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Introduction

Ce cours regroupe le contenue du module d’analyse 1 dans le programme de LMD. Il destiné
aux étudiants de 1°7¢ année Mathématiques et Informatique. Il comporte six chapitres : les
nombres réels, les nombres complexes, puis les suites. Les chapitres suivants sont consacrés
aux fonctions : limite et continuité, dérivabilité, et les fonctions élémentaires.

En faisant recours aux différents ouvrages traitant les différents sujets abordés ici.

Chaque chapitre commence par un exposé clair des définitions, principes et théorémes
par de nombreux exemples. Ceci est suivi d’'un ensemble gradué d’exercices avec solutions
sont proposés aux lecteurs. Les exercices résolus développent la théorie et aident ’étudiant
a controler ’acquis de ses connaissances.

Dans ce cours, j’ai essayé de simplifier au maximum le module d’analyse 1 pour les
étudiants.
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Chapitre 1

Fonctions dérivables

La notion de dérivée est une notion fondamentale en analyse. Elle permet d’étudier les vari-
ations d’une fonction, de construire des tangentes & une courbe et de résoudre des problémes
d’optimisation. En physique, lorsqu’une grandeur est fonction du temps, la dérivée de cette
grandeur donne la vitesse instantanée de variation de cette grandeur, et la dérivée seconde
donne 'accélération.

1.1 Dérivée en un point

Soit I un intervalle ouvert de R et f : I — R une fonction. Soit zg € I.

Définition 1.1.1. Soit f: I — R une fonction, et soit g € I. On dit que f est dérivable

en xg si la limite
tim (zo + h) — f (20)

h—0 h

existe, et est finie. Cette limite s’appelle la dérivée de f en xg, on la note f’ (zg). Bien str,
il revient au méme de regarder la limite

o £ @) = 1 (@)
T—x0 T — X0

Dérivée a droite, dérivée a gauche
Définition 1.1.2. Soit f : I — R une fonction, et soit z¢ € I.

(1) On dit que f est dérivable a gauche en ¢ si la limite

lim f(xo+h) — f(x0)

h—0 h
h<0

existe, et est finie. Cette limite s’appelle la dérivée de f a gauche en zg, on la note

fq (o) -

(2) On définit de méme la dérivée & droite, que I’on note f (zo) .
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(3) f est dérivable sur I si f est dérivable en tout point xy. La fonction 2 — f’(z) est la
df

fonction dérivée de [, elle se note f/ ou T
x

Proposition 1. Soit f : [a,b] — R une fonction.

(1) Soit zg €]a,b[. Alors f est dérivable en zg si et seulement si f est dérivable & droite et
a gauche en zg et f, (vo) = fj (o).

(2) f est dérivable en a si et seulement si f est dérivable a droite en a.

(3) f est dérivable en b si et seulement si f est dérivable & gauche en b.

Les notions de dérivée a droite et a gauche ne sont pas trés importantes. Elles permettent
cependant de vérifier qu'une fonction est (ou n’est pas) dérivable en un point.
Exemple 1. La fonction définie par f (z) = 22 est dérivable en tout point xo € R.

En effet

f @)~ f (@) _a®—a} _ (x—0)(x+ )

Tr — X r — X0 r — X0 T—T0

On a méme montré que le nombre dérivé de f en zg est 2z¢, autrement dit : f/ (z) = 2z.
1

Exemple 2. Montrons que la dérivée de f (z) = /x est f/ (z) = NG si x # 0.

On doit calculer lim fath - /@) = lim ¥~ h \F

h—0 h h—0 h
On aboutit (logiquement) & une forme indéterminée. Pour lever I'indétermination,

on passe a la quantité conjuguée. On a :

Vith—yo _Voth—ya Voth+ya __ ath-z 1
h h “Vethtvi h(Vathtyz) vith+z

On a donc :

1 1
lim = sixz £ 0.
N rhi Ve 2vE o7

Pour x = 0, il n’y a pas de limite. La fonctlon racine carrée est dérivable pour tout nombre
Q\f

Proposition 2. f est dérivable en zg si et seulement s’il existe £ € R (qui sera f’ (zg))
et une fonction € : I — R telle que € (z) — 0 avec

x strictement positif et I'on a [ (z) = si x # 0. Elle n’est pas dérivable en 0.

f (@)= f(20) + (z —w0) L + (. — w0) € () .

Démonstration. Il s’agit juste de reformuler la définition de f’ (zg). Par exemple, apres
division par x — xg, la deuxiéme écriture devient

f(x) = f (o)

r — o

=l+e(x).
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1.2 Interprétation géométrique de la dérivée

Lorsque f est dérivable en a, la courbe représentative de la fonction f admet au point
A(a, f(a)) une tangente de coefficient directeur f’(a) dont I’équation est :

(T) s y=f'(a) (@ —a) + f (a)
A (D)

f(a)

O

e Si la fonction n’est pas dérivable en a, mais est dérivable a droite et/ou a gauche, on a des
demi-tangentes. Quand il y a deux demi-tangentes, on dit que le point est anguleux.

Propriétés de la dérivation
Proposition 3.
Soit I un intervalle ouvert, g € I et soit f : I — R une fonction.

e Si f est dérivable en z( alors f est continue en xg.

e Si f est dérivable sur I alors f est continue sur I.

Démonstration. Supposons f dérivable en xy et montrons qu’elle est aussi continue en
ce point. Voici une démonstration concise : partant de ’écriture alternative donnée
dans la proposition 2, nous écrivons

f(x) = f(20) + (x — z0o)l + (x — 20)e ().
\j,o_/ \j,o_/

Donc f () — f (z0) lorsque © — ¢ et ainsi f est continue en xg.

Remarque. La réciproque est fausse : par exemple, la fonction valeur absolue est
continue en 0 mais n’est pas dérivable en 0. En effet, f; (0) = —1 et f;(0) = 1. Cela se lit
aussi sur le dessin, il y a une demi-tangente a droite, une demi-tangente a gauche, mais elles
ont des directions différentes.
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1.3 Opérations sur les dérivées

Théoréme 1.3.3. Soient f, g : I — R deux fonctions dérivables sur I. Alors pour tout x € 1
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Démonstration. Prouvons par exemple (f x g)’ (z) = f' (z) x g (z) + f (z) x ¢’ ().
Fixons z¢ € I. Nous allons réécrire le taux d’accroissement de f (x) g () :

f(z)g ($l:ii$o)g (o) _ f (933: - io(im)g (z) + 2 (52 - io(fL’O)f (z0)
= f' (o) x g (w0) + f (x0) x ¢’ (20) -

r—x

Ceci étant vrai pour tout zg € I. La fonction f X g est dérivable sur I de dérivée f'g+ fg'.

