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Chapitre 1

Background sur les matrices

1.1 Vecteurs

R (resp. C)désigne le corps commutatif des nombres réels (resp. com-
plexes).
N désigne I'ensemble des entiers naturels et N*= N— {0}.
aeC :a=a+1b= a=a—ib est le conjugué de a.
Sia=a=a¢cRetsia=—a= «aest un imaginaire pur.

Définition 1.1.1 R” ( resp. C") est l'ensemble des vecteurs x formés de

n composantes 1, ...,x, ot x; € R (resp. C). La notation suivante :
xy
Tr =
‘/B’I’L

indique un vecteur colonne dans R"™( resp. dans C"). Le vecteur transposé de
x dans R™ est défini par :

ol = (z1,...,20),

tandis que son adjoint dans C"est défini par :

v* =77 = (T, To,..., 7).
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1.2  Espaces vectoriels, sous-espaces vecto-
riels et base d’un espace vectoriel

On munit R™( resp. de C™) par les deux opérations suivantes :

L’addition z =z + y définie par : z; = x; +y;, 1 <1 < n.
La multiplication externe par un scalaire A : z = Ax défini par : z; = Ax;, 1 <@ < n.

Alors R™( resp. C™) est un espace vectoriel sur le corps R (resp. C). Pour
éviter de considérer a chaque fois Rou C,on notera par K = Rou C et de
méme par K" = R"ou C".

Pour tout x € K" on a :

n
T = E T;e; = T1€1 + -+ Tpey
i=1

1 0 0
0 1 0

€1 = . , €2 = . N . ;
0 0 1

sont des vecteurs particuliers de K".

Définition 1.2.1 Soit F C K" (F #0) un sous ensemble de K". On dit que
F est un sous-espace vectoriel de K"si :

Ve,ye F tx+yeF
VeeF et xeK : dxe F

Exemple 1 Soient x1,...,x, k—vecteurs de K". L’ensemble suivant :

k
span {:10,-}2?:1 = {x ceK" :z = Zaixi ou oy € K} ,

=1

formé de toutes les combinaisons linéaires de x1,--- ,xy, est un sous-
espace vectoriel de K™.
Si
k
F = span {z;};_,,

on dit que F est engendré par {xi}le .
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Définition 1.2.2 On dit que les k—vecteurs de K" sont linéairement indépendants
si et seulement si :

k
Y awi=0=0;=0,Vi=1,..k
=1

Définition 1.2.3 On appelle une base de l’espace vectoriel K", une suite des
vecteurs linéairement indépendants, qui engendrent K.

Exemple 2 L’ensemble {e;};_, forme une base de K" dite la base canonique
de K". Cette suite est formée de n vecteurs, on dit donc que la dimension
de lespace vectoriel K" est n. On note dim K" = n avec dim {0} = 0.

Proposition 1.2.1 Tout ensemble de k—vecteurs de K™ (k < n) linéairement
indépendants peut se compléter pour former une base de K.

1.3 Matrices

Définition 1.3.1 Soient K"et K™ deux espaces vectoriels. Une application
f de K™ dans K™est dite linéaire si elle vérifie les deux propriétés suivantes :

Vr,y e K" flz+y) = f(z) + f(y)
Ve e K" et A€ K : f(A\x) = A\f(x).

Soient {e;};_, une base de K™ et {f;}." | une base de K™, alors application

1= 1=

linéaire f est caractérisée par le tableau des coefficients a;; tels que :

f(ej) :Zaijfi, j=1,...,n.

=1

On peut donc arranger tous les a;; dans un tableau :

a1 a12 e Q1n
Q21 Q22 -+ Q2p

Am1 Am2 *°° Qmnp
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A est dite la matrice associe a 'application linéaire f repportée auxr bases
{ei}i_ et {fi}i2, . Ainsi pour tout élément x € K", on a :

n
xr = E :Cjej
Jj=1

flx)=Ff (Z%‘@j > = ijf(ej)-

La matrice A caractérise complétement application linéaire f, et elle permet
de calculer les transformations par f de tous les vecteurs de K™. En effet, pour

T hn
xr = : ceK"ety=
Tn Ym
on a:
y = flx)
n
Y, = E aijmj,izl,Q,...
j=1
y = Az,
ot le produit Ax =y étant :
a1q a9 Lo B
" T anxy + ...
Q21 Q2 -+ Q2p .
T Am1T1 + ..
m1 Am2 - Qmnp -
ou encore _
Y1 an
Y2 as1
=T . +-Fz,
Yn am1 |

cette derniere s’écrit comme :
n
Yy = Z x;a;
i=1
‘jeme

ot a; est let colonne de la matrice A.

c K™,

+ A1nTn

+ AmnTn

n
Yo

Ym
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Remarque 1.3.1 Lorsque m # n, A est une matrice rectangulaire de type
(m,n). On note l'ensemble des matrices de type (m,n) par K™*".

Dans le cas ou m = n, la matrice A est une matrice carrée d’ordre n et
l’ensemble de ces matrices est noté par K™"*™.

Remarque 1.3.2 Si f(z) =1d(x) Uapplication linéaire identité définie par :
Idz) =2 :x € K"

a pour matrice associée, la matrice carrée dite matrice identité d’ordre n :

10 ...0

0 1 0
I= ,

0 0 1

1.3.1 Image et noyau d’une matrice

Définition 1.3.2

ImA={ye K" |3z e K", Az =y}.

€

Comme y = Z?Zl x;a; ou le vecteur a; est le 1" colonne de la matrice

A, ImA est le sous-espace vectoriel engendré par les vecteurs colonnes a; :
ImA = span{ay,as, -+ ,a,}.

Définition 1.3.3 On appelle rang de la matrice A,noté rg(A), le nombre
dim ImA i.e. le nombre de vecteurs colonnes de A linéairement indépendants
et on écrit :

rg(A) = dim ImA.

Définition 1.3.4
KerA ={zx € K" | Az =0} .

Théoreme 1.3.1 Pour toute matrice A € K™*™, on a :

dim KerA + dim ImA = n.
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Exercice 1.3.1 Montrer que :

1) Uapplication linéaire f est surjective < rg(A) = m.

2) KerA est un sous-espace vectoriel de K" et que lapplication f est injective
& KerA ={0}.

3) Soit Uapplication f : K"— K". Alors :

f est bigective sur K" < f injective & f surjective.

0

A € K""est réguliere < rg(A) =n < KerA ={0}.

1.4 Opérations élémentaires sur les matrices

— L’addition : A+ B = C'si A, B e Kmxn’ Cij = Qg5 + bij; VZ,]
— La multiplication par un scalaire de K: aA = C, ¢;; = aa,j, Vi, j.
— Le produit : AB=C,si A€ K™" BecK"™P,

n
Cij :Zaikbkj, 1<i<metl< j<n.
k=1

— La matrice nulle notée par 0, dont tous les coefficients sont nuls et on
a pour toute matrice A :

A+0=0+A=A

Définition 1.4.1 Soit f est une application linéaire bijective, alors elle ad-
met une application inverse notée par f=! telle que :

c’est a dire :

AAT =AT1A=1T

ot A~tdésigne Uinverse de la matrice A associée a l'application f.

Exercice 1.4.1 Montrer que l'application inverse f~—! de f est une applica-
tion linéaire.
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1.5 Sous-matrices
Définition 1.5.1 On appelle sous-matrice d’une matrice donnée, la matrice
obtenue en supprimant certaines lignes et certaines colonnes. En particuliers,

si on supprime les (n — k) derniéres lignes et colonnes d’une matrice carrée
A d’ordre n, on obtient la sous-matrice principale d’ordre k

Exemple 3 Soit la matrice A € R3*3 :

1
A= 2
3

N
RO O W

Les 3 sous-matrices principales de A sont :

Al_(l),A2_<; ?) et Ay — A.

