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Chapitre 1

Fonctions réelles d’une variable
réelle

1.1 Notions de bases sur les fonctions

Définition 1.1.1. Une fonction d’une variable réelle & valeurs réelles est une application
f: E — R, ou FE est une partie de R. En général, E est un intervalle ou une réunion
d’intervalles. Les éléments de E qui ont une image par f forment ’ensemble de définition de
f, noté Ds. (On appelle E le domaine de définition de la fonction f ).

Exemple 1. La fonction f : z — V22 — 1 est définie pour tout = € R tel que 22—1 > 0.
Donc = € |—o0,—1] U [1,400[ = Dy. L'image de 4 par f est /15, on dit que 4 est un
antécédent de v/15.

e On appelle graphe, ou courbe représentative, d’une fonction f définie sur un intervalle
Dy C R, I'ensemble
Gr={(z,f(2)) : =z €Dy}

e formé des points (z, f (x)) € R? du plan muni d’un repére orthonormé (0, i, j).

3

Exemple 2. Le ghraphe de la fonction f (z) = 2° — x sur l'intervalle [—3, 3].
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En fait, son domaine de définition est Dy = R. On remarque que la courbe C; est
symétrique par rapport a ’origine du repére orthonormé.

1.1.1 Parité et périodicité

Définition 1.1.2.  Soit I un intervalle de R symétrique par rapport & 0 (c’est-a-dire de la
forme [—a, a] ou |—a,a] ou R). Soit f : I — R une fonction définie sur cet intervalle. On dit
que :

o fest pairesiVe eI f(—z)=f(x),

e f est impairesi Ve eI f(—z)=—f(z).

Interprétation graphique :

e f est paire si et seulement si son graphe est symétrique par rapport a I’axe des ordonnées
(figure de gauche).

e f est impaire si et seulement si son graphe est symétrique par rapport a l'origine (figure
de droite).

\/ X x

Exemple 3.

e La fonction définie sur R par z — 22" (n € N) est paire.

e La fonction définie sur R x +— 22! (n € N) est impaire.

e La fonction cos : R — R est paire. La fonction sin :R — R est impaire.

Définition 1.1.3. Soit f:R — R une fonction et 7" un nombre réel, T' > 0. La fonction f
est dite périodique de période T'siVx € R f(z+T) = f (x).
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Interprétation graphique : f est périodique de période T si et seulement si son

—

graphe est invariant par la translation de vecteur T'¢, ol ¢ est le premier vecteur de coor-
données.

Exemple 4.

Les fonctions sinus et cosinus sont 27 périodiques. La fonction tangente est 7w périodique.

Définition 1.1.4. (Opérations sur les fonctions) Si f et g sont deux fonctions définies
sur le méme intervalle I C R, on a alors les résultats suivants :

1. Somme : la fonction somme f + g est définie pour tout réel = de l'intervalle I par :
(f+9)(@)=f(z)+g(z).
2. Produit : la fonction produit fg est définie pour tout réel = de I'intervalle I par :

(f9) (x) = f () g ().

3. la multiplication de f par un scalaire A € R est définie par \.f : I — R: (\.f) (z) =
A.f (z) pour tout z € I.

4. Quotient : lorsque la fonction g ne s’annule pas sur 'intervalle I, la fonction quotient

i est définie pour tout réel z de I par
g

Définition 1.1.5. (Restriction). Soit f une application définie sur un intervalle I de
R. Soit Iy un intervalle de R inclus dans I. On appelle restriction de f & Iy que 'on
note f |1,, la fonction définie sur I par :

pour tout = € Iy, f |1, (z) = f(z).

Définition 1.1.6. (Composition de fonctions) Soit f une fonction définie d’un
intervalle I de R & valeurs dans un intervalle J de R. Soit g une fonction définie de
Iintervalle J de R vers un intervalle K de R. La fonction composée des fonctions
f et g est la nouvelle fonction que l'on écrit g o f (et que l'on lit g rond f) définie
pour tout = dans l'intervalle I par : (go f)(z) = g(f (x)), et que 'on peut écrire de
la facon suivante :

gof = 1L %K
z = f(@)—g(f(2).
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1.1.2 Fonctions majorées, minorées, bornées
Définition 1.1.7. Soient f: I — Ret g: I — R deux fonctions. Alors :

e frgsiVael f@)>g(@)

o f>0 siVeel f(x)>0

f>0siVeel f(z)>0

f est dite constante sur I sida € R Vx €l f(x)=a

fest dite nulle sur I siVe € I f(z) =0.

Définition 1.1.8. Soit f : I — R une fonction. On dit que :

o fest majoréesur I sidM eRVxel f(x) <M
e fest minoréesur I sidm e RVx el f(z) >m

e f est bornée sur I si f est & la fois majorée et minorée sur I, c’est-a-dire si AM € R
Veel |f(x) <M.

1.1.3 Fonctions croissantes, décroissantes
Définition 1.1.9. Soit f: I — R une fonction. On dit que :
e f est croissante sur [ siVx,y € [ <y = f(x) < f(y)
e f est strictement croissante sur I siVe,y € I z <y= f(x) < [ (y)
e f est décroissante sur I siVe,y e I z<y= f(z)> f(y)

e f est strictement décroissante sur I siVz,y €l z<y= f(zx)> f(y)

e [ est monotone (resp. strictement monotone) sur [ si f est croissante ou décroissante
(resp. strictement croissante ou strictement décroissante) sur I.

1.1.4 Maximum local, Minimum local

Définition 1.1.10. Soit f : I — R une fonction, si f est majorée, on appelle borne
supérieure de f le nombre réel

sup f =sup{f(z) ;v €I}.
I

e On définit de méme la borne inférieure.

e On dit que f admet un maximum en a a € I si f(a) est le maximum de la partie f(I) =

{f(x);zel}.
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e On dit que f admet un maximum local en a € I §’il existe un intervalle ouvert U
contenant a tel que f(a) soit le maximum de f(I NU). On définit de méme la notion
de minimum et de minimum local.

e Un extremum (local) est un maximum (local) ou un minimum (local).

Exemple 5.

1. Soit f:]0,1[ — R définie par f (z) = x. Alors f est born¢e. On a supjg ;[ f = 1, mais
maxjg 1 f n’existe pas.

On a inf)y ;[ f = 0, mais minj ;[ f n’existe pas.

2. Une fonction peut admettre un maximum en plusieurs points. Ainsi f(x) = sinz admet

T
un maximum en les points = = 5 + 2k avec k € Z.

1.2 Quelques fonctions usuelles
1) Fonction constante

La fonction constante est la fonction définie sur I = R de la fagon suivante :

fR — R

T — a
ol a est un nombre réel.
2) Fonction identité

La fonction identité est la fonction définie sur I = R de la fagon suivante :

fR —- R

r = .

La fonction identité n’est rien d’autre qu’une fonction linéaire de la forme f(z) = mx
dont le coefficient directeur m vaut 1.

3) Fonction puissances entieres n € N

Commencons par rappeler la définition de la puissance entiére d’un nombre réel a.

Définition 1.2.11. (Puissance entiére) Soient a un réel non nul et n un entier naturel.
La puissance n-iéme de a est définie par :

a® = axaxax..xa (oua estmultiplié n fois)

Notons que sin = 0, a =1.
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e La fonction puissance entiére peut donc étre définie de la fagon suivante :

fR = R
z — x".

Remarque.
1. Si n» = 0 on retrouve la fonction constante définie plus haut.

. Si n =1 on retrouve la fonction identité Id définie plus haut.
. Si n est pair, la fonction f est paire.

. Si n est impaire, la fonction f est impaire.

[ N L N\

. Sin est un entier négatif, il faut bien faire attention au domaine de définition qui devient
Dy =R*.

4) Fonction polyndéme

fR — R

n
T a0+a1x+a2x2+...+anmnzg a; 7",
=0

ou les ag, ay, ..., a, sont des réels (qui peuvent étre nuls) appelés coefficients du polynome.

