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Chapitre 1

Suites de Nombres réels

1.1 Définitions et propriétés
Définition 1.1.1. Une suite de nombres réels est une application

v : N->R
n o — u(n)=u,,
cette suite est notée (uy),cy, le nombre u, est appelé terme général de la suite (un),,cn-

On peut définir les suites de deux fagons différentes.

e Soit directement par une formule, en général une fonction f, et on a pour tout n € N :
u, = f(n), c’est ce qu’on appelle une formulation explicite de la suite.

Exemple 1 : un:%,un:n—l—cos(n),un:n2+2n+3,n€N.
n

e Soit en exprimant u,;1 en fonction du terme précédent u, et en définissant une valeur
initiale, comme par exemple

up=a, a€R
Upt1 = f (uy), pour n > 0.

C’est ce qu’on appelle une formulation par récurrence, ((u,) est une suite récurrente) .

Les suites récurrentes définies par une fonction forment une catégorie essentielle de suites.
I'étude de ces suites nécessite aussi la maitrise préalable de I’étude de fonctions ( Limites
et fonctions continues).

Exemple 2 : On consideére la suite (uy,),, oy définie par :

u():O
Un4+1 = 2_1n, n € N*,
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e Une suite (uy), oy est dite alternée si ses termes sont alternativement positifs et négatifs.
Le terme général d’une suite alternée peut s’écrire sous la forme u, = (—1)" v, avec
v, € R.

Exemple 3 : On considére la suite (uy), oy définie par :
up = (=1)"v/n, n €N,

e Soit (uy,) une suite dans R.
a) Elle est dite constante s'il existe a € R tel que Vn € N, u,, = a.
b) Elle est dite stationnaire s’il existe a € R et ng € N tel que : ¥n > ng, u, = a.

c) Elle est dite périodique s'il existe un entier positif p tel que : Vn € N, uyqp = up.
1.1.1 Suite majorée, minorée, bornée

Définition 1.1.2.  Soit (uy), oy une suite dans R.
o (Un),cy est majorée si IM € R, Vn € N, u, < M.
o (un),cy est minorée si Im € R, Vn € N, u, > m.

® (up),cy est bornée si elle est majorée et minorée, ce qui revient & dire :

M ER, ¥n €N |up| < M.

définie par : u, = est majorée par 1 et minorée

Exemple 4 : La suite (up), oy T1
n

par 0. Elle est donc bornée.

1.1.2 Suite croissante, décroissante
Définition 1.1.3.  Soit (uy),cy une suite dans R.

® (Un),cy est croissante si Vn € N up11 > up.

® (Un),cy est strictement croissante si Vn € N up11 > up.

n
Un)pen €St strictement décroissante si Vn € N upy1 < up.

(
(
(
(
(Un)pen €St monotone si elle est croissante ou décroissante.
(

)
)
un)neN est décroissante si Vn € N up11 < y.
)
)
)

Un) ey €St strictement monotone si elle est strictement croissante ou strictement décrois-
sante.

Remarque. Si (“n)neN est une suite & termes strictement positifs,
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. . . Un+1
e elle est croissante si et seulement si Yn € N —+L > 1.
un
Un4-1
Un

e clle est décroissante si et seulement si Vn € N <1.

Exemple 5 :
1. Soit la suite (un), ¢y définie par : u, =2" —n, n € N,

Etudions le sens de variation de la suite (u,),,cp -

Upi1—Up = 2" —(n4+1)—(2"-n)=2"x2-n—-1-2"+n
M2-1)—1=2"—1.

Or, pour tout entier naturel n, 2" —1 >0 donc up4+1 — uy > 0.
Par conséquent, la suite (u,),cy est croissante pour tout n € N.

2. La suite (un), oy définie par : u, = — pour n > 1 est strictement décroissante et bornée.
n

n

3. La suite (up),cy définie par : u, = e est croissante, minorée mais pas majorée.

4. La suite (uy),cy définie par : u, = # pour n € N, n’est ni croissante ni décroissante.
Elle est majorée par % (borne atteinte en n = 2), minorée par —1 (borne atteinte en
n=1).