1.6 Matrices semblables

Définition 1.6.1 On dit que la matrice B € K"*"est semblable a la matrice
A € K™ sl existe une matrice de passage S telle que :

B=S"1AS.

1.7 Matrices transposées, adjointes, othogo-
nales, hermitiennes, unitaires et normales

Définition 1.7.1 Soit A € R™" on appelle transposé de A noté AT ¢
R™ " la matrice définie par :

(az;) = Gy 7V’L,j

Définition 1.7.2 Soit A € C" ", on appelle A* adjointe de A,la matrice
définie par :
(]J;}- = dji,Vi,j.
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Définition 1.7.3 Une matrice A € R™*"™ est

o symétrique si A = AT

o Anti-symétriquesi A = —AT.

e normale réelle si : AAT = AT A.

e orthogonale si AAT = ATA =1 c’est a dire A~' = AT.
Une matrice A € C"*" est :

e hermitienne si A = A*.

e Anti-hermitienne si A = —A*.

o unitaire AA* = A*A =1, c'est a dire A=t = A*.

e normale si AA* = A*A.

On a les regles suivantes sur les opérations matricielles :

— (AT = A
- (A£B)T =AT+ BT
— (ZNA)T = AT
(AB)T BT AT,
- (A7 ) = (A1)
De mém
"y =
- (At ) A* + B*
— (AA)* = N AT
- (AB ) = B*A*.
- (AT = (AL

Exercice 1.7.1 Montrer que (AB)* = B*A*.

1.8 Déterminant et trace

Définition 1.8.1 On appelle déterminant d’une matrice carrée d’ordre n, le
nombre noté det A qui vaut :

det A = Z alg 1)(120( )RR ang(n).
ocES,
S, est l'ensemble des n permutations de {1,2,...,n}. Pourc fizée, |o| désigne

la signature de o .
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Lemme 1.8.1 Pour les matrices carrées d’ordre n, on a :

(detI =1
det(AT) = det A
det(AT) = det A
det A* = det A
det(aA) = a™det A ot € K
det(AB) = det Adet B

det(A™) = o si A7 euiste .

\

Lemme 1.8.2 Pour une matrice carrée A, A~ existe si et seulement si det A #
0. A est alors une matrice réguliere. Sinon, elle est dite singuliére. Le systéme

linéaire Ax = b a une solution unique pour tout b € K" si det A # 0 alors
x = A"1b.

Lemme 1.8.3 Les matrices semblables ont méme déterminant.
Démonstration.
det(S7'AS) = det S~ det Adet S = det A,

Définition 1.8.2 La trace est une application Tr: K"*" — K définie par :
A= (ay) > Tr(A) = ay
i=1

ot les a;; sont les éléments diagonaux de A.

Lemme 1.8.4
Tr(I)=n
Tr(A+ B) = Tr(A) + Tr(B)
Tr(\A) = \Tr(A)
Tr(AB) = Tr(BA)
Tr(S~'AS) = Tr(A).

1.9 Quelques matrices particulieres

1.9.1 Matrices diagonales

Définition 1.9.1 Une matrice carrée A = (a;;) est dite une matrice diago-
nale si a;; = 0 pour i # j.
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Lemme 1.9.1 Le déterminant d’une matrice diagonale est :

det A = Haii
i=1
Alors det A #0 < a; #0, Vi, 1 <i<n.

1.9.2 Matrices triangulaires

Définition 1.9.2 Une matrice carrée A = (a;j) est dite une matrice trian-
gqulaire :

inférieure si : a;; =0 pouri < j

supérieure si : a;; =0 pouri > j.

Lemme 1.9.2 Le déterminant d’une matrice triangulaire est :

det A = Ha“
i=1
Alors det A #0 < a; #0, Vi, 1 <i<n.

Lemme 1.9.3 Soient A et B deux matrices carrées d’ordre n, triangulaires
inférieures (resp. supérieures). Alors

C=AB
est une matrice triangulaire inférieure (resp. supérieure) avec :
Cii = aiby pour 1 <1 < n.
Démonstration. Soit

n
Cij = g ik
k=1

Aet B étant deux matrices triangulaires inférieures, alors a;; = 0si ¢ < k et
bp; = 0si k < j cela implique que ¢;; = 0 si @ < j. Pour que a;;b; # 0,il
faut que a;, # Oet by; # 0, donc on doit avoir ¢ > k et k& > jce qui entraine
¢ > 7. Pour 7 = j, le seul terme non nul de la somme est celui pour lequel
k =1 = j,alors ¢;; = a;;b;;.
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Lemme 1.9.4 Soit A une matrice carrée d’ordre n, triangulaire inférieure
et réguliere, et bun vecteur de dimension n,tel que b; = 0pour 1 < ket
b, # 0. La solution x du systéme Ax = b est telle que :

x; =0 pour v < k
xk:a% pour v = k.

Démonstration. On a :

7
szb@Zaijmj:bi,lgign,

j=1

il implique

i—1 i—1
1 .
ATy + Zaz‘j%‘ =bi =z = o (bi - Zaij%) ;1<i<n
j=1

(23 ]:1
Si b; =0 pour ¢ < k et b, # 0, alors la solution x est telle que :
by

x1:x2:-~~:xk_1:06txk:a—.
kk

g

Lemme 1.9.5 Soit A une matrice carrée triangulaire inférieure et régquliére
(resp. supérieure). Alors A™' est également triangulaire inférieure réguliére

(resp. supérieure) et
1
—1 o

a’L’L

i
Démonstration. A~ est I'inverse de A < AA~™! = [. 11 vient que :

AA =T e Axb =eF 1 <k <n,
ot ¥ est le k™ colonne de la matrice A=, Alors pour déterminer A~ 'revient
donc a resoudre n systémes linéaires pour b = e* |1 < k < n,ou e*désigne le
vecteur colonne d’ordre & de la base canonique de K" et puis en appliquant le

Lemme 8 & chaque systéme pour déterminer z*. Apres le calcul, il vient que
pour la solution z! du systeme Ax! = e!,n’a aucun composante nulle i.e.,

z; # (O pour tout 7 avec x] = i, mais pour le systéeme Az? = €2, la solution
2?2 admet 22 = 0, 22 = L et 22 # 0 pour tout i = 3,...,n, et ainsi de suite
a22 L

pour le reste des systémes. Ceci montre que A~'est une matrice triangulaire
inférieure avec a;;' = - O

Qi
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1.10 Matrices tridiagonales

Définition 1.10.1 Une matrice carrée A est dite tridiagonale si A est de la
forme :

ajpr a9 0 e 0
21 Q99 Q23 ... 0
A= 0

Qp—1n—1 OGp—1n
0 B O N Ann

i.e.,

1.11 Matrices blocs

Définition 1.11.1 Soit A € K**". L’écriture suivante :

An A o Aug
A21 A22 “ e Azk
A= . , .
Akl AkQ .« . Akk
ou A;; € K"Msont des sous-matrices de A, avec Y 5 nj = 3 n; =

n, s’appelle la décomposition par blocs de la matrice A. On exsige que les
éléments diagonaux de A sont des matrices carrées.