5) Fonction racine n-iéme, puissance rationnelle

On peut alors définir la fonction racine n-iéme de la fagon suivante :
- Si n est pair :

x — Uz,

- Si n est impair :

fR — R

Et d’'un autre coté la fonction puissance rationnelle (pour n’importe quels p € Z et
g€ N¥):

fR, — R

Remarque.
1. Noter que si p =1 et ¢ = 2 on obtient \/a et a > 0 qui est la racine carrée comme
nous la connaissons (mais définie seulement pour a > 0).

2. Noter que si p =1 et ¢ = 3 on obtient /a, et a > 0 qui est la racine cubique que
nous connaissons également (et qui peut étre définie sur R).
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6) Fonction logarithme népérien

La fonction logarithme népérien (notée in) est connue depuis la terminale. Cette fonction

1
peut étre construite de plusieurs fagon : c’est la primitive de la fonction inverse x — — (c’est
T

méme en fait I'intégrale entre 1 et = de la fonction inverse).
La fonction In est définie de la fagon suivante :

fR, — R

x +— In(z).
Propriété (Logarithme népérien)
1. Il existe un nombre e = 2, 71828 tel que In(e) = 1.

2. Soient a et b deux réels strictement positifs, alors

In (ab) =In(a)+1In(b) et In (%)zln(a)—ln(b).

Cette derniére égalité nous permet d’ailleurs de déduire (en posant a = b) que In(1) = 0.

3. Soient n un entier naturel non nul, et a un réel strictement positif, on a alors :

In(a") =nln(a) et In(a™")=-nln(a).

Définition 1.2.12. (Logarithme de base a) Soient a un réel strictement positif. Pour
tout réel x strictement positif, on définit son logarithme de base a noté log,(z) par

loge(z) =

7) Fonction exponentielle

Intimement liée & la fonction In (c’est sa fonction réciproque), la fonction exponentielle
est définie comme suit :

exp R — R}

xr — €.
Propriété (Exponentielle)

1. Pour tous réels a et b :
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2. Pour tout réel a et pour tout entier naturel n :

_ 1
(ed)n — ena’ (ea) n — eﬂ
3. Pour tout réel strictement positif a et pour tout réel b :
et =g, In(e?) =a et "% =4al

8) Fonctions circulaires (ou trigonométriques)

La trigonométrie est connue depuis le collége. Les formules avec sinus, cosinus et tangente,...
sont & connaitre par coeur, (voir le dernier chapitre (Fonctions élémentaires).

1.3 Limite d’une fonction

Limite finie d’une fonction en un point

Définition 1.3.13.  Soit f : I — R une fonction. Soit ¢y € R un point de I ou une
extrémité de I. Soit £ € R. On dit que f a pour limite £ en xq si

Ve>0 30>0 Ve el |z—xo|<d=|f(x)—{<e

On dit aussi que f(z) tend vers £ lorsque x tend vers zp. On note alors lim f (z) ou
Tr—X0

bien limf.
o

Exemple 5.

2

e lim 2% = 23 pour tout z¢ € R.

T—T0

e la fonction partie entiére £ n’a pas de limite aux points xg € Z.

Limites infinie d’une fonction en un point

Définition 1.3.14. (Limite +oo en un point) Soit f une fonction définie sur un ensemble
de la forme ]a, zo[ U |zo, b .
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e On dit que f a pour limite 400 en zq si
VA>0 36>0 Ve el |[x—zp|<d= f(x)> A

On note alors lim f (z) = 4o0.
T—T0

e On dit que f a pour limite —oo en xq si
VA>0 30 >0 Ve el |z—x<d= f(zx)<—-A

On note alors lim f (z) = —o0.
T—x0

Limite en 'infini
Soit Soit f : I — R une fonction définie sur un intervalle de la forme I =|a, +o0[.

Définition 1.3.15. e Soit £ € R. On dit que f a pour limite £ en +oo si
Ve>0 3B>0 Vz el z>B=|f(zx)—{ <e.

On note alors lirf f(x)="{ou 1+1mf (x) =L

e On dit que f a pour limite +00 en 400 si
VA>0 3B>0 Yz el z>B= f(x)> A

On note alors lim f(x) = 4o0.
T—+00

e On définirait de la méme maniére la limite en —oo pour des fonctions définies sur les
intervalles du type |—o0, af.

Exemple 6. On a les limites classiques suivantes pour tout n > 1 :

400 si n est pair

e limz" = 4oo et e lim 2" = ) . .
—00 Sl n est impailr

T—+00 T——00

e lim <1> = 0 et e lim (1> =0.
r—+o0 \ ™ r——o00 \ ™

Limite a gauche et a droite
Soit f une fonction définie sur un ensemble de la forme ]a, zo[ U |zo, b] .

e On appelle limite a droite en zo de f la limite de la fonction f)j,, [ en zo et on la note
lim f.
zg

e On définit de méme la limite a gauche en xq de f : la limite de la fonction fjj4 ., €n xo et
on la note limf.

o

e On note aussi lim lim f (x) pour la limite & droite et lim lim f () pour la limite & gauche.

T—X0 T—T0
x>xQ z<z(Q
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1.3.1 Propriétés des limites

Proposition 1. Si f admet une limite en xg, cette limite est unique.
Preuve. La démonstration est identique & celle donnée pour les suites. On procede

par I’absurde en supposant que f admet deux limites £ et ¢ avec £ < ¢’ en xy. On prend
0 —

€= . 1l existe alors § > 0 tel que |z — xo| < J implique que |f(z) — 4| <e et & >0

tel que |z — zo| < &  implique que |f (z) — ¢'| <e. On a

O —t=10 = f@)+ f(z) =L <[l = fF@)]+|f (@) — (]

,_

par linégalité triangulaire. Si |z — x| < min (6, 5’), on obtient ¢ — ¢ < 2 , ce qui
absurde. m
Propriétés de la limite d’une fonction
Les propriétés des limites de suites se généralisent facilement au cas des fonctions.
Soient deux fonctions f et g. On suppose que xg est un réel, ou que rg = £oo.

Proposition 2. Silim f =/ € R et limg =/ € R, alors :
fy) o

lim (A.f) = Al pour tout A € R
@

lim (f+g) =0+
o

o lim (fxg)=(x/{
o

1 1
Si £ £ 0, alors gronf =7

De plus, si lim f = +o00 (ou — o0) alors hm— 0.
2o

w0 f

Silim f = 0 et si g est bornée sur un intervalle ouvert contenant xg alors lim f (z) g (z) = 0.
xo xo

Cette proposition se montre de maniére similaire & la proposition analogue sur les limites
de suites.
Proposition 3. Si hm f=1 et hmg = /', alors l1mg of =1,

Forme 1ndeterm1nee Voici une hste de formes 1ndeterm1nees
oo 0
. 2. 100, 0
—; = 1% 00".
oo 0

e Sif<getsilimf=¢eR et limg=¢€R, alors: £ <.
fy) xo

+00 — 00; 0 X o0;

e Sif<g etsi 1;%1 f = 400 alors lirglg = +00.

e Théoréme des gendarmes

Si f<g<h etsilimf=Ilimh =/, alors g a une limite en xg et limg = /.
o o xQ
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¢ limites usuelles

i 1-— 1
1 lim 22t — 2. lim — 20 — 2
z—0 T z—0 x 2
r 1 In (1
3. lim ~ 1, 4 fim 2OE2)
z—0 T r—0Tt x
. In(x) )
5. lim = 0, 6.limIn () = —o0
r—4oco I r—07t
T T L T S L GO Y
r—0t T z—0

1.3.2 Notation de Landau

Dans ce qui suit, on considére des fonctions f, g, ... a valeurs dans R, définies sur un voisinage
pointé V' d’un point a € RU {£o0}.

Définition 1.3.16. La fonction f est dite négligeable devant g au voisinage de a, s’il
existe un voisinage V' de a et une fonction € : V — R de limite nulle en a, telle que f = ¢e.g
(dans V' ). On écrit

F<g®™ 3. VR tq f=ecgetlime =0,
a a

On appelle f = o(g) la notation de Landau et f< g la notation de Hardy.

