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Chapitre 1

Background sur les matrices

1.1 Vecteurs

R (resp. C) désigne le corps commutatif des nombres réels (resp. com-
plexes).
N désigne l’ensemble des entiers naturels et N∗= N−{0}.
α ∈ C : α = a+ ib⇒ ᾱ = a− ib est le conjugué de α.
Si α = ᾱ⇒ α ∈ R et si α = −ᾱ⇒ α est un imaginaire pur.

Définition 1.1.1 Rn ( resp. Cn) est l’ensemble des vecteurs x formés de
n composantes x1, . . . , xn où xi ∈ R (resp. C) . La notation suivante :

x =

 x1
...
xn


indique un vecteur colonne dans Rn( resp. dans Cn). Le vecteur transposé de
x dans Rn est défini par :

xT = (x1, . . . , xn),

tandis que son adjoint dans Cnest défini par :

x∗ = x̄T = (x̄1, x̄2, . . . , x̄n).
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6 CHAPITRE 1. BACKGROUND SUR LES MATRICES

1.2 Espaces vectoriels, sous-espaces vecto-

riels et base d’un espace vectoriel

On munit Rn( resp. de Cn) par les deux opérations suivantes :

L’addition z = x+ y définie par : zi = xi + yi, 1 ≤ i ≤ n.
La multiplication externe par un scalaire λ : z = λx défini par : zi = λxi, 1 ≤ i ≤ n.

Alors Rn( resp. Cn) est un espace vectoriel sur le corps R (resp. C) . Pour
éviter de considérer à chaque fois R ou C, on notera par K = R ou C et de
même par Kn = Rnou Cn.
Pour tout x ∈ Kn on a :

x =
n∑
i=1

xiei = x1e1 + · · ·+ xnen

où

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 ,

sont des vecteurs particuliers de Kn.

Définition 1.2.1 Soit F ⊂ Kn (F 6=∅) un sous ensemble de Kn. On dit que
F est un sous-espace vectoriel de Knsi :

∀x, y ∈ F : x+ y ∈ F
∀x ∈ F et λ ∈ K : λx ∈ F

Exemple 1 Soient x1, . . . , xk, k−vecteurs de Kn. L’ensemble suivant :

span {xi}ki=1 =

{
x ∈ Kn : x =

k∑
i=1

αixi où αi ∈ K

}
,

formé de toutes les combinaisons linéaires de x1, · · · , xk, est un sous-
espace vectoriel de Kn.
Si

F = span {xi}ki=1 ,

on dit que F est engendré par {xi}ki=1 .
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Définition 1.2.2 On dit que les k−vecteurs de Knsont linéairement indépendants
si et seulement si :

k∑
i=1

αixi = 0⇒ αi = 0 , ∀i = 1, . . . , k.

Définition 1.2.3 On appelle une base de l’espace vectoriel Kn, une suite des
vecteurs linéairement indépendants, qui engendrent Kn.

Exemple 2 L’ensemble {ei}ni=1 forme une base de Kn dite la base canonique
de Kn. Cette suite est formée de n vecteurs, on dit donc que la dimension
de l’espace vectoriel Kn est n. On note dimKn = n avec dim {0} = 0.

Proposition 1.2.1 Tout ensemble de k−vecteurs de Kn (k < n) linéairement
indépendants peut se compléter pour former une base de Kn.

1.3 Matrices

Définition 1.3.1 Soient Knet Km deux espaces vectoriels. Une application
f de Kn dans Kmest dite linéaire si elle vérifie les deux propriétés suivantes :

∀x, y ∈ Kn f(x+ y) = f(x) + f(y)
∀x ∈ Kn et λ ∈ K : f(λx) = λf(x).

Soient {ei}ni=1 une base de Kn et {fi}mi=1 une base de Km, alors l’application
linéaire f est caractérisée par le tableau des coefficients aij tels que :

f(ej) =
m∑
i=1

aijfi, j = 1, . . . , n.

On peut donc arranger tous les aij dans un tableau :

A =


a11 a12 . . . a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
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A est dite la matrice associe a l’application linéaire f repportée aux bases
{ei}ni=1et {fi}mi=1 . Ainsi pour tout élément x ∈ Kn, on a :

x =
n∑
j=1

xjej

et

f(x) = f

(
n∑
j=1

xjej

)
=

n∑
j=1

xjf(ej).

La matrice A caractérise complètement l’application linéaire f, et elle permet
de calculer les transformations par f de tous les vecteurs de Kn.En effet, pour

x =

 x1
...
xn

 ∈ Kn et y =

 y1
...
ym

 ∈ Km,

on a :

y = f(x)

yi =
n∑
j=1

aijxj, i = 1, 2, . . . ,m

y = Ax,

où le produit Ax = y étant :
a11 a12 . . . a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 x1

...
xn

 =

 a11x1 + . . .+ a1nxn
...
am1x1 + . . .+ amnxn

 =


y1

y2
...
ym

 .
ou encore 

y1

y2
...
yn

 = x1


a11

a21
...
am1

+ · · ·+ xn


a1n

a2n
...
amn


cette dernière s’écrit comme :

y =
n∑
i=1

xiai

où ai est le iiemecolonne de la matrice A.
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Remarque 1.3.1 Lorsque m 6= n, A est une matrice rectangulaire de type
(m,n). On note l’ensemble des matrices de type (m,n) par Km×n.
Dans le cas où m = n, la matriceA est une matrice carrée d’ordre n et
l’ensemble de ces matrices est noté par Kn×n.

Remarque 1.3.2 Si f(x) =Id(x) l’application linéaire identité définie par :

Id(x) = x : x ∈ Kn

a pour matrice associée, la matrice carrée dite matrice identité d’ordre n :

I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 · · · 1

 .

1.3.1 Image et noyau d’une matrice

Définition 1.3.2

ImA = {y ∈ Km | ∃x ∈ Kn, Ax = y} .

Comme y =
∑n

i=1 xiai où le vecteur ai est le ième colonne de la matrice
A, ImA est le sous-espace vectoriel engendré par les vecteurs colonnes ai :

ImA = span {a1, a2, · · · , an} .

Définition 1.3.3 On appelle rang de la matrice A,noté rg(A), le nombre
dim ImA i.e. le nombre de vecteurs colonnes de A linéairement indépendants
et on écrit :

rg(A) = dim ImA.

Définition 1.3.4

KerA = {x ∈ Kn | Ax = 0} .

Théorème 1.3.1 Pour toute matrice A ∈ Km×n, on a :

dim KerA+ dim ImA = n.
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Exercice 1.3.1 Montrer que :
1) l’application linéaire f est surjective ⇔ rg(A) = m.
2) KerA est un sous-espace vectoriel de Kn et que l’application f est injective
⇔ KerA = {0} .
3) Soit l’application f : Kn→ Kn. Alors :

f est bijective sur Kn ⇔ f injective⇔ f surjective.

m
A ∈ Kn×nest régulière⇔ rg(A) = n ⇔ KerA = {0} .

1.4 Opérations élémentaires sur les matrices

– L’addition : A+B = C si A,B ∈ Km×n, cij = aij + bij, ∀i, j.
– La multiplication par un scalaire de K : αA = C, cij = αaij, ∀i, j.
– Le produit : AB = C, si A ∈ Km×n, B ∈ Kn×p,

cij =
n∑
k=1

aikbkj, 1 ≤ i ≤ m et 1 ≤ j ≤ n.

– La matrice nulle notée par 0, dont tous les coefficients sont nuls et on
a pour toute matrice A :

A+ 0 = 0 + A = A.

Définition 1.4.1 Soit f est une application linéaire bijective, alors elle ad-
met une application inverse notée par f−1 telle que :

f ◦ f−1(x) = f−1 ◦ f(x) = Id(x)

c’est à dire :

AA−1 = A−1A = I

où A−1désigne l’inverse de la matrice A associée à l’application f.

Exercice 1.4.1 Montrer que l’application inverse f−1 de f est une applica-
tion linéaire.
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1.5 Sous-matrices

Définition 1.5.1 On appelle sous-matrice d’une matrice donnée, la matrice
obtenue en supprimant certaines lignes et certaines colonnes. En particuliers,
si on supprime les (n − k) dernières lignes et colonnes d’une matrice carrée
A d’ordre n, on obtient la sous-matrice principale d’ordre k

Exemple 3 Soit la matrice A ∈ R3×3 :

A =

 1 2 3
2 1 3
3 1 2

 .

Les 3 sous-matrices principales de A sont :

A1 = (1) , A2 =

(
1 2
2 1

)
et A3 = A .

1.6 Matrices semblables

Définition 1.6.1 On dit que la matrice B ∈ Kn×nest semblable à la matrice
A ∈ Kn×n, s’il existe une matrice de passage S telle que :

B = S−1AS.

1.7 Matrices transposées, adjointes, othogo-

nales, hermitiennes, unitaires et normales

Définition 1.7.1 Soit A ∈ Rn×n,on appelle transposé de A noté AT ∈
Rn×n, la matrice définie par :

(aTij) = aji ,∀i, j.