Exemple 4 Soit A € R telle que :

1 2 0 1

1 3 4 5
A= -1 2 3 =5

10 12 57 1

Cette matrice peut se décomposer par exemple comme suit :

A Ap
A=
( Ay Agy )
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12 0 1
All = (1 3)7A12:(4 5)
12 3 -5
An = (10 12) etA”:(E)? 1 )

ou bien comme :

avec

2 0
All == 1 3 4 ,Algz 5

-1 2 3 -5
Ay = (10 12 57 ) et Ay =(1).

Définition 1.11.2 On dit qu’une matrice est triangulaire inférieure par blocs
si et seulement si A peut s’écrire comme :

Ay A oo Ay
Ao 0 422 : f42k
0 0 oo Awg

ot les sous-matrices A;; sont nulles pour i > j.

Lemme 1.11.1 Le déterminant d’une matrice carrée triangulaire par blocs
est égal au produit des déterminants des matrices diagonales A;; i.e.,

k

i=1

Alors A est inversible < det A # 0 < det A;; # 0 Vi.

1.12 Produits scalaires

Définition 1.12.1 Soient x et y deuz vecteurs dans C", on définit leur pro-
duit scalaire hermitien par :

(z,y) =y'z = Zl‘z Yi-
=1
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Tandis que dans R™, ce produit scalaire est défini par :

(@, y) =y"z=a"y=> iy
=1

Dans ce cas, on lappelle le produit scalaire euclidien.

x,y), ou A est le conjugué de A.

{
- (Az,y) = Mz, y), VA e C.
é {

~ Az, x) = 3" |a? > 0 pour x # 0.
Dans R™, toutes les propriétés restent valables sauf dans ces deux cas :

- <y7 )\ZL‘> = )\<?L’,y>
- <$7y> = <y,x)
1.13 Somme directe

Définition 1.13.1 Soient G et F deux sous-espaces vectoriels de K". On ap-
pelle somme directe de G et F et on note K" = G @ F : st pour tout vecteur
x € K" se décompose d’une maniére unique en un vecteur xide G et un
vecteur xo de F tels que x = 11 + .

Lemme 1.13.1
K'=@gaF «K'=G+FetGnNF={0}.
Définition 1.13.2 Deux vecteurs x ety de K™ sont dits orthogonauz lorsque :
(x,y) =0.

Définition 1.13.3 Deux sous-espaces vectoriels G et F de K™ sont dits or-
thogonauz si :

Ve e G, Vy e F (x,y) =0.
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Définition 1.13.4 Soit F un sous-espace vectoriel de K", le sous-espace or-
thogonal de F est défini par :

Fr={zcK"|(z,y) =0,Vy € F}.
Proposition 1.13.1 Pour tout sous-espace vectoriel F de K". On a :

1) Ftest un sous-espace vectoriel de K".

2)K"=F @ F-.
3)dim Ft =n — dim F.
4)(FH)-=F.

Définition 1.13.5 Soit B = {z;},_, une base de K". B est dite une base
orthogonale de K"si :

<.’L'Z',.CE]'> =0 s l?é] .
De plus, B est dite une base orthonormale si :

1 sii=
<x“xﬂ'>_5”_{o si i # .

ot 0,5 est le delta kronecker.

Remarque 1.13.1 SiB = {x;};_, est une base de K. Alors on peut construire
une base orthonormale de B, en utilisant la procédure de Gram — Schmidt.

Proposition 1.13.2 Soit A € K™*".
Ve e K", Vy € K" ona: (Ax,y) = (z, A™y).

Démonstration. On admet que : (AB)T = BTATet AB = A B, alors :

(x, A%y) = (A*y)'z = (/_lT y)Ta: = ng Az = y* Az = (Az,y).

Théoréme 1.13.1 Soit A €¢ K™"™. On a :

(ImA)" = KerA* et ImA* = (KerA) "
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Démonstration.

(ImA)" = {yeK"|(y, Az) =0, Vz € K"}
{y e K" | (A*y,x) =0, Vo € K"}
{y e K" | A"y =0}

= KerA*.

Pour montrer la deuxieme égalité, appliquons la premiere relation a A** :
1

Ker A = (ImA™)

donc
(KerA)™ = ImA*,

1.14 Matrices de permutation

Définition 1.14.1 Une permutation o est une application bijective de [’en-
semble {1,2,... ,n} dans lui méme. L’application de o a {1,2,...,n} revient
donc a réordonner lesn nombres. On associe a o ’application linéaire f telle
que :

f(ei) = esy pouri=1,...,n

ou{e;} est la base canonique de K". La matrice P qui représente f dans cette
base est appelée la matrice de permutation.

Exemple 5 Soit n =4, et définissons o par :
1 2 3 4
o(i) 3 2 4 1

alors f(e;) est définie comme suit :

ei\f(e) | fler) | fler) | f(ex) | f(er)
el 0 0 1 0
€9 0 1 0 0
es3 1 0 0 0
ey 0 0 1 0
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et donc la matrice de permutation est donnée par :

P, =

o= OO
oo = O
_ o O =
o O O O

Exercice 1.14.1 Soit P, une matrice de permutation. Montrer que P,est
une matrice orthogonale, i.e., P;1 = PT.

Remarque 1.14.1 Lorsque on effectue une permutation o de [’ordre des
vecteurs de base d’une matrice carrée A, ce qu’on peut considérer comme un
changement de base, on obtient une matrice B semblable a A 1i.e.,

B =P 'AP, = PTAP,.

1.15 Matrices irréductibles

1.15.1 Graphe associé a une matrice et inversement

Soit A une matrice carrée, A = (a;;) d’ordre n. A chaque colonne de la
matrice on fait correspondre un sommet S;, i =1,2,...,n.
Un arc relie S; a S; si a;; # 0.
Un graphe est formé de I'ensemble de sommets et de arcs.

Exemple 6 Soit la matrice A € R¥*donnée par :

o O O
Ot — DN W
o O = O
S W o

Son graphe associé est :

OSI — OSQ

.S3 — .S4
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A chaque sommet, on peut associer ’ensemble de voisins :
V(S:) ={S;,j #1i, S;S; est un arc}.
Un chemin allant de S; a S; est une suite d’arcs, si elle existe, tel que :

(Si7 Sil)v (Sﬂ’ Sia), -+ (8 SJ')’

ip?
soient des arcs du graphe.

Un graphe est dit fortement connexe s’il existe au moins un chemin allant
de tout sommet S; a tout sommet S;. Ainsi le graphe précédent est fortement
connexe. Par contre la matrice suivante :

A=

O = W
S O N
— O Ot

son graphe associé est :

S, — S,

.Sg

Le garphe n’est pas fortement connexe car il n’ya pas de chemin allant de

Ssa S;.

1.16 Matrices réductibles

Définition 1.16.1 Une matrice carrée A d’ordre n est réductible si et seule-
ment St :
1- 1l existe une matrice de permutation P, telle que :

An A
T _ 11 12
pran, - (fr )

ot Ai1 et Aag sont deux matrices carrées d’ordre k et n — k, respectivement.
ot encore, il existe une partition de ’ensemble {1,2,...,n} en deux partitions
d’indices Let J telle que a;; = Opouri €I et j € J.

2- soit encore, il existe o une permutation : {1,2,... n}— {I,J}.



1.16. MATRICES REDUCTIBLES 23

Remarque 1.16.1 La résolution du systéeme lin€aire Ax = b est équivalent

a:
A22$2 = by
A11$ =b — A12$2

avec x = (1,T3), T3 € RP et x9 € R"P de méme b = (by, by). Autrement dit
la résolution de ce systeme linéaire de taille n est réduite a la résolution de
deuz systemes de tailles petites.

