligeable devant b, au voisinage de

Uinfini (n — +00) si

. an,

hr+n 7= 0 avec b, # 0 pour n assez grand
et on écrit (notation de Landau)

an, = o(b,) (n — +00)

ou (notation de Hardy)

an < by, (n — +00)

19



Définition 9 (Equivalence) On suppose que b, ne s’annule pas pour n assez grand.

On dit que a,, est équivalent a b, en +00, et on note a,, ~ by, lorsque
n—-+00

an — by, =o0(b,) (n — 400)

autrement dit

. a
lim — =1
n—-+oo bn

Définition 10 (Domination) On dit que a, est dominé par b, en +oo, ou que b,

domine a,, en +00, lorsqu’il existe des constantes N et C' telles que
Vn > N : |a,| < C|b,|

et on écrit (notation de Bachmann)
a, = O (b,) (n — +00)

ou (notation de Hardy)

a, <X b, (n — 400)

La comparaison directe des séries positives a pour corollaire immeédiat des résultats

de comparaison par les relations de négligeabilité, d’équivalence et de domination.

Corollaire 1 (Comparaison par o, O et ~) Soient > a, et > b, deux séries a termes

positifs ou nuls.
1. On suppose que a,, = o(b,) ou a, = O (b,). On a :
- Si > b, converge, alors > a, converge.
- Si i a, diverge, alors ann diverge.

n n
2. Sia, >0,b, >0 eta,~b,, alors > a, et > b, sont de méme nature.
n

n~~+00 n

n®+n n?4+n 1 1
est divergente puisque i ~ — et > — est diver-
o n

E le 12 La séri
xemple a série ; | e i
n~—+00

gente.

20



Remarque 11 Pour les séries a termes quelconques, le critére d’équivalence n’est plus

valable, puisqu’on peut avoir a, ~ b, avec Y a, et > b, de nature différente, comme le
n~—+0o n n
(="

vn

montre le contre-exemple suivant : en effet, prenons a,, = + — ; il est clair que
n

(=" . .
nous avons montrer que y est une série alternée convergente, par contre »_ ay,

n>1 \/ﬁ n

1
est divergente puisque » , — est la série harmonique divergente.
n>1"M

Proposition 13 (Comparaison logarithmique) Soient ) a, et > b, deux séries &

n n
termes strictement positifs telles que pour tout n € N on ait

Ap+t1

< anrl
a, — b,
Corollaire 2 - Si )b, converge, alors > a, converge.

- Si > ay, diverge, alors Y b, diverge.

1.7.3 Test intégral : comparaison d’une série 4 une intégrale

Proposition 14 Soient a un réel et f : |a,+oo] — [0,4+00] une fonction continue et
décroissante ; posons, pourn > a, a, = f (n). Alors la série »  a,, converge si et seulement
st la suite ( f: f (@) dt)n a une limite quand n tend vers +ooyf On peut méme dire que
la série Y a, et lintégrale impropre f:oo f(t)dt sont de méme nature.

n
» En cas de convergence, on a un encadrement du reste R, :

—+00 —+o00

F)dt <R, < F)dt

n+1 n

Comme application de cette proposition, nous allons étudier la nature de deux types

de séries :

21



1. Les séries de Riemann dont le terme général est donné par
1 *
a, = —,a € R,neN
/rLOé

2. Les séries de Bertrand dont le terme général est donné par

1
a, = ———,(a,8) e R¥* et n > 2
ne (Inn)’ (. )

Corollaire 3 (Séries de Riemann) La série ) — converge si a > 1 et diverge si
n>1"7
a<1.

+OO@

1
Démonstration 7 II suffit de comparer ) — a l'intégrale |, s
na «

n>1

1
Exemple 13 1. — est une série de Riemman convergente puisque o =2 > 1.
n>1 1

1 . , 1
2. Z>:1 N est une série de Riemman divergente puisque o = 3 < 1.

Corollaire 4 (Séries de Bertrand) La série )
n>2 n® (Inn)
letp>1cetdiverge sia<loua=1etp<1.

5 converge sta>1oua =

1
Exemple 14 1. ) —)2 converge puisque o =1 et f =2 > 1.

n>2n (Inn
1 1
2.3 an_ Y, ——— diverge puisque o =1 et f = —1 < 1.
n>2 M p3>2n(lnn)

1.7.4 Regle de Cauchy

Proposition 15 (Reégle de Cauchy) Soit ) a, une série & termes positifs ou nuls

telle que

lim /a, =1

n—-+00
-Sil <1, la série Y a, converge;

- Sil>1, la série Y a, diverge;
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- St l =1, cas douteux, on ne peut pas conclure ; toutefois, st la suite (,"/an)n tend
vers 1 par valeurs supérieures, alors la série diverge.