Définition 1.7.2 Soit A ∈ Cn×n, on appelle A∗ adjointe de A, la matrice
définie par :

a∗ij = āji, ∀i, j.
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Définition 1.7.3 Une matrice A ∈ Rn×n est :
• symétrique si A = AT

• Anti-symétrique si A = −AT .
•normale réelle si :AAT = ATA.
• orthogonale si AAT = ATA = I c’est à dire A−1 = AT .
Une matrice A ∈ Cn×n est :
• hermitienne si A = A∗.
• Anti-hermitienne si A = −A∗.
• unitaire AA∗ = A∗A = I, c’est à dire A−1 = A∗.
• normale si AA∗ = A∗A.

On a les règles suivantes sur les opérations matricielles :

– (AT )T = A.
– (A±B)T = AT ±BT

– (λA)T = λAT

– (AB)T = BTAT .
– (A−1)T = (AT )−1.

De même :

– (A∗)∗ = A.
– (A±B)∗ = A∗ ±B∗
– (λA)∗ = λ̄ A∗

– (AB)∗ = B∗A∗.
– (A−1)∗ = (A∗)−1.

Exercice 1.7.1 Montrer que (AB)∗ = B∗A∗.

1.8 Déterminant et trace

Définition 1.8.1 On appelle déterminant d’une matrice carrée d’ordre n, le
nombre noté detA qui vaut :

detA =
∑
σ∈Sn

(−1)|σ|a1σ(1)a2σ(2) . . . anσ(n).

Sn est l’ensemble des n permutations de {1, 2, . . . , n} .Pour σ fixée, |σ| désigne
la signature de σ .
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Lemme 1.8.1 Pour les matrices carrées d’ordre n, on a :

det I = 1
det(AT ) = detA
det(AT ) = detA

detA∗ = detA
det(αA) = αn detA oùα ∈ K
det(AB) = detA detB
det(A−1) = 1

detA
si A−1 existe .

Lemme 1.8.2 Pour une matrice carrée A, A−1existe si et seulement si detA 6=
0. A est alors une matrice régulière. Sinon, elle est dite singulière. Le système
linéaire Ax = b a une solution unique pour tout b ∈ Kn si detA 6= 0 alors
x = A−1b.

Lemme 1.8.3 Les matrices semblables ont même déterminant.

Démonstration.

det(S−1AS) = detS−1 detA detS = detA.

Définition 1.8.2 La trace est une application Tr : Kn×n → K définie par :

A = (aij) 7→ Tr(A) =
n∑
i=1

aii

où les aii sont les éléments diagonaux de A.

Lemme 1.8.4 
Tr(I) = n
Tr(A+B) = Tr(A) + Tr(B)
Tr(λA) = λTr(A)
Tr(AB) = Tr(BA)
Tr(S−1AS) = Tr(A).

1.9 Quelques matrices particulières

1.9.1 Matrices diagonales

Définition 1.9.1 Une matrice carrée A = (aij) est dite une matrice diago-
nale si aij = 0 pour i 6= j.
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Lemme 1.9.1 Le déterminant d’une matrice diagonale est :

detA =
n∏
i=1

aii

Alors detA 6= 0 ⇔ aii 6= 0, ∀i, 1 ≤ i ≤ n.

1.9.2 Matrices triangulaires

Définition 1.9.2 Une matrice carrée A = (aij) est dite une matrice trian-
gulaire :

inférieure si : aij = 0 pour i < j
supérieure si : aij = 0 pour i > j.

Lemme 1.9.2 Le déterminant d’une matrice triangulaire est :

detA =
n∏
i=1

aii.

Alors detA 6= 0 ⇔ aii 6= 0, ∀i, 1 ≤ i ≤ n.

Lemme 1.9.3 Soient A et B deux matrices carrées d’ordre n, triangulaires
inférieures (resp. supérieures). Alors

C = AB

est une matrice triangulaire inférieure (resp. supérieure) avec :

cii = aiibii pour 1 ≤ i ≤ n.

Démonstration. Soit

cij =
n∑
k=1

aikbkj

A et B étant deux matrices triangulaires inférieures, alors aik = 0 si i < k et
bkj = 0 si k < j cela implique que cij = 0 si i < j. Pour que aikbkj 6= 0,il
faut que aik 6= 0 et bkj 6= 0, donc on doit avoir i ≥ k et k ≥ j ce qui entraine
i ≥ j. Pour i = j, le seul terme non nul de la somme est celui pour lequel
k = i = j,alors cii = aiibii.
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Lemme 1.9.4 Soit A une matrice carrée d’ordre n, triangulaire inférieure
et régulière, et b un vecteur de dimension n , tel que bi = 0 pour i < k et
bk 6= 0. La solution x du système Ax = b est telle que :{

xi = 0 pour i < k

xk = bk
akk

pour i = k.

Démonstration. On a :

Ax = b⇔
i∑

j=1

aijxj = bi, 1 ≤ i ≤ n,

il implique

aiixi +
i−1∑
j=1

aijxj = bi ⇒ xi =
1

aii

(
bi −

i−1∑
j=1

aijxj

)
, 1 ≤ i ≤ n.

Si bi = 0 pour i < k et bk 6= 0, alors la solution x est telle que :

x1 = x2 = · · · = xk−1 = 0 et xk =
bk
akk

.

�

Lemme 1.9.5 Soit A une matrice carrée triangulaire inférieure et régulière
(resp. supérieure). Alors A−1 est également triangulaire inférieure régulière
(resp. supérieure) et

a−1
ii =

1

aii
.

Démonstration. A−1est l’inverse de A ⇔ AA−1 = I. Il vient que :

AA−1 = I ⇔ Axk = ek, 1 ≤ k ≤ n,

où xk est le kième colonne de la matriceA−1. Alors pour déterminerA−1revient
donc à resoudre n systèmes linéaires pour b = ek , 1 ≤ k ≤ n,où ekdésigne le
vecteur colonne d’ordre k de la base canonique de Kn,et puis en appliquant le
Lemme 8 à chaque système pour déterminer xk. Après le calcul, il vient que
pour la solution x1 du système Ax1 = e1, n’a aucun composante nulle i.e.,
x1
i 6= 0 pour tout i avec x1

1 = 1
a11
, mais pour le système Ax2 = e2, la solution

x2 admet x2
1 = 0, x2

2 = 1
a22

et x2
i 6= 0 pour tout i = 3, . . . , n, et ainsi de suite

pour le reste des systèmes. Ceci montre que A−1est une matrice triangulaire
inférieure avec a−1

ii = 1
aii
. �
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1.10 Matrices tridiagonales

Définition 1.10.1 Une matrice carrée A est dite tridiagonale si A est de la
forme :

A =


a11 a12 0 . . . 0
a21 a22 a23 . . . 0

0
. . . . . . . . .

...
...

. . . . . . an−1n−1 an−1n

0 . . . 0 ann−1 ann


i.e.,

aij = 0 si |i− j| > 1.

1.11 Matrices blocs

Définition 1.11.1 Soit A ∈ Kn×n. L’écriture suivante :

A =


A11 A12 . . . A1k

A21 A22 . . . A2k
...

...
. . .

...
Ak1 Ak2 . . . Akk


où Aij ∈ Kni×njsont des sous-matrices de A, avec

∑k
j=1 nj =

∑k
i=1 ni =

n , s’appelle la décomposition par blocs de la matrice A. On exsige que les
éléments diagonaux de A sont des matrices carrées.

Exemple 4 Soit A ∈ R4×4 telle que :

A =


1 2 0 1
1 3 4 5
−1 2 3 −5
10 12 57 1

 .

Cette matrice peut se décomposer par exemple comme suit :

A =

(
A11 A12

A21 A22

)
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avec

A11 =

(
1 2
1 3

)
, A12 =

(
0 1
4 5

)
A21 =

(
−1 2
10 12

)
et A22 =

(
3 −5
57 1

)
,

ou bien comme :

A11 =

 1 2 0
1 3 4
−1 2 3

 , A12 =

 1
5
−5


A21 =

(
10 12 57

)
et A22 = (1) .

Définition 1.11.2 On dit qu’une matrice est triangulaire inférieure par blocs
si et seulement si A peut s’écrire comme :

A =


A11 A12 . . . A1k

0 A22 . . . A2k
...

...
. . .

...
0 0 . . . Akk


où les sous-matrices Aij sont nulles pour i > j.

Lemme 1.11.1 Le déterminant d’une matrice carrée triangulaire par blocs
est égal au produit des déterminants des matrices diagonales Aii i.e.,

detA =
k∏
i=1

detAii.

Alors A est inversible ⇔ detA 6= 0⇔ detAii 6= 0 ∀i.

1.12 Produits scalaires

Définition 1.12.1 Soient x et y deux vecteurs dans Cn, on définit leur pro-
duit scalaire hermitien par :

〈x, y〉 = y∗x =
n∑
i=1

xi ȳi.
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Tandis que dans Rn, ce produit scalaire est défini par :

〈x, y〉 = yTx = xTy =
n∑
i=1

xi yi

Dans ce cas, on l’appelle le produit scalaire euclidien.

