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Exercice 1:
I. Soient A et B deux sous ensembles d’un ensemble E. Montrer que :

(AUB)c = (A)c ∪ (B)c

et

(A ∩B)c = (A)c ∩ (B)c

II. Etablir les égalités suivantes

A\B = (A ∩B)c = (AUB)\B

(AUB) = (A\B) ∪B = (B\A) ∪A

Exercice 2: Soient A et B deux parties non vides bornées de IR. Montrer que
si A ∩B 6= ∅, Alors A ∩B est bornée et de plus :

sup(inf A, inf B) ≤ inf (A ∩B)
et

inf (A ∩B) ≤ sup (A ∩B) ≤ inf(supA, supB)
Exercice 3: Pour chacun des ensembles suivants donner si elles existent, la
borne inférieure et la borne supérieure le maximum ainsi que le minimum.

A =]0, 3], B = [0, 1]∪]2, 3]

C =

{
1

x
, 1 ≤ x ≤ 2

}
, D =

{
1

x
, 1 < x < 2

}
,

E =

{
− 1
x
, 1 ≤ x ≤ 2

}
, F =

{
2 +

1

n
, n ∈ N

}
Exercice4: Soit f : R→ R une fonction définie par

f(x) =
x2 + 2x+ 2

x2 + 2x+ 3
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Sans etudier les variation de f trouver le minimum de f sur R

Exercice5: a/ En utilisant l’inégalité triangulaire |a+ b| ≤ |a|+ |b| ,montrer
que

∀(x, y) ∈ R2, ||x| − |y|| ≤ |x− y|

b/ Determiner les ensembles :

I = ∪
n∈N∗

[0, 1− 1
n
]

J = ∩
n∈N∗

]− 1
n
,

1

n
[

Exercice6: Soit f une application de E → F.Soient A et B deux parties
respectivement de E et F.On définit l’image directe de A par :

f(A) = {y ∈ F/ ∃x ∈ A, f(x) = y}

et l’image réciproque de B par:

f−1(B) = {x ∈ E / f(x) ∈ B }

Soient A, A1, A2 des parties de E, et B, B1, B2 des parties de F.Montrer les
relations suivantes:

1/ A1 @ A2 ⇒ f(A1) @ f(A2)

2/ f(A1 ∩A2) @ f(A1) ∩ f(A2)

3/ f(A1 ∪A2) = f(A1) ∪ f(A2)

4/ B1 @ B2 ⇒ f−1(B1) @ f−1(B2)

5/ f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2)
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