1.1.3 Limite d’une suite

Limite finie, limite infinie
Définition 1.1.4. La suite (uy), ¢y @ pour limite £ € R si :
Ve>0 INeN;Vn> N = |u, — (| < e.

On dit aussi que la suite (uy), oy tend vers £. Autrement dit : u, est aussi proche de £ &
partir d’un certain rang.

Définition 1.1.5.

1. La suite (uy), ¢y tend vers +oo ( quand n tend vers +o0) si :

Vk>0 ANeN;:Vn >N = u, > K.

2. La suite (un),cy tend vers —oo ( quand n tend vers +00) si :

Vk>0 dINeN:;Vn> N = u, < —K.

Remarque.



6 ENSEIGNANTE A.BOUDIAF - FACULTE DES SCIENCES UNIV SETIF 1

1. On note alors lim w, = ¢ ou par fois u, — ¢, et de méme pour une limite F-co.

n—-+00 n—-+0o
2. lim u, = —o0 < lim—u, = +oo.
n—-+o0o n—-+o0o

Définition 1.1.6.  Une suite (u,),cy est convergente si elle admet une limite finie.
Elle est divergente sinon (c’est-adire soit la suite (uy), oy tend vers £oo, soit elle n’admet
pas de limite).

Proposition 1.1.7. Si une suite est convergente, sa limite est unique.

Preuve. On proceéde par l'absurde. Soit (uy),cy une suite convergente ayant deux

4
limites ¢ # ¢'. Choisissons € > 0 tel que € < | 5 | .

Comme lirf u, = £, il existe Nj tel que pour n > Ny = |u, — {| < e.
n—-r+oo

De méme 1iIJ1ra un, = ', il existe Ny tel que pour n > Ny = |u, — '] < e.
n—-+:0oo

Notons N = max (N1, Na), on a alors pour ce N :

luy — ¢ < € et ]uN—£’|<e
= [0l =|t—un+un -] <|0—un|+ |uy -],

d’apres 'inégalité triangulaire. On en tire
‘E—ﬁ" <egte=2< ‘E—é".

On vient d’aboutir a Uinégalité [¢ —¢'| < [¢ —¢'| qui est impossible. Notre hypothese de
départ est fausse et donc £/ =/¢'. m
Exemple 6 .

1. La suite constante u, = a pour a € R fixé converge vers a. Choisissons un ¢ > 0. Il faut
trouver un entier N tel que si n > N alors |u, — a|] < e. Comme |u, —a| = 0 cette
inégalité est toujours vraie, d’ou il suffit de prendre N = 0.

2. La suite définie par u, = n, n € N tend vers +o0. Il faut montrer que pour tout K € R il
existe un entier IV tel que pour tout n tel que n > N on a u,, > K. Il suffit de prendre
pour N le plus petit entier > K.

1.1.4 Opérations sur les limites

Proposition 1.1.8. Soient (uy),cy €t (Vn), ey deus suites admettant comme limites respectives

les réels £ et '. Soit également \ € R. alors :
o Uy +uv, =L+ 1,
n—-+00

o\ u, — M,

n—-+o00
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o u,v, — U,
n—-+o0o

1
e si £ # 0, alors u, # 0 a partir d’'un certain rang et — — -.
Uy, n—+oo {

e Si (an),cy est une suite bornée et si (b,), oy est une suite qui converge vers 0, alors la

suite (anby ),y converge vers 0.

Formes indéterminées
Dans certaines situations, on ne peut rien dire a priori sur la limite, il faut une étude au

cas par cas.
Exemple 7 :
1. "+00 — o0” Cela signifie que si  lim wu, = 4oco et lim v, = —o0 il faut faire ’étude en
n—+0o00 n—+o0o
fonction de chaque suite pour déterminer hf}rl (up, + vy,) comme le prouve les exemples
n—-roo
suivants.
li m—1 = li —n?) = —oo.
nip (&7 ~In(m)) = oo, T (n =) = —oo
2. HO X OO” llgv ||977
) 00 ) 0 )

Théoréme 1.1.9. Toute suite convergente est bornée.