1.12.1 Propriétés principales du produit scalaire

– 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,∀x, y, z ∈ Cn.
– 〈λx, y〉 = λ〈x, y〉,∀λ ∈ C.
– 〈x, λy〉 = λ̄〈x, y〉, où λ̄ est le conjugué de λ.
– 〈x, y〉 = 〈y, x〉, où 〈y, x〉 est le conjugué de 〈y, x〉.
– 〈x, x〉 =

∑n
i=1 |xi|

2 > 0 pour x 6= 0.

Dans Rn, toutes les propriétés restent valables sauf dans ces deux cas :

– 〈y, λx〉 = λ〈x, y〉
– 〈x, y〉 = 〈y, x〉.

1.13 Somme directe

Définition 1.13.1 Soient G et F deux sous-espaces vectoriels de Kn.On ap-
pelle somme directe de G et F et on note Kn = G ⊕ F : si pour tout vecteur
x ∈ Kn se décompose d’une manière unique en un vecteur x1de G et un
vecteur x2 de F tels que x = x1 + x2.

Lemme 1.13.1

Kn = G ⊕ F ⇔ Kn = G + F et G ∩ F = {0} .

Définition 1.13.2 Deux vecteurs x et y de Kn sont dits orthogonaux lorsque :

〈x, y〉 = 0.

Définition 1.13.3 Deux sous-espaces vectoriels G et F de Kn sont dits or-
thogonaux si :

∀x ∈ G,∀y ∈ F 〈x, y〉 = 0.
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Définition 1.13.4 Soit F un sous-espace vectoriel de Kn, le sous-espace or-
thogonal de F est défini par :

F⊥ = {x ∈ Kn | 〈x, y〉 = 0,∀y ∈ F} .

Proposition 1.13.1 Pour tout sous-espace vectoriel F de Kn. On a :

1)F⊥est un sous-espace vectoriel de Kn.
2)Kn = F ⊕ F⊥.
3) dimF⊥ = n− dimF .
4) (F⊥)⊥ = F .

Définition 1.13.5 Soit B = {xi}ni=1 une base de Kn. B est dite une base
orthogonale de Knsi :

〈xi, xj〉 = 0 si i 6= j .

De plus, B est dite une base orthonormale si :

〈xi, xj〉 = δij =

{
1 si i = j
0 si i 6= j.

où δij est le delta kronecker.

Remarque 1.13.1 Si B = {xi}ni=1 est une base de Kn. Alors on peut construire
une base orthonormale de B, en utilisant la procédure de Gram− Schmidt.

Proposition 1.13.2 Soit A ∈ Kn×n.

∀x ∈ Kn,∀y ∈ Km on a : 〈Ax, y〉 = 〈x,A∗y〉.

Démonstration. On admet que : (AB)T = BTAT et AB = Ā B̄, alors :

〈x,A∗y〉 = (A∗y)∗x = (Ā T y)
T
x = ȳ T Ax = y∗Ax = 〈Ax, y〉.

Théorème 1.13.1 Soit A ∈ Kn×n. On a :

(ImA)
⊥

= KerA∗ et ImA∗ = (KerA)
⊥
.
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Démonstration.

(ImA)
⊥

= {y ∈ Kn | 〈y, Ax〉 = 0, ∀x ∈ Kn}
= {y ∈ Kn | 〈A∗y, x〉 = 0, ∀x ∈ Kn}
= {y ∈ Kn | A∗y = 0}
= KerA∗.

Pour montrer la deuxième égalité, appliquons la première relation à A∗∗ :

Ker A = (ImA∗)
⊥

donc
(KerA)

⊥
= ImA∗.

�

1.14 Matrices de permutation

Définition 1.14.1 Une permutation σ est une application bijective de l’en-
semble {1, 2, . . . , n} dans lui même. L’application de σ à {1, 2, . . . , n} revient
donc à réordonner les n nombres. On associe à σ l’application linéaire f telle
que :

f(ei) = eσ(i) pour i = 1, . . . , n

où {ei} est la base canonique de Kn. La matrice P qui représente f dans cette
base est appelée la matrice de permutation.

Exemple 5 Soit n = 4, et définissons σ par :

i 1 2 3 4
σ(i) 3 2 4 1

alors f(ei) est définie comme suit :

ei\f(ei) f(e1) f(e1) f(e1) f(e1)
e1 0 0 1 0
e2 0 1 0 0
e3 1 0 0 0
e4 0 0 1 0
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et donc la matrice de permutation est donnée par :

Pσ =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 0

 .

Exercice 1.14.1 Soit Pσ une matrice de permutation. Montrer que Pσest
une matrice orthogonale, i.e., P−1

σ = P T
σ .

Remarque 1.14.1 Lorsque on effectue une permutation σ de l’ordre des
vecteurs de base d’une matrice carrée A, ce qu’on peut considérer comme un
changement de base, on obtient une matrice B semblable à A i.e.,

B = P−1
σ APσ = P T

σ APσ.

1.15 Matrices irréductibles

1.15.1 Graphe associé à une matrice et inversement

SoitA une matrice carrée, A = (aij) d’ordre n. A chaque colonne de la
matrice on fait correspondre un sommet Si, i = 1, 2, . . . , n.
Un arc relie Si à Sj si aij 6= 0.
Un graphe est formé de l’ensemble de sommets et de arcs.

Exemple 6 Soit la matrice A ∈ R4×4donnée par :

A =


4 3 0 0
0 2 1 2
0 1 0 3
6 5 0 0


Son graphe associé est :

•S1 −→ •S2

•S3 → •S4
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A chaque sommet, on peut associer l’ensemble de voisins :

V(Si) = {Sj, j 6= i, SiSj est un arc} .

Un chemin allant de Si à Sj est une suite d’arcs, si elle existe, tel que :

(Si,Si1), (Si1,Si2), . . . , (Sip,Sj),

soient des arcs du graphe.
Un graphe est dit fortement connexe s’il existe au moins un chemin allant

de tout sommet Si à tout sommet Sj. Ainsi le graphe précédent est fortement
connexe. Par contre la matrice suivante :

A =

 3 2 5
4 0 0
0 0 1


son graphe associé est :

•S1 −→ •S2

•S3

Le garphe n’est pas fortement connexe car il n’ya pas de chemin allant de
S3 à S1.

1.16 Matrices réductibles

Définition 1.16.1 Une matrice carrée A d’ordre n est réductible si et seule-
ment si :
1- Il existe une matrice de permutation Pσ telle que :

P T
σ APσ =

(
A11 A12

0 A22

)
où A11 et A22 sont deux matrices carrées d’ordre k et n− k, respectivement.
où encore, il existe une partition de l’ensemble {1, 2, . . . , n} en deux partitions
d’indices I et J telle que aij = 0 pour i ∈ I et j ∈ J.
2- soit encore, il existe σ une permutation : {1, 2, . . . , n} 7→ {I,J} .
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Remarque 1.16.1 La résolution du système linéaire Ax = b est équivalent
à : {

A22x2 = b2

A11x = b1 − A12x2

avec x = (x1, x2), x1 ∈ Rp et x2 ∈ Rn−p, de même b = (b1, b2). Autrement dit
la résolution de ce système linéaire de taille n est réduite à la résolution de
deux systèmes de tailles petites.

Remarque 1.16.2 On a :

(P T
σ APσ)ij = 〈P T

σ APσej, ei〉
= 〈APσej, Pσei〉
= 〈Aeσ(j), eσ(i)〉 = aσ(i) σ(j).

Exemple 7 Soit la matrice

A =

 1 2 3
0 4 0
6 7 8


Comme a21 = a23 = 0,on obtient une partition de l’ensemble des indices
{1, 2, 3} en I = {2} et J = {1, 3} , de sorte que :

aij = 0 pour i ∈ I et j ∈ J.

Donc

(P T
σ APσ)31 = aσ(3) σ(1) = 0,

(P T
σ APσ)32 = aσ(3) σ(2) = 0, pour σ(3) ∈ I, σ(1), σ(3) ∈ J.

Ainsi pour le cas , σ(1) = 1 et σ(2) = 3, on constate que :

P T
σ APσ =

 1 0 0
0 0 1
0 1 0

 1 2 3
0 4 0
6 7 8

 1 0 0
0 0 1
0 1 0


=

 6 8 7
1 3 2
0 0 4

 .
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De même pour le cas σ(1) = 3 et σ(2) = 1, on a :

P T
σ APσ =

 0 0 1
1 0 0
0 1 0

 1 2 3
0 4 0
6 7 8

 0 1 0
0 0 1
1 0 0


=

 6 8 7
1 3 2
0 0 4

 .

Théorème 1.16.1 Une matrice carrrée d’ordre n est irréductible si et seule-
ment si son graphe est fortement connexe.

1.17 Matrices hermitiennes et définies posi-

tives

Lemme 1.17.1 Soit A ∈ Cn×n une matrice carrée hermitienne. Alors

〈Ax, x〉 ∈ R.

