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Introduction

Ce cours regroupe le contenue du module d�analyse 1 dans le programme de LMD. Il destiné
aux étudiants de 1�ere année Mathématiques et Informatique. Il comporte six chapitres : les
nombres réels, les nombres complexes, puis les suites. Les chapitres suivants sont consacrés
aux fonctions : limite et continuité, dérivabilité, et les fonctions élémentaires.

En faisant recours aux di¤érents ouvrages traitant les di¤érents sujets abordés ici.
Chaque chapitre commence par un exposé clair des dé�nitions, principes et théorèmes

par de nombreux exemples. Ceci est suivi d�un ensemble gradué d�exercices avec solutions
sont proposés aux lecteurs. Les exercices résolus développent la théorie et aident l�étudiant
à contrôler l�acquis de ses connaissances.

Dans ce cours, j�ai essayé de simpli�er au maximum le module d�analyse 1 pour les
étudiants.

3



4 ANALYSE ASYMPTOTIQUE EN THERMOELASTICITE ET EN THERMOVISCOELASTICITE



Chapitre 1

Fonctions dérivables

La notion de dérivée est une notion fondamentale en analyse. Elle permet d�étudier les vari-
ations d�une fonction, de construire des tangentes à une courbe et de résoudre des problèmes
d�optimisation. En physique, lorsqu�une grandeur est fonction du temps, la dérivée de cette
grandeur donne la vitesse instantanée de variation de cette grandeur, et la dérivée seconde
donne l�accélération.

1.1 Dérivée en un point

Soit I un intervalle ouvert de R et f : I ! R une fonction. Soit x0 2 I.

Dé�nition 1.1.1. Soit f : I ! R une fonction, et soit x0 2 I. On dit que f est d�erivable
en x0 si la limite

lim
h!0

f (x0 + h)� f (x0)
h

existe, et est �nie. Cette limite s�appelle la dérivée de f en x0, on la note f 0 (x0) : Bien sûr,
il revient au même de regarder la limite

lim
x!x0

f (x)� f (x0)
x� x0

:

Dérivée à droite, dérivée à gauche

Dé�nition 1.1.2. Soit f : I ! R une fonction, et soit x0 2 I.

(1) On dit que f est dérivable à gauche en x0 si la limite

lim
h!0
h<0

f (x0 + h)� f (x0)
h

existe, et est �nie. Cette limite s�appelle la dérivée de f à gauche en x0, on la note
f 0g (x0) :

(2) On dé�nit de même la dérivée à droite, que l�on note f 0d (x0) :
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(3) f est dérivable sur I si f est dérivable en tout point x0: La fonction x 7! f 0 (x) est la

fonction d�eriv�ee de f , elle se note f 0 ou
df

dx
:

Proposition 1. Soit f : [a; b]! R une fonction.

(1) Soit x0 2]a; b[. Alors f est dérivable en x0 si et seulement si f est dérivable à droite et
à gauche en x0 et f 0g (x0) = f

0
d (x0) :

(2) f est dérivable en a si et seulement si f est dérivable à droite en a.

(3) f est dérivable en b si et seulement si f est dérivable à gauche en b.

Les notions de dérivée à droite et à gauche ne sont pas trés importantes. Elles permettent
cependant de véri�er qu�une fonction est (ou n�est pas) dérivable en un point.
Exemple 1. La fonction dé�nie par f (x) = x2 est dérivable en tout point x0 2 R.
En e¤et

f (x)� f (x0)
x� x0

=
x2 � x20
x� x0

=
(x� x0) (x+ x0)

x� x0
= x+ x0 �! 2

x!x0
x0:

On a même montré que le nombre dérivé de f en x0 est 2x0, autrement dit : f 0 (x) = 2x.

Exemple 2. Montrons que la dérivée de f (x) =
p
x est f 0 (x) =

1

2
p
x
si x 6= 0.

On doit calculer lim
h!0

f (x+ h)� f (x)
h

= lim
h!0

p
x+ h�

p
x

h
:

On aboutit (logiquement) à une forme indéterminée. Pour lever l�indétermination,
on passe à la quantité conjuguée. On a :
p
x+ h�

p
x

h
=

p
x+ h�

p
x

h
�
p
x+ h+

p
xp

x+ h+
p
x
=

x+ h� x
h
�p
x+ h+

p
x
� = 1p

x+ h+
p
x
:

On a donc :

lim
h!0

1p
x+ h+

p
x
=

1

2
p
x
si x 6= 0:

Pour x = 0, il n�y a pas de limite. La fonction racine carrée est dérivable pour tout nombre

x strictement positif et l�on a f 0 (x) =
1

2
p
x
si x 6= 0. Elle n�est pas dérivable en 0.

Proposition 2. f est dérivable en x0 si et seulement s�il existe ` 2 R (qui sera f 0 (x0))
et une fonction � : I ! R telle que � (x)! 0 avec

f (x) = f (x0) + (x� x0) `+ (x� x0) � (x) :

Démonstration. Il s�agit juste de reformuler la dé�nition de f 0 (x0). Par exemple, après
division par x� x0, la deuxième écriture devient

f (x)� f (x0)
x� x0

= `+ � (x) :
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1.2 Interprétation géométrique de la dérivée

Lorsque f est dérivable en a, la courbe représentative de la fonction f admet au point
A(a; f(a)) une tangente de coe¢ cient directeur f 0 (a) dont l�équation est :

(T ) : y = f 0 (a) (x� a) + f (a)

� Si la fonction n�est pas dérivable en a, mais est dérivable à droite et/ou à gauche, on a des
demi-tangentes. Quand il y a deux demi-tangentes, on dit que le point est anguleux.

Propriétés de la dérivation
Proposition 3.
Soit I un intervalle ouvert, x0 2 I et soit f : I ! R une fonction.

� Si f est dérivable en x0 alors f est continue en x0:

� Si f est dérivable sur I alors f est continue sur I.

Démonstration. Supposons f dérivable en x0 et montrons qu�elle est aussi continue en
ce point. Voici une démonstration concise : partant de l�écriture alternative donnée
dans la proposition 2, nous écrivons

f (x) = f (x0) + (x� x0)| {z }
!0

`+ (x� x0)| {z }
!0

� (x) :

Donc f (x) �! f (x0) lorsque x �! x0 et ainsi f est continue en x0.
Remarque. La réciproque est fausse : par exemple, la fonction valeur absolue est

continue en 0 mais n�est pas dérivable en 0. En e¤et, f 0g (0) = �1 et f 0d (0) = 1: Cela se lit
aussi sur le dessin, il y a une demi-tangente à droite, une demi-tangente à gauche, mais elles
ont des directions di¤érentes.
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1.3 Opérations sur les dérivées

Théorème 1.3.3. Soient f; g : I ! R deux fonctions dérivables sur I. Alors pour tout x 2 I
:

� (f + g)0 (x) = f 0 (x) + g0 (x)

� (�f) (x) = �f 0 (x) où � est un réel �xé

� (f � g)0 (x) = f 0 (x)� g (x) + f (x)� g0 (x)

�
�
1

f

�0
(x) = � f

0 (x)

f (x)2
(si f (x) 6= 0)

�
�
f

g

�0
(x) =

f 0 (x) g (x)� f (x) g0 (x)
g (x)2

(si g (x) 6= 0) :

Démonstration. Prouvons par exemple (f � g)0 (x) = f 0 (x)� g (x) + f (x)� g0 (x).
Fixons x0 2 I. Nous allons réécrire le taux d�accroissement de f (x) g (x) :

f (x) g (x)� f (x0) g (x0)
x� x0

=
f (x)� f (x0)

x� x0
g (x) +

g (x)� g (x0)
x� x0

f (x0)

!
x!x0

f 0 (x0)� g (x0) + f (x0)� g0 (x0) :

Ceci étant vrai pour tout x0 2 I: La fonction f�g est dérivable sur I de dérivée f 0g+fg0.