Définition 1.3.17.  On dira que f et g sont équivalentes au voisinage du point a ssi :
@
g(x) v—a
Notation : f(x) ~ g(x) ou f(x) ~ g¢g(x) ou encore f(z) ~ g(x) s’il n’y a pas
a r—a

d’ambiguité.
e On démontre facilement que ~ est réflexive, symétrique et transitive.

o Les limites usuelles en 0, nous donnent les équivalents suivants au voisinage de 0 :

2
. x
esinx ~ x etanz ~x olfcosa:fw? eln(l+zx)~=zx

ol —1] ~ x e(l+z)*—1~ar  eshr~u.

Théoréme 1.3.18. (Généralisation) Plus généralement, au voisinage de a lorsque f(x)
— 0,o0na:

)2
esin f(x) ~ f(x) e tan f(x) ~ f(x) ol—cosf(x)wf(z)

[/ 1]~ f@) et S@) - 1~af(r)  eshf) ~ f).

oIn(1+ f(x)) ~ f(x)

Preuve. Ces résultats proviennent directement des limites vues dans le cours sur les
fonctions usuelles.
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1.4 Fonctions continues

1.4.1 Continuité en un point

Définition 1.4.19. Soit I un intervalle de R et f : I — R une fonction.

e On dit que f est continue en un point xg € I si
Ve>0 30>0 Ve el |zx—xo|<d=|f(x)— f(xo)| <e

c’est-a-dire si f admet une limite en o (cette limite vaut alors nécessairement f (zo)).

- —————————

3

(5]

e On dit que f est continue sur I si f est continue en tout point de 1.

e une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever
le crayon », c’est-a-dire si sa courbe représentative n’admet pas de saut. Voici des
fonctions qui ne sont pas continues en xg :

¥ Yy

N \

|
I |
1 |
1 1
X Xg X Xq X

Exemple 7. Les fonctions suivantes sont continues :
e une fonction constante sur un intervalle,
e la fonction racine carrée x +— +/z sur [0, +00],

e les fonctions sin et cos sur R,
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e la fonction valeur absolue = +— |z| sur R,
e la fonction exp sur R,
e la fonction In sur |0, +o0].

Par contre, la fonction partie entiére E n’est pas continue aux points xy € Z , puisqu’elle
n’admet pas de limite en ces points. Pour zg € R\ Z, elle est continue en xg.

e De fagon similaire on utiliserait la limite a gauche pour parler de continuité a gauche et
de limite & droite pour parler de continuité & droite.

Définition 1.4.20. (Continuité a gauche et a droite)

1. On dit que la fonction f est continue & gauche de xzg si et seulement si :

lim f(z) = f(z0) .

$—>Q§‘07

2. On dit que la fonction f est continue a droite de x si et seulement si :

lim f () = f (z0) -

ToTo+

Remarque.

1. On remarque que f est continue en g si et seulement si f est continue & droite et a
gauche de xg.

2. On dit f est continue sur l'intervalle I si et seulement si f est continue en tout point de
1.

1.4.2 Discontinuité de premiére et de seconde espéce

Définition 1.4.21. On dit que f admet une discontinuité de 17¢ espéce en a si et seulement
si:

1. f n’est pas continue en a
2. f admet une limite finie & gauche en a (si f est définie a gauch de a )
3. f admet une limite finie & droite en a (si f est définie a droite de a ).

e Si f admet une limite finie & gauche en a et une limite finie & droite en a, on appelle saut
de f en a, le réel oy (a) défini par :

o¢(a) =lim f —lim f.

a

e Sous ces hypotheses, f est continue en a si et seulement si : o (a) = 0.
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e Lorsque f n’est pas continue en a et n’admet pas une discontinuité de 1"¢ espéce en a, on
dit que f admet une discontinuité de 2"% espéce en a.

Exemple 7. La fonction f : R — R définie par
1 .
5z siz#0
f(x)_{ 0 siz=0

2nde

admet une discontinuité de espéce en 0.

1.4.3 Propriétés des fonctions continues

Comme pour les limites, nous pouvons énoncer quelques propriétés de continuité.
Propriété 1 (Continuité et opérations sur les fonctions)
Soient f et g : I — R deux fonctions continues en un point g € I. On a alors les
propriétés suivantes :

e \.f est continue en z( (pour tout A € R),

f + g est continue en xg,

f X g est continue en x,

o si g (zg) # 0, alors f est continue en xp. En conséquence,
g

Une fonction polyndéme est continue sur R,

P
Toute fonction rationnelle f définie pour tout = dans l'intervalle I de R par f(x) :(fng,
T

ou P et @ sont des polynomes définis sur I avec Q(z) # 0 sur I, est continue sur I.

Continuité et composition de fonctions

Soient f: I - Ret g: J— R deux fonctions telles que f (I) C J. Si f est continue en
un point xg € I et si g est continue en f (zg), alors g o f est continue en un point z.

1.4.4 Prolongement par continuité

Définition 1.4.22. Soit I un intervalle, g € I et f: I \ {0} — R une fonction.

e On dit que f est prolongeable par continuité en xg si f admet une limite finie en xg.
Notons alors ¢ = limf.
zo

e On définit alors la fonction g : I — R en posant pour tout = € 1

g(a:):{ f(@) siz#axo

14 siz = xg,
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alors g est continue en zg et on I'appelle le prolongement par continuité de f

en xop.
y
{-‘ _______

/_( ?\

|
/ I
|
|
I
Xg x
. . . sinz
Exemple 7. Considérons la fonction f définie sur R* par f (z) = . Alors la
x

fonction g définie par :

1 siz=0
g(x)z{ -

sinon
X

est un prolongement par continuité de f.
Continuité par morceaux

Définition 1.4.23. Soient (a,b) € R?, tel que a < b, et f :[a,b] — R.
On dit que f est continue par morceaux sur [a,b] si et seulement s’il existe n € N* et
(ag, a1, ...,an) € [a,b]" ™ tel que :

e a=qy<..<ap,="0

e Pour tout ¢ € {0,...,n — 1}, f est continue sur |a;, a;+1[ et admet une limite finie & droite
en a; et une limite finie & gauche en a;41.

1.4.5 Continuité uniforme

Définition 1.4.24. Soit f : I — R une fonction. On dit que f est uniformément continue
sur [ si et seulement si :

Ve >0, In >0, V(z,y) € %, (jo—yl<n=[f(x) - f(y)l<e).

La proposition suivante est immédiate.

Proposition 4. Si f est uniformément continue sur I, alors f est continue sur I.

La réciproque de cette proposition est fausse : une fonction f est continue sur [ sans étre
uniformément continue sur I.

Exemple 9. La fonction f(z) = x
[1,400[. En effet, considérons les suites

2 n’est pas uniformément continue sur l'intervalle

Tn =n+ — et y, =n. On a toujours
n

) = F ) =2+ 5 > 2,
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1
bien que |z, — y,| = —. Aucun nombre 1 ne peut correspondre a ¢ = 2.
n

Définition 1.4.25. La fonction f : I — R est dite k-Lipschitzienne d’ordre o € R} si
pour tous x1, x9 € I, il existe une constante k € R tel que

|f (x2) — f (z1)| < ko — 21|

Toute fonction k-lipschitziene d’ordre o, 0 < a < 1, est uniformément continue, puisque
pour € un réel positif donné, on peut choisir 7 = £/k indépendamment de z.

Suites et continuité
Proposition 5. Soit f: I — R une fonction et xg un point de I. Alors :

f est continue en zy < pour toute suite (uy,) qui converge vers zg

la suite (f(uy)) converge vers f (zo) .

1.4.6 Continuité sur un intervalle

Le théoréme des valeurs intermédiaires
Théoréme 1.4.26. (Théoréme des valeurs intermédiaires)

Soit f : [a,b] — R une fonction continue sur un segment.