Remarque 1.16.2 On a :

(PTAP,);; = (PTAP,eje;)
= <AP06]‘, P061‘>
= (Aes(j)s €a(i)) = Ua(i) oh)-

Exemple 7 Soit la matrice

1
A=1 0
6

~ =~ N
co O W

Comme as; = asg = 0,0n obtient une partition de [’ensemble des indices
{1,2,3} en I ={2} et J = {1,3}, de sorte que :

a;; =0 pouricletjeld.
Donc

(PYAP,)31 = ao(3) o(1) =0,
(PEAPU)?)? = GQg(3)a(2) = 0, pour 0(3) € I7 0(1)7 0-(3) cJ.

Ainsi pour le cas ,0(1) =1 et 0(2) = 3, on constate que :

PIAP, =

O = O OO =
O W oo = OO
- g O = O
S O =
NN
co O W
o O =
_ o O
O = O
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De méme pour le cas o(1) =3eto(2) =1, on a:

001 12 3 010
PTAP, = 100 04 0 00 1
010 6 7 8 100

6 8 7

= [132

00 4

Théoréme 1.16.1 Une matrice carrrée d’ordre n est irréductible si et seule-
ment si son graphe est fortement connexe.

1.17 Matrices hermitiennes et définies posi-
tives

Lemme 1.17.1 Soit A € C"*™ une matrice carrée hermitienne. Alors
(Az,x) € R.

Démonstration :

(Az,x) = (x, A*x) = (x, Ax) = (Ax,z) = (Azx,x) € R.

Définition 1.17.1 Une matrice hermitienne A € C"*", est dite :
e semi-définie positive (SDP) si :

Ve e C": (Azx,x) >0,
o définie positive (DP) si :
Ve e C" — {0} : (Az,x) > 0.
e semi-définie negative (SDN) si :
Ve e C": (Ax,z) <0,
o définic négative (DN) si :
Ve e C" — {0} : (Az,x) < 0.
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Proposition 1.17.1 Si A est une matrice hermitienne définie positive alors
les sous matrices principales Ay d’odre k = 1,2,..., n — 1, sont des ma-
trices hermitiennes et définies positives. De plus les éléments diagonauz de
la matrice A sont strictement positifs i.e. a; > 0 pour tout i.

Démonstration. Soit Ay la sous matrice principale d’ordre k. Considérons
le vecteur suivant :

r = (21,29,...,74,0,...,0)7,

posons

y = (z1, 2, ... ,xk)T.

Alors

ce qui démontre que A, est une matrice hermitienne définie positive pour

1 <k <n — 1. Soit maintenant e; le i®™ vecteur de la base canonique :
(Aeje;) =a; >0, 1=1,2,..., n.

0

Exercice 1.17.1 Soit A € C"™". Montrer que la matrice A*A est hermi-
tienne semi-définie positive. De plus si A est réguliere, alors A*A est hermi-
tienne définie positive.

1.18 Matrices de projection

Définition 1.18.1 On appelle un projecteur ou bien une matrice de projec-
tion, une matrice carrée telle que :

P? =P
Lemme 1.18.1 Si P est un projecteur alors :

K" = KerP @ ImP.
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Démonstration. Soit x € K"tel que : © = — Px + Pz .On a : Px € ImP,
et x — Px €Ker Pcar :

P(x — Pz) = Pr — P’z = Pt — Pr =0

Ceci montre que :
K" = KerP + ImP.

Soit maintenant y €KerP N ImP alors Py = 0 et y = Pz pour z €
K™. Comme P est une matrice de projection, on a :

Il vient que :
K" = KerP © ImP.

1.19 Valeurs propres et vecteurs propres

Définition 1.19.1 Soit A une matrice carrée d’ordre n. On appelle valeur
propre de A un nombre X\ € C pour lequel il existe un vecteur x # 0 de
C"™ appelé vecteur propre tel que :

Az = d\x.

1.19.1 Spectre d’une matrice

Le spectre de la matrice A, noté Sp(A) est ’ensemble des valeurs propres
de Ai.e.,
Sp(4) = A1 (A). Aa(A), - Au(A)}.

1.19.2 Rayon spectrale

Le rayon spectrale de la matrice A est défini par :

p(A) = max ()]  \(A) € Sp(A)}.
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Lemme 1.19.1 1)
Tr(A)=> XA et detA=]]N.
; =1

2) A est inversible si et seulement si 0 ¢ Sp(A).

Exercice 1.19.1 Montrer que les vecteurs propres associés a des valeurs
propres distinctes sont linéairement indépendants.

Définition 1.19.2 On appelle polynome caractéristique de la matrice A, le
polynome de degré n :
Pa(N) = det(A — AI).

Les racines du Pa(\) sont les valeurs propres de A. Comme ce polynome ad-
met n racines distinctes ou non, la matrice a n valeurs propres distinctes ou
non. Si A est un zéro de Py de multiplicité k,on dit que la valeur propre \ est
de multiplicité algébrique k.

Lemme 1.19.2 Les matrices semblables ont méme polynome caractéristique.

Démonstration. Soit B = S~ AS une matrice semblable a A. Alors on a :

Pp(A) = det(B— M) =det(STAS — \I)
= det(ST'AS — \S7'S9)
= det(S™HA—-X)S

= det(A — \I) = Py()).

Proposition 1.19.1 Si Ax = \x, alors :

(A—plhz = (A—p)x /ue C (décalage).

Afr = Nex
1
Ay = XI si A™Y existe .

Démonstration.
2- Comme A%z = A(Ax) = A(A\x) = AMAz = A\?z, on déduit par récurrence
que AFx = Nz,
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3- De Ax = Mz,si A~! existe, A # 0,on obtient en multipliant & gauche
par A7

1
AMAr =A"" D) = M e =lr & Alr = 3

Théoréme 1.19.1 Soient A et B € C*™™. Alors :
Sp(AB) = Sp(BA).

Démonstration. 11 suffit de prouver que Sp(AB) C Sp(BA) et par symétrie
on a l'autre inclusion. Soit A €Sp(AB), alors il existe un vecteur propre
x # 0 tel que ABx = \x :

1- Si Bx # 0,alors BA(Bz) = ABx (on applique B de deux cotés) d’ou
Bxest un vecteur propre associé a la valeur propre A,ce qui montre que

A €Sp(BA).

2- Si Bx = 0,alors on a nécessairement que A\ = 0,cela implique que
0 €Sp(AB) et que det AB = 0.Comme det AB = det BA = 0. Cela im-
plique que 0 €Sp(BA). O

1.20 Reéduction des matrices

1.20.1 Diagonalisation

Définition 1.20.1 Soit A € K"*". On dit que la matrice A est diagonali-
sable si et seulement si elle existe une matrice de passage S telle que :

ST'AS=D < A=S5DS™!

ou D =diag(\i(A)) est une matrice diagonale avec \;(A) €Sp(A) avec les colonnes
de S sont les vecteurs propres de A associés a A\;(A). Autrement dit, A est
diagonalisbale

Théoreme 1.20.1 Une matrice A est diagonalisable si et seulement si elle
admet une base construite de n vecteurs propres.

Corollaire 1.20.1 Si A admet n valeurs propres distinctes, alors elle est
diagonalisable.
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Théoreme 1.20.2 Une condition nécessaire et suffisante pour que deux ma-
trices A et B,carrées, de méme ordre soient diagonalisables, commutent, et
qu’elles aient les mémes vecteurs propres.

Exercice 1.20.1 Montrer que la matrice appelée bloc de Jordan d’ordre k >
1, admet X\ comme valeur propre de multiplicité k,

0

Iy = 0 A
S
0 0 A

n’est pas diagonalisable.
Indication : montrer qu’on ne peut pas construire la matrice de passage de
vecteurs propres S i.e. Jyn’admet pas n vecteurs propres associés a A.