Théoréme 1.3.4. (Dérivée des fonctions composées). Soient f : I - Retg:J—R
deuzx fonctions telles que f(I) C J, et soit g € I. Si f est dérivable en xg, et si g est
dérivable en f (xg), alors go f est dérivable en xq et

(9o f) (z0) = f'(z0) g’ (f (w0)).

Théoréme 1.3.5. (Dérivation des fonctions réciproques). Soit f : I — R une fonction
continue strictement monotone. Alors :

(1) L’ensemble J = f(I) est un intervalle, dont les bornes sont les limites de f aux bornes
de I. La fonction f réalise une bijection entre I et J.

2) La bijection réciproque f~! : J — I est continue strictement monotone, de méme sens
] proq )
de variations que f.

(3) Si f est dérivable en un point zo € I, et si f’ (zg) # 0, alors f~! est dérivable au point
Yo = f (wo) et

—1\/ B 1
U™ 0) = Zr 50

Démonstration. (1) et (2) : c’est le théoreme de la bijection.
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(3) Supposons f dérivable en zg. Soit yo = f (x0) et soit y € J, on s’intéresse a la quantité

f7 (o) = 7 (o)
Y—1Y

Posons = = f~1(y), alors cette quantité s’écrit
Tr — X

f () = f (o)

Comme f~! est continue en g, nous avons :

lim £ (y) = £ (y0) = 0.
Y—Yo

Par composition des limites, on en déduit que
T — X 1

lim S~ (o) = S (wo) = lim =
y—Yo Y — Yo v=wo f (z) — f (w0) f' (o)

d’ot le résultat.

Signe de la dérivée, sens de variation
Théoréme 1.3.6. Soit f une fonction dérivable sur un intervalle I.

e Si la fonction dérivée f’ est nulle, alors la fonction est constante.

e Si la fonction dérivée est strictement positive (sauf en quelques points isolés de I ou elle
s’annule), alors la fonction f est strictement croissante sur I.

Si la fonction dérivée est strictement négative (sauf en quelques points isolés de I ou elle
s’annule), alors la fonction f est strictement décroissante sur I.

Dérivées successives

Soit f est une fonction dérivable sur un intervalle I. Sa fonction dérivée f’ s’appelle la
fonction dérivée premiére (ou d’ordre 1) de f .

Lorsque f’ est dérivable sur I, sa fonction dérivée est notée f” ; f” est appelée dérivée
seconde (ou dérivée d’ordre 2) de f.

e De maniére récurrente, pour tout entier naturel n > 2, on définit la fonction dérivée
n — ieme (ou d’ordre n) comme étant la fonction dérivée de la fonction d’ordre n — 1,
fO) = et pour tout n > 2, fW) = fr=1y,

Si la dérivée n-iéme f(") existe on dit que f est n fois dérivable.

Exemple 3. f: z+— cosz est dérivable sur R et on a [’ (z) = —sinz, " (z) = — cosz,
@ (z) =sinz, f@ (z) = cos(x) et ainsi de suite...
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Remarque. Par convention f(©) = f.

Théoréme 1.3.7. (Formule de Leibniz). Soient f et g deuz fonctions dérivables n fois
sur un intervalle ouvert I. Alors fg est dérivable n fois sur I et :

) N~k gk (g b T e
(f-9) kZ:OCnf g <0uCn k!(n—k)!6N>'

Cest-a-dire que : (f.9)™ (z) = Sr_o CF ) (2).g"F) (z) pour tout = € I.

e La démonstration est similaire & celle de la formule du binéme de Newton et les
coefficients que I'on obtient sont les mémes.

Rappel: Ona: 0l=1, 11=1, 21=2x1=2, 3l=1x2x3=6, et

nl=1x2x3x..x(n—-1)xn=(n-1)!xn.
Fonction de classe ¢, fonction de classe ¢

Définition 1.3.8. Soit f une fonction définie sur un intervalle I de R.

e On dit que f est de classe C" sur I pour signifier que sa dérivée n — ieme existe et est
continue sur /.

e On dit que f est de classe C'*° sur I pour signifier que sa dérivée n — ieme existe quel
que soit ’entier n.

e Une fonction de classe C! est une fonction continue, dérivable et & dérivée continue.

e Une fonction de classe C? est une fonction deux fois dérivables et dont la dérivée seconde
est continue.

e Les fonctions polynomes, les fractions rationnelles sur leur ensemble de définition, I’exponentielle
et le logarithme népérien sont des fonctions de classe C*°

e Une fonction continue est de classe C%. Une fonction continue et dérivable, mais dont la
dérivée n’est pas continue est de classe D'.

e Pour tout entier n ou pour oo, I’ensemble des fonctions de classe C™ (ou C™ ) est stable

pour les opérations habituelles (addition, multiplication, puissance, division, composi-
tion).

Dérivée et extremum local
Proposition 4. (Maximum et minimum d’une fonction)
Soit f une fonction définie sur un intervalle I de R. Soit @ un point de I. On dit que :

1. la fonction f admet un maximum en a si pour tout z € I, f(z) < f(a).
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2. la fonction f admet un minimum en a si pour tout = € I, f(x) > f(a).
3. la fonction f admet un extremum en a si elle admet un maximum ou un minimum en a.
Proposition 5. (Maximum et minimum locaux)

Soit f une fonction définie sur un intervalle I de R. Soit @ un point de I. On dit que :

1. la fonction f admet un maximum local en a s’il existe un nombre n > 0 tel que
I'intervalle [a —n, a + n] soit inclus dans I et la restriction de f a cet intervalle
admette un maximum en a, soit encore : il existe n > 0 tel que si pour tout « € I,
& —a <7 Jalors f(z) < f(a).

2. la fonction f admet un minimum local en a s’il existe un nombre n > 0 tel que pour
tout x € I, |[x —a | < nalors f(x) > f(a).

3. la fonction f admet un extremum local en a si elle admet un maximum ou un
minimum local en a.