Théorème 1.3.4. (Dérivée des fonctions composées). Soient f : I ! R et g : J ! R
deux fonctions telles que f (I) � J; et soit x0 2 I: Si f est dérivable en x0; et si g est
dérivable en f (x0) ; alors g � f est dérivable en x0 et

(g � f)0 (x0) = f 0 (x0) g0 (f (x0)) :

Théorème 1.3.5. (Dérivation des fonctions réciproques). Soit f : I ! R une fonction
continue strictement monotone. Alors :

(1) L�ensemble J = f(I) est un intervalle, dont les bornes sont les limites de f aux bornes
de I. La fonction f réalise une bijection entre I et J .

(2) La bijection réciproque f�1 : J ! I est continue strictement monotone, de même sens
de variations que f .

(3) Si f est dérivable en un point x0 2 I, et si f 0 (x0) 6= 0, alors f�1 est dérivable au point
y0 = f (x0) et �

f�1
�0
(y0) =

1

f 0 (f�1 (y0))

Démonstration. (1) et (2) : c�est le théorème de la bijection.
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(3) Supposons f dérivable en x0. Soit y0 = f (x0) et soit y 2 J , on s�intéresse à la quantité

f�1 (y0)� f�1 (y0)
y � y0

Posons x = f�1(y), alors cette quantité s�écrit

x� x0
f (x)� f (x0)

Comme f�1 est continue en y0, nous avons :

lim
y!y0

f�1 (y) = f�1 (y0) = x0:

Par composition des limites, on en déduit que

lim
y!y0

f�1 (y0)� f�1 (y0)
y � y0

= lim
x!x0

x� x0
f (x)� f (x0)

=
1

f 0 (x0)
:

d�où le résultat.

Signe de la dérivée, sens de variation

Théorème 1.3.6. Soit f une fonction dérivable sur un intervalle I.

� Si la fonction dérivée f 0 est nulle, alors la fonction est constante.

� Si la fonction dérivée est strictement positive (sauf en quelques points isolés de I où elle
s�annule), alors la fonction f est strictement croissante sur I.

� Si la fonction dérivée est strictement négative (sauf en quelques points isolés de I où elle
s�annule), alors la fonction f est strictement décroissante sur I.

Dérivées successives

� Soit f est une fonction dérivable sur un intervalle I. Sa fonction dérivée f 0 s�appelle la
fonction dérivée première (ou d�ordre 1) de f .

� Lorsque f 0 est dérivable sur I, sa fonction dérivée est notée f 00 ; f 00 est appelée dérivée
seconde (ou dérivée d�ordre 2) de f .

� De manière récurrente, pour tout entier naturel n � 2, on dé�nit la fonction dérivée
n� i�eme (ou d�ordre n) comme étant la fonction dérivée de la fonction d�ordre n� 1,
f (1) = f 0 et pour tout n � 2; f (n) = f (n�1)0:

� Si la dérivée n-ième f (n) existe on dit que f est n fois dérivable.

Exemple 3. f : x 7! cosx est dérivable sur R et on a f 0 (x) = � sinx; f 00 (x) = � cosx;
f (3) (x) = sinx; f (4) (x) = cos (x) et ainsi de suite...



10 Enseignante : A.Boudiaf - Faculte Des Sciences Universite Setif 1

Remarque. Par convention f (0) = f:

Théorème 1.3.7. (Formule de Leibniz). Soient f et g deux fonctions dérivables n fois
sur un intervalle ouvert I. Alors fg est dérivable n fois sur I et :

(f:g)(n) =
nX
k=0

Cknf
(k):g(n�k)

�
où Ckn =

n!

k! (n� k)! 2 N
�
�
:

C�est-à-dire que : (f:g)(n) (x) =
Pn
k=0C

k
nf

(k) (x) :g(n�k) (x) pour tout x 2 I:

� La démonstration est similaire à celle de la formule du binôme de Newton et les
coe¢ cients que l�on obtient sont les mêmes.

Rappel: On a : 0! = 1; 1! = 1; 2! = 2� 1 = 2; 3! = 1� 2� 3 = 6; et

n! = 1� 2� 3� :::� (n� 1)� n = (n� 1)!� n:
Fonction de classe Cn, fonction de classe C1

Dé�nition 1.3.8. Soit f une fonction dé�nie sur un intervalle I de R.

� On dit que f est de classe Cn sur I pour signi�er que sa dérivée n� ieme existe et est
continue sur I:

� On dit que f est de classe C1 sur I pour signi�er que sa dérivée n� ieme existe quel
que soit l�entier n.

� Une fonction de classe C1 est une fonction continue, dérivable et à dérivée continue.

� Une fonction de classe C2 est une fonction deux fois dérivables et dont la dérivée seconde
est continue.

� Les fonctions polynômes, les fractions rationnelles sur leur ensemble de dé�nition, l�exponentielle
et le logarithme népérien sont des fonctions de classe C1

� Une fonction continue est de classe C0. Une fonction continue et dérivable, mais dont la
dérivée n�est pas continue est de classe D1.

� Pour tout entier n ou pour 1, l�ensemble des fonctions de classe Cn (ou C1 ) est stable
pour les opérations habituelles (addition, multiplication, puissance, division, composi-
tion).

Dérivée et extremum local
Proposition 4. (Maximum et minimum d�une fonction)
Soit f une fonction dé�nie sur un intervalle I de R. Soit a un point de I. On dit que :

1. la fonction f admet un maximum en a si pour tout x 2 I, f(x) � f(a).
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2. la fonction f admet un minimum en a si pour tout x 2 I, f(x) � f(a).

3. la fonction f admet un extremum en a si elle admet un maximum ou un minimum en a.

Proposition 5. (Maximum et minimum locaux)

Soit f une fonction dé�nie sur un intervalle I de R. Soit a un point de I. On dit que :

1. la fonction f admet un maximum local en a s�il existe un nombre � > 0 tel que
l�intervalle [a� �; a+ �] soit inclus dans I et la restriction de f à cet intervalle
admette un maximum en a, soit encore : il existe � > 0 tel que si pour tout x 2 I,
jx� a � � jalors f(x) � f(a).

2. la fonction f admet un minimum local en a s�il existe un nombre � > 0 tel que pour
tout x 2 I, jx� a j � � alors f(x) � f(a).