Pour tout réel y compris entre f (a) et f (b), il existe ¢ € [a, b] tel que f (c) = y.

Une illustration du théoréme des valeurs intermédiaires (figure de gauche), le réel ¢ n’est
pas nécessairement unique.

De plus si la fonction n’est pas continue, le théoréme n’est plus vrai (figure de droite).

et

f(b)

fla)

Démonstration. Montrons le théoréme dans le cas ou f(a) < f(b). On consideére alors
un réel y tel que que f(a) <y < f(b) et on veut montrer qu’il a un antécédent par f.

1. On introduit ’ensemble suivant
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A={z € [a,b] f(x)<vy}.

Tout d’abord I’ensemble A est non vide (car a € A) et il est majoré (car il est contenu
dans [a, b]) :

il admet donc une borne supérieure, que ’on note ¢ = sup A. Montrons que f(c) = y.

FB) bmmm e

fla) - i
|
A ¢ = supiA)

[ ek
rrr—-————————
=

2. Montrons tout d’abord que f(c¢) < y. Comme ¢ = sup A, il existe une suite (up)nen
contenue dans A telle que (u,) converge vers c. D’une part, pour tout n € N, comme
Up € A, Onaf(un)gy-

D’autre part, comme f est continue en ¢, la suite (f(u,)) converge vers f(c). On en
déduit donc, par passage a la limite, que f (¢) <.

3. Montrons a présent que f(c) > y. Remarquons tout d’abord que si ¢ = b, alors on a fini,
puisque

f(b) > y. Sinon, pour tout z €|c,b], comme z ¢ A, on a f(x) > y. Or, étant donné que
f est continue en ¢, f admet une limite a droite en ¢, qui vaut f(c) et on obtient f(c) > y.

Applications du théoréme des valeurs intermédiaires
Voici la version la plus utilisée du théoréme des valeurs intermédiaires.
Corollaire 1.

Soit f : [a,b] — R une fonction continue sur un segment.

Si f(a).f(b) <0, alors il existe ¢ € |a,b| tel que f(c) = 0.
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F(B)=>O0fommmm oo

[} SR

————4n

fla) <=0 |--

Démonstration. Il s’agit d’une application directe du théoréme des valeurs
intermédiaires avec y = 0.

L’hypothese f(a).f(b) < 0 signifiant que f(a) et f(b) sont de signes contraires.
Remarque. 1. Si f est strictement monotone sur [a, b], le point ¢ est unique.

2. Si f est continue sur un intervalle I, alors f (I) est un intervalle.

3. Si f est continue sur un segment I, alors f (/) est un segment.

Corollaire 2.

Soit f: I — R une fonction continue sur un intervalle I. Alors f(I) est un intervalle.
Attention ! Il serait faux de croire que 'image par une fonction f de l'intervalle [a, b]
soit l'intervalle [f(a), f(b)] (voir la figure ci-dessous).

¥

f(b)

f(la,b])
fla)

Démonstration. Soientt yi, yo € f(I); y1 < y2. Montrons que si y € [y1,y2], alors
y € f(I). Par hypotheése, il existe x1, 29 € I tel que y1 = f(x1), y2 = f(x2) et donc y est
compris entre f (x1) et f (z2). D’apres le théoréme des valeurs intermédiaires, comme f est
continue, il existe donc = € I tel que y = f (x), et ainsi y € f(I).

Fonctions continues sur un segment

Théoréme 1.4.27. Soit f : [a,b] — R une fonction continue sur un segment. Alors il
existe deux réels m et M tels que f([a,b]) = [m, M]. Autrement dit, l’image d’un segment
par une fonction continue est un segment.

e Comme on sait déja par le théoréme des valeurs intermédiaires que f([a,b]) est un inter-
valle, le théoréme précédent signifie exactement que

e Si f est continue sur [a, b] alors f est bornée sur [a, b], et elle atteint ses bornes.
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e Donc m est le minimum de la fonction sur Uintervalle [a, b] alors que M est le maximum.

1.4.7 Fonctions monotones et bijections

Rappels : injection, surjection, bijection

Définition 1.4.28. Soit f : E — F' une fonction, out E et F' sont des parties de R.
e [ est injectivesiVe, 2’/ € E f(z) = f(2)) =z =1'.
o festsurjectivesiVye FIx e F y=f(z).

e f est bijective si f est a la fois injective et surjective, c’est-a-dire si fog =idp dlx € F

y=f(z).

Proposition 6.

Si f: E — F est une fonction bijective alors il existe une unique application g : F' — F
telle que go f =idg et fog=1idp.

La fonction g est la bijection réciproque de f et se note f~1.

Remarque.

e On rappelle que l'identité, idg : & — E est simplement définie par  — x.

go f=1idg seformule ainsi : Ve € E ¢ (f(x)) = =.

Alors que fog=1idp sécrit : Vy € F f(g(y)) =y.

e Dans un repére orthonormé les graphes des fonctions f et f~! sont symétriques par rapport
a la premiére bissectrice.

/|

Fonctions monotones et bijections
Voici un théoréme trés utilisé dans la pratique pour montrer qu'une fonction est bijective.

Théoréme 1.4.29. (Théoréme de la bijection) Soit Soit f : I — R une fonction définie
sur un intervalle I de R. Si f est continue et strictement monotone sur I, alors
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1. f établit une bijection de 'intervalle I dans U'intervalle image J = f(I),

2. la fonction réciproque f~!: J — I est continue et strictement monotone sur .J et elle a
le méme sens de variation que f .

En pratique, si on veut appliquer ce théoréme a une fonction continue f : I — R,

on découpe lintervalle I en sous-intervalles sur lesquels la fonction f est strictement
monotone.

Exemple 10. Considérons la fonction carrée définie sur R par f(z) = z2.

La fonction f n’est pas strictement monotone sur R : elle n’est pas méme pas injective

car un nombre et son opposé ont méme carré.

Cependant, en restreignant son ensemble de définition & |—o00, 0] d’une part et a [0, 00|

d’autre part, on définit deux fonctions strictement monotones :

f { ]—00, 0] — [0, +00] ot fy - { [0, +-00[ — [0, +o0]

ZITP—>332 33*->.’E2

On remarque que f(]—00,0]) = f([0,400]) = [0,400[. D’apreés le théoréme précédent,
les fonctions fi et fy sont des bijections. Déterminons leurs fonctions réciproques f; 1.
[0, +-00[ — ]—00,0] et f5* : [0, +00] — [0, +00] .

Soient deux réels = et y tels que y > 0. Alors

y:f(w)@y::f(:)x:\/y] ou = —\/y,

c’est-a-dire y admet (au plus) deux antécédents, I'un dans [0, +oo[ et I'autre dans | — oo, 0].
Et donc
W) =~V et 5 (y) =y
On vérifie bien que chacune des deux fonctions f1 et fo a le méme sens de variation que
sa réciproque.

e

f fa
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Lemme 1.4.30. Soit f: I — R une fonction définie sur un intervalle I de R. Si f est
strictement monotone sur I, alors f est injective sur I.

Démonstration. Soient z, 2’ € I tels que f (z) = f(2’). Montrons que z = 2. Si on
avait x < 2/, alors on aurait nécessairement f (x) < f (z') ou f (z) > f ('), suivant que f est
strictement croissante, ou strictement décroissante. Comme c’est impossible, on en déduit
que z > 7’. En échangeant les roles de x et de 2/, on montre de méme que z < z’. On en
conclut que z = 2’ et donc que f est injective.

Démonstration du théoréme.

1. D’aprés le lemme précédent, f est injective sur I. En restreignant son ensemble d’arrivée
a son image J = f(I), on obtient que f établit une bijection de I dans J. Comme f
est continue, par le théoréme des valeurs intermédiaires, I’ensemble J est un intervalle.