Remarque. L’extremum locaux d’une fonction sont & chercher parmi les zéros de la
dérivée, mais si f’(a) = 0, a n’est pas nécessairement un extremum local (contre-exemple
f(x) =23 en a =0).

Exemple 4. f admet un maximum local en z; sur Uintervalle [¢1, c2] et un minimum
local en zg sur [c2, c3].

flaq)

cqkl O

flxz)

1.4 Théorémes fondamentaux sur les dérivées

Théoréme 1.4.9. (Théoréme de Fermat). Soit f une fonction définie sur un intervalle
ouvert I de R. Soit a un point de I . Si f est dérivable en a et admet un extremum local
en ce point alors f'(c) = 0.
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1. Attention cela ne marche dans le cadre général que si I est un ouvert (autrement on ne
prend pas les bords de l'intervalle I en compte) !

2. La réciproque de cette proposition est fausse en général.

Théoréme 1.4.10. (Théoréme de Rolle). Soit f : [a,b] — R telle que

f est continue sur [a, b],

f est dérivable sur [a, b],

fla) =1 (b).
Alors il existe ¢ €]a, b] tel que f'(c) = 0.

f(a)=£(b)

Interprétation géométrique : il existe au moins un point du graphe de f ou

la tangente est horizontale.

Démonstration. Tout d’abord, si f est constante sur [a,b] alors n’importe quel ¢ €
]a, blconvient.

Sinon il existe xo € [a, b] tel que f(xo) # f(a). Supposons par exemple f(zo) > f(a).

Alors f est continue sur 'intervalle fermé et borné [a, b], donc elle admet un maximum en
un point ¢ €a, b|.

Mais f(c) > f(xo) > f(a) donc ¢ # a. De méme comme f(a) = f(b) alors ¢ # b.
Ainsi ¢ €]a, b[. En ¢, f est donc dérivable et admet un maximum (local) donc f’(¢) = 0.

Théoréme 1.4.11. (Théoréme des accroissements finis). Soit f : [a,b] — R une
fonction continue sur [a,b] et dérivable sur |a,b[. Il existe ¢ €]a,b[ tel que

f)=f(a)=f(c)(b—a).
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9
al
]

Interprétation géométrique : il existe au moins un point du graphe de f ou la tangente
est parallele a la droite ((AB)) ou A = (a, f(a)) et B = (b, f(b)).

f(b)_£<a)etg(x):f(g;)_ﬁ,(x—a).Alors

Démonstration. Posons ¢ = 2

Par le théoreme de Rolle, il existe ¢ €]a, b[ tel que ¢’ (¢) = 0. Or ¢’ (z) = f' (z) — L.

Ce qui donne f'(c) = f(bl)):i:(a).

Corollaire 1.4.12. (Inégalité des accroissements finis).Soit f: f : I — R une fonction
dérivable sur un intervalle I ouvert. S’il existe une constante M telle que pour tout x € I,
|f'(z)| < M alors

Ve,yel |f(x) = fy)l <Mz —yl.

Démonstration. Fixons x,y € I, il existe alors ¢ € |z, y[ ou |y, x| tel que

f (@)= f(y) = f'(c) (z —y) et comme |f'(z)] < M alors [f (z) = f (y)| < M |z —y].

Exemple 5. Soit f(z) = sin(z). Comme f'(x) = cosx alors |f'(z)| < 1 pour tout
z € R.

L’inégalité des accroissements finis s’écrit alors : pour tout z,y € R |[sin(z) —siny| <
[z —yl.

En particulier si I'on fixe y = 0 alors on obtient |sin (z)| < |z].

1.4.1 Formules de Taylor

Le théoréme de Taylor-Young permet d’approcher des fonctions quelconques par des fonctions
polynomiales et de “controler” le terme d’erreur.
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Théoréme 1.4.13. (formule de Taylor-Lagrange) Soient f € C" ! (I) et a,b € I avec
a <betla,b] CI. Alors il existe c €]a,b[ tel que

£ (@) 4+ 8= ) () 4

n!

(b—a)"*t

(n+1)! RG]

Remarque. Si n = 0 on retrouve le théoréme des accroissements finis.
Démonstration. On définit A par I’égalité

FO)— Fla)—(b—a)f (@) — o~ ED () =

n!

(b _ CL)n+1
(n+1)!
Comme dans la démonstration du théoréme des accroissements finis, on introduit une fonc-
tion (:
(b o ;U)n+1
(n+1)!

(b—2)"
n!

f () =

Comme f € C™! (I), on a f™ € C' (I), donc ¢ € C* (I). Le choix de A donne
@ (a) = 0 et on a aussi ¢ (b) = 0. On peut donc appliquer le théoreme de Rolle : il existe
¢ €la, b| tel que ¢’ (¢) = 0.

Calculons la dérivée dep.

termes de dérivée
f(b) 0
—f(z) —1'(x)
—(b—a)f'(x) + () — (b —a)f"(x)
_b— 2 O=a "y oy 0=
o P () + o) I () /) f (x)
b= oy, (b= wpany B2y
—m,f () +T,f () — W ()
=) ey, b= oy B= )"
ol fle -y @ )
B (]) _ J’-’Jn+ . ([]'} _ ‘.I,}ﬂ- ..
(n4+1) ~ + n! A

Dans la colonne de droite tous les termes sauf deux se simplifient, il reste

¢ @)= C (4 o ).

n!

Comme ¢ # b , I'égalité ¢’ (¢) = 0 donne f("*t1)(¢) = A. On a donc obtenu la formule de
Taylor.
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Application.

Prenons f(z) = cosz. Alors f est dans C* (R), donc dans C7(R).

Ecrivons la formule de Taylor au point a = 0 pour n = 6. On pose b = x > 0.
Les dérivées de f sont :

fV () = —sinz=fO (),
O @) = —cosz=fO (),
fO @) = +sine =0 (x),
f(4) (x) = +cosz.
Pour tout x € R il existe ¢ € |0, z[ tel que :
1 1 1 x’
cosz =1-— if + J:c4 — amﬁ + £ (c) o

Si on suppose que z € [0,7] on a f(7) =sint > 0 pour tout ¢ € [0,7]. On en déduit que pour
tout = € [0, 7]
Lo 14 15
cosle—ﬂx +Ix —am .

