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Série d’exercices N°1 d’Analysel

Exercice 1:
I. Soient A et B deux sous ensembles d’un ensemble E. Montrer que :

(AUB)® = (A)° U (B)°
et

(AN B) = (4)° N (B)"

I1. Etablir les égalités suivantes

A\B = (AN B)° = (AUB)\B
(AUB) = (A\B)UB = (B\A) U A

Exercice 2: Soient A et B deux parties non vides bornées de IR. Montrer que
si AN B # @, Alors AN B est bornée et de plus :

sup(inf A, inf B) < inf (AN B)
et

inf (AN B) <sup(ANB) <inf(sup A, sup B)

Exercice 3: Pour chacun des ensembles suivants donner si elles existent, la
borne inférieure et la borne supérieure le maximum ainsi que le minimum.

A :]073}’ B = [07 1]U}2? 3]

1 1
Cz{, 1§x§2}, D:{, 1<x<2},
x x

1 1
E:{—, 1§x§2}, F={2+, neN}
X n

Exercice4: Soit f : R — R une fonction définie par

22+ 242

f(x):x2+2x+3



Sans etudier les variation de f trouver le minimum de f sur R

Exercice5: a/ En utilisant 'inégalité triangulaire |a 4 b| < |a| 4 |b| ,montrer

que

V(z,y) € R ||z| — |y|| < |z —y|

b/ Determiner les ensembles :

1

I = ulfo, 1--]
neN* n

1 1

J o= nl--
neN* n n

Exercice6: Soit f une application de E — F.Soient A et B deux parties
respectivement de E et F.On définit 'image directe de A par :

f(A)={yeF/Ixec A, [f(z)=uy}

et 'image réciproque de B par:

[iB)={zeE /| fx)eB}
Soient A, Aq, Ay des parties de E, et B, Bi, By des parties de F.Montrer les
relations suivantes:

1/ A€ Ay = (A1) T f(As)
2/ flA1NAg) T f(A1) N f(A2)
3/ F(A1UAg) = f(A1) U f(A2)

4/ BiC By= f7Y(B1) T (B

5/ fHBiNBy) = fTH(B1)N fH(By)
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