Preuve. Si la suite (uy),cy converge vers £, alors on a

Ve > 0 ANeN;Vn>N=|u, — ¥ <c¢
Ve > 0 dANeN; Vn>N=l—ce<u, <l+e.

Ainsi a partir d’un certain rang N les termes de la suite (u,) sont majorés par ¢ + € et
minorés par { — ¢ dés que n > N, les autres termes (u, avec n < N) sont en nombre fini.
On déduit le théoréme.

La réciproque est fausse en général. Considérons par exemple la suite donnée par u, =
(—1)". Cette suite est bornée car elle majorée par 1 et minorée parée par —1, mais elle est
divergente. m

1.1.5 Suites monotones
Théoréme 1.1.10. Toute suite croissante majorée est convergente.

Preuve. Notons A = {u, : n € N} C R. Comme la suite (u,),cy est majorée, disons
par le réel M, 'ensemble A est majoré par M, et de plus il est non vide. Donc I’ensemble A

admet une borne supérieure : notons £ = sup A. Montrons que liI_~I_1 Uy = £. Soit € > 0, par
n—-,+0oo

la caractérisation de la borne supérieure, il existe un élément uy de A tel que £—e < uy < 4.
Alors pour n > Nonal—e < uy < u, </, et donc |u, — ¢| < e+e. On déduit que (uy)
est convergente. ®

Remarque.

neN
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Toute suite décroissante minorée est convergente.

Toute suite croissante non majorée est divergente vers +oo.

Toute suite décroissante non minorée est divergente vers —oo.

Exemple 8. Considérons la suite définie par

Tous les termes de la suite sont positifs. Donc la suite est minorée par 0. Tous les
termes sont également majorés par 1. En effet (par récurence) on a uy = % donc u; = i,

Plus généralement, si u, < 1 alors up1 = u% < 1. Donc la suite est bornée. On a

; Un+1 . I S
également "t — u, < 1. La suite est décroissante, minorée. Elle est convergente.

n

Limites et inégalités

1. Soient (un),cy €t (Vn), ey deux suites convergentes telles que : Vn € N, u, < v,. Alors

lim u, < lim wv,.
n—-+4oo n—-+o0o

2. Soient (un),cn €t (Vn),eny deux suites telles que liril U, = +oo et Vn € N, v, > uy,.
n—-roo

Alors lim v, = +oo0.
n—-+o00

3. Théoréme de " gendarmes " Si (up),cy, (Vn)pen €6 (Wn), e sont trois suites telles
que
Vn € N, Un, S Un S Wn,
et lim u, = = lim wy,

n—-+o0o n—-+o0o

alors la suite(vy ), oy est convergente et lim v, = /.
n—+400

1.1.6 Suites particuliéres
1. Suites arithmétiques et suites géométriques
Définition 1.1.11. Soit 7 € R un nombre réel donné.
1. On appelle suite géométrique de raison r la suite donnée par
up =ar”, VYneN.
2. On appelle suite arithmétique de raison r la suite donnée par
U, =a+nr, VnéeN,

ol a € R.
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Variations d’une suite géométrique.

On supposera que le premier terme de la suite (u”)neN est ug et que ug > 0 et r soit non
nul.

1. Si r =1, la suite est constante.

[\)

. Sir < 0, la suite n’est pas monotone est alternativement dans les nombres négatifs et
positifs.

3. Si—1<r<l1,alors lim u,=0.

n—-+4oo
4. Sir < —1, la suite (up), oy diverge.

1 — pntl
5. Soit S, = ug + u1 + ug + ...uy, alors S, = Uy T # 1.
-7

Variations d’une suite arithmétique.

On supposera que le premier terme de la suite arithmétique (uy), oy est ug et que ug > 0
et r soit non nul. Alors

1. Sir <0, la suite est décroissante.
2. Sir >0, la suite est croissante.

3. Sir =0, la suite est constante.

NN

. Soit S, = ug + uy + ug + ... + up, alors S, = (n+1) (W) .