Théoréme 1.4.14. (formule de Taylor-Young) Soient f € C"(A) et a € A. Alors f
admet un développement limité d’ordre n en a donné par
(z—a)"

2
(@) + o = =" (@) + o ((x — a)").

n!

Démonstration. On a f € C™*(A) = C"~D+1(A). On peut appliquer la formule de
Taylor-Lagrange a 'ordre n — 1 & f avec = a la place de b. On suppose ici que = > a.

F@)=F @+ (@ -a) f @)+t D00 ),
avec ¢ €)a, z|. Ecrivons le dernier terme sous la forme
@O o0 () = C= 0 g0 ) 4 2O (50 ) — 10 )
Il suffit donc de montrer que
(x—a)"

(£ () = £ (@) = 0 ((z = a)")

n!

c’est-a-dire que

lim (f(”) (c) — f™ (a)) =0.
Cela résulte de la continuité de f(™ au point a.
Application.

1. Pour zp = 0, on obtient la forme de Taylor d’ordre n de f(x) = €*.
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Fonction Dy Dérivée Z;
Flx) = k R Fi(x) =0 R
Fx) = R filx) =1 R
fr)=x" neN" | R F(x) = ! R
flo =1 O O e
flx) = % neN* | R fllx) = —x,j% ] EOT);?:LFU
) =vE el | F@=g | 0
F(x) = sinx R F1(x) = cosx R
F(x) = cosx R | f(x)= —sinx R

Dérivées des fonctions usuelles
Regle de 'Hospital

Corollaire 1.4.15. (Régle de I’Hospital). Soient f,g: I — R deuz fonctions dérivables
et soit g € I. On suppose que

o f(z0) =g(z0) =0,
o Vo eI\ {xo} ¢ (z)#O0.

=/ alors lim f(2) =/

o g () worog (2)

Démonstration. On se sert du théoréme des accroissements finis généralisé (que nous
ne démontrons pas ici) : si f et g sont continues sur [x,y], dérivables sur |z,y[, et si ¢’ ne
s’annule pas sur |z, y[, alors il existe ¢ €]z, y[ tel que

fl@)—fy) _ [
gx)—gly) 4

Appliquons ce théoréme a la situation présente : étant donné x €la, b[, il existe ¢, €la, | tel
que
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/
c
Quand on fait tendre = vers a, le réel c; tend également vers a. Sachant que lim flg ;
c—a4 g C

existe, on en déduit (par composition des limites) que

f@) o £

i g () e g (0)

ce qu’on voulait.

0
o Cette régle permet de lever certaines indéterminations de la forme o Notons qu’on peut

appliquer la recette plusieurs fois de suite !

sinzx

Exemple 5. Calculer la limite suivante : lim :
r—0+ x2 + 3$

En appliquant la régle de I’Hospital, il vient

qui est de la forme g

sin x . Ccos T 1

m ———— = 1m = .
e—0+22 +3z  a—0t2x+3 3

1.5 Fonctions convexes
Fonctions convexes, fonctions concaves

Définition 1.5.16. Soit f une fonction définie sur un intervalle I. On dit que est convexe

sur [ si:

V(z,y) € I?, Vt€[0,1], f(ta+ (1 —t)y) <tf(x)+(1—1)f(y)

On dit qu’une fonction f est concave si la fonction —f est convexe.

Que signifie la définition ?

On a donc pour tout ¢ € [0,1], tx + (1 —¢t)y € [z,y].

De la méme fagon, tf () + (1 —t) f (y) est un point du segment [f (z), f (v)]

ou du segment [f (y), f (z)].

L’image d’un point du segment [z, y] est donc au-dessous du point correspondant sur

le segment [f (x), f (y)] ou le segment [f (y), f (x)].

Ce qui signifie que le segment reliant les points de coordonnées M (z, f (z)) et N (y, f (v))

est au-dessus de la courbe...
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M(x, f (x))

2'2 N ———— voso
1,5 \\//

y=f(x

0,5

Fonctions convexes dérivables

Théoréme 1.5.17. Soit f une fonction dérivable sur un intervalle I. f est convexe sur
. . . o o » / . .
1 si et seulement si sa fonction dérivée f' est une fonction croissante sur I.

Interprétation géométrique. La courbe est au-dessus de toutes les tangentes

Théoréme 1.5.18. Soit f une fonction deux fois dérivable sur un intervalle I.

e [ est convexe sur I si et seulement si sa dérivée seconde f” est positive sur 1.

e f est concave sur I si et seulement si sa dérivée seconde f” est négative sur I.

Points d’inflexion pour une fonction

Définition 1.5.19. Soit f une fonction définie sur un intervalle [a, b], dérivable sur |a, b].
On dit qu’un point de coordonnées (c, f (c)) avec ¢ € Ja,b[ est un point d’inflexion si la
fonction f’ admet un extremum local en c.

Si la fonction f est deux fois dérivable sur |a, b[ alors on a un point d’inflexion au point
d’abscisse ¢ si f” s’annule en ¢ en changeant de signe.

Interprétation géométrique. La tangente en c est donc d’un coté de la courbe

avant ¢ (coté qui correspond a la concavité dans cette partie) et de autre coté apres c.

En ¢, la tangente traverse la courbe.
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1.5.1 Branches infinies ( Asymptotes d’une courbe)

a) Asymptotes horizontales et verticales.

e Soit g € R. Si lim f = 400 ou lim f = 400 ou lim f = 400 alors la droite d’ “equation

o 70 29

x = xo est une asymptote de la courbe représentative de f.
e Silimf = b € R alors la droite d’équation y = b est une asymptote de la courbe
+oo
représentative de f.
b) Cas ol lim f = +oc.
+

Méthode générale :

e étape 1 : Vérifier que lim f = +oo0.
+o0

e étape 2 : Calculer lim @

r—+oo g
-Si lim J(@)
r—too I
direction (Ox). L’ etude de la branche infinie est alors terminée.

“Si lim 4@
r—+oo g
de direction (Oy). L’étude de la branche infinie est alors terminée.

“Si tim 1@

r—+oo g

= 0 alors la courbe représentative de f admet une branche parabolique de

= 0 alors la courbe représentative de f admet une branche parabolique

= a € R* il faut passer a I'étape 3.

e étape 3 : Calculer lim (f(x) — ax)

r—+o00
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- Si liI:il (f (x) —ax) = b€ R alors la droite d’équation y = az + b est une asymptote
T— 100

de la courbe représentative de f.