2. Supposons pour fixer les idées que f est strictement croissante.

(a) Montrons que f~! est strictement croissante sur J. Soient y, v’ € J tels que y < y’.
Notons

c=f1ty el et o' =f! (y’) el
Alors y = f(x),y = f(2') et donc
y < = flx)<f (x’) =z <’ (car f est strictement croissante)
= [T <f),

c’est-a-dire f~! est strictement croissante sur .J.

(b) Montrons que f~1 est continue sur .J. On se limite au cas ou I est de la forme ]a, b, les
autres cas se montrent de la méme maniére. Soit yo € J. On note zg = f~! (yo) € I.
Soit € > 0. On peut toujours supposer que [zg —¢&,z9 + €] C I. On cherche un réel
0 > 0 tel que pour tout y € J on ait

Yo—0<y<wo+ds=f""(wo)—e<f () <f"(w)+e
c’est-a-dire tel que pour tout = € I on ait
yo—8<[f(&)<yo+d=f""(y)—e<z<f(y)+e
Or, comme f est strictement croissante, on a pour tout xz € [
flwo—e) < fr)<f(rzo+e)=axp—c<z<zx9+¢
— [T()—e<z <[ (y)+e
Comme f (zg —€) < yo < f (x0+¢€), on peut choisir le réel 6 > 0 tel que
fleo—e)<yo—0 et f(zo+e)<yo+0
et on a bien alors pour tout x €
Yo—0 < f@)<y+d= f(xzo—¢)<f(z)<flzo+e)
— [T () —e<z< [ (y)+e

La fonction f~! est donc continue sur J.
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1.5 Exercices Corrigés

Exercice 1. Soient f et g deux fonctions de R dans R. Répondre par oui ou non aux
questions avec des justifications rigoureuses :

(1) fg=0=f=0Vg=0.
2) f2=0= f=0.

(3) sup (f(xz)+g(z))= sup f(x)+ sup g(x), (f et g supposées aussi bornées).
0<a<1 0<z<1 0<z<1

(4) sup (f(xz)g(x))= sup f(x) sup g(x), (f et g supposées aussi bornées).
0<a<1 0<w<1 0<z<1

5) f? continue= f continue.

6) La fonction & — 22, définie sur [0, +oo], est paire.

(5)

(6)

(7) Toute fonction continue sur |0, 1] est bornée.

(8) La fonction partie entiére x — [z] est strictement croissante.
(9)

9) Supposons que f est continue sur [0, 1], alors
S0, 1) =[£(0), f (V)]
Solution.

(1) Faux . Considérons les fonctions

1, =>0, [0, x>0,
f(“")_{o, z<0, g(x)_{z z < 0.

Alors f et g sont non nullles mais leurs produit fg est nul car

1x0, z>0, :{O, x>0, — 0. Yz R

@ ={ %y 2o ={o iZo

(2) Vrais. Montrons que la contraposée est vrais, i.e. montrons que

f#0= f2#£0 est vraie.

Puisque f # 0, alors il existe un x¢ € R tel que f (x9) # 0. Donc f (x0) f (z0) = f? (20) #
0.

(3) Faux . Ce qui vrai est le suivant

sup (f(x) +g(z)) < sup f(z)+ sup g(xz),
0<z<1 0<z<1 0<z<1
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mais on n’a pas toujours 1’égalité comme le montre ’exemple suivant :
Soient f, g :[0,1] — R telles que f (z) =z et g(z) =1 — x. Alors

sup (f () +g(@) = sup (1)# sup f(x)+ sup g(a)=1+1=2.
0<z<1 0<z<1 0<z<1 0<z<1

(4) Faux . L’exemple précédent peut étre aussi utilisé comme contre exemple dans cette
réponse. On a

1
sup (f (2) g (#)) =sup (¢ = %) = - £ sup [ (x) sup g(e) =1 x1=1.
0<x<1 0<z<1 0<x<1 0<x<1

(5) Faux . Par exemple, soit
2, z>0,
f(a:)—{ -2, z<0.
Alors f n’est pas continue (au point 0), mais f2 (z) = 4 est continue sur tout R.

(6) Faux . On ne peut pas parler de f paire ou impaire dans ce cas. Le probléme prin-
cipal est qu’elle est définie sur [0, +oo[ et donc si x € [0,4o00], alors —z ¢ [0, 4o00]
(sauf si x =0). Donc f (—z) n’a pas de sens.

1
(7) Faux . Par exemple, z — f (z) = — est continue sur |0, 1[, mais elle n’est pas bornée
x

.1
car lim — = 4o0.
z—0tT
(8) On a pour tout couple (z,y) de R? tel que z > y, on a [z] > [y]. Ceci veut dire que
x — [x] est croissante. Cependant, elle n’est pas strictement croissante. Par exemple,
0,6 > 0,5 mais [0,6] = [0,5] = 0 et donc on n’a pas [0, 6] > [0,5].

(9) Faux . Par exemple, z — f (z) = 1 — z est continue sur R et en particulier sur [0, 1],
mais, on voit facilement que

S(0,1]) =10,1] # [f (0), f ()[ = [1,0[.
Donc, on doit ajouter des hypothéses pour que la réponce soit vraie. Par exemple, dans
notre cas, puisque f esr décroissante ( et continue) sur [0, 1], alors f ([0, 1]) = } lim1 f(x),f (0)} =
xr—

10, 1] (on a utilisé la limite car on n’a pas défini f en 1). Si f est croissante et continue sur

a,8], alors f (a,b]) = [f (a). lim f (2 [

Une fonction continue et ctoissante sur [a, b] vérifie f ([a,b]) = [f (a), f (b)] (voir le cours
pour les autres propriétés qui sont similaires).

Exercice 2. Montrer que toute fonction définie sur intervalle symétrique peut s’écrire
sous la forme : fonction paire+fonction impaire

Application : e* = .... + ....

Solution. Dy = —Dy = Vx € Dy; —x € Dy.
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Soit f (z) = g () + h (z) tel que g paire et h impaire

f(x)=g(x)+h(z) @)+ f(—z) =29 (2) H@HE2) = g ()
et = et = et
f(=2)=g(z) — h(z) f (@) — f(~z) = 2h(z) [@—SC2) _ ()
(@ (-2 F@) — [ (—2)
=)= (P ) (FE)
D) = R=R UR"=-D,,=- (R URY)

= (-R)U(-RT)=RTUR™ =R =D,

N (ex*’;_x) + <e$ _26_90> — ch(z) + sh(z).

ch(x) sh(zx)

Exercice 3. Calculer les limites suivantes

i 1
1) ili%zz Ezg, (p,q) e RxR* 2) iii%ac? cos <$> 3) ili% sin (z) In (z)
1 1 1]+
4) lim In (1 + 2?) sin — 5) limx |— 6) lim [91”] v
z—0 €T z—0 xT z—0 [5] —x
. 3z24z+5 . e -3 . .
D Am Sers o Vg 9 An (Ve Vasing)
) x . In(e* + 27) ) 2\°*
10) limz In Nie 1) lim === 12) lim (1 + x) .
Solution.
sin (px)
sin (pz) . P* . px .oprx1l p
1) hn}) ~ = hn'%)m = hr% 1 = -
a—0sin (qgr) a— 4 X q 0 qT X q
qx
. 2 1 . 2 1 . 2 . 2 1
2) 0 < lim |zcos | = )| =limz“|cos | — || < limz“x1=0= lima“cos | — ) =0,
z—0 xT z—0 xT x—0 z—0 T

1 1 1
-1 < cos <> <1= —2% < 2%cos <> < z? = lim (—:1:)2 < lim 22 cos <) < lim 22
x T z—0 x—0 €T z—0

1 1
= 0<lim 22 cos <> < 0= lim 22 cos (> =0.
z—0 x z—0 x



EXERCICES CORRIGES 27

(sin (x)> (xln(x)) = <lim sin (a:)> (111%1;111 (:17)) =1x0=0.