2. Suite harmonique
C’est la suite (uy),~; de terme général :

SR
Up = gttt

Calculons lim wu,,.
n—-+o0o

e La suite (uy),~; est croissante : en effet up1 —up, = n%rl > (0, mais n’est pas bornée,
donc elle tend vers +o0.

1.1.7 Suites adjacentes

Définition 1.1.12.  Les suites (up), oy €t (vn),cn sont adjacentes si

1. (un),cy est croissante et (vy,),cy est décriossante,
2. pour tout n > 0, on a uy, < vy,

3. lim (v, —uy)=0.

n—-+00
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Théoréme 1.1.13. Si les suites (un),cn €t (Vn),cn S0nt adjacentes, elles convergent vers

la méme limite.

Preuve. Les termes de la suite sont ordonnés ainsi :

U <u <u <. <y, <...<v, <...<v <v; <.

e La suite (uy), oy est croissante et majorée par v, donc elle converge vers une limite £. m
e La suite (vy,),,cy est décroissante et minorée par g, donc elle converge vers une limite
El
e Donc lim (v, —u,)=¢—¢=0,doul=".
n—-+00

Exemple 9. les deux suites (un), oy €t (vn),cn définies pour n > 0 par

1 1
Up =1 — . et v,=1+ m sont adjacentes.
1.1.8 Suites extraites
Définition 1.1.14. Etant donnée une suite (uy),cy, on dit que (vy),cy est une suite

extraite ou encore une sous-suite de (u,),y, s'il existe une application

¢ : N — N strictement croissante,

telle que pour tout n € N, vy, = ug ().

Exemple 10. Prenons la suite (u,),, oy définie par u,, = (—1)" . L’application ¢ : n — 2n

donne la sous-suite
Vp, = Uy = (—1)2” =1.

Cette sous-suite est une suite constante. De méme ¢ : n +— 2n + 1 donne la sous-suite

Up = Un+1 = (_1)2n+1 =—1.

Cette sous-suite est aussi une suite constante.

Proposition 1.1.15.  Soit (uy), oy une suite. Si liglrl up, = £, alors pour toute suite
n—-roo

extraite (U‘P(n))nEN on a nEI-sI-loou‘p(”) =/.

Preuve. Soit € > 0. D’aprés la définition de limite il existe un entier naturel N tel que
pour n > N on a |u, — ¢| < e. Comme 'application ¢ est strictement croissante, on montre
facilement par récurrence que pour tout n, on a ¢ (n) > n. Ceci implique en particulier que
Zi n > N, alors ¢ (n) > N, et donc ‘uw(n) — E} < e. Ce qui prouve que (u¢("))neN tend vers

.

Corollaire 1.1.16. Soit (un),cy une suite. Si elle admet une sous-suite divergente, ou
bien si elle admet deux sous-suites convergeant vers des limites distinctes, alors elle diverge.
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Exemple 11. Siu, = (—1)", on a trouvé deux sous-suites constantes égales a 1 et —1.
Donc (un),, ¢y diverge.

Théoréme 1.1.17. (Théoréme de Bolzano — Weierstrass)

Toute suite bornée admet une sous-suite convergente.
Exemple 12. On considére la suite (up),cy de terme général u,, = (—1)". Alors on
peut considérer les deux sous-suites (u2n), ey €t (U2n+1),en -

Définition 1.1.18. (Suites de Cauchy) Une suite réelle (uy), oy est dite de Cauchy si
elle vérifie le critére de Cauchy :

Ve >0, 3N € N tel que pour tout pet g e N ;p,g > N = |up —uy| <e.
Remarque.

1. Toute suite convergente est de Cauchy, la réciproque (toute suite de Cauchy est conver-
gente) n’est pas vraie dans n’importe quel ensemble.

2. Toute suite de Cauchy est bornée.

1.2 Exercices Corrigés

Exercice 1. En utilasant la définition de la limite, montrer que :

. 1 . 2n—3 2 ) 1
1)nll>l—lr-1002n -1 0 2)nll>r—|1-1003n +1 3 S)ngr—&l-loo smg =0
2
1
4) lim nt
n—+oon — 10

= +o00.
Solution. Tous les n sont des entiers naturels.