3. la fonction f admet un extremum local en a si elle admet un maximum ou un
minimum local en a.

Remarque. L�extremum locaux d�une fonction sont à chercher parmi les zéros de la
dérivée, mais si f 0(a) = 0, a n�est pas nécessairement un extremum local (contre-exemple
f(x) = x3 en a = 0).

Exemple 4. f admet unmaximum local en x1 sur l�intervalle [c1; c2] et unminimum
local en x2 sur [c2; c3]:

1.4 Théorèmes fondamentaux sur les dérivées

Théorème 1.4.9. (Th�eor�eme de Fermat). Soit f une fonction dé�nie sur un intervalle
ouvert I de R. Soit a un point de I . Si f est dérivable en a et admet un extremum local
en ce point alors f 0 (c) = 0:
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1. Attention cela ne marche dans le cadre général que si I est un ouvert (autrement on ne
prend pas les bords de l�intervalle I en compte) !

2. La réciproque de cette proposition est fausse en général.

Théorème 1.4.10. (Th�eor�eme de Rolle). Soit f : [a; b]! R telle que

� f est continue sur [a; b];

� f est dérivable sur [a; b];

� f (a) = f (b) :

Alors il existe c 2]a; b[ tel que f 0 (c) = 0:

Interprétation géométrique : il existe au moins un point du graphe de f où
la tangente est horizontale.
Démonstration. Tout d�abord, si f est constante sur [a; b] alors n�importe quel c 2

]a; b[convient.

Sinon il existe x0 2 [a; b] tel que f(x0) 6= f(a). Supposons par exemple f(x0) > f(a).

Alors f est continue sur l�intervalle fermé et borné [a; b], donc elle admet un maximum en
un point c 2]a; b[.

Mais f(c) > f(x0) > f(a) donc c 6= a. De même comme f(a) = f(b) alors c 6= b.
Ainsi c 2]a; b[. En c, f est donc dérivable et admet un maximum (local) donc f 0(c) = 0.

Théorème 1.4.11. (Th�eor�eme des accroissements �nis) : Soit f : [a; b] ! R une
fonction continue sur [a; b] et dérivable sur ]a; b[. Il existe c 2]a; b[ tel que

f (b)� f (a) = f 0(c) (b� a) :
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Interprétation géométrique : il existe au moins un point du graphe de f où la tangente
est parallèle à la droite ((AB)) où A = (a; f(a)) et B = (b; f(b)):

Démonstration. Posons ` =
f (b)� f (a)

b� a et g (x) = f (x)� `: (x� a) : Alors

g (a) = f (a) ; g (b) = f (b)� f (b)� f (a)
b� a : (b� a) = f (a) :

Par le théorème de Rolle, il existe c 2]a; b[ tel que g0 (c) = 0. Or g0 (x) = f 0 (x)� `:

Ce qui donne f 0(c) =
f (b)� f (a)

b� a :

Corollaire 1.4.12. (Inégalité des accroissements �nis).Soit f : f : I ! R une fonction
dérivable sur un intervalle I ouvert. S�il existe une constante M telle que pour tout x 2 I,
jf 0(x)j �M alors

8x; y 2 I jf (x)� f (y)j �M jx� yj :

Démonstration. Fixons x; y 2 I; il existe alors c 2 ]x; y[ ou ]y; x[ tel que
f (x)� f (y) = f 0(c) (x� y) et comme jf 0(x)j �M alors jf (x)� f (y)j �M jx� yj :
Exemple 5. Soit f (x) = sin (x) : Comme f 0(x) = cosx alors jf 0(x)j � 1 pour tout

x 2 R:
L�inégalité des accroissements �nis s�écrit alors : pour tout x; y 2 R jsin (x)� sin yj �

jx� yj :
En particulier si l�on �xe y = 0 alors on obtient jsin (x)j � jxj :

1.4.1 Formules de Taylor

Le théorème de Taylor-Young permet d�approcher des fonctions quelconques par des fonctions
polynômiales et de �contrôler�le terme d�erreur.
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Théorème 1.4.13. (formule de Taylor-Lagrange) Soient f 2 Cn+1 (I) et a; b 2 I avec
a < b et [a; b] � I. Alors il existe c 2]a; b[ tel que

f (b) = f (a)+ (b� a) f 0 (a)+ (b� a)
2

2!
f (2) (a)+ :::+

(b� a)n

n!
f (n) (a)+

(b� a)n+1

(n+ 1)!
f (n+1) (c) :

Remarque. Si n = 0 on retrouve le théorème des accroissements �nis.
Démonstration. On dé�nit A par l�égalité

f (b)� f (a)� (b� a) f 0 (a)� :::� (b� a)
n

n!
f (n) (a) =

(b� a)n+1

(n+ 1)!
A:

Comme dans la démonstration du théorème des accroissements �nis, on introduit une fonc-
tion ':

' (x) = f (b)� f (x)� (b� x) f 0 (x)� :::� (b� x)
n

n!
f (n) (x) =

(b� x)n+1

(n+ 1)!
A:

Comme f 2 Cn+1 (I), on a f (n) 2 C1 (I) ; donc ' 2 C1 (I) : Le choix de A donne
' (a) = 0 et on a aussi ' (b) = 0: On peut donc appliquer le théorème de Rolle : il existe
c 2]a; b[ tel que '0 (c) = 0.

Calculons la dérivée de'.

Dans la colonne de droite tous les termes sauf deux se simpli�ent, il reste

'0 (x) =
(b� x)n

n!

�
A� f (n+1) (x)

�
:

Comme c 6= b , l�égalité '0 (c) = 0 donne f (n+1)(c) = A. On a donc obtenu la formule de
Taylor.
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Application.
Prenons f(x) = cosx. Alors f est dans C1 (R), donc dans C7(R).
Ecrivons la formule de Taylor au point a = 0 pour n = 6. On pose b = x > 0.
Les dérivées de f sont :

f (1) (x) = � sinx = f (5) (x) ;
f (2) (x) = � cosx = f (6) (x) ;
f (3) (x) = + sinx = f (7) (x) ;

f (4) (x) = +cosx:

Pour tout x 2 R il existe c 2 ]0; x[ tel que :

cosx = 1� 1

2!
x2 +

1

4!
x4 � 1

6!
x6 + f (7) (c)

x7

7!
:

Si on suppose que x 2 [0; �] on a f (7) = sin t � 0 pour tout t 2 [0; �]. On en déduit que pour
tout x 2 [0; �]

cosx � 1� 1

2!
x2 +

1

4!
x4 � 1

6!
x6:

Théorème 1.4.14. (formule de Taylor-Young) Soient f 2 Cn(A) et a 2 A. Alors f
admet un développement limité d�ordre n en a donné par

f (x) = f (a) + (x� a) f 0 (a) + (x� a)
2

2!
f 00 (a) + :::� (x� a)

n

n!
f (n) (a) + o ((x� a)n) :

Démonstration. On a f 2 Cn(A) = C(n�1)+1 (A) : On peut appliquer la formule de
Taylor-Lagrange à l�ordre n� 1 à f avec x à la place de b. On suppose ici que x > a.

f (x) = f (a) + (x� a) f 0 (a) + :::+ (x� a)
n

n!
f (n) (c) ;

avec c 2]a; x[. Ecrivons le dernier terme sous la forme

(x� a)n

n!
f (n) (c) =

(x� a)n

n!
f (n) (a) +

(x� a)n

n!