X x—0 T T—

3) lim sin (z)In (z) = lim

x—0 x—0

4) -1 < 51n<;2>S—lé—ln(l—l—mz)gln(l—l—x)sm(a:l)<ln( —1—1‘2)
= —limln (1—{—3:2) g{}qii%ln (1+$2) sin (;) §glcig(1)ln (1—|—x2)

z—0

1 1
= Oglimln(l—i—xZ)sin — §0:>1imln(1+a:2)sin — ] =0.
z—0 .1‘2 z—0 1‘2

1 1 1 1 1
5) - -1 < [}S:>1—x<33[]Sl:lim(l—x)glimx[}gl
x x—0 x—0 x

8

= 1glimoac[1} §1:>Iim:v[1} =1.
T

z—0

1 1 2
= T T|=|+x 140
6) lim [‘f] = lim [”1”] = lim S = 1.
z—0 [5] —x z—0 [5] — 2 z2—01—0
7) 3x2+a:+5_ —3:1:2_73
z—+oo 212 + 80 z5Foo 272 2
2z 2x —2z —2z
-3 e (1 —3e 1—3e
8) lim ¢ = lim ( ) = lim e_m(i)
z—+00e3% 4 4 z—+o00 €37 (1 4+ 4e73%)  z—+oo (1 + 4e—37)
mais lim e™* = lim e 2 = lim e 3% =0,
T—~+00 z—+00 r—+00
e Y kol P SV
mjrfwe3$ +4 x_ﬂiglo ¢ (14 4e—37) —UxAEE

9) On a pour tout = positif : 2z +zsinz > 2yr — Vo = x.
Puisque lim \/z = +oo, alors lim (2y/z 4 v/zsinz) = +oo.
r——+00 T——+00
10) La réponse est 0, trouvez la !
11) La réponse est 1, trouvez la !

2
12) Puisque on va prendre la limite en +oo, alors 1 + — va étre strictement positif
x

(pour z assez larges), d’ou on peut écrire :

2\° 2
<1 + > = 65(711’1(1-"-5) = e % — 62’
T

In(1+2 @
car lim M = 1. Ainsi lim <1—|—> = e

o
8
!
8

r——400
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Exercice 4. Calculer les limites suivantes en

ANALYSE1

utilisant les fonctions équivalentes :

Ltz 4
z3 x*+1 2 —cosx — cos2x
1) lim ——, 2) lim > 3) lim 5
r——00 sin = z——00cot g+ z—0 tg“x
&) Tim S02TE 5y 1t 20 6) lim logz.log[l + log (1 + z)].
im im sin im logz.lo 0 T
z—1sin b’ T—+00 g 4+ 3 z—0+t & & &
Solution.
1 _
1) On pose y = — = y — 07, alors
T T— —00
A ()
lim —— = lim +———.
z——00 sin y—0~ sin y

On sait que siny Y yau voisinage de 0, donc

14 3(1 l)
Vo YUty |yr\/y+1

lim —— = lim
T——00 SIn z y—0— smy y—>0*
— Y/ 1
= im VYT R —1.
y—0~ Yy
4 4
1 1 1
2) lim vl lim ~ 1+ = lim tg (:1:4+1) =0xo00 (F.I)
r—— OOCOtg T——00 tgj T——00

1 141
= limtgy<4+1>:limy<y—: )z—oo, (tgywy).
y—0~ y y—0~ Yy 0

v=3
3) On sait 1 L (2z) !
n sait que CcoS T 5 2$, cos (2x 55
1
. 2—cosx — cos2x .9
lim : = lim
z—0 tan“ x z—0

sin 2mx 0
4) lim o

r—1sin dmx

(F.I).Onposey=x—1=

sin27rx . sin2w(y+1)

im = lim
a—1sinbrr  y—0sinbw (y + 1)

r——400 4x + 3 y—0

(22)% et tgy Yy au voisinage de 0, donc
2 5.2
:c—|—2(a:):hmi:§
T XT 20 22 2
y — 0, donc
,'L'—)l
sin 27y . 21y -2
= lim — = lim =—.
y—0—sin b5y y—0 —bmy )

1 2 ; 1
5) lim sin— tan ( ) = hmytan ) L =0 X tan (> =0.
v 1 y+3 2
y=1

T
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6) On sait que log (1 + ¥) Y donc log [1 +log (1 + z)] ¥ log (1 +y) et on a

log (1
logz.log [l +1log (1 + )] ~ mg@kgﬂ+xy:@bg@£§Liﬁl

log (1
= lim+ logz.log [l +1log (1 +z)] = lim |(zlogz) log (1 + )
z—0

z—0
Exercice 5. Soit h la fonction définie sur R par

22— 32, x€]-00,2[
h(x)_{ 2z +b, x€[2,+oo|

Déterminer le nombre réel b de sorte que h soit continue en 2.

Solution. h et continue en 2 ssi lim A (z) = lim, h () =h(2).On a
- T—2

,'L‘—>2

limh(z) =22 -3x2=4—6=—2
<

)
r—2
lim A (x) = lim (22 +b) =4 +b =4+b=-2=hb=-6
x3>2 IZ>2
h(2)=2x2+b=4+b
Exercice 6. Etudier la continuité uniforme des fonctions suivantes :

A@) =vz, 2>0, falz)=er,x€]0,1], f3(z)=sinvz, >0, fi(z)= %, z € [1,400].
Solution.

1) f est uniformément continue. En effet, on sait que !f VY ‘ < m , Vz,y € RT.
Par définition, f est uniformément continue sur R ssi

Ve >0, Ja >0, Vz,y € RT: (|x—y|<oc:>‘\/§—\/§|<e).

Soit € > 0. Si o = €2, alors pour tous = et y positifs on aura
Va-vil s Vsl s V=
Ainsi f est uniformément continue.

2) f n’est pas uniformément continue sur |0, 1]. On doit montrer que

de >0, Va> 0, Jz,y €]0,1] : (]m—y]<a/\ es —ev 25).
On prend
1 1
= 1] et = 1 1an > 4.
Tn lnne]O,]eyn ln(n+1)e]0’]’oun_

D’autre part, puisque In (n + 1) > Inn, alors

1 1 1 1 < 1 - S N { l}—l—l
— | =— —————— < — <« pourn = |ea .
Inn In(n+1)] Inn In(r+1) Inn P -
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De plus, |em™ — eln(”+1)| =|n—n—1|=1. Ainsi
Je = 1>0, Va >0, 3n > max <4, {eé] + 1) y TnyYn €10,1]
> 1) .

3) f est uniformément continue sur R . Montrer ceci. par définition, f est uniformément
continue sur R ssi

a1 B
ern — eyn

(|:L'—y|<a/\

Ve >0, Ja >0, Vz,y € RY: (|x—y| <a= !sinﬁ—sin\/@’ <€).
Soit € > 0. On a alors

T — r+
|sin vz — sin\/y| = 2sin\f2 \/ycosf2 \/g‘ <

2sin

Vi
2

IN

QW:}VE—@\S\/!@“—M

11 suffit donc de prendre a = 2.

4) f est uniformément continue sur [1,+oo[ (Il suffit de prendre o = ¢).

Exercice 7. Etudier dans chacun des cas suivants si la fonction f est prolongeable par
continuité

. l—cosyx o1 % sin L
1) f(x) xli%lJr . . 2) f(x) sinsin —, 3) f(x) R (xeR;a>2; x€|—m,ml)

Solution.

1) La fonction f est définie sur R* et paire, elle est prolongeable par continuité sur R si, et
seulement si, elle admet une limite finie & droite en 0. Or

lim f(z) = lim ——— = lim =_.
z—0t z—0t T z—0t T 2

Par conséquent, le prolongement par continuité de f est la fonction g définie par

1—cos/|x .
{ 7" S1 X € R*

L || i
5 sixz=0.

g(x) =
2) La fonction f est définie sur R* et paire.
L’inégalité [sinu| < 1, vraie pour tout réel u, implique

Vz €R*, 0<|f(z)] < |sin(z)|.

Il résulte que limo f(z) =0, donc f est prolonbeable par continuité en 0 et son prolongement
xr—
g défini par
Ve eR* g(z)=f(x) et ¢(0)=0.

est une fonction continue sur R.
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3) f est définiesi 1 —cosx #0 < x #2kw, (k€Z).