2 2

1\" 1\" 1

Exemple 15 La série (1 - —> converge puisque lim  { (1 — —> = lim (1 — =
n n n—-+oo n n—-+oo

1

- <1
e

1.7.5 Reégle de D’Alembert

Proposition 16 (Régle de D’Alembert) Soit > a, une série a termes strictement
positifs telle que
lim 22—

n—-+oo anp,

- Sil <1, la série Y a, converge;
n
- Sil>1, la série Y a, diverge;
n
- St 1l =1, cas douteux, on ne peut pas conclure ; toutefois, st la suite (,"/an)n tend

vers 1 par valeurs supérieures, alors la série diverge.

. n! . . n!
Exemple 16 La série Y. — converge puisque 8i a, = —, on a
nn nn’
n

. Gpgt , (n+1)! n"
lim —— = lim — T X T
n—+oo QA n—+00 (n + 1)” n!
I "
= im ——
n—-+00 (n + 1)n
. 1 1
= lm —=-<1

[

14 =
n

Remarque 12 Lorsque [ = 1, on peut conclure en écrivant un développement limité a
Ap41
Qp

1
lordre 1 en x = 2 de , c’est l'objet de la proposition suivante

Proposition 17 (Critére de Raabe-Duhamel) Soit > a, une série & termes stric-

tement positifs telle que




alors > a,, converge si o > 0 et diverge si o < 1.
n

ol

e"n!
Exemple 17 La série ) est divergente ¢ En effet :
n nn
G . n
== ‘ 7 lim 2l g
anp 1 n—+oo  Qy, e
(1+5)
n
alors
Anp41 o €
Qp, o enln(l—i-%)
= nm(ied) o ren(ordeghre(h)) _gde(d) 4 Ly, (1>
n~+00 2n n
d’ot

n 1 1 1
a+1=1+—+0(—>,aveca:——<0
an 2n n 2

e"n!

— est divergente.

on déduit que
won

1.7.6 Reégle de Riemman

Proposition 18 Soit > a, une série a termes strictement positifs.

n
- Sil existe « > 1 tel que lim n%a, =0 alors > a, converge.

n—-+o0o

- 87l existe a < 1 tel que hl_"I‘rl n®a, # 0 alors _ a, diverge.

Exemple 18 La série 26_2\/5 est convergente, puisque
n

f(lnn )
o/n| ——-1
lim n2e 2" = lim e v
n—-4oo n—-+oo
= lim e ™" =0 aveca=2>1
n—-+oo
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1.8 Séries a termes quelconques

1.8.1 Séries alternées

Définition 11 Une série alternée est une série a termes réels de type Y (—1)" a,, avec
n

a, de signe constant.

Exemple 19 1. > (—1)"=1—1+41—1+ ... est une série alternée divergente.
n>0
(=" 11 - . ) .
2.3 =—-1+ 373 + 1 + ...est une série alternée convergente (démontré plus
n>1 N

Proposition 19 (Critére des séries alternées) La série alternéey  (—1)" a,, avec a,, >
n
0,Vn € N, est convergente, si la suite (a,), est décroissante et tend vers 0. En outre,

on a la majoration suivante des restes,

+o0o
R, = E ap < An1

k=n+1

Autrement dit, Uerreur commise en remplacant la somme de la série par la somme

partielle d’ordre n est majorée par la premier terme négligé.

1)
Exemple 20 1. La série (=1)
n>1 N

décroissante et lim a, = 0.
n—-4oo

1
est convergente puisque (an)n tel que a,, = — est
n

(="

+o0o
2. L’erreur faite en remplacant > par la somme des 100 premiers est infé-
n=1

n2
rieure a 1074, En effet :
LoD :
la série ) |~ —| = >_ — série de Riemman convergente (o =2 > 1) et on a
n=1 n n=1M
R L SR L 0.000098 < 10~
WO Lz 1012 1022 T 1012
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1.8.2 Regle d’Abel

Théoréme 1 (d’Abel) Soient (a,), une suite réelle et (by,), une suite réelle ou com-

plexe satisfaisant les conditions ci-apreés :

1. il existe un réel positif M tel que, pour tous entiers p et q avec p < q, on ait
|bpt1 + bpra + ... + bg| < M;

2. la suite (a,,), est décroissante et tend vers zéro.