Démonstration :

〈Ax, x〉 = 〈x,A∗x〉 = 〈x,Ax〉 = 〈Ax, x〉 ⇒ 〈Ax, x〉 ∈ R.

�

Définition 1.17.1 Une matrice hermitienne A ∈ Cn×n, est dite :
• semi-définie positive (SDP) si :

∀x ∈ Cn : 〈Ax, x〉 ≥ 0,

• définie positive (DP) si :

∀x ∈ Cn − {0} : 〈Ax, x〉 > 0.

• semi-définie negative (SDN) si :

∀x ∈ Cn : 〈Ax, x〉 ≤ 0,

• définie négative (DN) si :

∀x ∈ Cn − {0} : 〈Ax, x〉 < 0.
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Proposition 1.17.1 Si A est une matrice hermitienne définie positive alors
les sous matrices principales Ak d’odre k = 1, 2, . . . , n − 1, sont des ma-
trices hermitiennes et définies positives. De plus les éléments diagonaux de
la matrice A sont strictement positifs i.e. aii > 0 pour tout i.

Démonstration. Soit Ak la sous matrice principale d’ordre k. Considérons
le vecteur suivant :

x = (x1, x2, . . . , xk, 0, . . . , 0)T ,

posons

y = (x1, x2, . . . , xk)
T .

Alors

0 < 〈Ax, x〉 = 〈Aky, y〉

ce qui démontre que Ak est une matrice hermitienne définie positive pour
1 ≤ k ≤ n− 1. Soit maintenant ei le iième vecteur de la base canonique :

〈Aei, ei〉 = aii > 0 , i = 1, 2, . . . , n.

�

Exercice 1.17.1 Soit A ∈ Cn×n. Montrer que la matrice A∗A est hermi-
tienne semi-définie positive. De plus si A est régulière, alors A∗A est hermi-
tienne définie positive.

1.18 Matrices de projection

Définition 1.18.1 On appelle un projecteur ou bien une matrice de projec-
tion, une matrice carrée telle que :

P 2 = P.

Lemme 1.18.1 Si P est un projecteur alors :

Kn = KerP ⊕ ImP.
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Démonstration. Soit x ∈ Kn tel que : x = x − Px + Px .On a : Px ∈ ImP ,
et x− Px ∈Ker P,car :

P (x− Px) = Px− P 2x = Px− Px = 0

Ceci montre que :

Kn = KerP + ImP.

Soit maintenant y ∈KerP ∩ ImP alors Py = 0 et y = Pz pour z ∈
Kn. Comme P est une matrice de projection, on a :

y = Py = P 2z = Pz = 0 ⇒ y = 0.

Il vient que :

Kn = KerP ⊕ ImP.

�

1.19 Valeurs propres et vecteurs propres

Définition 1.19.1 Soit A une matrice carrée d’ordre n. On appelle valeur
propre de A un nombre λ ∈ C pour lequel il existe un vecteur x 6= 0 de
Cn appelé vecteur propre tel que :

Ax = λx.

1.19.1 Spectre d’une matrice

Le spectre de la matrice A, noté Sp(A) est l’ensemble des valeurs propres
de A i.e.,

Sp(A) = {λ1(A), λ2(A), . . . , λn(A)} .

1.19.2 Rayon spectrale

Le rayon spectrale de la matrice A est défini par :

ρ(A) = max
i
{|λi(A)| : λi(A) ∈ Sp(A)} .
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Lemme 1.19.1 1)

Tr(A) =
n∑
i=1

λi et detA =
n∏
i=1

λi .

2) A est inversible si et seulement si 0 /∈Sp(A).

Exercice 1.19.1 Montrer que les vecteurs propres associés à des valeurs
propres distinctes sont linéairement indépendants.

Définition 1.19.2 On appelle polynôme caractéristique de la matrice A, le
polynôme de degré n :

PA(λ) = det(A− λI).

Les racines du PA(λ) sont les valeurs propres de A. Comme ce polynôme ad-
met n racines distinctes ou non, la matrice à n valeurs propres distinctes ou
non. Si λ est un zéro de PA de multiplicité k,on dit que la valeur propreλ est
de multiplicité algébrique k.

Lemme 1.19.2 Les matrices semblables ont même polynôme caractéristique.

Démonstration. Soit B = S−1AS une matrice semblable à A. Alors on a :

PB(λ) = det(B − λI) = det(S−1AS − λI)

= det(S−1AS − λS−1S)

= det(S−1(A− λI)S

= det(A− λI) = PA(λ).

Proposition 1.19.1 Si Ax = λx, alors :

(A− µI)x = (λ− µ)x /µ ∈ C (décalage).

Akx = λkx

A−1x =
1

λ
x si A−1 existe .

Démonstration.
2- CommeA2x = A(Ax) = A(λx) = λAx = λ2x, on déduit par récurrence

que Akx = λkx.
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3- De Ax = λx, si A−1 existe, λ 6= 0, on obtient en multipliant à gauche
par A−1 :

A−1Ax = A−1(λx) = λA−1x = Ix⇔ A−1x =
1

λ
x.

�

Théorème 1.19.1 Soient A et B ∈ Cn×n. Alors :

Sp(AB) = Sp(BA).

Démonstration. Il suffit de prouver que Sp(AB) ⊂Sp(BA) et par symétrie
on a l’autre inclusion. Soit λ ∈Sp(AB), alors il existe un vecteur propre
x 6= 0 tel que ABx = λx :
1- Si Bx 6= 0, alors BA(Bx) = λBx (on applique B de deux cotés) d’où
Bx est un vecteur propre associé à la valeur propre λ, ce qui montre que
λ ∈Sp(BA).
2- Si Bx = 0, alors on a nécessairement que λ = 0, cela implique que
0 ∈Sp(AB) et que detAB = 0.Comme detAB = detBA = 0. Cela im-
plique que 0 ∈Sp(BA). �

1.20 Réduction des matrices

1.20.1 Diagonalisation

Définition 1.20.1 Soit A ∈ Kn×n. On dit que la matrice A est diagonali-
sable si et seulement si elle existe une matrice de passage S telle que :

S−1AS = D ⇔ A = SDS−1

où D =diag(λi(A)) est une matrice diagonale avec λi(A) ∈Sp(A) avec les colonnes
de S sont les vecteurs propres de A associés à λi(A). Autrement dit, A est
diagonalisbale

Théorème 1.20.1 Une matrice A est diagonalisable si et seulement si elle
admet une base construite de n vecteurs propres.

Corollaire 1.20.1 Si A admet n valeurs propres distinctes, alors elle est
diagonalisable.
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Théorème 1.20.2 Une condition nécessaire et suffisante pour que deux ma-
trices A et B,carrées, de même ordre soient diagonalisables, commutent, et
qu’elles aient les mêmes vecteurs propres.

Exercice 1.20.1 Montrer que la matrice appelée bloc de Jordan d’ordre k >
1, admet λ comme valeur propre de multiplicité k,

Jλ =


λ 1 · · · 0

0 λ
. . .

...
. . . . . . 1

0 . . . 0 λ


n’est pas diagonalisable.
Indication : montrer qu’on ne peut pas construire la matrice de passage de
vecteurs propres S i.e. Jλ n’admet pas n vecteurs propres associés à λ.

Définition 1.20.2 On appelle une matrice de Jordan une matrice diagonale
par blocs où chaque bloc diagonal est un bloc de Jordan de valeur propre λi et
d’ordre ki.

J =


J1(λ1) · · · 0
0 J2(λ2) . . . 0
...

. . . . . .
...

0 . . . 0 Jk(λs)


les valeurs propres λi ne sont pas nécessairement distinctes.

Théorème 1.20.3 Toute matrice est semblable à une matrice de Jordan.

1.20.2 Décomposition de Schur (trigonalisation)

Théorème 1.20.4 (Lemme de Schur) Toute matrice carrée A ∈ Cn×n

se décompose en :

A = UTU∗

où U une matrice unitaire (U−1 = U∗) et T une matrice triangulaire supérieure
avec tii = λi(A) ∈Sp(A).

Conséquence sur les matrices normales
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Théorème 1.20.5 Une matrice A est normale (AA∗ = A∗A) si et seulement
si il existe une matrice unitaire U telle que :

A = UDU∗

où D =diag(λi(A)) avec λi(A) ∈Sp(A). C’est à dire que toute matrice nor-
male est diagonalisable.

Corollaire 1.20.2 Une matrice hermitienne est diagonalisable. Son Sp(A) ⊂
R i.e. λi ∈ R et les vecteurs propres associés à des différentes valeurs propres
sont orthogonaux.

Démonstration. A est une matrice hermitienne donc elle est normale car
AA = AA∗ = AA. D’après le Théorème de Schur, A est diagonalisable et il
existe une matrice unitaire U telle que :

A = UDU∗.