�
f (n) (c)� f (n) (a)

�
:

Il su¢ t donc de montrer que

(x� a)n

n!

�
f (n) (c)� f (n) (a)

�
= o ((x� a)n)

c�est-à-dire que

lim
x!a

�
f (n) (c)� f (n) (a)

�
= 0:

Cela résulte de la continuité de f (n) au point a.
Application.
1. Pour x0 = 0; on obtient la forme de Taylor d�ordre n de f(x) = ex:
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Pour tout k 2 N on a f (k)(x) = ex, donc f (k)(0) = 1. Donc

ex =
nX
k=0

xk

k!
+ o (xn) :

Dérivées des fonctions usuelles
Règle de l�Hospital

Corollaire 1.4.15. (Règle de l�Hospital). Soient f; g : I ! R deux fonctions dérivables
et soit x0 2 I. On suppose que

� f (x0) = g (x0) = 0;

� 8x 2 I n fx0g g0 (x) 6= 0:

Si lim
x!x0

f 0 (x)

g0 (x)
= ` alors lim

x!x0

f (x)

g (x)
= `:

Démonstration. On se sert du théorème des accroissements �nis généralisé (que nous
ne démontrons pas ici) : si f et g sont continues sur [x; y], dérivables sur ]x; y[, et si g0 ne
s�annule pas sur ]x; y[, alors il existe c 2]x; y[ tel que

f (x)� f (y)
g (x)� g (y) =

f 0 (c)

g0 (c)
:

Appliquons ce théorème à la situation présente : étant donné x 2]a; b[, il existe cx 2]a; x[ tel
que

f (x)

g (x)
=
f 0 (cx)

g0 (cx)
:
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Quand on fait tendre x vers a, le réel cx tend également vers a. Sachant que lim
c!a+

f 0 (c)

g0 (c)
existe, on en déduit (par composition des limites) que

lim
c!a+

f (x)

g (x)
= lim
c!a+

f 0 (c)

g0 (c)

ce qu�on voulait.

� Cette règle permet de lever certaines indéterminations de la forme 0
0
. Notons qu�on peut

appliquer la recette plusieurs fois de suite !

Exemple 5. Calculer la limite suivante : lim :
x!0+

sinx

x2 + 3x
qui est de la forme

0

0
.

En appliquant la règle de l�Hospital, il vient

lim
x!0+

sinx

x2 + 3x
= lim
x!0+

cosx

2x+ 3
=
1

3
:

1.5 Fonctions convexes

Fonctions convexes, fonctions concaves

Dé�nition 1.5.16. Soit f une fonction dé�nie sur un intervalle I. On dit que est convexe
sur I si :

8 (x; y) 2 I2; 8t 2 [0; 1] ; f (tx+ (1� t) y) � tf (x) + (1� t) f (y)

On dit qu�une fonction f est concave si la fonction �f est convexe.
Que signi�e la dé�nition ?
On a donc pour tout t 2 [0; 1] ; tx+ (1� t) y 2 [x; y] :
De la même façon, tf (x) + (1� t) f (y) est un point du segment [f (x) ; f (y)]
ou du segment [f (y) ; f (x)] :

L�image d�un point du segment [x; y] est donc au-dessous du point correspondant sur

le segment [f (x) ; f (y)] ou le segment [f (y) ; f (x)] :

Ce qui signi�e que le segment reliant les points de coordonnéesM (x; f (x)) et N (y; f (y))

est au-dessus de la courbe...
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Fonctions convexes dérivables

Théorème 1.5.17. Soit f une fonction dérivable sur un intervalle I. f est convexe sur
I si et seulement si sa fonction dérivée f 0 est une fonction croissante sur I.

Interprétation géométrique. La courbe est au-dessus de toutes les tangentes

Théorème 1.5.18. Soit f une fonction deux fois dérivable sur un intervalle I:

� f est convexe sur I si et seulement si sa dérivée seconde f 00 est positive sur I:

� f est concave sur I si et seulement si sa dérivée seconde f 00 est négative sur I:

Points d�in�exion pour une fonction

Dé�nition 1.5.19. Soit f une fonction dé�nie sur un intervalle [a; b], dérivable sur ]a; b[ :
On dit qu�un point de coordonnées (c; f (c)) avec c 2 ]a; b[ est un point d�in�exion si la
fonction f 0 admet un extremum local en c.

Si la fonction f est deux fois dérivable sur ]a; b[ alors on a un point d�in�exion au point
d�abscisse c si f 00 s�annule en c en changeant de signe.

Interprétation géométrique. La tangente en c est donc d�un côté de la courbe
avant c (côté qui correspond à la concavité dans cette partie) et de l�autre côté après c.
En c, la tangente traverse la courbe.
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1.5.1 Branches in�nies ( Asymptotes d�une courbe)

a) Asymptotes horizontales et verticales.

� Soit x0 2 R: Si lim f
x0

= �1 ou lim f
x+0

= �1 ou lim f
x�0

= �1 alors la droite d�́ equation

x = x0 est une asymptote de la courbe représentative de f:

� Si lim f
�1

= b 2 R alors la droite d�équation y = b est une asymptote de la courbe

représentative de f .

b) Cas où lim f
�1

= �1.

Méthode générale :

� étape 1 : Véri�er que lim f
�1

= �1.

� étape 2 : Calculer lim
x!�1

f (x)

x
:

- Si lim
x!�1

f (x)

x
= 0 alors la courbe représentative de f admet une branche parabolique de

direction (Ox). L�́ etude de la branche in�nie est alors terminée.

- Si lim
x!�1

f (x)

x
= 0 alors la courbe représentative de f admet une branche parabolique

de direction (Oy). L�étude de la branche in�nie est alors terminée.

- Si lim
x!�1

f (x)

x
= a 2 R� il faut passer à l�étape 3.

� étape 3 : Calculer lim
x!�1

(f (x)� ax)
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- Si lim
x!�1

(f (x)� ax) = b 2 R alors la droite d�équation y = ax+ b est une asymptote

de la courbe représentative de f .
- lim
x!�1

(f (x)� ax) = �1 alors la courbe représentative de f admet une branche

parabolique de direction la droite d�équation y = ax:
Exemple 6. Etudions la branche in�nie en +1 de la fonction dé�nie par

f (x) =
xex + 1

ex + 1
:

� étape 1 : Véri�er que lim f
+1

= +1

lim f
x!+1

(x) = lim
x!+1

xex (1 + 1= (xex))

ex (1 + e�x)
= lim
x!+1

x� 1 + 1= (xe
x)

1 + e�x
= +1:

� étape 2 : lim
x!+1

f (x)

x

D�après les calculs précédents lim
x!�1

f (x)

x
= lim
x!+1

1 + 1= (xex)

1 + e�x
= 1:

� étape 3 : lim
x!+1

(f (x)� 1� x)

On (f (x)� x) = xex + 1� x (ex + 1)
ex + 1

=
1� x
ex + 1

=
x (1=x� 1)
ex (1 + e�x)

=
x

ex
� 1=x� 1
1 + e�x

Donc lim
x!+1

(f (x)� 1� x) = 0:

� Conclusion : La courbe représentative de f admet une asymptote en +1, la droite
d�équation y = x.