Définition 1.20.2 On appelle une matrice de Jordan une matrice diagonale
par blocs ou chaque bloc diagonal est un bloc de Jordan de valeur propre \; et
d’ordre k;.

Jl()\l) o 0
Sl iJQ(AQ) 0
0 0 TN

les valeurs propres A; ne sont pas nécessairement distinctes.

Théoréme 1.20.3 Toute matrice est semblable a une matrice de Jordan.

1.20.2 Décomposition de Schur (trigonalisation)

Théoréme 1.20.4 (Lemme de Schur) Toute matrice carrée A € C*™*"
se décompose en :

A=UTU"

ou U une matrice unitaire (U~! = U*) et T une matrice triangulaire supérieure

avec t; = N\i(A) €Sp(A).

Conséquence sur les matrices normales
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Théoréeme 1.20.5 Une matrice A est normale (AA* = A*A) si et seulement
st 1l existe une matrice unitaire U telle que :

A=UDU*

ou D =diag(\;(A)) avec N\;(A) €Sp(A). C’est a dire que toute matrice nor-
male est diagonalisable.

Corollaire 1.20.2 Une matrice hermitienne est diagonalisable. Son Sp(A) C
Ri.e. \; € Ret les vecteurs propres associés a des différentes valeurs propres
sont orthogonau..

Démonstration. A est une matrice hermitienne donc elle est normale car
AA = AA* = AA. D’apres le Théoreme de Schur, Aest diagonalisable et il
existe une matrice unitaire U telle que :

A = UDU".
|3
A* = UD'U",

ou D =diag(A;(A)) avec \;(A) €Sp(A).

Comme A = A*ona: D = D* donc \; = \; pour i = 1,...,n =Sp(A) C

R. Soient maintenant A; et A; deux valeurs propres distinctes de A i.e. i #

J etsoient x;, x; deux vecteurs propres associés a la valeur propre \;, respectivement
Aj. Comme A est une matrice hermitienne et \; € R, on a :

ANilws, m5) = (Niwg, v5) = (Awg, 25) = (25, Awy) = (25, \jwj) = Nj(w3, x5).

Donc
(Ai = ) (i, 25) = Oet A # A = (3, ;) = 0.

Alors z;, z; sont orthogonaux.

Corollaire 1.20.3 Une matrice symétrique réelle est diagonalisable. Ses va-
leurs propres sont réelles et les vecteurs propres sont orthogonauz.

Preuve 1 Le matrices réelles symétriques sont hermitiennes.

Corollaire 1.20.4 Une matrice unitaire est diagonalisable. Ses valeurs propres
ont pour module égal 1. Les vecteurs propres sont orthogonaux.
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Corollaire 1.20.5 Une matrice anti-hermitienne est diagonalisable. Ses va-
leurs propres sont imaginaires pures et les vecteurs propres sont orthogonauz.

Proposition 1.20.1 Soit A une matrice hermitienne et définie positive. Alors
il existe unique matrice hermitienne et définie positive, notée A2 telle que :

(AY2)? = A.

La matrice AY? s’appelle la racine carrée de A.
Démonstration. A étant hermitienne et définie positive :

A =UDU"ou D = diag(\;), avec \; > 0.
Définissons D'/2 =diag();’?) donc (DY2)? = D. Alors

A2 — DYt

est une matrice hermitienne définie positive. De plus

(AY?)?2 = UDY?U*UDY*U* = UDU* = A.

Théoreme 1.20.6 Une matrice hermitienne est définie positive si et
seulement st :

1- toutes ses valeurs propres sont strictement positives i.e. Sp(A) C
10, 400 .2- toutes ses matrices principales ont des déterminants prin-
cipaux strictement positifs.

Remarque 1.20.1 Le résultat reste vrai pour une matrice symétrique réelle.

Démonstration. Pour (1), soit (A, x) un élément propre de la matrice A hermitienne
et définie positive, on a :
(Az,2)

(Az,x) = (\x,z) = Mz, z) = X\ = .7) >0, (z#0)

Réciproquement, si A est hermitienne, alors elle est normale et donc diago-
nalisable et on a : A = UDU*avec D =diag(\;).

(Az,z) = (UDU"z,z)
= (DU*z,Ux)
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posons y = U*x qui est non nul car x est non nul.

(Az,z) = (Dy,y)
= > Nilwil
=1

Si A\; > 0,alors (Az,z) > 0.
Pour (2), admis.

1.21 Localisation des valeurs propres

Le Théoreme de Ghershgorin — Hadamard que nous allons démontrer
peremette de localiser les valeurs propres d’une matrice et de trouver une
majoration de rayon spectrale de cette matrice.

Théoréme 1.21.1 Soit A = (a;;) € C™". Alors :

Sp(A) c | D
i=1
ou
Vi = 1,27...,77,3132' :Bf (aii, Z |aij|> = {Z eC: ]z—a“| S Z |a7;j’},
J=1,j#i J=1, j#i

se sont les disques de Ghershgorin.

Démonstration. Soit A €Sp(A), alors il existe un vecteur propre x € C"— {0} tel
que Ax = Az. Comme les coordonnées de = sont non nulles, il existe un iy €
{1,2,...,n} tel que |z;,| = max; |z;,| et on remarque que |z;,| > 0. Considérons
maintenant le i§™¢ ligne de Az = Az, il vient :

n n
D aigri = Mg = D> igwy = i (A — i)
=1 j=1, j#io
n

E : Qioj T

n

< ) aiga]

= |Iio| |)‘ - ai0i0| =

j=1, j#io J=1, j#io
. |5 -
= A = @] < Z az‘gjﬁ < Z |igj] -
j=1, jio 0 J=1, j#io
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Car Vie {1,2,...,n}, |x;] <|zip|. On a donc :
AeD,c| D

=1

Exemple 8 Soit la matrice compleze suivante :

14+ 4 2
A= -3 2+:¢ 1
1 l 6

Le spectre da A est localisé dans les 3 disques de Ghershgorin suivants :

3
D, = Bf(1+i,3):{z€C’:|z—a11|§ > |a1jy:|¢|+\2|:3}

j=1,j#1

3
D, = Bf(2+z,4):{zec;yz—a22\g > \any:|—3|+y1\:4}

j=1,j7#2
3
Dg = Bf<6, 2):{2602|Z—a33|§ Z |CL3J|:’Z|+|1|:2}
J=1,j#3

Dessinons dans le plan complexe ces 3 disques.

Remarque 1.21.1 Comme det A = det AT, on montre facilement que
det(AT — AI) = det(A — XI)T = det(A — M) i.e., Sp(A) = Sp(A”).

En appliquant aussi le Théoréme de Ghershgorin sur AT, on obtient une
nouvelle région ot sont localisées les valeurs propres de A. On a donc les 3
nouveaux disques de Ghershgorin :

Dy = Bs(1+1i,4), Dy=Bs(2+1i,4) et Dy = By(6, 2).

Remarque 1.21.2 La relation

n

n
A=l < D lagl = A <D gl
j=1

j=15#
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donc

p(A) Smax ) ay).
j=1
Alors pour l'exemple précédent, on a :

p(A) < max(5,7,8) = 8.

1.22 Matrices a diagonale dominante

Définition 1.22.1 Soit A = (a;;) € K™". A est dite:
e o diagonale dominante si :

n

Vie{l,2,...,n}: |ay| > Z |a] -

j=1,j#i
e 4 diagonale strictement dominante si :

n

Vie{1,2,...,n}: aal > D layl.