⇓
A∗ = UD∗U∗,

où D =diag(λi(A)) avec λi(A) ∈Sp(A).
Comme A = A∗ on a : D = D∗, donc λi = λ̄i pour i = 1, . . . , n ⇒Sp(A) ⊂
R. Soient maintenant λi et λj deux valeurs propres distinctes de A i.e. i 6=
j et soient xi, xj deux vecteurs propres associés à la valeur propre λi, respectivement
λj. Comme A est une matrice hermitienne et λi ∈ R, on a :

λi〈xi, xj〉 = 〈λixi, xj〉 = 〈Axi, xj〉 = 〈xi, Axj〉 = 〈xi, λjxj〉 = λj〈xi, xj〉.

Donc
(λi − λj)〈xi, xj〉 = 0 et λi 6= λj ⇒ 〈xi, xj〉 = 0.

Alors xi, xj sont orthogonaux.

Corollaire 1.20.3 Une matrice symétrique réelle est diagonalisable. Ses va-
leurs propres sont réelles et les vecteurs propres sont orthogonaux.

Preuve 1 Le matrices réelles symétriques sont hermitiennes.

Corollaire 1.20.4 Une matrice unitaire est diagonalisable. Ses valeurs propres
ont pour module égal 1. Les vecteurs propres sont orthogonaux.
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Corollaire 1.20.5 Une matrice anti-hermitienne est diagonalisable. Ses va-
leurs propres sont imaginaires pures et les vecteurs propres sont orthogonaux.

Proposition 1.20.1 Soit A une matrice hermitienne et définie positive. Alors
il existe unique matrice hermitienne et définie positive, notée A1/2 telle que :(

A1/2
)2

= A.

La matrice A1/2 s’appelle la racine carrée de A.

Démonstration. A étant hermitienne et définie positive :

A = UDU∗ où D = diag(λi), avec λi > 0.

Définissons D1/2 =diag(λ
1/2
i ) donc (D1/2)2 = D. Alors

A1/2 = UD1/2U∗

est une matrice hermitienne définie positive. De plus

(A1/2)2 = UD1/2U∗UD1/2U∗ = UDU∗ = A.

Théorème 1.20.6 Une matrice hermitienne est définie positive si et
seulement si :
1- toutes ses valeurs propres sont strictement positives i.e. Sp(A) ⊂
]0,+∞[ .2- toutes ses matrices principales ont des déterminants prin-
cipaux strictement positifs.

Remarque 1.20.1 Le résultat reste vrai pour une matrice symétrique réelle.

Démonstration. Pour (1), soit (λ, x) un élément propre de la matriceA hermitienne
et définie positive, on a :

〈Ax, x〉 = 〈λx, x〉 = λ〈x, x〉 ⇒ λ =
〈Ax, x〉
〈x, x〉

> 0, (x 6= 0)

Réciproquement, si A est hermitienne, alors elle est normale et donc diago-
nalisable et on a : A = UDU∗avec D =diag(λi).

〈Ax, x〉 = 〈UDU∗x, x〉
= 〈DU∗x, U∗x〉
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posons y = U∗x qui est non nul car x est non nul.

〈Ax, x〉 = 〈Dy, y〉

=
n∑
i=1

λi |yi|2 .

Si λi > 0, alors 〈Ax, x〉 > 0.
Pour (2), admis.

1.21 Localisation des valeurs propres

Le Théorème de Ghershgorin − Hadamard que nous allons démontrer
peremette de localiser les valeurs propres d’une matrice et de trouver une
majoration de rayon spectrale de cette matrice.

Théorème 1.21.1 Soit A = (aij) ∈ Cn×n. Alors :

Sp(A) ⊂
n⋃
i=1

Di

où

∀i = 1, 2, . . . , n : Di = Bf

(
aii,

n∑
j=1, j 6=i

|aij|

)
=

{
z ∈ C : |z − aii| ≤

n∑
j=1, j 6=i

|aij|

}
,

se sont les disques de Ghershgorin.

Démonstration. Soit λ ∈Sp(A), alors il existe un vecteur propre x ∈ Cn−{0} tel
que Ax = λx. Comme les coordonnées de x sont non nulles, il existe un i0 ∈
{1, 2, . . . , n} tel que |xi0| = maxi |xi0| et on remarque que |xi0| > 0. Considérons
maintenant le ième0 ligne de Ax = λx, il vient :

n∑
j=1

ai0jxj = λxi0 ⇒
n∑

j=1, j 6=i0

ai0jxj = xi0(λ− ai0i0)

⇒ |xi0 | |λ− ai0i0 | =

∣∣∣∣∣
n∑

j=1, j 6=i0

ai0jxj

∣∣∣∣∣ ≤
n∑

j=1, j 6=i0

|ai0jxj|

⇒ |λ− ai0i0| ≤

∣∣∣∣∣
n∑

j=1, j 6=i0

ai0j
|xj|
|xi0|

∣∣∣∣∣ ≤
n∑

j=1, j 6=i0

|ai0j| .
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Car ∀i ∈ {1, 2, . . . , n} , |xi| ≤ |xi0| . On a donc :

λ ∈ Di0⊂
n⋃
i=1

Di.

�

Exemple 8 Soit la matrice complexe suivante :

A =

 1 + i i 2
−3 2 + i 1
1 i 6

 .

Le spectre da A est localisé dans les 3 disques de Ghershgorin suivants :

D1 = Bf (1 + i, 3) =

{
z ∈ C : |z − a11| ≤

3∑
j=1,j 6=1

|a1j| = |i|+ |2| = 3

}

D2 = Bf (2 + i, 4) =

{
z ∈ C : |z − a22| ≤

3∑
j=1,j 6=2

|a2j| = |−3|+ |1| = 4

}

D3 = Bf (6, 2) =

{
z ∈ C : |z − a33| ≤

3∑
j=1,j 6=3

|a3j| = |i|+ |1| = 2

}
.

Dessinons dans le plan complexe ces 3 disques.

Remarque 1.21.1 Comme detA = detAT ,on montre facilement que

det(AT − λI) = det(A− λI)T = det(A− λI) i.e., Sp(A) = Sp(AT ).

En appliquant aussi le Théorème de Ghershgorin sur AT , on obtient une
nouvelle région où sont localisées les valeurs propres de A. On a donc les 3
nouveaux disques de Ghershgorin :

D1 = Bf (1 + i, 4), D2 = Bf (2 + i, 4) et D3 = Bf (6, 2).

Remarque 1.21.2 La relation

|λ− aii| ≤
n∑

j=1,j 6=i

|aij| ⇒ |λ| ≤
n∑
j=1

|aij|



34 CHAPITRE 1. BACKGROUND SUR LES MATRICES

donc

ρ(A) ≤ max
i

n∑
j=1

|aij| .

Alors pour l’exemple précédent, on a :

ρ(A) ≤ max(5, 7, 8) = 8.

1.22 Matrices à diagonale dominante

Définition 1.22.1 Soit A = (aij) ∈ Kn×n. A est dite:
• à diagonale dominante si :

∀i ∈ {1, 2, . . . , n} : |aii| ≥
n∑

j=1,j 6=i

|aij| .

• à diagonale strictement dominante si :

∀i ∈ {1, 2, . . . , n} : |aii| >
n∑

j=1,j 6=i

|aij| .

• à diagonale fortement dominante si : A est à diagonale dominante et
il existe i0 ∈ {1, 2, . . . , n} tel que :

|ai0i0| >
n∑

j=1,j 6=i0

|ai0j| .

Proposition 1.22.1 Si A est à diagonale strictement dominante, alors A est
régulière.

Démonstration. Il suffit de démontrer que 0 /∈Sp(A). En effet, 0 n’appartient
pas à aucun disque de Ghershgorin car :

|0− aii| = |aii| >
n∑

j=1,j 6=i

|aij| .

�
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Proposition 1.22.2 Si A est à diagonal fortement dominante et irréductible,
alors A est régulière.

Démonstration. On l’admet sans démonstration et on présente l’exemple sui-
vant : �

Exemple 9 Soit

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 .

A est inversible car elle à diagonal fortement connexe et irréductible. En
effet,
• A est à diagonale fortement dominante puisque :

∀i ∈ {1, 2, 3, 4} : |aii| ≥
4∑

j=1,j 6=i

|aij| ,

de plus il existe un i0 = 1 (ou bien i0 = 4) tel que |ai0i0| = 2 > 1.
• A est irréductible car son graphe est fortement connexe. Alors A est
régulière.

1.23 Décomposition en valeurs singulières (SVD)

Pour une matrice rectangulaire, la notion de valeurs propres n’a pas de
signification. Néaumoins, on peut introduire un autre concept qui est celui
de valeurs singulières.

Définition 1.23.1 Soit A ∈ Km×n. On appelle valeurs singulières µ de
A, les racines carrées positives ou nulles des valeurs propres de la matrice
A∗A d’ordre n.

Théorème 1.23.1 Si A ∈ Km×n avec rg(A) = r ≤ min(m,n). Il existe deux
matrices carrées unitaires d’ordre m et n telles que :

A = VΣU∗
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où Σ est une matrice triangulaire de format (m,n),

Σ =



µ1 0 0 0

0
. . . 0 0

0 0 µr 0
0 0 0 0
...

...
...

...
0 0 0 0


.