1.6 Exercices Corrigés

Exercice 1. Répondre par oui ou non aux questions avec des justi�cations rigoureuses :

(1) La fonction x 7! �1
x
est croissante sur R�:

(2) Soit f une fonction dé�nie et dérivable sur un intervalle symétrique (et contenant zéro) :
Alors f paire, f 0 impaire.

(3) Toute fonction continue est dérivable.

(4) Soit f une fonction dérivable. Si f 0 (x) = 0; alors f est constante.

(5) Soit f et g deux fonctions dérivables au voisinage d�un point a. Alors :

lim
x!a

f (x)

g (x)
= `) lim

x!a
f 0 (x)

g0 (x)
= `:
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(6) Soit la fonction f dé�nie par :

f (x) =

�
ex; x 6= 0;
1; x = 0:

Alors f 0 (0) = 10 = 0:
Réponses.

(1) Faux ! La fonction donnée n�est ni croissante ni décroissante. Elle n�est pas croissante,
car

1 > �2 mais, f (1) = �1
1
= �1 � f (�2) = � 1

�2 =
1

2
;

Elle n�est pas décroissante, car

�1 > �2 mais, f (�1) = � 1

�1 = 1 � f (�2) = �
1

�2 =
1

2
:

Le résultat qu�on connait est le suivant

f est strictement croissante sur I � R, f 0 (x) > 0; 8x 2 I:

(pour une fonction dérivable, bien sûr) : Il est vrai si l�ensemble I est un intervalle. Dans

notre cas on a bien f 0 (x) =
1

x2
; 8x 2 R� mais R� n�est pas un intervalle. Montrons ceci,

mais d�abord rappelons la fé�nition d�un intervalle.

Dé�nition 1.6.20. On dit qu�un ensemble I est un intervalle (ouvert) si 8x; y 2 I; on a
]x; y[ � I:

Si R� un intervalle, et puisque �1; 1 2 R� alors normalement on aurait ]�1; 1[ � R�; ce
qui impossible car 0 2 ]�1; 1[ mais 0 =2 R�: Pour �nir, la fonction f est croissante sur R�+ car
sa dérivée est positive et R�+ était un intervalle et elle est croissante sur R�� car sa dérivée est
positive et R�� était un intervale. Mais elle n�est pas croissante sur la réunion R� = R��[R�+:

(2) Vrai. Montrons ceci. On considère g (x) = f (x) � f (�x) : Alors g est dé�nie sur le
même intervalle que f: On voit bien que g (0) = 0 et donc on a

f paire , f (x) = f (�x), g = 0, g est constante, g0 = 0

, f 0 (x) + f 0 (�x) = 0, f 0 (�x) = �f 0 (x), f 0 impaire.

(3) Faux ! Par exemple x 7!
p
x est continue en 0 mais elle n�est pas dérivable en

ce point. Aussi x 7! jx+ 1j est continue en �1 mais non dérivable en ce point
(et il y une in�nité d�exemples) : Mais la réciproque est vraie.

Toute fonction dérivable en un point x0 est continue en x0:
Cette propriété est souvent utilisée sous la forme de sa contraposée, i.e.
Si une fonction f n�est pas continue en un point x0, alors ellen�est pas dérivable
en ce point.
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(4) Faux ! Par exemple, soit

f (x) =

�
1; x < 0
2; x > 0:

Alors f est dé�nie, continue, dérivable sur R�; et pour tout x 2 R�; f 0 (x) = 0: Cepen-
dant, f n�est pas constante sur R� (car elle n�a pas la même valeurs sur son domaine de dé�nition) :
Comme dans la question 1), le résultat qu�on connait est le suivant :

f 0 (x) = 0 sur I , f constante sur I; (si I est un intervalle) .

(5) Faux ! Soit f (x) = x2 sin
1

x
et g (x) = sinx: Alors

lim
x!0

f (x)

g (x)
= lim
x!0

x2 sin
1

x
sinx

= lim
x!0

�
x sin

1

x

�
x

sinx
= 0� 1 = 0;

alors que

lim
x!0

f 0 (x)

g0 (x)
= lim
x!0

2x sin
1

x
� cos 1

x
cosx

n�existe pas.

Ce qui est vrai est l�implication réciproque, i.e.

lim
x!a

f 0 (x)

g0 (x)
= `) lim

x!a
f (x)

g (x)
= `;

(avec des hypothèses "La règle de L�Hospital").

(6) Faux ! Tout d�abord f est continue en 0 (pourquoi ?) Pour trouver la dérivée de f en
0 on doit utiliser la dé�nition d�une dérivée en un point. On a

lim
x!0

f (x)� f (0)
x� 0 = lim

x!0

ex � 1
x

= 1 = f 0 (0) :

Donc f 0 (0) 6= 0: On fait toujours ça aux points où f change de valeurs. Mais, si on
nous a demandé de donner f 0 (2) (pour la même fonction) ; alors on dit : puisque f est
dérivable sur R� car elle vaut ex laquelle est dérivable sur R et en particulier sur R� et
on a : 8x 2 R� : f 0 (x) = (ex)0 = ex:

D�où f 0 (2) = e2 (et on fait ceci avec tous les points de R�) :
Exercice 2. Soit a 2 R: Soit f une fonction dérivable en a: Trouver

lim
h!0

f
�
a+ h2

�
� f (a+ h)
h

:

Solution. On

f
�
a+ h2

�
� f (a+ h)
h

=
f
�
a+ h2

�
� f (a) + f (a)� f (a+ h)

h

=
f
�
a+ h2

�
� f (a)

h
+
f (a)� f (a+ h)

h

= h
f
�
a+ h2

�
� f (a)

h2
� f (a+ h)� f (a)

h
:
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Donc

lim
h!0

f
�
a+ h2

�
� f (a+ h)
h

= 0� f 0 (a)� f 0 (a) = �f 0 (a) :

Exercice 3. En utilisant la dé�nition de la dérivabilité, étudier la dérivabilité
des fonctions suivantes au point x0

1) f (x) =
p
x; x0 = 0

+; 2) f (x) = jx� 1j ; x0 = 1; 3) f (x) = x jxj ; x0 = 0:

Solution.
On a

lim
x!0+

p
x�

p
0

x� 0 = lim
x!0+

p
x

x
= lim
x!0+

1p
x
= +1:

Donc f n�est pas dérivable en x0 = 0 (�a droite) :
On a

jx� 1j =
�
x� 1; x � 1
1� x; x < 1:

On a donc

lim
x!1+

f (x)� f (1)
x� 1 = lim

x!1+
x� 1� 0
x� 1 = 1;

et

lim
x!1�

f (x)� f (1)
x� 1 = lim

x!1�
1� x� 0
x� 1 = �1 6= 1 = f 0d (1) ;

et donc f n�est pas dérivable en x0 = 1:

3) On a

x jxj =
�

x2; x � 0
�x2; x < 0:

On a donc

lim
x!0+

f (x)� f (0)
x� 0 = lim

x!0+
x2 � 0
x� 0 = lim

x!0+
x = 0;

et

lim
x!0�

f (x)� f (0)
x� 0 = lim

x!0�
�x2 � 0
x

= lim
x!0�

(�x) = 0;

et donc f est dérivable en x0 = 0:

Exercice 4. Calculer les limites suivantes (en utilisant la dérivabilité de fonctions) :

1) lim
x!0

sinx

x
; 2) lim

x!0

ln (1 + x)

x
; 3) lim

x!0

ex � 1
x

; 3) lim
x!�

sinx

x� � :

Solution. On va utiliser la dé�nition de dérivabilité de quelques fonctions qui sont déjà
connues d�être dérivables.