- lilil (f () —ax) = too alors la courbe représentative de f admet une branche
Tr— o0

parabolique de direction la droite d’équation y = ax.
Exemple 6. Etudions la branche infinie en +00 de la fonction définie par

ze® +1
f @)= er+ 1"
e étape 1 : Vérifier que lim f = 400
+oo
T(1+1 r 141 v
lim f () = lim ze? (1 +1/ (ze?)) = lim xxmz—i-oo.
2—400 z—+oo  e® (1 +e ) T—+00 1+e %
e étape 2 : lim /(@)
r——+oco I
14+1 v
D’apres les calculs précédents lim M = lim m =1.
r—+oo T z—+oo 14+ e %
e étape 3: lim (f(x)—1xux)
T——+00
T+1-— T+1 1— 1/x—1 1/x—1
On(f(a:)—x):xe+ z(e"+1) r  x(l/z )zix Jx

er+1 e?+1 et(l4+e) e 1+e@
Donc lim (f(z)—1xzx)=0.

T—400

e Conclusion : La courbe représentative de f admet une asymptote en +4oo, la droite
d’équation y = .

1.6 Exercices Corrigés

Exercice 1. Répondre par oui ou non aux questions avec des justifications rigoureuses :

1
(1) La fonction x — —— est croissante sur R*.
x

(2) Soit f une fonction définie et dérivable sur un intervalle symétrique (et contenant zéro).
Alors f paire& f’ impaire.

(3) Toute fonction continue est dérivable.
(4) Soit f une fonction dérivable. Si f’(x) = 0, alors f est constante.

(5) Soit f et g deux fonctions dérivables au voisinage d’un point a. Alors :

Cf@ )
g T @)




EXERCICES CORRIGES 21

(6) Soit la fonction f définie par :

Alors f'(0) =1 = 0.
Réponses.

(1) Faux ! La fonction donnée n’est ni croissante ni décroissante. Elle n’est pas croissante,

car . . )
> mais, f (1) 1 # f(=2) 5 T
Elle n’est pas décroissante, car
1 1 1
> mais, f(—1) — Z f(-2) =5

Le résultat qu’on connait est le suivant
[ est strictement croissante sur I C R < f'(z) >0, Vz € I.

(pour une fonction dérivable, bien sar) . Il est vrai si I’ensemble I est un intervalle. Dans

notre cas on a bien f'(z) = —5, Vo € R* mais R* n’est pas un intervalle. Montrons ceci,
T

mais d’abord rappelons la féfinition d’un intervalle.

Définition 1.6.20. On dit qu'un ensemble I est un intervalle (ouvert) si Vz,y € I, on a
Jz,y[ C I

Si R* un intervalle, et puisque —1,1 € R* alors normalement on aurait |—1,1[ C R*, ce
qui impossible car 0 € |—1, 1] mais 0 ¢ R*. Pour finir, la fonction f est croissante sur R* car
sa dérivée est positive et R’ était un intervalle et elle est croissante sur R* car sa dérivée est
positive et R* était un intervale. Mais elle n’est pas croissante sur la réunion R* = R* UR?.

(2) Vrai. Montrons ceci. On consideére g (z) = f(z) — f (—x). Alors g est définie sur le
méme intervalle que f. On voit bien que g (0) = 0 et donc on a

f paire & f(z)=f(—7) & g=0<% g est constante < g’ =0
s fl@)+f(—2)=0% f (—x) = —f'(z) & f impaire.

3) Faux ! Par exemple z — +/x est continue en 0 mais elle n’est pas dérivable en
p b
ce point. Aussi x — |x + 1| est continue en —1 mais non dérivable en ce point
(et il y une infinité d’exemples) . Mais la réciproque est vraie.

Toute fonction dérivable en un point x( est continue en xzg.

Cette propriété est souvent utilisée sous la forme de sa contraposée, i.e.

Si une fonction f n’est pas continue en un point zg, alors ellen’est pas dérivable
en ce point.
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(4) Faux ! Par exemple, soit

f(x):{ 21: vl

x> 0.

Alors f est définie, continue, dérivable sur R*, et pour tout z € R*, f’ () = 0. Cepen-
dant, f n’est pas constante sur R* (car elle n’a pas la méme valeurs sur son domaine de définition) .
Comme dans la question 1), le résultat qu’on connait est le suivant :

f'(x) =0 sur I & f constante sur I, (si I est un intervalle).
1
(5) Faux ! Soit f(z) = #2sin~ et g(v)=sinz. Alors
x

1

2 .
x”sin —

T 1 T
limf():lim — L — Jlim (zsin= ) — =0x1=0,
a—0g(x) +—0 sinz z—0 x ) sinx

alors que
1 1
7 (2) 2x sin — — cos —

lim = = lim L L n’existe pas.

z—0¢g (ZE) z—0 cosx

Ce qui est vrai est I'implication réciproque, i.e.

@) f@)
aga) g

(avec des hypotheses "La regle de L’Hospital).

(6) Faux ! Tout d’abord f est continue en 0 (pourquoi ?) Pour trouver la dérivée de f en
0 on doit utiliser la définition d’une dérivée en un point. On a

M:hmem;lzlzf’@).

lim

z—0 z—0 z—0 X
Donc f’(0) # 0. On fait toujours ¢a aux points ou f change de valeurs. Mais, si on
nous a demandé de donner f’(2) (pour la méme fonction), alors on dit : puisque f est
dérivable sur R* car elle vaut e® laquelle est dérivable sur R et en particulier sur R* et
ona: Vo ecR*: f/(z)=(e") = e

Dot f'(2) = €2 (et on fait ceci avec tous les points de R*).
Exercice 2. Soit a € R. Soit f une fonction dérivable en a. Trouver
f(a+h?) = f(a+h)

li )
hli% h

Solution. On

f(a+h*) = f(a+h) fla+h?) = f(a)+ f(a)— f(a+h)
h h
fla+h?) —f(a)  f(a)=flat+h)
h h

_ ) —f@)  fath) - f)
h? h '
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Donc
a %)= f(a
il +h>h FOXN 0w (@)~ £ @) =1 (a).