1) Ona

lim
n—+oo2n — 1

=0&Ve>0, AN €N, Vn : (nZNé

1
-0 .
o — 1 ‘ < 6)
Soit € > 0. On a ( on peut supposer deés le début que N > 1 et donc (n > N) sera

supérieur & 1 et donc 2n — 1 > 0)

1
2n —1

1 1 1
- <2n-—1 -+ — .
2n71<€<:>5<n <:>2—|—28<n

—0‘<5<:>

1 1 1 1
Il suffit donc de choisir N =max | [+ —|+ 1,1 )= |-+ —| +1
2 2 2 2

2)
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2n — 2
im 2 3=*<=>V8>0,3N€N,VTL: n>N =
n—too3n+1 3

2n—3_g -
3n+1 3 '

Des calculs directs similaires & ceux de la question d’avant nous permettent de prendre

N:[e—l]JrlZO.

11 3
3)
. 1 1
lim sin—=0<Ve>0, AN €N, Vn: <n2N:> 51n—0‘<6>.
n—-+00 n n

Soit € > 0. La fonction "sin" n’est pas positive sur tous R, mais elle est positive, par

. 1 .
sin —| = sin—. Or sinz < x pour
n n

1
exemple sur }O,g[. Puisque 0 < — <1 < g, alors
n

1 1 1
tout x > 0. Donc sin — < —. Un calcul simple montre que — < ¢ est valable pour tous
n

1 1 1
n>N= {] 4+ 1 et donc sin — < ¢ est aussi valable pour tout n > N = [] o
€ n )

1)

241
n +0:—|—oo<:>VA>O, dN €N, Vn : (nZN:>

n®+1
im >A).
n—+oomn — 1 n — 10

Soit A > 0. Si on fixe une condition initiale que N doit étre supérieur ou égal a 11, alors

241 241
on aurra (pour n > N), o +10 == +10. On a (pour n > N > 11)
n— n—
n?+1 n? n?

— =ncarn— 10 <n.

2 2
1>
e = T 0T 10

Il suffit donc de prendre N = max (11, [A] +1).
Exercice 2. Calculer les limites suivantes :

. 1 n
1) lim ———; 2) lim <n— n2—n); 3) lim 227 4) lim <1+> ,
n—+oon< 4+ 1 n——+o00 n—+oo N n——+o00 n
5) lim i:# 6) lim ZH:L 7) lim ié
n—-oo £~ k(k+1) n—-+oo0 — n2 4+ k’ n—-oo £~ Vn2 + 2k’

00
Solution. 1) C’est une forme indéterminée (—) . Levons 'indétermination. On a
00

lIm —— = lim — =lim — =0.
n—+oon2+1 n—toon? n—too n
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2) C’est une forme indéterminée (0o —o00). On a
(n —Vn2— n) (n +vn? — n)
lim (n —Vn? - n) = lim

n—+00 n—-+00 (TL + /n2 _ n)

= lim n = lim ;:1

n—>+oon<1+ /1_%) n—>+oo(1+ /1_%) 2

3) lim sinn n’existe pas mais (sinn), est bornée car
n—+00

VneN, —1<sinn<l1,

sinn 1
< =
n n

-1
d'ou Vn e N*, — <
n

Par le théoréme d’encadrement et puisque

-1 1 i
lim — = lim — =0, alors lim SR _ 0.
n—+oo N n—-+oon n—+oo N
4) On a
1 n " ln(lj%)
lim <1 + > = lim eln(Hﬁ) = lim e"ln(Hn) = lime =
n—-+oo n n—-+4o0o n—-+oo n—-+4oo
Mais
1n(1+%) 1 n
lime #» =1, dou lim (1 + > —el=e¢
n—4o0o n—4o0o

5) O h k € N* 1 1 1 D’

n a pour chaque : = - — — ol

P d k(k+1) k k+1l
ﬁi 1 R SR S 1
kflk(kle) 1x2 2x3 7 n(n+1)
_ 1 n 1 1 1 r 1
a 2 2 3 n n+1 n+1
Donc
lim i # = lim 1 1 =1
n—-4o00 Pt k (l{} =+ 1) - n—-+oo n+ 1 -