1) On a

lim
x!0

sinx

x
= lim
x!0

sinx� sin 0
x� 0 = (sinx)0 (0) = cos 0 = 1:
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2) On a

lim
x!0

ln (1 + x)

x
= lim
x!0

ln (1 + x)� ln (1 + 0)
x� 0 = (ln (1 + x))0 (0) =

1

1 + 0
= 1:

3) De même,

lim
x!0

ex � 1
x

= lim
x!0

ex � e0
x� 0 = (ex)0 (0) = e0 = 1:

4) On a

lim
x!�

sinx

x� � = lim
x!�

sinx� sin�
x� � = cos� = �1:

Exercice 5. Soit f : R! R la fonction dé�nie par

f (x) =

�
ex si x < 0

ax2 + bx+ c si x � 0

Déterminer a; b et c dans R tels que f soit C2.
Solution.
f est C2 sur R�, car x 7! ex est de C1; de même unpolynôme est de C1;
donc f est C2 sur R+:
Rest à étudier f en 0:
f doit être continue en 0
C�est le cas si

lim
x!0+

f (x) = lim
x!0�

f (x) ; or lim
x!0+

f (x) = c et lim
x!0�

f (x) = 1:

Donc on doit avoir c = 1.
f doit être dérivable sur R
avec le même raisonnement que pour la continuité, il est clair que f est dérivable sur R
ssi elle est dérivable en 0. C�est le cas si

lim
x!0+

f (x)� f (0)
x� 0 = lim

x!0�
f (x)� f (0)

x� 0 :

Or lim
x!0+

f (x)� f (0)
x� 0 = lim

x!0+
(ax+ b) = b et lim

x!0�
f (x) = 1:

Donc on doit avoir : b = 1.
f doit être C1 sur R
C�est le cas si f 0 est continue sur R; Or f 0 est continue sur R�+ et sur R�� : ainsi
f 0 continue , f 0 continue en 0:
C�est le cas si : lim

x!0+
f 0 (x) = lim

x!0�
f 0 (x) :

Or lim
x!0+

f 0 (x) = lim
x!0+

(2ax+ b) = b = 1 et lim
x!0�

f 0 (x) = lim
x!0�

ex = 1:

Donc f est C1:
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f doit être C2 en 0
f est C2 ssi f 00 est continue sur R; ce qui revient à prouver que f 00 est continue en 0:
On a

lim
x!0+

f 00 (x) = lim
x!0+

2a = a et lim
x!0�

f 00 (x) = lim
x!0�

ex = 1:

Donc on doit avoir :
a =

1

2 .

Conclusion : Ainsi, pour que f soit C2 sur R; il faut avoir :

8><>:
a =

1

2
b = 1
c = 1

:

Exercice 6. Soit f la fonction dé�nie sur R� par

f (x) =

8<: 1� ex si x < 0
ex � 1
ex + 1

si x � 0:

Montrer qu�il existe une fonction g, prolongeant f par continuité, et étudier la dérivabilité
de g:
Solution.
On a

lim
x!0�

f (x) = lim
x!0�

(1� ex) = 0 et lim
x!0+

f (x) = lim
ex � 1
ex + 1

= 0:

x!0+

La fonction f admet donc pour prolongement par continuité sur R la fonction g dé�nie
par

g (x) =

�
f (x) si x 2 R�
0 si x = 0:

Il est immédiat que g est dérivable en tout point de R�:
De plus,

lim
x!0�

g (x)� g (0)
x� 0 = lim

x!0�
1� ex
x

= �1

et

lim
x!0+

g (x)� g (0)
x� 0 = lim

x!0+
ex � 1
x

:
1

ex + 1
=
1

2
:

Par conséquent, la fonction g n�est pas dérivable en 0:
Exercice 7. Peut-on appliquer le théorème de Rolle aux fonctions suivantes :

f (x) =

�
x; 0 � x < 1
0; x = 1:

; g (x) = jx+ 1j ; x 2 [�2; 0] ;

h (x) =
p
4� x2; x 2 [�2; 2] ; k (x) = eix = cosx+ i sinx; x 2 [0; 2�] ?

Solution.

1) Non, car f n�est pas continue en x = 1 (les autres conditions sont toutes satisfaites) : De
toute façon il n�existe aucun c 2 ]0; 1[ tel que f 0 (c) = 0 (car pour tout x 2 ]0; 1[ : f 0 (x) = 1 6= 0) :
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2) Non car f n�est pas dérivable en �1 2 ]�2; 0[ :

3) Oui, car h (2) = h (�2) = 0; h est continue sur [�2; 2] et elle est dérivable sur ]�2; 2[ ,on
remarque que h n�est pas dérivable en 2 et �2 mais ce n�est pas un problème car la
fonction considérée dans le théorème de Rolle doit être continue sur un intervalle fermé
et borné et dérivable sur l�intervalle ouvert. On peut trouver le c explicitement dans

ce cas. On a pour tout x 2 ]�2; 2[ ; h0 (x) = �xp
4� x2

et le c est 0:

4) On admet que k est bien continue et dérivable sur [0; 2�] et que les notions de bases sur
ce type de fonctions sont connus.

On a aussi k (0) = k (2�) = 1: Donc les hypothèses du théoréème de Rolle sont satisfaites
et normalement il existe un c 2 ]0; 2�[ tel que k0 (c) = 0; mais si on calcule la dérivée de k,
on trouve k0 (x) = � sinx+ i cosx: D�ou��k0 (x)�� = j� sinx+ i cosxj = 1 6= 0 8x 2 R:

Ceci veut dire que le théorème de Rolle ne s�applique pas dans le cas d�une fonction
dé�nie de R dans C:

Exercice 8. Montrer que

1)
x

1 + x
� ln (1 + x) � x; 8x > �1:

2) ex � 1 + x; 8x 2 R:

3) sinx � x; 8x � 0:

4) cosx � 1� x2; 8x 2 R:

Solution.

1) On traite deux cas �1 < x < 0 et x � 0:

(a) Soit x � 0: Soit la fonction f dé�nie sur [0; x] par f (x) = ln (1 + t) : Alors f est
continue sur [0; x] et est dérivable sur ]0; x[ : Par le théorème des accroissements �nis (T:A:F ).