On peut inversement exprimer Σ en fonction de A par la relation suivante :

Σ = V ∗AU.

Remarque 1.23.1 La relation :

A = VΣU∗

s’appelle la décomposition en valeurs singulières de la matrice A. Cette décomposition
est toujours possible mais n’est pas unique. Il est cependant facile de déterminer
de la matrice A, les matrices unitaires U et V. Il se trouve en effet qu’on
peut prendre pour la matrice U, la matrice des vecteurs propres singulières
c’est à dire la matrice de passage de diagonalisation de la matrice hermi-
tienne A∗A. Si on appelle u1, u2, . . . , un ces vecteurs propres, alors on définit
rvecteurs propres v1, v2, . . . , vr,en posant

vi =
1

µi
Aui pour 1 ≤ i ≤ r,

si r < m, on complète ensuite les vi obtenus afin de former une base ortho-
normée. Les vi constituent les colonnes de V.

Exemple 10 Soit A ∈ R3×3 telle que :

A =

(
3 1 1
−1 3 1

)
.

• Calculer rg(A).
• Calculer les valeurs singulières de A.
• Donner le SVD de A.
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Solution : on a :
rg(A) = r ≤ min(m,n) = m = 2,

car les deux lignes de A sont linéairement indépendants.
• On calcule les valeurs propres de la matrice ATA, on a :

ATA =

 10 0 2
0 10 4
2 4 2


Le polynôme caractéristique de ATA est :

PA(λ) = −λ3 + 22λ2 − 120λ = −(λ− 12)(λ− 10)λ.

Alors
Sp(ATA) = {λ1 = 12, λ2 = 10 et λ3 = 0} .

Les valeurs singulières non nulles de ATA sont les racines carrées positives,
donc :

µ1 =
√

12 et µ2 =
√

10.

La matrice

Σ =

( √
12 0 0

0
√

10 0

)
.

La diagonalisation de la matrice ATA conduit aux vecteurs propres suivants :

u1 =


1√
6

2√
6

1√
6

 , u2 =

 1√
5
−1√

5

0

 et u3 =


1√
30
2√
30
−5√

30

 .

On obtient donc la matrice orthogonale U :

U =


1√
6

1√
5

1√
30

2√
6
−1√

5
2√
30

1√
6

0 −5√
30

 .

Il ne reste qu’à calculer les vecteurs propres v1 et v2 par vi = 1
µi
Aui, i =

1, 2. On trouve :

v1 =
1

µ1

Au1 =
1√
12

(
3 1 1
−1 3 1

)
1√
6

2√
6

1√
6

 =

( √
2

2√
2

2

)
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puis

v2 =
1

µ2

Au2 =
1√
10

(
3 1 1
−1 3 1

) 1√
5
−1√

5

0

 =

( √
2

2

−
√

2
2

)

Alors

V =

( √
2

2

√
2

2√
2

2
−
√

2
2

)
et on vérifie que le produit VΣUT redonne bien la matrice de départ A :

VΣUT =

( √
2

2

√
2

2√
2

2
−
√

2
2

)( √
12 0 0

0
√

10 0

)
1√
6

1√
5

1√
30

2√
6
−1√

5
2√
30

1√
6

0 −5√
30


=

(
3 1 1
−1 3 1

)
.



Chapitre 2

Normes et suite des matrices

2.1 Normes vectorielles

Définition 2.1.1 Une application ‖.‖ : Cn→ R+ est dite une norme vecto-
rielle si elle vérifie les conditions suivantes :

1) ‖x‖ ≥ 0, ∀x ∈ Cn et ‖x‖ = 0⇔ x = 0. positivité
2) ‖λx‖ = |λ| ‖x‖ ∀λ ∈ Cn,∀x ∈ Cn. homogénité
3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x ∈ Cn,∀y ∈ Cn. inégalité triangulaire.

Exemple 11 Les applications suivantes sur Cn :

1)∀x ∈ Cn ‖x‖1 =
∑n

i=1 |xi|
2)∀x ∈ Cn ‖x‖2 =

(∑n
i=1 |xi|

2)1/2
=
√
〈x, x〉

3)∀x ∈ Cn ‖x‖∞ = maxi |xi| ,

sont des normes vectorielles sur Cn.

Proposition 2.1.1 Inégalité de Cauchy − schwarz

∀x, y ∈ Cn : |〈x, y〉| ≤ ‖x‖2 ‖y‖2 .

Théorème 2.1.1 Dans Cn( espace vectoriel de dimension finie sur le corps
C ), toutes les normes vectorielles sont équivalentes i.e.,

∃α, β ∈ C tels que : α ‖x‖i ≤ ‖x‖j ≤ β ‖x‖i .

Exercice 2.1.1 Montrer que les 3 normes vectorielles ‖x‖i , i = 1, 2, ∞,
sont équivalentes.

39
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2.2 Normes matricielles

Définition 2.2.1 Une application ‖.‖ : Cn×n→ R+ est dite une norme ma-
tricielle si elle vérifie les conditions suivantes :

a) ∀A 6= 0, ‖A‖ > 0 et ‖A‖ = 0⇔ A = 0.
b) ∀α ∈ C ‖αA‖ = |α| ‖A‖ .
c) ∀A,B ∈ Cn×n ‖A+B‖ ≤ ‖A‖+ ‖B‖ .
d)∀A,B ∈ Cn×n ‖AB‖ ≤ ‖A‖ ‖B‖ .

2.2.1 Normes subordonnées

Définition 2.2.2 Soit A ∈ Cn×net étant donnée une norme vectorielle sur
Cn.On appelle norme subordonnée à la norme vectorielle, le nombre

‖A‖ = sup
06=x∈Cn

‖Ax‖
‖x‖

= max
06=x∈Cn

‖Ax‖
‖x‖

.

Proposition 2.2.1 Soit ‖..‖ une norme matricielle subordonnée sur Cn×n.
Alors
1)

‖Ax‖ ≤ ‖A‖ ‖x‖ , ∀x ∈ Cn.

2) Pour toute matrice A, la norme ‖A‖ est aussi définie par :

‖A‖ = max
x∈Cn, ‖x‖=1

‖Ax‖ .

3) Il existe un x0 ∈ Cn − {0} ,tel que :

‖A‖ =
‖Ax0‖
‖x0‖

.

4) Pour toute norme subordonnée,

‖I‖ = 1.

5) Toute norme subordonnée est une norme matricielle.

Démonstration. 1) Par définition :

‖A‖ = max
06=x∈Cn

‖Ax‖
‖x‖

⇔ ‖Ax‖ ≤ ‖A‖ ‖x‖ , ∀x ∈ Cn.
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2) Soit x ∈ Cn − {0} ,posons y = x
‖x‖ , alors ‖y‖ = 1 et on a :

‖A‖ = max
x∈Cn, ‖y‖=1

‖Ay‖ .

3) Comme l’application f définie sur Cn dans R+ par : f(x) = ‖Ax‖ est
continue sur Cn (car elle est le composé de deux fonctions continues i.e., x 7→
Ax 7→ ‖Ax‖) sur la sphère unité S1 = {x ∈ Cn : ‖x‖ = 1} qui est compacte
dans Cn(bornée et fermée). Alors d’après le Théorème de Weirstrass : toute
fonction continue sur un compact de Cn, atteint ses bornes alors il existe un
x0 ∈ Cn − {0} tel que :

‖A‖ =
‖Ax0‖
‖x0‖

.

4) Pour toute norme subordonnée, on a :

‖I‖ = max
x∈Cn, ‖x‖=1

‖Ix‖ = max
x∈Cn, ‖x‖=1

‖x‖ = 1.

5) Il faut démontrer que la définition de ‖A‖ répond aux quatres propriétés
de la norme matricielle.
a) Si A = 0, alors Ax = 0, ∀x ∈ Cn, donc

‖A‖ = max
x∈Cn, ‖x‖=1

‖Ax‖ = 0.

Réciproquement, si
‖A‖ = max

x∈Cn, ‖x‖=1
‖Ax‖ = 0,

alors
‖Ax‖ = 0, ∀x ∈ Cn

donc
A = 0.

b)

‖(αA)x‖ = ‖αAx‖ = |α| ‖Ax‖ ⇒ max
‖x‖=1

‖(αA)x‖ = |α| max
‖x‖=1

‖Ax‖ .

c)
‖(A+B)x‖ = ‖Ax+Bx‖ ≤ ‖Ax‖+ ‖Bx‖ ,
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donc

max
‖x‖=1

‖(A+B)x‖ ≤ max
‖x‖=1

(‖Ax‖+ ‖Bx‖) ≤ max
‖x‖=1

‖Ax‖+ max
‖x‖=1

‖Bx‖ .

d) Soient A,B ∈ Cn×n, on a :

‖AB‖ = max
‖x‖=1

‖ABx‖ .

Or ∀x ∈ Cn,

‖ABx‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖ ≤ ‖A‖ ‖B‖ .

On déduit que ‖.‖ est norme matricielle.

