Méthodes itératives de résolution des systemes linéaires S.KETTAB

Convergence des méthodes itératives de résolution des systéemes linéaires

Exemple : Etudier la convergence de Jacobi et de Gauss-Seidel pour la résolution du
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1. det(A) =1 # 0 donc A est inversible et le systéme Ax = b admet une solution

systeme Ax = b

unique.
2. Méthode de Jacobi, La matrice A n’est pas a diagonale strictement dominante

donc on calcule la matrice de Jacobi :
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Calculons les valeurs propres de la matrice J :

Le nombre A est une valeur propre de la matrice A si et seulement si
P,(1) =det(A—AI) =0
Autrement dit, les valeurs propres sont les racines du polyndme caractéristique de A.
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DoncP(D)=-2=0=21=0=p()=0<1.
Alors la méthode de Jacobi converge.

3. Méthode de Gauss-Seidel, La matrice A n’est pas a diagonale strictement

dominante donc on calcule la matrice de Gauss-Seidel :
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La méthode de Gauss-Seidel est convergente si et seulement si p(GS) < 1.

Calculons les valeurs propres de la matrice GS :
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Donc Pg(1) = det(GS —Al) =0 & —A(2 — 1) (2 — 1) = 0 & spec(GS) = {0,2,2} & p(GS) =
2>1

Alors la méthode de Gauss-Seidel diverge.

Exercice : Etudier la convergence de Jacobi et de Gauss-Seidel pour la résolution du
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