Exercice 3. En utilisant la définition de la dérivabilité, étudier la dérivabilité
des fonctions suivantes au point xg

D) f(@)=Va, 2=0% 2) f@)=|e—1], 2 =1; 3) f(z)=zle|, z=0.

lim
h—0

Solution.
On a
— 1
limM: limﬁz li

1m —+00.
z—0+ x—0 r—0t

z—0t ﬁ -

x
Donc f n’est pas dérivable en zg = 0 (a droite) .

On a
o — 1) = z—1, >1
v |l 1-2, z<1.
On a donc . Lo
i L@ =FM 22120
r—1t r—1 z—1+ x—1
“ F)-f) _  1-z-0
) — —r—
lim m—~—— 2 — Jim ————— =—-1#1= f/(1
o1z 1 el z—1 #1=Ja(D),
et donc f n’est pas dérivable en zg = 1.
3) On a
z|z] = 22, >0
T 22, <0
On a donc )
limM: lim v _0: lim z = 0,
z—0+ xz—0 z—0+ x—0 x—0T
et )
lim f@)=f(0) = lim -0 _ lim (—z) =0,
z—0~ z—0 z—0~ T r—0~

et donc f est dérivable en zg = 0.

Exercice 4. Calculer les limites suivantes (en utilisant la dérivabilité de fonctions) :

i In(1 r—1 i
1) lim 0, 2) nmw, 3) lim < . 3) lim "
z—0 X z—0 T z—0 T T=TL — T

Solution. On va utiliser la définition de dérivabilité de quelques fonctions qui sont déja
connues d’étre dérivables.

1) On a
. e in0
lim o = lim o Y (sin ) (0) = cos0 = 1.
z—0 X z—0 z—0
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2)

3)

4)

ANALYSE1
On a
. In(1+2x) . In(142)—In(1+0) / 1
200 T 250 z—0 (In (1 +2))"(0) 1+0
De méme,
et —1 . e —¢l o\ 0
M Ty =t
On a
. sinzx . sinz —sin7
lim = lim—— =coswm = —1.

T—=TL — T T—T r— T

Exercice 5. Soit f : R — R la fonction définie par

f(x):{ er six <0

ar?+br+c sixz>0

Déterminer a, b et ¢ dans R tels que f soit C?.

Solution.

f est C? sur R™, car  — €* est de C™, de méme unpolynéme est de C™,
donc f est C? sur RT.

Rest a étudier f en 0.

f doit étre continue en 0

C’est le cas si

lim f(z)= lim f(z); or imf(x)=c et limf(z)=1.

lim f (z) = Tim f(2); or limf(z) =c et limf(a)

Donc on doit avoir e =11

f doit étre dérivable sur R

avec le méme raisonnement que pour la continuité, il est clair que f est dérivable sur R
ssi elle est dérivable en 0. C’est le cas si

@10 . f@=f0)
z—0t x—0 z—0- x—0
. flx)—fO) B . B
Or Jig TG = Jim (e et) =t et i (o)=L

Donc on doit avoir : b =1l
f doit étre C* sur R

C’est le cas si f’ est continue sur R; Or f’ est continue sur R* et sur R* : ainsi
f' continue < f’ continue en 0.
C’est le cas si : lim+f’ () = lim f'(z).

z—0

z—0~

Or limf'(x) = (2ax +b) =b=1et limf ()= lime" = 1.

lim
z—0t z—0t —0~ z—0~

Donc f est C1.
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f doit étre C? en 0
f est C? ssi f” est continue sur R, ce qui revient a prouver que f” est continue en 0.
On a

lim f” (z) = lim2a=aet limf”(z) = lime®* = 1.
x—>0+f ( ) r—0t :r—>0*f ( ) z—0~

!
Donc on doit avoir : [ 2|

s I

Conclusion : Ainsi, pour que f soit C? sur R, il faut avoir :

o o 8
I

Exercice 6. Soit f la fonction définie sur R* par

1—e* siz<0

={ e —1
I (z) € six > 0.
e*+1
Montrer qu’il existe une fonction g, prolongeant f par continuité, et étudier la dérivabilité
de g.
Solution.
On a
lim f(z)= lim (1—¢€®)=0 et lim f(z)= 1i1rnex_1 =
z—0~ z—0~ z—0t et +1
z—0t

La fonction f admet donc pour prolongement par continuité sur R la fonction g définie
par

9(@) = { f(ox) siSixx:eoE

Il est immédiat que g est dérivable en tout point de R*.

De plus,
_ _ X
i 9@ =90 _ . 1-e"
z—0— z—0 z—0— X
ot 0 r—1 1 1
lim M — lim € - ) ———
z—0t x—0 z—0+ X et +1 2

Par conséquent, la fonction g n’est pas dérivable en 0.
Exercice 7. Peut-on appliquer le théoréme de Rolle aux fonctions suivantes :

z, 0<z<1l B B )
o = {7 5 g — e 1l ve 20
hiz) = V4—22, x€[-2,2]; k(z)=¢" =cosx+isinz, x€[0,2n] ?
Solution.

1) Non, car f n’est pas continue en x = 1 (les autres conditions sont toutes satisfaites) . De
toute fagon il n’existe aucun ¢ € |0, 1[ tel que f’ (¢) = 0 (car pour tout z € |0,1[: f'(z) =1#0).
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2) Non car f n’est pas dérivable en —1 € |—2,0].

3) Oui, car h(2) = h(—2) =0, h est continue sur [—2, 2] et elle est dérivable sur |—2,2[ ,on
remarque que h n’est pas dérivable en 2 et —2 mais ce n’est pas un probléme car la
fonction considérée dans le théoréme de Rolle doit étre continue sur un intervalle fermé
et borné et dérivable sur I'intervalle ouvert. On peut trouver le ¢ explicitement dans

-
ce cas. On a pour tout z € |-2,2[, A/ (x) = ——— et le cest 0.
e
4) On admet que k est bien continue et dérivable sur [0, 27] et que les notions de bases sur
ce type de fonctions sont connus.

On a aussi k (0) = k (2m) = 1. Donc les hypothéses du théorééme de Rolle sont satisfaites
et normalement il existe un ¢ € |0, 27| tel que k' (¢) = 0, mais si on calcule la dérivée de k,
on trouve k' () = —sinx + i cosz. D’ou

|k’ ()| = |-sinz +icosz| =1#0 Vz €R.