Alors la série ) a,b, converge.

n

sinn
Exemple 21 FEtudier la convergence de la série
n>1 N

1
Solution 20 Posons a,, = sinn et b, = —. Il est clair que (a,),, est décroissante et tend
n

vers zéro. Pour tout n € N*, on a

n

S, = isink = 2%2 (e“’C — e’ik)
k=1

k=1
1 = ik _ PN A 1 1— 6i(n+1) 1— e*i(nJrl)
= Z(;(e) —;(6 )>_Z< 1 — ¢t o 1— et )

1 <1 — i) et — e_m) 1 [ 1— et i —pmin
2i e% (e_% — e%)

d’ot

2 —|.11,(icip=0;q=netM= .11)
smﬂ s1n§‘

|Sn| = b1 + b2+ ... + b, <

3 )
e2 —e 2

sinn

d’apres le théoréme d’Abel la série

est convergente.
n>1 N
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Chapitre 2

Suites et séries de fonctions

2.1 Suites de fonctions
Dans tout ce qui suit dans cette section, D est une partie non vide de R.

Définition 12 On appelle suite de fonctions définies sur D a valeurs dans R, toute

application n — f, telle que pour tout n € N

fn: D—R

'7;’_>fn(x)

» Cette suite est notée (f,), et pour tout x € D, (f,(x)), est une suite de nombres

réels.

Exemple 22 (z"),, ((1 + E) > et (arctan (nz)), sont des suites de fonctions.
n n

2.1.1 La convergence simple d’une suite de fonctions

Définition 13 Une suite de fonctions (f,), définies sur D converge simplement vers

la fonction f si pour tout x € D, la suite numérique (f, (z)), converge vers f (x) et

n
on écrit

VeeD : lim f,(z)=f(2)

n—-+o0o
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[ est dite limite simple de la suite (f,), surD.
Une définition équivalente est donnée de la facon suivante :

Définition 14 La suite de fonctions (f,), définies sur D converge simplement vers

la fonction f si et seulement si :
Ve € D, Ve >0,IN=N(x,e) € N tel quen > N = |f, () — f(v)| < e (CS)
Exemple 23 1. Soit (f,), une suite de fonctions définies sur [0, 1] par
VneN, f,(z) =a"
(fn), converge simplement vers la fonction f définie par

F ) = 0sixzel0]1]

lstx=1

(clair puisque x =1 =Vn e N : f,(1)=1— f(z)=1et0<zx<1=VneN:
fu(x) = 2" — f(x) =0).

2. Soit (fy),, une suite de fonctions définies sur R par

(fn), converge simplement vers la fonction constante f définie sur R par f(z) =1
fim (1+2) =1,V € R).
n n

3. Soit (fn), une suite de fonctions définies sur R par
Vn e N, f, (z) = (1 + f)
n

(fn), converge simplement vers la fonction f définie sur R par f (x) = e” (lim (1 + —)
e”,VeR).
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2.1.2 La convergence uniforme d’une suite de fonctions

Définition 15 Soit (f,,), une suite de fonctions définies sur D. (f,), converge unifor-

mément vers f sur D, si

limsup |, (2) - f ()] = 0

" xeD

[ est dite limite uniforme de la suite (f,), sur D.
Une définition équivalente est donnée de la fagon suivante :

Définition 16 La suite de fonctions (f,), converge uniformément vers la fonction

f sur D si et seulement si :
Ve > 0,JN=N(e) € N tel quen > N =V € D, |f,(z) — f(z)| <e, (CU)
Cette définition s’écrit encore :

Ve > 0,IN=N(e) € N tel quen > N = sup|f, (z) — f (z)| < ¢

zeD

Remarque 13 1. La différence entre convergence simple et uniforme est que dans (C'S)
le N=N(x,e) dépend de ¢ et x, alors que dans (CU) le N=N(e) dépend de ¢ seule-
ment mais commun a tous les x € D.

2. Pour prouwver la convergence uniforme (resp. non uniforme) d’une suite de fonctions
définies sur D, on suit les étapes suivantes :

a) Etudier la convergence simple pour déterminer f,

b) Calculer a,, = sup |f, () — f (z)| (sl existe),

c) Démontrer qu; EI;L;l]n a, =0 (resp. li7£n a, # 0). Il est parfois plus rapide dans cette
étape de majorer (resp. minorer) a, par une suite b, qui tend vers 0 (resp. qui ne tend

pas vers 0).