9c 2 ]0; x[ : ln (1 + x) = f (x)� f (0) = (x� 0) f 0 (c) = x 1

1 + c
:

D�autre part,

0 < c < x) 1 < c+ 1 < x+ 1) 1

1 + x
<

1

c+ 1
< 1:

Puisque x � 0; alors
x

1 + x
<

x

c+ 1
< x

et donc pour tout x � 0; on a
x

1 + x
� ln (1 + x) � x:
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(b) Soit x < 0: On considère la même fonction f mais sur l�intervalle [x; 0] : Il existe
un c 2 ]x; 0[ tel que

f (0)� f (x) = (0� x) f 0 (c)) ln (1 + x) = xf 0 (c) =
x

1 + c
:

car f (0) = 0:

On a x < c < 0; et donc 1 <
1

c+ 1
<

1

1 + x
; mai x est négatif et donc

x

1 + x
� ln (1 + x) � x:

Ainsi, on a montré notre inégalité pour tout x > �1 (avec égalité si et seulement
si x = 0):

2) Soit x 2 R: L�inégalité est triviale pour x � �1: Si x > �1 et donc 1 + x > 0; alors

ex � 1 + x, ln (ex) = x � ln (1 + x) ;
et on a déjà montré cette inégalité dans la question précédente.

3) Soit x � 0: La fonction t 7! sin t est continue sur [0; x] et dérivable sur ]0; x[ : Donc par
le T.A.F. on a

9c 2 ]0; x[ : sinx = f (x)� f (0) = xf 0 (c) = x cos c

car f (0) = 0: De plus,

cos c � 1 et donc x cos c � x cosx � 0:

Ainsi pour tout x � 0; on a sinx � x:

4) Soit x � 0: La fonction t 7! cos t est continue sur [0; x] et dérivable sur ]0; x[ : Donc par
le T.A.F. on a

9c 2 ]0; x[ : cosx� cos 0 = (x� 0) (� sin c)

ou bien
9c 2 ]0; x[ : cosx� 1 = �x sin c:

Puisque c est positif, alors d�après la question précédente, sin c � c et donc sin c < x
(car c < x) ou encore � sin c > �x; mais x � 0 et donc �x sin c � �x2: Donc, on a montré
que

8x � 0 : cosx� 1 � �x2; i.e; 8x � 0 : cosx � 1� x2:
Puisque les deux membres de l�inégalité précédente sont des fonctions paires, alors
l�inégalité est aussi vraie pour x � 0: Ainsi

8x 2 R : cosx � 1� x2:

Exercice 9.
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(1) En utilisant le théorème des valeurs intermédiares, montrer que l�équation xesinx = cosx

admet au moins une solution dans
i
0;
�

2

h
:

(2) Par le théorème de Rolle, montrer que cette solution est unique.

Solution.

(1) Soit la fonction f dé�nie sur
i
0;
�

2

h
par

f (x) = xesinx � cosx

Alors f est bien continue car c�est la somme, le produit et la composée de fonctions

continues sur R et donc sur
i
0;
�

2

h
:

D�autre part, on a

f (0) = �1 et f
��
2

�
=
�

2
e: D�où f (0)� f

��
2

�
= ��

2
e < 0:

Par le théorème des valeurs intermédiares, l�équation xesinx = cosx admet au moins une

solution dans
i
0;
�

2

h
:

(2) Supposons que notre équation admet deux solutions a et b, donc on aura f (a) = f (b) =

0; où a; b 2
i
0;
�

2

h
: La fonction f est continue et dérivable sur R: Donc f est continue

et dérivable sur ]a; b[ : Puisque f (a) = f (b) ; alors d�après le théorème de Rolle, il
existe un c 2 ]a; b[ tel que f 0 (c) = 0: mais

f 0 (x) = esinx + x (cosx) esinx + sinx > 0

car tous les termes sont strictement positifs car x 2
i
0;
�

2

h
:D�où f 0 (x) 6= 0: Ceci contredit

le théorème de Rolle et donc il existe une et une seul solution de l�équation f (x) = 0:

Remarque. Puisque f 0 (x) > 0 sur
i
0;
�

2

h
; alors f est strictement croissante sur

i
0;
�

2

h
;

D�où l�équation f (x) = 0 admet une et une seul solution dans
i
0;
�

2

h
:

Exercice 10.
En utilisant la règle de L�Hospital (lorsque ceci est possible), calculer les limites suivantes

:

1) lim
x!�

sinx

x
; 2)lim

x!0

1� cosx
x2

; 3)lim
ex

xp
x!+1

; p 2 N;

4) lim
x!+1

x� sinx
2x+ sinx

; 5) lim
x!0

sin (px)

sin (qx)
; q 6= 0; 6) lim

x!+1
x

��
1 +

1

x

�x
� e
�

Solution.
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(1) Non, on ne peut pasappliquer la règle de L�Hospital dans ce cas car nous n�avons pas

une des formes indéterminées
0

0
ou
1
1 :

La limite est facile à calculer, elle est égale à 0.

(2) C�est la forme indéterminée
0

0
: Les fonctions sont dérivables et donc peut appliquer la

règle de L�Hospital. On a

lim
x!0

(1� cosx)0

(x2)0
= lim
x!0

sinx

2x
:

C�est encors la forme indéterminée
0

0
: On applique encore une fois a règle de L�Hospital,

on a

lim
x!0

(sinx)0

(2x)0
= lim
x!0

cosx

2
=
1

2
:

(3) C�est la forme indéterminée
1
1 : Si on dérive le nominateur une fois et le dénominateur

une fois, ça va aussi nous donner la forme indéterminée
1
1 : On fait la même chose une

deuxième fois, on obtient la même chose. On fait ce travail p fois et on trouvera à la
�n

lim
ex

xp
x!+1

= +1:

(4) Puisque lim
x!+1

(x� sinx) = +1 et lim
x!+1

(2x+ sinx) = +1; alors la limite considérée

est la forme
1
1 : On applique encore une fois a règle de L�Hospital une fois, on a

lim
x!+1

(x� sinx)0

(2x+ sinx)0
= lim
x!+1

1� cosx
2 + cosx

;

on ne continue pas ! car lim
x!+1

1� cosx
2 + cosx

n�existe pas. Donc on ne peut pas appliquer

la règle de L�Hospital. Pour calculer cette limite , on peut, cependant la calculer
facilement comme suit :

lim
x!+1

x� sinx
2x+ sinx

= lim
x!+1

x
�
1� sinx

x

�
x
�
2 + sinx

x

� = lim
x!+1

1� sinx
x

2 + sinx
x

=
1

2
:

(5) Soit p un réel et q un réel non-nul. On a

5) lim
x!0

(sin (px))0

(sin (qx))0
= 5) lim

x!0

p cos (px)

q cos (qx)
=
p

q
:

D�où

5) lim
x!0

sin (px)

sin (qx)
=
p

q
:
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(6) En posant y =
1

x
; alors x! +1, y ! 0+ et on aura

lim
x!+1

x

��
1 +

1

x

�x
� e
�
= lim
y!0+

(1 + y)1=y � e
y

;

mais�
(1 + y)1=y � e

�0
=
�
e
1
y
ln(1+y) � e

�0
=

�
� 1
y2
ln (1 + y) +

1

y (y + 1)

�
e
1
y
ln(1+y)

+ 0:

et

lim
y!0+

�
� 1
y2
ln (1 + y) +

1

y (y + 1)

�
= lim
y!0+

� (y + 1) ln (1 + y) + y
y2 (y + 1)

= �1
2

On applique encore une fois a règle de L�Hospital deux fois. Puisque

1

y
ln (1 + y)! 1 lorsque y ! 0; alors

lim
y!0+

(1 + y)1=y � e
y

= �1
2
= lim
x!+1

x

��
1 +

1

x

�x
� e
�
:

Exercice 11. Calculer la dérivée de la fonction inverse des fonctions suivantes
au point y0 indiqué

1) f (x) = x2; y0 = 4; 2) f (x) = lnx; y0 = 2:

Solution.