Ceci veut dire que le théoréeme de Rolle ne s’applique pas dans le cas d’une fonction
définie de R dans C.
Exercice 8. Montrer que

1) 1im <ln(l+z) <z Vo>-L.

2) " >1+4+uz, Vel

3) sinz <z, Vz > 0.

4) cosz >1—2% Vr € R.
Solution.

1) On traite deux cas -1 <x <0 et x> 0.

(a) Soit x > 0. Soit la fonction f définie sur [0,z] par f(x) = In(1+1¢). Alors f est
continue sur [0, z] et est dérivable sur |0, z[ . Par le théoréme des accroissements finis (7. A.F).
1
1+c¢

Jee]0,z[ : m(1+2)=f(z)— f(0)=(z—-0)f (c)=x

D’autre part,

1 1

O<c<arx=l<ct+l<z+1l= < < 1.
1+ c+1
Puisque x > 0, alors
x
< <
142 c+1 v

et donc pour tout = > 0, on a

x
1+

<In(l+z) <=
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(b) Soit < 0. On considére la méme fonction f mais sur l'intervalle [z, 0]. Il existe
un ¢ € |z, 0] tel que

x
FO) - @) =0-2) 1) >+ 2) =af (0) = 1o
car f(0) =0.
1 1
Onaz<c¢<0,etdoncl < —— < —— maiz est négatif et donc
c+1 1+ 2
x
<In(1 < z.
14+x — n(l+z) <z

Ainsi, on a montré notre inégalité pour tout x > —1 (avec égalité si et seulement
six =0).

2) Soit z € R. L’inégalité est triviale pour x < —1. Six > —1 et donc 1+ z > 0, alors

ef>1l4+zrzehn(e®)=z>n(l+2),

et on a déja montré cette inégalité dans la question précédente.

3) Soit x > 0. La fonction ¢ +— sint est continue sur [0, z]| et dérivable sur |0,z[. Donc par
le T'AF.ona

Je€]0,z] : sinx = f(z) — f(0) =xf (c) =z cosc

car f(0) = 0. De plus,
cosc <1 etdonczcosec<zxzcosz > 0.
Ainsi pour tout £ > 0, on a sinx < .

4) Soit x > 0. La fonction ¢t — cost est continue sur [0, z] et dérivable sur |0, z[. Donc par
le T AF.on a
dc€]0,z[ : cosx —cos0 = (z —0) (—sinc)

ou bien
dc €10,z : cosz— 1= —zsinc.

Puisque ¢ est positif, alors d’aprés la question précédente, sinc < ¢ et donc sinc < x
(car ¢ < x) ou encore —sinc > —z, mais x > 0 et donc —x sinc > —z2. Donc, on a montré
que

Vr>0: cosz—1> —x2, i.e;Ve > 0: cosx > 1— 22

Puisque les deux membres de I'inégalité précédente sont des fonctions paires, alors
I'inégalité est aussi vraie pour z < 0. Ainsi

VreR: costl—:cz.

Exercice 9.
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sin x

(1) En utilisant le théoréme des valeurs intermédiares, montrer que 1’équation ze®™* = cosx

T
admet au moins une solution dans ]0, 5 {
(2) Par le théoreme de Rolle, montrer que cette solution est unique.
Solution.

(1) Soit la fonction f définie sur }0, g [ par
f(z) = 2% —cosx

Alors f est bien continue car c’est la somme, le produit et la composée de fonctions
T
continues sur R et donc sur }0, 5 [
D’autre part, on a

f(0)=-1 et f(g>:ge. D’oﬁf(O)xf(%)z—ge<O.

sin x

Par le théoréme des valeurs intermédiares, ’équation xe = cosx admet au moins une

solution dans ]O, g [

(2) Supposons que notre équation admet deux solutions a et b, donc on aura f (a) = f (b) =
™
0, ot a,b € ]O, — [ La fonction f est continue et dérivable sur R. Donc f est continue

et dérivable sur |a,b[. Puisque f(a) = f(b), alors d’aprés le théoréme de Rolle, il
existe un ¢ € Ja, b] tel que f’'(c) = 0. mais

f'(z) = e 4z (cosz) ST 4 sinz > 0

™
car tous les termes sont strictement positifs car z € }O, 5 [ D’ou f' (z) # 0. Ceci contredit
le théoréeme de Rolle et donc il existe une et une seul solution de I'équation f (x) = 0.

T T
Remarque. Puisque f'(z) > 0 sur } 0, 5 [, alors f est strictement croissante sur }0, 5 [,

D’ou 'équation f (z) = 0 admet une et une seul solution dans }0, g [

Exercice 10.
En utilisant la régle de L’Hospital (lorsque ceci est possible), calculer les limites suivantes

efE
,  3)lim o P eN,

xr——+00

. -
1) lim 25 2)lim —

T—T T x—0 T

. T —sinx . sin (pz) ; 1\’
)x—1>r-ir-loo 2z + sinz’ 2—1>f)nSin (gz)’ 170 xljr?om << ! 33) )

Solution.
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(1) Non, on ne peut pasappliquer la régle de L’Hospital dans ce cas car nous n’avons pas

o L 00
une des formes indéterminées 0 ou —.
00

La limite est facile & calculer, elle est égale a 0.

0
(2) Clest la forme indéterminée —. Les fonctions sont dérivables et donc peut appliquer la

régle de L’Hospital. On a

. (1—cosz) | sinx
im-~——>—— = lim .
z—0 (1’2)/ z—0 2%

0
C’est encors la forme indéterminée o On applique encore une fois a régle de L’Hospital,

on a ,
(sinx) . _cosz 1

(3) C’est la forme indéterminée —. Si on dérive le nominateur une fois et le dénominateur
00

une fois, ¢a va aussi nous donner la forme indéterminée —. On fait la méme chose une

00
deuxiéme fois, on obtient la méme chose. On fait ce travail p fois et on trouvera a la

fin

eCE

lim — = +o0.
xP

r——+00

(4) Puisque lim (x —sinz) = 400 et lim (22 +sinz) = +o0, alors la limite considérée
T—~+00 T—+00

00
est la forme —. On applique encore une fois a régle de L’Hospital une fois, on a
00

(v —sinz)’ . l—cosz

v—+00 (22 + sinz)  #—+002 + cosz’