Proposition 21 Si (f,), converge uniformément vers f sur D alors elle converge sim-

plement vers f.
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Démonstration 8 Soit xo € D quelconque. On a

0 < |fn (0) = f (wo)| < sup|fu () — f (2)] (*)

zeD

St (fn),, converge uniformément vers f sur D on alim, sup |f, (z) — f (x)| =0, alors
zeD

(+) = lim|f, (z0) — f (x0)| = 0

= lim f, (z0) = f (20)

ce qui donne la convergence simple de (f,), .

Remarque 14 La reciproque de cette proposition n’est pas vraie. Un contre exemple :
Nous avons vu plus haut que la suite (™), converge simplement sur [0, 1[ vers la fonction

f définie par

F ) = 0sixel0,]1]

lstx=1

On montre qu’elle converge uniformément vers la fonction nulle (f = 0) sur [0, 1], mais

pas sur l'intervalle fermé [0,1]. En effet : Pour tout a tel que 0 < a <1, on a

Ve € [0,a=0<z<a<l1

— limz" =0 et lim sup |z" — 0] =lima" =0
n n 0<z<a n

Mazs

sup [z" —=0/=1#0
z€(0,1]

Exercise 2.1.1 Soit la suite définie sur R par f, (x) =1+ =
n
1. Montrer que (f,), converge simplement sur R.

2. Etudier la convergence uniforme de (f,), sur R.
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Solution 22 1. (f,), converge simplement sur R vers la fonction f =1, puisque

VzeR : 11m(1+f>=1
n n

2. 0na
x 2]
sup| fu (@) = f (@) = sup [1 4+ = = 1| = sup = = o0
zeR zeR n zeR T
Mazis, pour tout a > 0,
lim sup | f,, () — f ()| = lim sup 1—|—§—1‘ zlimsupM —lim < =0
" Jel<a " fel<a n T fel<e T mon

On déduit que (f,), converge uniformément sur tout [—a,a] C R, mais pas sur R.

Proposition 23 (Critére de suite non uniformément convergente) Soit (f,), une

suite de fonctions définies sur D et f : D — R. Sl existe une suite (t,), de D telle que

lim [ £, (ta) — f (ta)] # 0

alors (fy), ne converge pas uniformément vers f sur D.

Définition 17 (Suite uniformément de Cauchy) Soit (f,), une suite de fonctions

définies sur D. On dit que (f,), est uniformément de Cauchy sur D si et seulement si
Ve > 0,3 N=N(e) € N tel que Vp,q e N :p> N et ¢q> N =sup|f,(z) — f,(z)| <e
xz€D

Le théoréme suivant établit le lien entre la convergence uniforme d’une suite de fonc-

tions et I'uniforme de Cauchy :

Théoréme 2 (Critére de Cauchy) Une suite (f,,), converge uniformément sur D si

et seulement si elle est uniformément de Cauchy sur D.

Remarque 15 Le critére de Cauchy prouve la convergence uniforme d’une suite de fonc-

tions sans faire appel a sa limite.
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2.1.3 Propriétés de la limite d’une suite de fonctions

Nous verrons que, sans aucune condition supplémentaire, la convergence uniforme
conserve le passage a la limite ainsi que la continuité. En revanche, pour I'intégrabilité,
des conditions sont imposées. Quant a la dérivabilité, elle est transmise a la limite sous

I’hypothése de la convergence uniforme de la suite des dérivées.

Continuité de la limite

Contrairement a la limite simple, la limite uniforme d’une suite de fonctions

continues hérite la continuité.

Théoréme 3 (Continuité de la limite) Soit (f,), une suite de fonctions définies sur
D qui converge uniformément vers une fonction f et soit xyg € D.
Si, pour tout n € N, f,, est continue en xq (resp. sur D), alors f est continue en x

(resp. sur D).

Démonstration 9 Soit g € D et e > 0.
fn converge uniformément sur D = AN, € N tel que Vn > N, Vx € D : |f, () — f (2)| <

en particulier, on a

fv (@) = f @) < 3 1)

et
[F (o) = f (w0)| < 2 2)

et comme f, (en particulier fy_) est continue en xg, alors

19
In. >0 tel que : |v — x| <n. = |fn. (x) — f. (w0)] < 3 (3)
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(1),(2) et B) = |f(x) = f(zo)| <|f (@) = fn. (@) + |fx. () = S (@o)| + | fv. (o) = f (20))]

On déduit que f est continue en x.
Un corollaire directe du théoréme ci-dessus.