6) On a

1 1
< < .
n+n? = k+n? = 14n?
En multipliant par n et en prenant la somme entre 1 et n, on obtient :

1<k<n=14n’<k+n’<n+n’=>

n2

n2 i n n n i n
1 _ = — < —— < = 1.
T nn2 ;n+n2_;k+n2_;1+n2 1+n2

Donc lim Y7, r 1.

n—+00 n2+k
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1
7) La méme méthode nous donne lim >} | ————= =1

n—+0o0 vn? 4+ 2k

Exercice 3. Etudier la nature des suites de terme général

n?+1 1 —n? ; n
Uy = ———. v, = et wp = Up + Up.
Solution.
1
1+ —
e Onau,=n nl et par suite, u, ~ n, donc (uy), oy est une suite divergente.
14—
n

e On montre de méme que v, ~ —n, donc (vy), oy est une suite divergente.

e Ona )
n?+2n+ 3 1—1-5—1-%

n+)(n+2) 1+34+2%

Wy = Uy, + Uy, =

11 résulte lir}rl wy, = 1. Donc (wn),cy = (Un + vn) est une suite convergente.
n—-roo
Exercice 4. Montrer que si la suite (uy),cy converge vers £, alors la suite (|un|), oy
converge vers |(|. Et la réciproque?
Solution.

(Un),eny converge vers £ < Ve > 0,IN € N telque: Vn > N = |u, — (] <e.

eOna:Vz,yeR:|z|+y|| <|z—y.

On en déduit (Vn > N) = ||u,| — |[€|| < |up — £] < ¢, donc la suite (up|), oy est converge
vers |{].

e La réciproque est fausse. Si u, = (—=1)" on a : (|uyl), ey est converge vers 1

mais (up),cy divege.

e On a cependant l'implication : |u,| — 0= wu, — 0.
n—-+4o00 n—+o00

Exercice 5. I) Soit la suite (uy),cny C RT tel que

up = V2
Upt1 = V2Up, N €N,

1) Montrer que Vn € N; u,, < 2.

2) Montrer que (u,) converge et déterminer sa limite.

ITI) On considére I'ensemble A = {z, € RT/ 2 =2, 22 | — 2z, =0, Vn € N}.

e Déterminer dans le cas ou ils existent inf A, sup A, max A, min A. Justifier votre réponce.

Solution.
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I) 1) On montre que Vn € N ; u,, < 2 par récurrence.
e Pourn=0,onau =+v2<2 (vérifié).
e On suppose que u, < 2 et on montre que uy+1 < 2. On a :

Uns1 = V2up < V2.2=14=2.
D’ou Vn € N; u,, < 2.

2) Etude la monotonie de la suite (uy,) .

2uy — 2—
un-l—l_un:\/m_un: i _un( un)>0

2y + Uy, N \V2Up + up

car u, < 2 et u, > 0. Donc la suite (u, ) est croissante et comme u,, < 2 (croissante et majorée par 2)
donc elle est convergente.

Soit £ = lim uy, on atnpt1 = V2Uy; lim upypp = lim +2u,, dou
n—-+o0o n—-+00

n—-+o00

(=VUS P -2=0c((l-2)=0=L=00ul=2
Comme (uy,) est croissante et ug = V2 alors : u, > V2= ¢ > /2, alors £ = 2.

IT)
A = {z,eRf/ 2§=2, 22, —22,=0, VneN}
= {azn € RS/ zo = V2, Tntl = V2Tn, nEN}
= {(un); neN}.

Alors A est borné d’aprés la premiére question, A # @, ug=+v2€ A, ACR
alors sup A et inf A existent.

e (uy) est croissante et convergente alors :

lim w, = 2=sup(u,)=-supA.
n—-+00

supA = 2, 2¢ A= max A}
V2 € A=mind=+v2=infA=2.