=1
e o diagonale fortement dominante si : A est a diagonale dominante et
il existe ig € {1,2,...,n} tel que :

n

|@igio| > Z | @i -

J=Lj#io

Proposition 1.22.1 Si A est a diagonale strictement dominante, alors A est
réquliere.

Démonstration. 11 suffit de démontrer que 0 ¢Sp(A). En effet, 0 n’appartient
pas a aucun disque de Ghershgorin car :

n

10— ais| = lasal > > a] -

=1
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Proposition 1.22.2 Si A est a diagonal fortement dominante et irréductible,
alors A est réguliere.

Démonstration. On 'admet sans démonstration et on présente I’exemple sui-
vant : U

Exemple 9 Soit

2 =10 O

-1 2 -10
A= 0o -1 2 -1

0o 0 -1 2

A est inversible car elle a diagonal fortement conneze et irréductible. En

effet,

e A est a diagonale fortement dominante puisque :

4
Vie{1,2,3,4} : faa| = ) ayl,

J=Lj#i

de plus il existe un ig = 1 (ou bien ig = 4) tel que |a;;,| =2 > 1.
o A est irréductible car son graphe est fortement connexe. Alors A est
réquliere.

1.23 Décomposition en valeurs singuliéres (SVD)

Pour une matrice rectangulaire, la notion de valeurs propres n’a pas de
signification. Néaumoins, on peut introduire un autre concept qui est celui
de valeurs singulieres.

Définition 1.23.1 Soit A € K™*". On appelle valeurs singulieres p de
A, les racines carrées positives ou nulles des valeurs propres de la matrice
A*A d’ordre n.

Théoréme 1.23.1 Si A € K"™*" avec rg(A) = r < min(m,n). Il ezxiste deuz
matrices carrées unitaires d’ordre m et n telles que :

A=VXEU*
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ou X est une matrice triangulaire de format (m,n),

m 0 0 0
0 . 0 0
_ (0 0 w0
=10 0 0 o0
00 0 0

On peut inversement exprimer 3 en fonction de A par la relation suivante :
¥ =V"AU.

Remarque 1.23.1 La relation :
A=VXU"

s’appelle la décomposition en valeurs singulieres de la matrice A. Cette décomposition
est tougours possible mais n’est pas unique. Il est cependant facile de déterminer

de la matrice A, les matrices unitaires U et V. Il se trouve en effet qu’on

peut prendre pour la matrice U, la matrice des vecteurs propres singulieres

c’est a dire la matrice de passage de diagonalisation de la matrice hermi-

tienne A*A. Si on appelle uy, us, . .., u, ces vecteurs propres, alors on définit
rvecteurs propres vy, Ua, . .., Up,en posant

1 .
v; = —/lui pour 1 <1<,

(2

si r < m,on complete ensuite les v; obtenus afin de former une base ortho-
normée. Les v; constituent les colonnes de V.

Exemple 10 Soit A € R3*3 telle que :

3 11
A= ( -1 3 1 ) |
e Calculer rg(A).

e Calculer les valeurs singuliéres de A.

e Donner le SVD de A.
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Solution : on a :
rg(A) =r <min(m,n) =m = 2,

car les deux lignes de A sont linéairement indépendants.
e On calcule les valeurs propres de la matrice AT A, on a :

10 0 2
ATA=1 0 10 4
2 4 2

Le polyndme caractéristique de AT A est :
Pa(A) = =A% + 2207 — 120\ = —(\ — 12)(A — 10)\.

Alors
Sp(ATA) = {\; =12, Ay = 10et A3 = 0}.

Les valeurs singulieres non nulles de AT A sont les racines carrées positives,

donc :
Mn1 = \/ﬁet Mo = \/E

(47 0 )

La diagonalisation de la matrice AT A conduit aux vecteurs propres suivants :

La matrice

W)| cn o))
§|U‘o <)

1 1
v %
(A 76 , Ug = :/—5 et Uz =
1
7 0

e
ol ol ©

Il ne reste qu’a calculer les vecteurs propres v, et vy par v; = %Aui, 1=
1
1, 2. On trouve :

1,1 (3 11
T TR\ -1 31

Shsbs-
I
A/
ol
N——
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puis

=
[\]
21~
(@)
N
|OJ
—_
W =

Alors

et on vérifie que le produit VIU? redonne bien la matrice de départ A :

4 1 1
22 )lo vmo)| v g
V6 V30

|
N
w
L =
— =
~_

—1



Chapitre 2

Normes et suite des matrices

2.1 Normes vectorielles

Définition 2.1.1 Une application ||.| : C"— R, est dite une norme vecto-
rielle si elle vérifie les conditions suivantes :

1)||z]| >0, Vz e C" et |z|| =0« x=0. positivité
2) [ Ax|| = |A] ||=| VA e C" Vo e C™. homogénité
3) |l +y|l <zl + lyl| VYoeCVyeCm inégalité triangulaire.

Exemple 11 Les applications suivantes sur C" :

1)vVz € C" ”x||1 = 22;1 |
1/2

2)Vx € C" |zl = (0, |2il?) " = /(2. 2)
3V € C*  ||z||, = max; |z,

sont des normes vectorielles sur C".
Proposition 2.1.1 Inégalité de Cauchy — schwarz
Vo, y € C": [(z,y)| < |lzly [[yll, -

Théoréme 2.1.1 Dans C"( espace vectoriel de dimension finie sur le corps
C ), toutes les normes vectorielles sont équivalentes i.e.,

S0, € C tels que a2, < |all, < 8],

Exercice 2.1.1 Montrer que les 3 normes vectorielles ||z||,,i = 1,2, oo,
sont équivalentes.

39
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2.2 Normes matricielles

Définition 2.2.1 Une application ||.| : C"™*"— R, est dite une norme ma-
tricielle si elle vérifie les conditions suivantes :

a) VA £ 0, JA| >0 et||A] =04 A=0.
b) Vo € C [aAll = |af [[A]l.

c) VA, Be C™" |[A+B| <|A]+[B].
d)VA,Be Cv" [[AB| < |A] [B].

2.2.1 Normes subordonnées

Définition 2.2.2 Soit A € C"*"et étant donnée une norme vectorielle sur
C™.On appelle norme subordonnée a la norme vectorielle, le nombre

Az Ax
e s 1Al sl
otaecn ||| oFeeCr ||z
Proposition 2.2.1 Soit ||..|| une norme matricielle subordonnée sur C™*™.

Alors

1)
[Az < [|A]} [lz]}, V2 € C".

2) Pour toute matrice A, la norme ||A|| est aussi définie par :

[All = max Az

veCn, [lzl|=1

3) 1l existe un xy € C* — {0} ,tel que :

[z
4) Pour toute norme subordonnée,
1] = 1.

5) Toute norme subordonnée est une norme matricielle.