Corollaire 5 La limite uniforme d’une suite de fonctions continues est une fonction

continue.

Remarque 16 On peut utiliser le théoréme ci-dessus pour montrer qu’une suite de fonc-

tions continues ne converge pas uniformément.

Exemple 24 Nous avons vu plus haut que la suite n — " de fonctions continues sur

. 0si0<z<1
0,1], converge simplement sur [0, 1] vers la fonction x — f (z) =
lsiz=1

qui n’est pas continue sur [0, 1]. Ce qui prouve que cette suite n’est pas uniformément

convergente sur [0, 1].

Intégrabilité de la limite

Contrairement a la limite simple, la limite uniforme d’une suite de fonctions

intégrable au sens de Riemann hérite ’intégrabilité.

Théoréme 4 (Intégrabilité de la limite) Soient a,b € R (a < b) et (f,), une suite
de fonctions définies et continues sur un intervalle [a, b] et qui converge uniformément
vers une fonction f sur [a,b]. Pour toutn € N et t € [a,b], posons F), (t) = fj fn (s)ds.

Alors la suite de fonctions (F,) —converge uniformément vers F sur [a,b] ou F (t) =

f; f(s)ds.

En particulier, on a

n

b b
li7rln/ fn () ds:/ liTanfn (s)ds
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Démonstration 10 Soit ¢ > 0. (f,,), converge uniformément sur |a,b], alors

€
b—a

AN, € N tel que Vn > N, Vs € [a,b] : |fn(s) — f(s)| <
et comme, pour tout t € [a,b]

F, ()~ F(t) = /(fn(S)—f(S))ds s/ Fa () — £ ()] ds

toe e(t—a)
= < ) <
< /ab_ads — < e (puisque t <b)

Donc (F,), converge uniformément vers F' sur [a,b].

Remarque 17 1. Dans le théoréme ci dessus, on peut remplacer la condition de conti-
nuité sur [a,b] par une condition faible & savoir "borneé et intégrable au sens de Riemann
sur [a,b]".

2. Le théoréme ci-dessus, montre que la convergence uniforme permet d’intervertir la
limite uniforme et l'intégrale. Par contre la convergence simple ne le permet pas. Comme
le montre le contre exemple suivant :

Soit f, (z) = 2n2e™™** z € [0,1]. On peut montrer facilement que liELn fn(z) =0,

donc (f,), converge simplement vers f = 0. D’une part on a

/Olli?fn(x)da:—/ol(o)dx—o

et d’une autre part, on a

! ! 2,2 2,2 1 2
/ fn(x)dx—/ 2n26_”md:z::—[e_”m] =1—-e" —1#0 (quand n — +0o0)
0 0 0

c.a.d. X X
li n d lim f,, d
I;Ln/Of(fC) as#/o im J, (¢) de

Tout ¢a est di au fait que (f,), n'est pas uniformément convergente sur [0,1]. En

n
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effet :

lim sup |f, (z) — f ()| = lim sup [2n2e """ — 0‘ = lim (2n*) # 0

no0<z<1 noo<z<1 n
Dérivabilité de la limite

Pour avoir un résultat pour (f,), similaire & ceux de la continuité et l'intégrabilité,

on éxige la convergence uniforme de la suite des dérivées (f}), .

Théoréme 5 (Dérivabilité de la limite) Soit (f,), une suite de fonctions de classe
C! sur le segment [a,b] telle que
1. Il existe xg € [a,b] tel que la suite numérique (f, (xg)), converge ;
2. La suite des dérivées (f}), converge uniformément vers une fonction g sur [a,b].
Alors
I (f,), converge uniformément vers une foncion f sur |a,b];

II. La fonction f est de classe C' sur [a,b] de dérivée g (c.a.d. f' = g).

» Sous les conditions du théoéme ci-dessus, nous avons montré que
!/
. . !
( limf, <x>) — lim_f/ ()
n—-—+00 n——+00

Démonstration 11 I. Montrons que (f,), est uniformément convergente sur
la,b] 2

Il suffit de montrer que (f,,), est uniformément de Cauchy. Soit € > 0 fizé. D’apres
Uhypotheése 2, la suite des dérivées (f,,), est uniformément de Cauchy sur [a,b], alors