Donc Dy = [—m,w] — {0}
Pour étudier le prolonbeable par continuité de f sur Dy on calcule :

) xo‘sm% . xo‘smi . J:O‘sm% )
lim —* = lim——> = lim——* (car sinz ~ x)
z—01 — cosx z—0 2 sin % z—0  2Z- 0
_ : a—2
= lim2zx sin —
z—0 T

e Sia=2: lin%)f(:c):limZSin% 3.
Tr— 72—0

o Sia>2: lir%f (z) =lim2z* ?sin 1 = 0.
= z—0

Alors on peut prologer f par continuité dans le cas ol a > 2 et son prolongement g défini
par

Vo € [-m,7] — {0}, g(@) = f(z) et g(0)=0.

Exercice 8. Soit f une fonction continue sur le segment [0, 1] telle que Va € [0,1],
f(x) € [0,1]. Montrer qu’il existe ¢ € [0, 1] tel que f (c) = c.

Solution. La fonction ¢ féfinie sur [0, 1] par ¢ (z) = x — f (z) est continue sur [0, 1], car
elle est la différence de deux fonctions continues sur cet intervalle. Donc, I'image ¢ ([0, 1])
est un segment contenant en particulier ¢ (0) et ¢ (1). Or ¢ (0) = —f (0) est négatif ou nul
et ¢ (1) =1— f (1) est positif ou nul. D’aprés théoréme de la valeur intermédiaire, il résulte

dc € [0,1],p(c) =0, cesta-dire Fe e [0,1], f(c) =c
Exercice 9. Montrer que ’équation
*—3r+1=0

admet au moins une racine entre 0 et 1. La racine est-elle unique ?

Solution. Soit f (z) = 23 — 32 + 1 qu’on définit sur [0,1]. Elle est continue sur [0, 1] car
c’est un polynéme. De plus, on a f(0) =1 et f (1) = —1. Donc par le théoréme de la valeur
intermédiaire, il existe un ¢ € ]0, 1] tel que f (¢) = 0.

La solution est unique entre 0 et 1 car la fonction est strictement monotone sur ]0,1[,

elle est strictement décroissante comme on peut facilement le montrer.
x

1+ |z|
bijective sur un intervalle qu’on déterminera. Donner explicitement la fonction f=!.

Exercice 10. On définit une fonction f sur R par f (z) = Montrer que f est

Solution. Deux cas sont & examiner, z > 0 et x < 0.

1) Sixz > 0, alors f(x) = % On voit bien que f est continue sur [0,+oo[. Montrer
x

qu’elle strictement croissante sur R+.
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1
On écrit f(x) =1— 112 On a donc

1 < 1 N 1 - 1
1+2 1+y 1+ 1+y

1
1+$>1—ﬁy@f($)>f(?/)~

z > y=>14+x>1+y=

= 1-

Donc f est bien strictement croissante. On a aussi f ([0,400[) = [0, 1[. Ainsi f est une
bijection entre [0, +o00[ et [0, 1].
Trouver f~! dans ce cas. On a, pour z > 0 et y € [0, 1],
x

=y r= sr(l-y) =yor=—"—
i, ver=ytwesl-y=yez -

et donc f~!(x) = i

11—z’

x
2) Sixz <0, alors f(z) = T f est continue sur |—o0, 0] et on peut montrer facilement
-z

qu’elle est strictement croissante sur cet intervalle et que f (]—o0,0]) =]—1,0[. Donc

f est une bijection entre |—00,0] et ]—1,0[. on trouve f~! (z) = .
x

Finalement, f est une bijection entre R et |—1,1[. La fonction réciproque f~! et donnée
par [~ (z) =

1—fa|

1
Exercice 11. Soit Papplication f définit sur R par f (x)

T2 tr+1
a) f est-elle injective?
b) f est-elle surjective?

c) Soit les deux ensembles A et B tels que A = [1,2] et B = [1,+oo[. Déterminer f (A) et
f1(B).

Solution.

a) f est-elle injective 7
1¢"¢ méthode : on a 0 # —1, mais f (0) = f (—1) = 1, donc f n’est pas injective.
2¢m¢ méthode : soit x1, 2 € R tel que f (x1) = f (22), alors

1 1

2 2
= Sritrr+1+=a5+x2+1
22 +z1+1 z3 + 29+ 1 ! ! 2 2
& 225 +z—32=0
& (z1—22)(r1+22+1)=0

& ]31::L‘2\/x1:—(:132+1).

Donc f n’est pas injective.
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b) f est-elle surjective?

f est surjective ssiVy e Rz e R / y = f (z).

2
= Sy=———< -1=0
y=f(x) ey AL TV Tty :

onaA=y?—dy(y—1)=-32 +4y =y (4—3y).

Siy €]—00,0[U]3,+oo[ A <0;
Donc I'équation y = f (z) n’admet pas de solution, par suite f n’est pas surjective.

c) eOna A=]1,2],alors f(A)={f(z) eR / x € R}.

r € Ae1<1<281<1’<4e2<s°+2<6

1 1 1
& 3< a2 1<7T& < — <=
<z4+x+1<L TS 2 rar1°3
11
= A)=|=,-].
r=73)

e B =[1,+00[, alors

B = {xeR/f(m)eB}:{xeR/MeB}.

— € Be—— _>1
22+r+1 2+ax+1"
Ptrt+l<ler?+r<z(z+1)<0
z€[-1,0], dou f~1(B)=[-1,0].

i3
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Série d’exercices N°3 d’Analysel

Exercice 1: Donner le domaine de définition des fonctions suivantes :

1) f(x) = \/EJFT/ﬁ’ 2)]‘“(:r):1n(\/1—962>7 3) f(z) = Vcos2z,

4) f (x) z, 5) f(z) =

—_

Ou [ ] désigne la partie entiere de x.
Exercice 2:

a) Calculer les limites suivantes

—3z?2 5 1 1

0 m g ) lma?eos (;E) » 3) lime M :

4) lilrbm?’ In (\3/ 1+ 2/x3> , D) liIJIrl (2vz + Vasinz).
b) Calculer les limites suivantes en utilisant les fonctions équivalentes :
1) lim tan sz 9) lim 2 - cosz; cos 2:5’ ) lim s%n 271'3:7
=0 z—0 tan® x c—1sin dmw
4)* lim+ Inz.In[1+1n(1+2z)].
IHO

Exercice 3: Soit la fonction f définie par :

- b (255)

x
1) Quel est le domaine de définition de f ? Etudier sa patité.

2) Trouver liIJIrl f(x) et en déduire lim f(z)

r— —00

Exercice 4: Soit h la fonction définie sur R par

2?2 =3z, z€]-00,2[
h(a:){ 20 +b, z € [2,+00]

Déterminer le nombre réel b de sorte que h soit continue en 2.
Exercice 5: Etudier dans chacun des cas suivants si la fonction f est



prolongeable par continuité

. s 1
sin x 1 % sin

Df@="" 2 fE =7

1—cosx

Exercice 6. Montrer que I’équation
1+sinz—22=0

admet au moins une racine entre 0 et 7.

Exercice 7. Soit f une fonction continue sur [—1,1] a valeurs réelles
telle que f (1) = f(-1).

Montrer qu'’il existe un nombre ¢ € ]0,1[ tel que f (¢) = f(c—1).
Exercice 8. Soit la fonction f définie de [0, 1] dans R, par :

T
T)=—5-7.

f@) 2 +1

a) Montrer directement que f est strictement monotone.

b) En déduire que f est bijective et déterminer f—1.