Proposition 2.2.2 Pour toute matrice A de Cn×n. On a :

1) ‖A‖∞ = max
i

n∑
j=1

|aij|

2) ‖A‖1 = max
j

n∑
i=1

|aij|

3) ‖A‖2 =
√
ρ(A∗A) = µmax(A),

où µmax(A) est la plus grande valeure singulière de A.

Démonstration. Soit x ∈ Cn tel que ‖x‖∞ = 1. Alors :

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣
≤ max

1≤i≤n

n∑
j=1

|aijxj|

≤ max
1≤i≤n

n∑
j=1

|aij| max
1≤j≤n

|xj|

≤ max
1≤i≤n

n∑
j=1

|aij| ‖x‖∞

≤ max
1≤i≤n

n∑
j=1

|aij| .
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Cela nous amène à l’inégalité suivante :

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
1≤i≤n

n∑
j=1

|aij| .

Montrons maintenant que l’inégalité dans l’autre sens. Comme le maximum
est atteint, alors il existe un i0 ∈ {1, 2, . . . n} tel que :

n∑
j=1

|ai0j| = max
1≤i≤n

n∑
j=1

|aij| ,

de même il existe un xi0 construit comme :

xi0j =

{
1 si ai0j ≥ 0;
0 si ai0j < 0,

avec ‖xi0‖∞ = 1. On vérifie facilement que :

∥∥Axi0∥∥ = max
1≤i≤n

∣∣∣∣∣
n∑
j=1

aijx
i0
j

∣∣∣∣∣ ≥
∣∣∣∣∣
n∑
j=1

aijx
i0
j

∣∣∣∣∣ =
n∑
j=1

|ai0j| = max
1≤i≤n

n∑
j=1

|aij| .

Cela implique

‖A‖∞ ≥ max
‖x‖∞=1

‖Ax‖∞ ≥ max
1≤i≤n

n∑
j=1

|aij| ,

d’où

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij| .

Pour (2), la démonstration se fait de la même manière à celle de la norme
infinie et on constate que ‖A‖∞ = ‖A∗‖1 .
3) On a :

‖A‖2
2 = max

‖x‖2=1
‖Ax‖2

2 = max
‖x‖2=1

〈Ax,Ax〉

= max
‖x‖2=1

〈A∗Ax, x〉

Comme A∗A est une matrice hermitienne semi définie positive alors il existe
une matrice diagonale D :=diag(λi(A

∗A)) et une matrice unitaire U telles
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que A∗A = U∗DU. De plus Sp(A∗A) ⊆ R+ i.e. les valeurs propres λi de
A∗A sont réelles et positives. Par suite pour tout x 6= 0, avec ‖x‖2 = 1, on a :

〈A∗Ax, x〉 = 〈U∗DUx, x〉 = 〈DUx,Ux〉 = 〈Dy, y〉 où y = Ux.

Alors

〈Dy, y〉 =
n∑
i=1

λi |yi|2 ≤ λmax(A∗A)
n∑
i=1

|yi|2 = λmax(A∗A) ‖y‖2
2 .

D’autre part :

‖y‖2
2 = ‖Ux‖2

2 = ‖x‖2 = 1

il vient

‖Ax‖2
2 ≤ λmax(A∗A) , ∀x 6= 0

En prenant la racine carrée on trouve

‖Ax‖2 ≤
√
λmax(A∗A) = µmax(A), ∀x 6= 0

ce qui donne

‖A‖2 = max
‖x‖2=1

‖Ax‖2 ≤ µmax(A).

Considérons à présent le vecteur propre x0 avec ‖x0‖2 = 1, de la matrice
A∗A associé à la plus grande valeur propre en module

λmax(A∗A) = |λmax(A∗A)| = ρ(A∗A),

ce qui implique∥∥Ax0
∥∥ =

√
ρ(A∗A)

∥∥x0
∥∥

2
= µmax(A)

∥∥x0
∥∥

2
= µmax(A).

Il vient que :

max
‖x‖2=1

‖Ax‖2
2 ≥

∥∥Ax0
∥∥

2
= µmax(A).

Ce qui donne

‖A‖2 =
√
ρ(A∗A) = µmax(A).
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Corollaire 2.2.1 Soit A ∈ Cn×n,
a)

‖A‖2 = ‖A∗‖2 .

b) Si A est hermitienne . Alors :

‖A‖2 = ρ(A) = ρ(A∗).

Démonstration. a) Comme Sp(A∗A) =Sp(AA∗) alors ρ(AA∗) = ρ(A∗A). Cela
implique ‖A‖2 = ‖A∗‖2 .
b) Comme A est hermitienne alors A = A∗, et on a :

‖A‖2
2 = ρ(A∗A) = ρ(A2) = ρ(A)2

Il vient ‖A‖2 = ρ(A). Comme ‖A‖2 = ‖A∗‖2 ⇒ ρ(A) = ρ(A∗).

Exercice 2.2.1 Montrer que si A est normale alors ‖A‖2 = ρ(A).

2.2.2 Normes non subordonnées

Définition 2.2.3 On appelle norme de Schur (ou Frobénius) de A ∈ Cn×n,le
nombre :

‖A‖F =

(
n∑
i=1

n∑
j=1

|aij|2
)1/2

.

La norme de Frobenius ‖A‖F est une norme matricielle non subordonnée.

Comme Cn×nest isomorphe à Cn2
car :

A 7→ VecA = (a1, a2, . . . , an)T

où ai sont les colonnes de la matriceA arrangés de a1 jusqu’à an. Alors
‖A‖F n’est autre que la norme euclidienne ‖Vec A‖2. IL reste donc à démontrer
la 4èmepropriété de norme matricielle. En effet, pour A,B ∈ Cn×n :

‖AB‖2
F =

n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣
2

≤
n∑
i=1

n∑
j=1

(
n∑
k=1

|aik| |bkj|

)2

,
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Il vient de l’inégalité de Cauchy − Schwarz :

‖AB‖2
F =

n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑
k=

aikbkj

∣∣∣∣∣
2

≤
n∑
i=1

n∑
j=1

(
n∑
k=1

|aik|2
)(

n∑
k=1

|bkj|2
)

≤
n∑
i=1

(
n∑
k=1

|aik|2
)

n∑
k=1

(
n∑
k=1

|bkj|2
)

= ‖A‖2
F ‖B‖

2
F .

Remarquons que :

‖I‖F =
√
n, n ≥ 2,

alors ‖A‖F n’est pas subordonnée.

Théorème 2.2.1 Soit ‖.‖ une norme matricielle. Alors pour A ∈ Cn×n, on
a :

ρ(A) ≤ ‖A‖ .

Démonstration. Soit λ une valeur propre de la matrice A, alors il existe un
vecteur propre x 6= 0 tel que Ax = λx.

‖λx‖ = |λ| ‖x‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖

donc clairement, on a |λ| ≤ ‖A‖ . Ce qui implique ρ(A) ≤ ‖A‖ .

Théorème 2.2.2 Soit A ∈ Cn×n et ε > 0. Il existe au moins une norme
matricielle subordonnée telle que :

‖A‖ ≤ ρ(A) + ε.

Démonstration. D’après le Théorème de Schur, il existe une matrice unitaire
telle que U∗AU soit triangulaire supérieure.

U∗AU =


λ1 t12 t13 . . . t1n

λ2 t21 . . . t2n
. . .

. . .

λn


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avec {λi}ni=1sont les valeurs propres de A. A tout scalaire δ 6= 0, on va consi-
derer la matrice :

Dδ =


1

δ 0
δ2

0
. . .

δn−1



(UDδ)
∗A(UDδ) = D−1

δ U∗AUDδ =


λ1 δt12 δt13 · · · δn−1t1n

λ2 · · · δn−2t2n
. . .

...
0 λn−1 δtn−1n

λn


Soit ε > 0,on fixe δ > 0 tel que :

n∑
j=i+1

∣∣δj−itij∣∣ ≤ ε ∀1 ≤ i ≤ n− 1.

L’application

‖.‖ : B ∈ Cn×n → ‖B‖ = ‖(UDδ)
∗B(UDδ)‖∞

est une norme matricielle subordonnée par la norme vectorielle qui a tout
x ∈ Cn → ‖(UDδ)

∗x‖∞ . Alors

‖A‖∞ =
∥∥D−1

δ U∗AUDδ

∥∥
∞ ≤ ρ(A) + ε.

2.3 Suite de matrices

Soit A une matrice carrée d’ordre n. On va etudier la convergence d’une
suite formée des puissances successives de A,i.e. limk 7→∞A

k où

Ak = A× A× . . .× A︸ ︷︷ ︸
k fois

.

Rappelons que limk 7→∞A
k = 0 si et seulement si limk 7→∞ a

k
ij = 0, ∀i, j ce qui

équivalent à lim k 7→∞
∥∥Ak∥∥ pour tout norme matricielle.
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Théorème 2.3.1
lim
k 7→∞

Ak = 0⇔ ρ(A) < 1.

Démonstration 1 Soit λ ∈Sp(A) alors il existe un x 6= 0 vecteur propre de
A tel que

Ax = λx.