€

3N =N (¢) €N tel que Vp,q € N :pZNetqZNiVxE[a,b]:|f;(x)—fé(x)‘<m

Pour chaque couple p,q > N, appliquons le théoréme des accroissements finis entre x
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et xo a la fonction f, — f, pour tout x € [a,b], il existe ty entre x et xo tel que

|(fy (2) = fo (2)) = (fy (w0) = fy (o)) = |(z = @o)[ | £ (o) = f3 (to)]

=)l s [0 = £, 0)
_ <t<

2(b-a)

< g (puisque |(z — )| < b—a)

IN

IN

|(z — o)

donc

|fo (2) = fo (@) < |fp (20) = fo (zo)| + %

(puisque |(fp (2) = fq (2))[=](fp (w0) = fy (o)) < [(fy (x) = fo () = (fp (w0) = fy (x0))])-
D’aprés Uhypothese 1, la suite (f, (xo)),, est de Cauchy, il existe donc N' = N’ (¢) € N

tel que
€
p=Netqg=N'=|fy(z0) = fg (o) < 3

On en déduit que

£

p.a = max {N,N'} = Vo € [a.8] : |f, (v) = f, (@) < 5+

=&

Ceci prouve la convergence uniforme de la suite (f,), vers une fontion f sur [a,b].

II. Montrons que f est de classe C' sur [a,b] et que f' =g ?

Posons pour tout x € [a,b] et n € N, F, (x) = f;; fl(s)ds (= fu(z) — fu(z0)) La
suite (f;), des dérivées vérifie bien les conditions du théoréme 4 (d’intégrabilité), donc

F,). converge uniformément vers la fonction x — F (z) = [* g(s)ds. Autrement dit :
n Zo

d’une part on a

lim (£, () — f (x0)) = F (2)
et d’une autre part, on a
lim (f (#) = fo (20)) = f (#) = f (x0)
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L’unicité de la limite implique que

f(l’)=F($)+f(xo)Z/mg(S)derf(xz)

zo

La fonction f est donc une primitive de g ; elle est donc dérivable et on ' = g.

Remarque 18 Remarquons que la convergence uniforme de la suite de fonctions (f,),,
(sans la convergence uniforme de la suite de dérivées (f)), ) ne suffit pas a assurer

la dérivabilité de la limite. Voict un exemple :

1
Exemple 25 Soit la suite de fonctions (f,), définies sur R par f,(z) = (/2? + —,
n

n € N*. Il est clair que (f,), est de classe C* sur R. On montre que (f,), converge
uniformément sur R wvers la fonction x — |x|, qui n’est pas dérivable en 0. En effet :

Pour tout x € R,

—rsix <0
lim f, (x) = Va2 = |z| = 0siz=0 , non dérivable en 0 donc sur R.
4z stx >0

On montre que

ful@) = ol <

en effet :

1
fal@)=lol = yfar+— —al

1
= n21 (le conjugué)
\/ 72+ — + |z
n
1 1
2 @ 1
,, 1L /1 n
v Ve



D’ou
VrER ¢ |fo(2) — |2l < & —> limsup |f, (2) — o] = 0
n n zeR
Ce qui implique la convergence uniforme de la suite (f,), vers la fonction x — |x| qui
n’est pas dérivable en 0.

» Ce résultat de la non dérivabilité de la limite est di o la convergence non

uniforme de la suite de dérivées (f),),. En effet : Pour toutn € N* et x € R, on a

, X

fo(w) = —=—
QZ2+—2
n

il est clair que (f),), est une suite de fonctions continues sur R, par contre sa limite est

discontinue sur R, puisque

o x 1six>0
hmfn(x):_:
" || —1six<0

On en déduit que (f,,), ne converge pas uniformément sur R.
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2.2 Séries de fonctions

Dans tout ce qui suit dans cette section, D est une partie non vide de R et (f,,), une
suite de fonctions définies sur D.

Les séries de fonctions constituent une famille particuliére parmi les suites de fonc-
tions. Cette section est une traduction en tremes de séries des résultats et des définition

déja rencontrés lors de I’étude des suites de fonctions.