Exercice 6. Soit (uy), .y une suite de réels telle que les suites extraites (u2y,), (U2n+1)

et (usy,) soient convergentes. Démontrez que la suite (u,,) est convergente.

Solution. Notons /1, ¢, ¢3 les limites respectives des suites (u2y), (u2n+1) et (usy) -
Nous savons que, si une suite (v,) est convergente vers v, alors toute suite extraite de cette
suite converge et admet v comme limite.

La suite (uep) est extraite a la fois des suites (ug2,) et (us,). Elle est donc convergente
vers {1 et vers £3. D’apres I'unicité de la limite d’une suite convergente, on a donc ¢1 = /3.
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La suite (ugn+3) est extraite a la fois des suites (u2,+1) et (usy,). Elle est donc convergente
vers fo et vers £3. D’aprés I'unicité de la limite d’une suite convergente, on a donc fo = /3.

On a donc ¢ = la, c’est-a-dire que les deux suites (ugy), (u2p+1) ont la méme limite.

Comme tout réel u, est une valeur de l'une de ces deux suites, la suite (u,) est conver-
gente.

Exercice 7. Soit la suite (uy), oy définie par

UO:1
un—&—l:un‘i‘i, n € N.

1) Montrer que (u), oy n'a pas de limite finie.

2) Montrer que lim u, = +oo.
n—+o0o

Solution. 1) On’a pas d’autre choix que de supposer que (uy), .y & une limite finie £.

1
Elle vérifait alors £ = ¢ + 7 Puisque £ est supposée finie alors on obtiendrait — = 0 ce qui

14

est vérifierait absurde. Donc £ — 400 (ou — 00).

2) On peut montrer facilement par récurrence que (uy), oy €st a termes positifs. Soit n € N,
. 1 . . .
donc puisque w41 —un = — > 0, alors (uy,),, est croissante et non majorée (car sinon
u

n
elle serait convergente). Elle tend forcément vers +oo.

Exercice 8. Les suites suivantes sont-elles de Cauchy 7

1 22 2
Du,=14+-+—5+...+ n (montrer d’abord que 4" > n?, Vn > 5).
4 42 4n
1 1
2 =14+-+...+—-
) up + 5 +..+ -
1 2 n
3 ==+ =+.+ —7=.
) Up, 22+32+ +(n+1)2

Solution. 1) La proposition 4® > n* ¥n > 5 se démontre facilement par recurrence.
On a donc, pour tout k € N,

(n+1)2 (n+2)> (n+ k)
Uik — un| = et ——
4n+1 4n+2 4n+k
< o oy
(n+1)? (m+2?% 7 (n+k)?
L ! e L
nn+1) (m+1)(n+2) 7 (m+k—-1)(n+k)
car (n+k)> > (n+k)(n+k—1), vk e N. D’on
| | < 1 1 n 1 1 R 1 1
Up+k — Un - - - —
+k n n+l n+l n+2 n+k—1 n+k

1 1
n n+k

1
<—=<e€
n
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1
pourtoutk‘GN*ethszax([} +1, 5>.
€

2) La suite (uy),, n’est pas de Cauchy. En effet,

1 1 1 1 1 1

|U2N—UN| = '1+2+...+N+]V+1—|—...+2]V—<1+2+...+N>‘
S U VN IO S
N+1 2N — 2N 2N 2N 2 2

car 2N > N + k pour tout 1 < k < N. Donc

1 1
Elszi, YneN, 3p=2N, ¢g=NeN <2n2Net \up—uq\zz),

i.e. (up), n’est pas de Cauchy ( on pouvait aussi, par exemple, faire le méme travail

avec |ugy — un|).
2
3) Montrer que |ugy — un| > g Donc (uy,),, n’est pas de Cauchy.

Exercice 9. On considére la suite de terme général

1 1 1
e Ry
pty gt

S |-

U, =1

1) Montrer que les suites extraites (ugn),cn» €t (U2n+1),cy sont des suites adjacentes.
2) En déduire que la suite (uy,), oy est convergente.