(1) f est une bijection de ]0;+1[ dans f (]0;+1[) = ]0;+1[ car elle est strictement crois-
sante et continue sur cet intervalle.

On a f�1 (4) = x nous donne f (x) = x2 = 4 et donc x = 2 car x > 0:

�
f�1

�0
(y0 = 4) =

1

f 0 (f�1 (4))
=

1

f 0 (2)
=

1

(2) (2)
=
1

4
:

Maintenant pour véri�er nos calculs, on sait que la fonction réciproque de f est x 7!
p
x

qui a pour dérivée
1

2
p
x
; et au point 4 elle vaut

1

2
p
4
=
1

4
:

(2) f est une bijection de ]0;+1[ dans f (]0;+1[) = ]�1;+1[ car elle est strictement
croissante et continue sur cet intervalle. On a f�1 (2) = x nous donne lnx = 2 et donc
x = e2:
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D�autre part

�
f�1

�0
(y0 = 2) =

1

f 0 (f�1 (2))
=

1

f 0 (e2)
=
1
1
e2

= e2:

Maintenant pour véri�er nos calculs, on sait que la fonction réciproque de f est x 7! ex

qui a pour dérivée ex; et au point 2 elle vaut e2 = e2:

Exercice 12. Soit la fonction f dé�nie par f (x) =
1

sinx
: Donner un intervalle sur lequel

elle admet une fonction réciproque f�1: Exprimer Df�1 et calculer
�
f�1

�0
:

Solution. On peut dé�nir f; par exemple, sur
h�
2
; �
h
: Sur cet intervalle f est continue et

strictement croissante. Donc f admet une fonction réciproque f�1 dé�nie sur f
�h�
2
; �
h�
=

[1;+1[ et prenant ses valeurs dans
h�
2
; �
h
:

La fonction f est dérivable sur
h�
2
; �
h
et

8x 2
h�
2
; �
h
: f 0 (x) =

� cosx
sin2 x

:

On voit bien que f 0 s�annule pour x =
�

2
: Donc f�1 est dérivable sur f

�h�
2
; �
h�

=

[1;+1[ : Donc pour x > 1; on a (en posant y = f�1 (x))

�
f�1

�0
(x) =

1

f 0 (f�1 (x))
=

1

f 0 (y)
=
� sin2 (y)
cos (y)

:

Mais y = f�1 (x), f (y) = x =
1

sin y
: Donc

sin y =
1

x
) sin2 (y) =

1

x2
et cos2 (y) = 1� sin2 y = 1� 1

x2
;

mais puisque y = f�1 (x) 2
h�
2
; �
h
; alors cos y < 0 et donc cos y = �

q
1� 1

x2
:

�
f�1

�0
(x) =

1

x
p
x2 � 1

:

Exercice 13. Soit la fonction f dé�nie par f (x) =
p
x2 + x+ 1

1) Quel est le domaine de dé�nition de f:

2) Montrer que la restriction de f à [0;+1[ admet une fonction réciproque f�1; exprimer
f�1:

3) Déterminer la dérivée de f�1:

Solution.
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1) f (x) =
p
x2 + x+ 1 est dé�nie, x2 + x+ 1 � 0;

� = (1)2 � 4� 1� 1 = 1� 4 = �3
) signe de

�
x2 + x+ 1

�
= signe de (1)) 8x 2 R; x2 + x+ 1 > 0

) D = R = ]�1;+1[ :

2) f est continue sur R) f est continue sur [0;+1[ et

f 0 (x) =
2x+ 1

2
p
x2 + x+ 1

) 8x 2 [0;+1[ ) x � 0

) 2x � 0) 2x+ 1 � 1 > 0) f 0 (x) =
2x+ 1

2
p
x2 + x+ 1

> 0

d�où 8x 2 [0;+1[ ; f 0 (x) > 0:

Alors f est strictement monotone sur [0;+1[) f est bijective sur [0;+1[

) 9!f�1 :
�
f (0) ; lim

x!+1
f (x)

�
! [0;+1[ ;

On a :

y = f�1 (x), x = f (y)

f (0) =
p
02 + 0 + 1 =

p
1 = 1

lim
x!+1

p
x2 + x+ 1 = lim

x!+1

p
x2

= lim
x!+1

jxj = lim
x!+1

x = +1

x 0 +1

f 0 (x)
... + k
... +1

f (x)
... % k
1 k

x = f (y)() x =
p
y2 + y + 1, x2 = y2 + y + 1

() y2 + y + 1� x2 = 0
� = (1)2 � 4� 1�

�
1� x2

�
= 1� 4 + 4x2 = �3 + 4x2;

8x 2 [1;+1[ ; x � 1) x2 � 1) 4x2 � 4) 4x2 � 3 � 4� 3 = 1 > 0

) y = y1 =
�1�

p
4x2 � 3
2

ou y = y2 =
�1 +

p
4x2 � 3
2

y1 < 0) f�1 6= y1
4x2 � 3 � 1)

p
4x2 � 3 � 1)

p
4x2 � 3� 1 � 0) y2 � 0

) 8x 2 [1;+1[ ; f�1 (x) = y2 (x) =
�1 +

p
4x2 � 3
2

:

3) f�1 dérivable sur [1;+1[ :
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première methode:

�
f�1 (x)

�0
=

1

f 0 (f�1 (x))
=

1
2f�1(x)+1

2
p
(f�1(x))2+f�1(x)+1

=
2

q
(f�1 (x))2 + f�1 (x) + 1

2f�1 (x) + 1

=
2

q
1+4x2�3�2

p
4x2�3

4 + �1+
p
4x2�3
2 + 1

�1 +
p
4x2 � 3 + 1

=
2
q

4x2�2
4 � 2

4 + 1p
4x2 � 3

=

p
4x2p

4x2 � 3
=

2 jxjp
4x2 � 3

=
2xp
4x2 � 3

:

deuxième méthode:

�
f�1 (x)

�0
= (y2 (x))

0 =

 
�1 +

p
4x2 � 3
2

!0
=

1

2

�
8x

2
p
4x2 � 3

�
=

2xp
4x2 � 3

:
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