2.2.1 Définitions et propriétés

Définition 18 La série de fonctions associée a (f,),,, notée Y f, est la suite (S,), des
n

sommes partielles définies sur D, par

n

Vo €D : Sy () =) f(x)

p=0

Le reste de ) f,, est la suite (R,,), définie par

+oo
VoD : Ry (x)= Y f,(x)
p=n+1
Définition 19 Soient (S,), et (R,), la suite des sommes partielles et le reste de la série
> fn, respectivement. On a les définitions de convergence suivantes :

1. > fn converge simplement sur D si et seulement si (S,,), converge simplement sur

D, c.a.d.
VeeD:limS, (x)=5(x) ou S:D—R

autrement dit

VeeD:limR, () =0
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» Dans ce cas la limite S est appelée somme de la série . f, et on écrit
n

Ve eD:S(x) =) ful®)

2. fn converge uniformément sur D si et seulement si (S,,), converge uniformément
n
sur D, autrement dit

limsup |R, (z)| =0

n zxeD

Proposition 24 (Condition nécessaire de convergence uniforme)

Z fn converge uniformément sur D = limsup | f,, ()| =0

n
n zeD

Définition 20 (Série uniformément de Cauchy) Soit > f,, une série de fonctions

n
définies sur D. On dit que ) f, est uniformément de Cauchy sur D si et seulement si

> fi(x)

k=q+1

Ve > 0,3 N=N(e) e N tel queVp,q € N :p>q> N = sup
z€D

<e€

Le théoréeme suivant établit le lien entre la convergence uniforme d’une série de fonc-

tions et 'uniforme de Cauchy :

Théoréme 6 (Critére de Cauchy) Une série Y f,, converge uniformément sur D si

et seulement si elle est uniformément de Cauchy sur D.

Remarque 19 Le critére de Cauchy est de grande utilité prouver la convergence uni-

forme d’une série de fonctions sans faire appel a sa somme.

2.2.2 Regle d’Abel

Comme pour les séries numériques (voir chapitre 1), nous avons 1’analogue de la régle

d’Abel.
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Théoréme 7 (Régle d’Abel) Soit (f,,), une suite de fonctions définies surD ot f, ()

Engn (x) vérifiant les conditions suivantes :

1. la suite de nombres (g,,), tend vers zéro et la série )y |e,11 — €,| est convergente;

n

2. 1l existe M > 0 tel que, pour tout p € N, on a

Ve e D :|gy(x)+ gpr1 (T) + .. + Gpin (2)| < M.

Alors la série Y f, est uniformément convergente sur D.
n

Exemple 26 On montre que la série définie par

n

nT
S h@=% (1S ze (*)
n>0 n>0 "
est uniformément convergente sur [0,1]. En effet :
1
Posons ,e,=— et g,(xr)=(—1)"2". On a :
n

1. g, — 0 et la série

1 1

n+1l n

Z ’5n+1 - En‘ = Z
n n

1 1
= ; m ~ ; ﬁ COMverge.

2. Et comme g, () = (—x)"avec |—x| < 1 est le terme général d’une série géométrique

convergente, alors pour tout p € N,

1 (=)™

’gp (w)"i"gpﬂ (x)+-"+gp+n (z)| = =” 1+

<1,Vxe[0,1] (ici M =1).
On en déduit que la sériey ., f,, définie par (%) est uniformément convergente sur [0, 1].

2.2.3 Convergence normale

En plus de la convergence simple et uniforme, on dispose d’une notion de convergence

plus forte spécifique aux séries de fonctions, c’est la convergence normale :
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Définition 21 Soit " f, une série de fonctions définies surD. On dit que Y f, converge
n n

normalement sur D, si et seulement si la série numérique ) | f,||. converge, ou
n

1fnlloo = sup | fn (2)].
€D

Remarque 20 1. Pour montrer qu’il ya convergence mormale, on cherche a majorer
| fr ()] par un réel a,, tel que > a, converge.
n
2. Pour montrer qu’il n’ya pas de convergence normale, on cherche a minorer |f, ()|

par un réel b,, tel que _ a, diverge.

n

sin nx
Exemple 27 La série > —— converge normalement sur R. En efffet,
n
n

sinnx 1

VreR : >

<

n2

1 : :
[ folloo < —5terme général d’une série de Riemann convergente
n

sin nx
d’ot Y || full, converge (par comparaison). On en deduit que ) ——— converge norma-
n
n n

lement sur R.

e*TLCE

Exercise 2.2.1 Montrer que la série ) converge normalement sur [0, +oo] !

2n

On montre grace au critere de Cauchy uniforme que la convergence normale entraine

la convergence uniforme.

Theorem 25 Toute série normalement convergente sur D est uniformément convergente

sur D.