Solution. 1) Soit n» un entier naturel non nul. On a

1 1 1 1
Up2 — U2n = Ml mt 2 u2n+3_u2n+1:_2n+2+2n+3a
1
on+1

U2n41 — U2n =

On en déduit que la suite (v, = u2,),cy- est une suite croissante, que la suite (wy, = U2541),eny+
est une suite décroissante et que la suite (w, — vy), o+ €St une suite de terme positifs
qui converge vers 0. Les suites (v5),cn- €t (wn),cn- sont donc des suites adjacentes.

Il résulte qu’elles sont convergentes et que lim v, = lim w, = /.
n—-+o0o n—-+00

2) Soit € un réel strictement positif.

Il existe N1 € N tel que (n > Ny) = (|Jvp, — €] <€), il existe N2 € N tel que (n > Na) =
(lwn — 1] < €).
Soit n un entier supérieur & N = 2sup (N, Na) .

e Sin=2p, onau, =uv,et p>Nj. Il résulte |u, — | < e.

e Sin=2p+1,onau, =w,etp> Ny Ilrésulte |u, — | <e.
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On a donc Vn, (n > N) = (Ju, — | <€) . La suite (up), cy- est convergente, de limite/.
Remarque. ¢ =log2.
Exercice 10. Méme exercice que le précédent pour la suite (uy), - de terme général

S (—1)"
R TR T O T
Remarque. lim wu, =cosl.
n—-+0oo
Exercice 11. Soit la suite (z,), oy telle que
1 1 1

X

= + Fot ———n>
"Vn2+1 VnZ+2 vn?24+n
1) Calculer z1, x5 et x3.
n

n
— <z, < —.
Vn2an T " T Vn2E1

3) Déduire que (z,) est convergente et calculer ca limite.

2) Montrer que :

Solution.
1) S
VIZ+1 V2
1 1 1 1
T2 = + ==+ —,
22%+1 J(22+2 VO V6
T3 = L + ! + ! = L + L + L .
(3)° +1 (3)* +2 \/(3)2+3 Vo Vil Vi2
2) Onax, = ! + ! +...+;
Vn2+1  Vn2+2 Vn2 +n’
= ! + ! —l—...—i—;<xn< L + ! +...+;
VnZ+n Vn2+n Vn2+n ~ T Vn2+1 Vn2+1 n? +1
n fois n fois

1
= nX — <, <nx

1
vn24+n - n2+1

n n
= — <z, < —.
vnZn ~ T 2+l
On a lim < lim z, < lim i

n—+ooy/n2 4+ ~ n—too T n—+tooy/n2 4+ 1’

puisque lim =1, alors la suite (x,) est convergente

n n
—_— = lim —
n—>+00~/n2+n n—>+OO‘/n2+1
et lim z, =1.

n—-4oo
Exercice 12. On donne la suite (u,) définie par

1
Unt1 == Uo € R*
n
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1) Calculer u,, pour uy = 1.
2) Calculer u, pour ug = —1.

3) Pour u # 1. Montrer que Vn > 1 on a :

Ugn = Ug €6 Ugp—1 = —.
uo

1
4) Résoudre I'équation ug = —.
Uo

5) Déduire la nature de la suite (u,) selon wy.

Solution.

1) Siug=1= u; =1, UQ:L...,Iun:L Vn € NJ

2) Siug=—-1=u;=—-1,up=—1,...,up=—1, Vn € N]J

3) Siud #1 & ug#—1etug# 1. Ce qui implique que :

1 1
Uy =— et up=—=mu
L= 2= 1V

1
e SuUpposons Uz, = Ug = Ugpt2 = = Uz = ug /
U2n41
1 1
e Supposons Ugp41 = — = U2p43 = =
Ug U2n+2 Uo
1

DoncVn>1 ona: us, =ug et ugp_1=—.

1
4) Ona:uoz—iugzliuozil.
ug
5) e Siug=1= u, =1= (u,) converge ver 1.

e Siug=—-1= u, =—1= (uy,) converge ver —1.

1
o Siug# —1= (ugn) — up et uUgpt1 — " mais ug # e donc la suite (uy)
e — 0 0

divergente.R.
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