Démonstration. 1) Par définition :

A
1Al = max 220 oy an) < Ay o), Ve e
o£zeCn || z|
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2) Soit 2 € C" — {0} ,posons y = 7, alors ||y =1 et on a :
All= max ||Ay|.
Al = _max 1A

3) Comme l'application f définie sur C"dans R, par : f(z) = || Az| est
continue sur C" (car elle est le composé de deux fonctions continues i.e., x
Az — ||Az||) sur la sphere unité S; = {z € C": ||z|| = 1} qui est compacte
dans C"(bornée et fermée). Alors d’apres le Théoréeme de Weirstrass : toute
fonction continue sur un compact de C", atteint ses bornes alors il existe un
xo € C" — {0} tel que :

Az
[[zoll

4) Pour toute norme subordonnée, on a :

]| = max |[z|= max |z =1
2eCn, |[z]|=1 2eCn, |[z||=1

5) Il faut démontrer que la définition de ||A|| répond aux quatres propriétés
de la norme matricielle.

a)Si A =0, alors Az =0, Vo € C", donc

|A| = max - ||Az|| = 0.
zeCn, ||z||=1
Réciproquement, si
[Al = max |lAz|| =0,
zeCn, ||z||=1
alors
|Az|| = 0, Vz € C"
donc
A=0.
b)
(@A) = fladz] = [af | Az] = max [[(@4) o] = o] max | Az

(A + B)z| = [|Az + Bz < [|Az|| + || Bz],
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donc

max [[(A+ Ba| < max (4| + [|Ba) < max | A| + max | Br].

d) Soient A, B € C""™,on a :

IAB = meax [ ABz]

Or Vx € C",
[ABz|| < [|A[ || Bz < [[A[l |B]| l=|l < [[A[l |B]] -
On déduit que ||.|| est norme matricielle.

Proposition 2.2.2 Pour toute matrice A de C"*". On a :

D Al = m?XZ’@iﬂ
j=1

n
2) Al = max lay]
=1

3) [[All, = Vp(A*A) = pmax(A),
0l fimax(A) est la plus grande valeure singuliére de A.

Démonstration. Soit x € C" tel que ||z|| = 1. Alors :

n
E aija?j

Izl = max

< ggg;Zl%%\
< max Z|aw| max ||
1<i<n 1<5<n
< Sl
< max D fai [lofle
j=1
<

n
max > lail.
7=1
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Cela nous amene a l'inégalité suivante :

n
|4l = max | Az, = max > ay].

/oo 1<izn

Montrons maintenant que 'inégalité dans 'autre sens. Comme le maximum
est atteint, alors il existe un iy € {1,2,...n} tel que :

n
3 ol - ggagzmz]!
j=1

de méme il existe un z*° construit comme :

i ) 1 si oaj; > 0;
) = .
0 si a;; <0,

avec ||z”| = 1. On vérifie facilement que :

n n
E %0 E 0

aijxj aijxj
j=1 j=1

n

n
= ai;| = EQ%LZI |aij] -

j=1

HAZ’ || = max >

1<i<n

Cela implique
T || loo

n
[A]l max [|Az],, = ggfg;zl Jaijl
]:

d'oi
4]l = max Z|%|

Pour (2), la démonstration se fait de la méme maniere a celle de la norme

infinie et on constate que ||A| . = [|4¥; -
3) On a:
A1 = ma, 4ol = s (Av, Ar)
2™ 27
= max (A*Az, )
llzll,=1

Comme A*A est une matrice hermitienne semi définie positive alors il existe
une matrice diagonale D :=diag(\;(A*A)) et une matrice unitaire U telles
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que A*A = U*DU. De plus Sp(A*A) C R, i.e. les valeurs propres \; de
A* A sont réelles et positives. Par suite pour tout x # 0, avec ||z||, = 1,on a :

(A*Az,z) = (U DUz, x) = (DUzx,Ux) = (Dy,y) ouy = Uxz.

Alors
<Dy y Z)‘ |yz| < )‘max A*A Z|yz = max A* )”yHg
i=1

D’autre part :
lyll; = 1] = llell, = 1

il vient

[AZ]|3 < Amax(ATA) , Y # 0

En prenant la racine carrée on trouve

[AZ|l; <V Amax(A*A) = pimax(A), Yz #0

ce qui donne
1Al = max [AZ]|y < pmax(A).

[l =1

Considérons a présent le vecteur propre z%avec ||2°], = 1,de la matrice

A* A associé a la plus grande valeur propre en module
Amax (A" A) = [Amax(A"A)| = p(A"A),
ce qui implique

142 = V/o(AA) []2°[|, = pmax(A4) [[2° ||, = ptma ().

Il vient que :

X, [zl > [|A2°||, = fimax(A).

Ce qui donne

[A]ly = v/ p(A*A) = fimax(A).
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Corollaire 2.2.1 Soit A € C™*™,

a)
ANl = [[A™]l, -

b) Si A est hermitienne . Alors :
[A[ly = p(A) = p(A").

Démonstration. a) Comme Sp(A*A) =Sp(AA*) alors p(AA*) = p(A*A). Cela
implique [[AJl, = | 4°]l,
b) Comme A est hermitienne alors A = A*, et on a :

1A]l; = p(A™A) = p(A%) = p(A)?

11 vient [|A]l, = p(A). Comme [[All, = [A*]l, = p(4) = p(A%).

Exercice 2.2.1 Montrer que si A est normale alors ||All, = p(A).

2.2.2 Normes non subordonnées

Définition 2.2.3 On appelle norme de Schur (ou Frobénius) de A € C"*" le

nombre :
n o n 1/2
|Allp = <ZZ |az‘j|2> :

i=1 j=1
La norme de Frobenius ||A]|, est une norme matricielle non subordonnée.
. < 2
Comme C™*"est isomorphe a C™" car :

A Vec A= (ay,ay,...,a,)"

ou a; sont les colonnes de la matrice A arrangés de aq jusqu’a a,. Alors
| A||z n’est autre que la norme euclidienne ||Vec A||,. IL reste donc a démontrer
la 4¢™epropriété de norme matricielle. En effet, pour A, B € C™*" :

ABIE =333 a <zz(z|am||bm|)

=1 j=1 |k=1 =1 j=1
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Il vient de I'inégalité de C'auchy — Schwarz :

Bl = 33 oy (ZII) (iwkﬁ)

=1 j=1 i=1 j=1 k=1 k=1

2 (Z 'ai”g) > (Z 'b’“ﬂ"2> ~ A 151

=1 k=1 k=1 \k=1

n

Z @by

k=

IN

Remarquons que :

alors ||A|| n’est pas subordonnée.

Théoréme 2.2.1 Soit ||.|| une norme matricielle. Alors pour A € C"*", on
a:

p(A) < [IA]].

Démonstration. Soit A une valeur propre de la matrice A, alors il existe un
vecteur propre z # 0 tel que Az = Az.

[Az]| = A [l = [|Az]] < [lA]l ]

donc clairement, on a |[A| < [|A]. Ce qui implique p(A) < ||A]|.

Théoréme 2.2.2 Soit A € C""et ¢ > 0. Il existe au moins une norme
matricielle subordonnée telle que :

JAIl < p(A) +<.

Démonstration. D’apres le Théoréme de Schur, il existe une matrice unitaire
telle que U* AU soit triangulaire supérieure.

A otie tis ...t
Ao to1 ... ton

U*AU =
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avec {\;};_ sont les valeurs propres de A. A tout scalaire § # 0, on va consi-
derer la matrice :

1
§ 0
Ds = 0
0
5n—1
M Oty Oty oo 0"y,
Ao e 5"_2t2n
(UDs)*A(UD;s) = D5 'U* AU Ds = - :
0 )\n—l 5tn—1n
)\n

Soit € > 0,0n fixe § > 0 tel que :
d |0yl <e VI<i<n-— 1
j=it1

L’application

Il B € C”" = |[B|| = [[(UDs)" B(UD;)|

est une norme matricielle subordonnée par la norme vectorielle qui a tout
r e C"— ||(UDs) x|, . Alors

Al = || D5 U*AUDs|| . < p(A) +¢.