Démonstration 12 Soiente > 0 et Y f,, une série normalement convergente sur D. La

n
série numérique Y || f, || converge, elle est donc de Cauchy, il existe donc N' = N’ (¢) €
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N tel que

p

g

p > ¢=N= > 1felloo < 5
k=q+1

INAGIESY |fn(9€)|<§,‘v’x€D

k=q+1 k=q+1
(puisque |fu (@) < |full.o = sup|fu (2)], pour tout z € D et n € N)
zeD

p

> el

k=q+1

= sup <e€

zeD

alors > f est uniformément de Cauchy sur D, elle est donc uniformément convergente

sur D.
Theorem 26 Toute série normalement convergente sur D est absolument convergente

sur D.

Démonstration 13 Directe du fait que

YVeeD : ‘fn (-T)’ < an”oo

Remarque 21 Une série de fonctions peut étre uniformément convergente sans y étre

normalement convergente. Voici un exemple :

Exemple 28 Soit >’ f, telle que

n

fulw) = ()" e 0.1

| 1
D’une part, on a || f,] ., = sup T =2 dou Yo fallee = D0 — est la série harmo-
0<z<1 M n n n N

nique divergente, donc ) fy n'est p?zs normalement convergente sur [0, 1].
D’une autre part, > f, est uniformément convergente sur [0,1] (d’aprés l'exercice

du théoréme de régle d’Abel ci-dessus).
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2.2.4 Propriétés de la somme d’une série de fonctions

On ne peut pas trouver, en général, une expression explicite de la somme d’une sé-
rie de fonctions convergente. En revanche, nous savons prouver, en utilisant les critéres
précédents 'existence d’une telle somme. La plupart des résultats sur les propriétés de
la somme (continuité, intégrabilité et dérivation) des séries de fonctions sont obtenus en

appliquant directement ceux appliqués déja sur les suites de fonctions.

Continuité de la somme

Théoréme 8 (Continuité de la somme) Soit Y f, une série de fonctions définies
sur D. Soit xqg € D, on suppose que :
1. Pour tout n € N, f,, est continue en o (resp. sur D);

2. 3" fu converge uniformément sur D.
n

+o0
Alors la somme x — S (z) = > fn (z) est continue en xy (resp. sur D).
n=0

Démonstration 14 1[I suffit d’appliquer le théoréme de continuité de la limite de la suite

de fonctions (de sommes partielles) définie sur D, par S, (z) = > f, (2).
p=0

» Ce théoréeme affirme que la somme d’une série de fonctions continues uniformément

convergente est continue.

Intégrabilité terme a terme

Théoréme 9 (Intégrabilité terme a terme) Soit (f,), une suite de fonctions conti-
nues sur le segment [a,b], (a < b). St la série de fonctions Y f, converge uniformément
sur [a,b]. Pour tout n € N et x € [a,b], posons F, (z) = [ ]n"}L (t)dt, alors :

1. la somme x — S (z) = Jrff;fn (x) est continue sur [a,b] ;

2. la série Y F, converge uniformément vers F sur [a,b] ou F (x) = [ S (t)dt.
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En particulier nous avons, pour tout x € [a,b], l’égalité

ij/jfn(t)dtz/jifn(t)dt

Démonstration 15 [l suffit d’appliquer le théoréme d’intégrabilité de la limite de la

suite de fonctions (de sommes partielles) définie sur D, par S, (z) = > f, (z).
p=0

Remarque 22 1. Dans le théoréme ci dessus, on peut remplacer la condition de conti-
nuité sur [a,b] par une condition faible & savoir "borneé et intégrable au sens de Riemann
sur [a,b]".

2. Le théoréme ci-dessus, montre que la convergence uniforme permet d’intervertir la

somme uniforme "y " et lintégrale "[ .

Dérivation terme a terme

Théoréme 10 (Dérivation terme a terme) Soit (f,), une suite de fonctions de classe
C! sur le segment [a,b], (a < b) telle que :

1. I existe xq € [a,b] tel que la série numérique > f, (xo) converge;

2. La suite des dérivées Yy, fI converge uniforméTZent sur [a, b].

Alors

L la série Y f, converge uniformément sur [a,b] ;
n

+oo
IT. La somme de Y. f, est de classe C' sur [a,b] de dérivée Y f!, c.a.d.

n=0

Va € [a,b] : (Z fn (x)) => £ (@)

Démonstration 16 11 suffit d’appliquer le théoréme de dérivation de la limite de la suite

de fonctions (de sommes partielles) définie sur D, par S, () = > fp (2).
p=0
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