. 1 —cosz
on ne continue pas ! car lim ———— n’existe pas. Donc on ne peut pas appliquer
r—+002 4 cosx

la régle de L’Hospital. Pour calculer cette limite , on peut, cependant la calculer
facilement comme suit :

. T —sinz . ( — sinz ) ] — sinz 1

Ilm ——— = lim ——* £~ = lim —* = —.

r—4002x +sinx  z—+toog (2 + —Smx) r—+o0Q 4 ST D

(5) Soit p un réel et ¢ un réel non-nul. On a

. !
i B o) s
2—0 (sin (qx) z—0 qcos(qr) g
D’ou
5) lim 52 P2) _ P
z—0 sin(qz) ¢
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1
(6) En posant y = —, alors z — +00 < y — 0T et on aura
x

T 1/y
x

T——+00 y—0t Yy
malis

' (i / 1 -
((1+y)1/y_e) = (e;l (1+y) —e) = <_y21n(1+y)+ >€;l (1+y)+0'

y(y+1)
et

. 1 1 o —(y+hm(d+y)+y 1
] (1 S | __1
yféi( y? o +y)+y(y+1)> it y?(y+1) 2

On applique encore une fois a régle de L’Hospital deux fois. Puisque

1
—In(1+y) — 1 lorsque y — 0, alors
Yy

1/y x
limmy)—e:—lz lim x((l—i—l) —e).
T

y—0T Y 2 T——+00

Exercice 11. Calculer la dérivée de la fonction inverse des fonctions suivantes
au point yg indiqué

1) f(x) = $2a Yo = 4; 2) f(.T) =Inz, Yo = 2.

Solution.

(1) f est une bijection de ]0,+oo[ dans f (]0, +oo[) = ]0, +o0] car elle est strictement crois-
sante et continue sur cet intervalle.

On a f~!(4) = z nous donne f (z) = 22 = 4 et donc x = 2 car = > 0.

1 1 1 1
U@ e @0 4

Maintenant pour vérifier nos calculs, on sait que la fonction réciproque de f est  — /x

. 1 .
qui a pour dérivée ——, et au point 4 elle vaut —= =

20/T o0/1 4

(2) f est une bijection de ]0,4o0[ dans f(]0,+oo[) = ]—o00,+00[ car elle est strictement
croissante et continue sur cet intervalle. On a f~!(2) = z nous donne Inz = 2 et donc
2

Tr = e".
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D’autre part

Maintenant pour vérifier nos calculs, on sait que la fonction réciproque de f est x — e”
qui a pour dérivée e®, et au point 2 elle vaut e? = 2

Exercice 12. Soit la fonction f définie par f (x)

——. Donner un intervalle sur lequel
sinx )
elle admet une fonction réciproque f~!. Exprimer D #-1 et calculer ( f *1)

T
Solution. On peut définir f, par exemple, sur 57| Sur cet intervalle f est continue et

T

strictement croissante. Donc f admet une fonction réciproque f~! définie sur f ([E,WD
T

[1,400[ et prenant ses valeurs dans [—, 77[

77
La fonction f est dérivable sur [—, 7r[ et

Vr € [E,Tr[ cff(x) = —'002533.
2 sin“ x

On voit bien que f’ s’annule pour z =

|9

. Donc f~! est dérivable sur f ([g,ﬂ'D
(@)

[1,400[. Donc pour > 1, on a (en posant y

1) () — 1 r — sin® (y)
U@ =77 " Fa) - sy

Maisy=fl(z) & f(y) =2 = Sy Donc

1
siny = — = sin? (y) =
x

. 1
= et cos®(y) =1—sin?y=1- ot

1

2"

mais puisque y = f~! (x) € [g,w[, alors cosy < 0 et donc cosy = —4/1 —

(O E———

/a2 -1
Exercice 13. Soit la fonction f définie par f (z) = Va2 + 2z + 1

1) Quel est le domaine de définition de f.
2) Montrer que la restriction de f & [0, +oo[ admet une fonction réciproque f~!, exprimer
=

3) Déterminer la dérivée de f1.

Solution.
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1) f(z) = V22 + x + 1 est définies 22 + 2+ 1> 0,

A

(1) —4x1x1=1-4=-3
signe de (z° +z+1) =signede (1) =>Vz eR; 2> +2+1>0
D =R =]—o00,+o0[.

2) f est continue sur R = f est continue sur [0, +00] et

2+ 1
"(2) = —f/————=V2zec[0,+0] =2>0
F@ = et (0. +o0l
2x +1
= 2r>0=224+1>1>0=f(2)= —— >0
/(@) 2Vl +x+1

douvVz € [0,4o0[; f'(z)>0.

Alors f est strictement monotone sur [0, +oo[ = f est bijective sur [0, +o0]

= 3J1f~1:|f(0), lim f(x)| — [0,+o0];

On a:

y=f"t@=) ez=[(y , ;
FO)=vV02+0+1=yI=1 fria) o+ |

r—-+00

lim Vz24+2z+1= lim Va2 : 400
xr——+00 xr——+00 .
= Jim fof = lim 2= +oo f@ |2
1 I
r = flye=z=vV2+tyt+let=y"+y+1

Vz

Y1
422 — 3

y2+y—|—1—$2:0
(1)?—4x1x (1-2?) =1-4+42® = -3+ 422,
[L4ool; 2>1=a?>1=40>4=422 -3>4-3=1>0

—1— 422 -3 —14+ 422 -3
2 2
0= f"1#u
1= V422 -3>1= V422 -3-1>0=19>0
=14+ V42?2 -3

Vz € [1,4o00[; £1 () =y2 (x) = 5

3) f~! dérivable sur [1,+o0].
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premiére methode:

, 1 1 2/(f 1 @) + (@) + 1

(f @) = ) 2f 1 (z)+1 - 2f~ 1 (x) +1
2/(f~1(2))?+F 1 (z)+1

2\/1—&—4:52—322\/4362—3 4 —1+\/24x2—3 1

—14+v4z?2-3+1
2_
B 2 4w42*%+1_ Var? 2z 2
B 422 -3  Ar2—3 VAr2—3  Jaz2—3

deuxiéme méthode:

(@) = @xmy=(‘“*§whﬂ>

B 1< 8x )_ 2x
o2\ 2v422 —3) 423
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