2.3 Suite de matrices

Soit Aune matrice carrée d’ordre n. On va etudier la convergence d’une
suite formée des puissances successives de A,i.e. limy, o A* oll

AP = Ax Ax...xA.

k fois

Rappelons que limy, ;oo A¥ = 0 si et seulement si limy, ;o0 afj =0, Vi, j ce qui
équivalent a lim ,, o ||AkH pour tout norme matricielle.
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Théoreme 2.3.1

lim A =0 & p(A) < 1.

k—00
Démonstration 1 Soit A € Sp(A) alors il existe un x # 0 vecteur propre de
A tel que

Ax = .
1l vient d’apres la Proposition b,
AFz = N,
Donc
lim AF =0 & [N = N'<1e (max ]A])* < 14 p(4) < 1.

Théoreme 2.3.2 Soit A € C"*™. Les propriétés suivantes sont équivalentes :

2)limy, oo A¥z =0, Vo eC"

3)p(A) <1
4)IA] <1 pour au moins une norme matricielle subordonnée.
Démonstration. (1) = (2).Soit ||.|| une norme vectorielle, et ||.|| la norme

matricielle subordonnée correspondante. Comme
|4 < [l A% ll=]

donc
lim Afx = 0.

k—00

(2)=-(3). Par l'absurde : on suppose que p(A) > 1.0n peut trouver un
r € C" x # 0tel que Ax = Az, || > 1. Comme

AFx = ey

alors il est impossible que limy,, ., A¥z = 0.

(3)=-(4). Appliquons le Théoreme 15, il existe auu moins une norme ma-
tricielle subordonnée telle que [|A|| < p(A) + &,il suffit donc prendre par
exemple £ = PPT(A) > 0, cela implique ||A]| < 1.

(4) = (1). On applique l'inégalité [|A*|| < |A||¥ pour une norme subor-
donnée.
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Théoréme 2.3.3 Soient A € C"*"et ||.|| une norme subordonnée. Alors :
1)
. L11/k o
I =0,

2) La série Yy -, AFconverge vers (I — A)™' < p(A) < 1.

Démonstration. (1) D’apres le Théoréme 14, on a p(A) < ||A|| . D’autre part,
p(A%) = (p(A))F, done

p(A) < || A", vk e N*.
On va montrer que :
Ve > 0, Ik tel que k > ko = ||AF]| 7" < p(A) + <.

Soit € > 0, on définit la matrice A, par :

B A
S op(A)+ €

On sait que p(A.) < 1. Donc d’apres le Théoreme 15, on a

lim A'g =0,
k=400
donc :
ko tel que k > ko = HA’“H — HA—k”
a S (p(A) +e)k T
l.e.

|45 * < p(A) +e.

2) (=) on sait que si la série Y - , A¥converge alors le terme général A — 0
si k — 400 donc p(A) < 1.
(<) p(A) <1 =1¢Sp(A) donc I — A est inversible.

S, = ZAk=1+A+A2+...+A”

k=0

AS, = A(ZA’“) — A+ A2 4 AL
k=0
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Calculons S,, — AS,,,on a :
(I —A)S,=1- A"

cela implique :
S, = (I —A)~*I - B"").

Donc :
1S — (7 — A)H| < [[(T = A ]| 4™ = 0 quand 1+ +o0
et par conséquent :

lim S, = (I —A)™"

n——+00



Chapitre 3

Conditionnement

Supposons qu’on veut résoudre le systeme
Az =1b

ol A est une matrice donnée inversible et b € C”. En réalité cette résolution
n’est jamais exacte, elle est entachée d’erreur qui peuvent provenir : les coef-
ficients des données A et b sont trouvés par des mesures (experimentales) ou
bien avec des calculs. La représentation des chiffres par 'ordinateur conduit
a des erreurs sur ces coefficients. Alors : On ne résout pas exactement le
systeme d’origine Az = bmais le systéeme approché (A + AA)y = b+ Ab.
Question : que peut-on dire sur y — x?

Exemple 12 (Wilson).

078 7 39
7 56 5 23
A=1% 6109 || 33
7 5 9 10 31
et
10 7 81 72 39,1
708 504 6 5 99.9
A+AA=1 ¢ 598 989 9 c bHAb={ a5 |
699 499 9  9.08 30.9

o1
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0 0 0.1 0.2 —0.1
0.08 0.04 0 0 0.1
AA= 0 —0.02 —-0.11 0 , Ab= —0.1
—0.01 —-0.01 0 —0.02 0.1
1
1
Ar = bex= E
1
9.2
(A+2d)y = boy=| 0
—11
et
—81
—137
Az = b+ Abe 2= _ay
22

On remarque, une toute petite modification sur les coefficients de A etb engendre
une grande modification sur la solution x. On se rend ainsi compte qu’une
imprécison dans le calcul numérique peut conduire a des résultats erronés.
On dit dans ce cas la matrice A est mal conditionnée.

Définition 3.0.1 Conditionnement d’une matrice. Si |||, est une norme
matricielle subordonnée, on appelle conditionnement d’une matrice inversible

A e C™ ™ le nombre :

Cond,(4) = |[A], A7,
ot P = 17 27 o0.

Proposition 3.0.1 71-Cond(A) > 1
2- Cond(A) = Cond(A™1)
3- Cond(aA) = Con(A), Ya € C.

4- Condy(A) = ﬁm‘;((‘j)) 0U [hmax(A) = Hmin(A) > 0 désignent respectivement la
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plus petite et la plus grande valeur singuliere de A.

5- Si A est une matrice hermitienne, Conds(A) = % ou; € Sp(A).

6- Si A est une matrice unitaire, Condy(A) = 1.

7- Condy(UA) = Condy(AU) = Condy(A) pouur toute matrice U unitaire. Cest

a dire que Condsy est invariant par une transformation unitaire.

3.1 Résultats principaux

Théoreme 3.1.1 Soit A une matrice carrée inversible. Soient x et x+Ax, les
solutions de Ax = b et A(x + Ax) = b+ Ab, respectivement. Alors

1)
[Az]]

]

Ab
< C’ond(A)%.

2) Cette inégalité est optimale : pour une matrice A donnée, on peut trouver
b# 0 et Ab+# 0 tel qu’elle deviennent égalité.

Démonstration. On a :

1) de
Alx + Ax) = b+ Ab= AAr = Ab= Az = A"'Ab,

que

1Az < [|ATH] (| Ad| (*)
et d’autre part Ax = b donc :

1]l < [IA[l o] (**)
On déduit de (*) et (**) que :
|Az] _ l1Asl

2) Soit maintenant A fixée, alors il existe Abtel que ||A~Ab|| = ||[A7!]| ||Ab]| . Comme
Az =ATAb = [|Az|| = ||A7H]| [|Ab]|.
D’autre part, il existe un x tel que
1]l = [LA[ ]| -

On a donc
[Ax] _ Ab||

o
.~ MAAT
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Théoreme 3.1.2 Soit A une matrice carrée inversible. Soient x et x+Ax, les
solutions de Az = b et (A+ AA)(xz + Ax) = b,respectivement. Alors
1)
A4

IA[l
2) Cette inégalité est optimale : pour une matrice A donnée, on peut trouver
b#0et AAF#O0 tel qu’elle deviennent égalité.

| Az
770 < Cond(A
o+ Azl = =" (4)

Démonstration. 1) On a :

(A+AA)(x+Azx) = b= Az

4
Az + AAzx + AA(x + Ax) = Ax
4
Ar = —AT'AA(x + Az) = ||Az| < HA’lH |AA] ||z + Azl
4
[Az]] ) 1AA]
—— < A |AT| -

2) (voir le livre de Ciarlet).