Il vient d’après la Proposition 5,

Akx = λkx.

Donc

lim
k 7→∞

Ak = 0 ⇔
∣∣λk∣∣ = |λ|k < 1⇔ (max

λ
|λ|)k < 1⇔ ρ(A) < 1.

Théorème 2.3.2 Soit A ∈ Cn×n. Les propriétés suivantes sont équivalentes :

1) limk 7→∞A
k = 0

2) limk 7→∞A
kx = 0, ∀x ∈ Cn

3) ρ(A) < 1
4) ‖A‖ < 1 pour au moins une norme matricielle subordonnée.

Démonstration. (1) ⇒ (2). Soit ‖.‖ une norme vectorielle, et ‖.‖ la norme
matricielle subordonnée correspondante. Comme∥∥Akx∥∥ ≤ ∥∥Ak∥∥ ‖x‖
donc

lim
k 7→∞

Akx = 0.

(2)⇒(3). Par l’absurde : on suppose que ρ(A) ≥ 1.On peut trouver un
x ∈ Cn, x 6= 0 tel que Ax = λx, |λ| ≥ 1.Comme

Akx = λkx

alors il est impossible que limk 7→+∞A
kx = 0.

(3)⇒(4). Appliquons le Théorème 15, il existe auu moins une norme ma-
tricielle subordonnée telle que ‖A‖ ≤ ρ(A) + ε,il suffit donc prendre par

exemple ε = 1−ρ(A)
2

> 0, cela implique ‖A‖ < 1.

(4)⇒ (1). On applique l’inégalité
∥∥Ak∥∥ ≤ ‖A‖k pour une norme subor-

donnée.
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Théorème 2.3.3 Soient A ∈ Cn×net ‖.‖ une norme subordonnée. Alors :
1)

lim
k 7→+∞

∥∥Ak∥∥1/k
= ρ(A).

2) La série
∑∞

k=0 A
kconverge vers (I − A)−1 ⇔ ρ(A) < 1.

Démonstration. (1) D’après le Théorème 14, on a ρ(A) ≤ ‖A‖ . D’autre part,
ρ(Ak) = (ρ(A))k, donc

ρ(A) ≤
∥∥Ak∥∥1/k

, ∀k ∈ N∗.

On va montrer que :

∀ε > 0, ∃k0 tel que k ≥ k0 ⇒
∥∥Ak∥∥1/k ≤ ρ(A) + ε.

Soit ε > 0, on définit la matrice Aε par :

Aε =
A

ρ(A) + ε
.

On sait que ρ(Aε) < 1. Donc d’après le Théorème 15, on a

lim
k 7→+∞

Akε = 0,

donc :

∃k0 tel que k ≥ k0 ⇒
∥∥Akε∥∥ =

∥∥Ak∥∥
(ρ(A) + ε)k

≤ 1

i.e. ∥∥Ak∥∥1/k ≤ ρ(A) + ε.

2) (⇒) on sait que si la série
∑∞

k=0A
kconverge alors le terme général Ak → 0

si k 7→ +∞ donc ρ(A) < 1.
(⇐) ρ(A) < 1 ⇒ 1 /∈Sp(A) donc I − A est inversible.

Sn =
n∑
k=0

Ak = I + A+ A2 + . . .+ An

ASn = A

(
n∑
k=0

Ak

)
= A+ A2 + . . .+ An+1.
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Calculons Sn − ASn,on a :

(I − A)Sn = I − An+1,

cela implique :
Sn = (I − A)−1(I −Bn+1).

Donc :∥∥Sn − (I − A)−1
∥∥ ≤ ∥∥(I − A)−1

∥∥∥∥An+1
∥∥→ 0 quand n 7→ +∞

et par conséquent :
lim

n 7→+∞
Sn = (I − A)−1.



Chapitre 3

Conditionnement

Supposons qu’on veut résoudre le système

Ax = b

où A est une matrice donnée inversible et b ∈ Cn. En réalité cette résolution
n’est jamais exacte, elle est entachée d’erreur qui peuvent provenir : les coef-
ficients des données A et b sont trouvés par des mesures (experimentales) ou
bien avec des calculs. La représentation des chiffres par l’ordinateur conduit
à des erreurs sur ces coefficients. Alors : On ne résout pas exactement le
système d’origine Ax = bmais le système approché (A+ ∆A)y = b+ ∆b.
Question : que peut-on dire sur y − x?

Exemple 12 (Wilson).

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 , b =


32
23
33
31


et

A+ ∆A =


10 7 8.1 7.2
7.08 5.04 6 5
8 5.98 9.89 9
6.99 4.99 9 9.98

 , b+ ∆b =


32.1
22.9
33.1
30.9

 ,

51
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∆A =


0 0 0. 1 0. 2

0.0 8 0.0 4 0 0
0 −0.0 2 −0. 11 0

−0.0 1 −0.0 1 0 −0.0 2

 , ∆b =


−0. 1
0. 1
−0. 1
0. 1

 .

Ax = b⇔ x =


1
1
1
1

 ,

(A+ ∆A)y = b⇔ y =


9.2
−12.6
4.5
−11


et

Az = b+ ∆b⇔ z =


−81
−137
−34
22

 .

On remarque, une toute petite modification sur les coefficients de A et b engendre
une grande modification sur la solution x.On se rend ainsi compte qu’une
imprécison dans le calcul numérique peut conduire à des résultats erronés.
On dit dans ce cas la matrice A est mal conditionnée.

Définition 3.0.1 Conditionnement d’une matrice. Si ‖.‖p est une norme
matricielle subordonnée, on appelle conditionnement d’une matrice inversible
A ∈ Cn×n le nombre :

Condp(A) = ‖A‖p
∥∥A−1

∥∥
p

où p = 1, 2,∞.

Proposition 3.0.1 1-Cond(A) ≥ 1
2- Cond(A) = Cond(A−1)
3- Cond(αA) = Con(A), ∀α ∈ C.
4- Cond2(A) = µmin(A)

µmax(A)
où µmax(A) ≥ µmin(A) > 0 désignent respectivement la
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plus petite et la plus grande valeur singulière de A.
5- Si A est une matrice hermitienne, Cond2(A) = max|λi(A)|

mini|λi(A)| oùλi ∈ Sp(A).

6- Si A est une matrice unitaire, Cond2(A) = 1.
7- Cond2(UA) = Cond2(AU) = Cond2(A) pouur toute matrice U unitaire. C’est
à dire que Cond2 est invariant par une transformation unitaire.

3.1 Résultats principaux

Théorème 3.1.1 Soit A une matrice carrée inversible. Soient x et x+∆x, les
solutions de Ax = b et A(x+ ∆x) = b+ ∆b, respectivement. Alors
1)

‖∆x‖
‖x‖

≤ Cond(A)
‖∆b‖
‖b‖

.

2) Cette inégalité est optimale : pour une matrice A donnée, on peut trouver
b 6= 0 et ∆b 6= 0 tel qu’elle deviennent égalité.

Démonstration. On a :
1) de

A(x+ ∆x) = b+ ∆b⇒ A∆x = ∆b⇒ ∆x = A−1∆b,

que
‖∆x‖ ≤

∥∥A−1
∥∥ ‖∆b‖ (*)

et d’autre part Ax = b donc :

‖b‖ ≤ ‖A‖ ‖b‖ (**)

On déduit de (*) et (**) que :

‖∆x‖
‖x‖

≤ ‖A‖
∥∥A−1

∥∥ ‖∆b‖
‖b‖

.

2) Soit maintenantA fixée, alors il existe ∆b tel que ‖A−1∆b‖ = ‖A−1‖ ‖∆b‖ . Comme

∆x = A−1∆b⇒ ‖∆x‖ =
∥∥A−1

∥∥ ‖∆b‖ .
D’autre part, il existe un x tel que

‖b‖ = ‖A‖ ‖x‖ .

On a donc
‖∆x‖
‖x‖

= ‖A‖
∥∥A−1

∥∥ ‖∆b‖
‖b‖

.
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Théorème 3.1.2 Soit A une matrice carrée inversible. Soient x et x+∆x, les
solutions de Ax = b et (A+ ∆A)(x+ ∆x) = b,respectivement. Alors
1)

‖∆x‖
‖x+ ∆x‖

≤ Cond(A)
‖∆A‖
‖A‖

.

2) Cette inégalité est optimale : pour une matrice A donnée, on peut trouver
b 6= 0 et ∆A 6= 0 tel qu’elle deviennent égalité.

Démonstration. 1) On a :

(A+ ∆A)(x+ ∆x) = b = Ax

⇓
Ax+ A∆x+ ∆A(x+ ∆x) = Ax

⇓
∆x = −A−1∆A(x+ ∆x)⇒ ‖∆x‖ ≤

∥∥A−1
∥∥ ‖∆A‖ ‖x+ ∆x‖

⇓
‖∆x‖
‖x+ ∆x‖

≤ ‖A‖
∥∥A−1

∥∥ ‖∆A‖
‖A‖

.

2) (voir le livre de Ciarlet).