Rappel: limites usuelles

D1 sinz 1, 9 lim 1 —c2osx _ 1,
z—0 X x—0 xT 2
r—1 In (1
3) Tim - 1, 4) 1 n(l+z) 1,
x—0 T r—0t X
1
5) lim n(2) = 0, 6) lim In(z) = —oo,
r—+00 I r—0t
h t
D otim T 21 8 i@ 1 g) tim 2l () =0,

z—0t T z—0 x r—0+

Les limites usuelles en 0, nous donnent les équivalents suivants au voisi-

nage de O :
22
esinz ~ x etanx ~x 01—cosx~? eln(l+z)~=x
ofc*—1] ~ x e(l+z)*—1~azx  eshr~uzx.

3) f(z) = ——2 (@a€R;a>2 z€|-mn]).
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Corrigé type Série d’éxercices N°3 Analysel

Exercice 1:

1) f@)=
V42—

x>0 x>0

f est définies 2—xz2>0 & <2

VT+V2—2#0 VT+V2—2#0
or,pour 0 <z <2 r++vV2—-z>0,et /z+vV2—2=0siz=0etz=2,
ce qui est impossible. Donc Dy = [0,2].

2) f(z)=In(V1-2?),

— 72> _
1—2*>0 {me[ 1,1] srcl-11[.

f est déﬁnie@ { m > 0 112 # 1
3) f(x) = +/cos2z,

f est définies cos2x > 0 < 2z € [—g, %} + 2km.

Donc Dy = [f% + km, Z +k7r] .

4) f(z) =27,
On a par dédinition, si a > 0, alors a® = e* %,
Donc si z > 0, alors 2% = ", Donc Dy = |0, +oo],

(mais attention dans ce cas le z qui doit étre positif est celui de la base pas
celui de la puissance).

il faut aussi savoir que
(1) x + 2™ est définie sur R si n € N et indépendent de .
(2) x> 2P est définie sur R* si p € Z et indépendent de z.
(3) x+ a” est définie sur R si a > 0 et indépendent de z.

1
1—[x]’

5) f(z) =



f est définies 1 —[z] # 0 & = ¢ [1,2[, car [z] = 1 & = € [1,2][. Donc
Dy =]—00,1[ U [2,400].

Exercice 2: a)

. =32’ +zx+5 . =322 -3
1) lim ———— = lim .
z—+oo 222 + 80 z—+oo 272 2

1
2) lima? cos <> ,on a
x—0 €T
0 < lim

1 .
z2cos | = || = lim 2
—0 x z—0

1 1 1
-1 < cos () <1= —2? < z%cos () <z’= lin%) (—a:)2 < lin%)ax2 cos <> < lim z2
x r— x

1 1
cos <)‘ < lim z°x1 = 0 = lim z2 cos () =0,
T T

z—0 x—0

ou)

xX r— x—0

1 1
= 0< lim 22 cos () < 0= lim 22 cos (> =0.
x x—0 X

z—0
. 1
3) limz |—|,ona
x—0 x

1 1 1 1 . . 1
——-1 < |m|<=-=l-z<z|-|<l=lm(l-z)<lmz|-| <1
x x x x z—0 z—0

z—0 x z—0

1 1
= 1<limx[}<1$limx{}:1.
T

1 1
4) lima®In ({/1+2/2%) = lima®In (1+2/2%)% = lima® = In (1 + 2/a?)

. 2In(1+2/2%) 2 . In(1+z)
= lim gT = g <Car z]l)rg*_T = 1) .

z—0

5) lirf (2/7 + y/zsinz). On a pour tout x positif :
Tr— 100

2Vz + Vasing > 2z — z = x.

Puisque lim +/x = +oo, alors 1iIJIrl (2vZ + Vasinz) = +o0.
r— oo

Tr——+00

b) Calculer les limites suivantes en utilisant les fonctions équivalentes :

. tan2z O ) . . tanz
1) alclg%) = =0 (FI),onsait que: tg2x ¥ 2z, (pulbque ;lli% = 1>
tan 2 2
donc lim AL himZE =2

z—0 €T 0 z—0

2 — — 2 0
2) lim cosan2 cos2z _ 0 (FI).
z—0 tan® x 0




1 1
On sait que 1 — cosx ¥ 5102 = 1 —cos (2x) ¥ 3 (22) et tany Y donc

1, 1, .
. 2—cosx—cos2z . T +§(2$) . 522 5
lim 5 =lim&<—=—— = lim=<— = —.
z—0 tan® z—0 T X z—0 22 2
in 2 0
3) lim =™ — 2 (Rl
z—1sindrr 0
Onposey=xz—1=y—0,et z =y+ 1, donc
rx—1
sin 2w . sin27 (y + 1) . sin2my . 2my -2
im — = lim——% = lim——— = lim = —.
z—1sin brw y—0sinbr (y+1) y—0—sinbry y—0 —57y 5

(car :siny Y sin (o + 7) = ,a_)

4) * lim+lnx.ln[1+ln(1+:r)] =—oox 0 (FI).

z—0

On sait que In (1 + ) v

= lim+lna:.ln l4+In(l4+2)]= lim Inz.In[1+ ]
z—0 z—0

= lim (lnz).(x)=0 (limite usielle)
z—0+

Exercice 3: Soit la fonction f définie par :

- b (£257)

T 2

1) Dy=<zeR /xz#0 et H%>O Sz #0
—_———
vraie

&z € ]—00,0[U]0, +oo| = Dy =]=00,0[U]0, +o0]

2) Vx € Dy; 2#04 —x# 0 —z € Dy = Dy est symetrique

=—1In
2 —x

1 —x —(—z) 1 —x +x

= f est impaire.

1 et +e "
3) 1 = lim —In(——"——
) JHm S (@) Iizlooxn( 2 )

1 r 1
lim —ln <e> = lim —(lne* —1n2)
T——+o00 T 2

1 In2
= lim —(z—In2)= lim <1_n>:1
T—+00 I

T— 400 €T



Iim f(zx)=— lm f(z)= —1‘.

= ’z—»—oo xr——+00

Exercice 4: Soit h la fonction définie sur R par

[ 2?2 =3z, z€]-00,2|
h(m)_{ 2r+b, x€[2,+00]

e h est continue en 2& lim h (z) = lim h (z) = h (2).

-”1/'52 f£z>2
limh(z) =22 -3x2=4—-6= -2
<
z—2 _
limh(z) =h(2)=2x2+b=4+b =4+b=-2=0b=-0

Exercice 5: Etudier dans chacun des cas suivants si la fonction f est
prolongeable par continuité.

1) f(z)= Slzm, Dy =R*, f est continue sur R*.

. lin%)f () = Hmosmx = 1. Donc le prolongement continu de f, noté f, est
donné par '
sinz
= 0
f (SC) T 9 z 7é ’
1, z=0.
1 .
2) f(z) = ——=, Dy =R*, f est continue sur R*,
1+e=
En effet,
1 .
lim— = 4oo=limf(z)=0, et
“’ z—0t
z—0+
1
lim— = —oco=limf(x)=1#0.
;1:—)0%‘ z=07

Dou f n’admet pas un prolongement par continuité en 0.
(On peut bien entendu prolonger f par continuité en 0 a droite
et on peut aussi prolonger a gauche de 0).

x%sin *
3) f(l’):ﬁ (@eRsa>2; e -mmn]).

o fest définiesi 1 —cosz # 0 x # 2km, (k€ Z).
Donc Dy = [—7, 7] — {0}.



e Pour étudier le prolonbeable par continuité de f sur D; on calcule :

1
T

) z”‘sin% ) xasin% 9T .2 X .
im—+* = lim——> = lim — (car cosx = cos” — —sin” — et smxwx)
z—01 —coszx z—0 2 sin % z—0 2% 2 2 0

% sin

1

= lim2z® ?sin —.
r—0 xT

e Sia=2: ili%f(x) =lim2sini A

z—0

e Sia>2: lin%)f (z) = lim22° ?sin = = 0.
= z—0

Alors on peut prologer f par continuité dans le cas ou o > 2 et
son prolongement g défini par

1

z%sin = .
g@) =3 Tocomg S o€lmm={0},
0, six=0.

Exercice 6. posons f(z)=1+sinz — a7 f est définie, continue sur [0, 7]
et on a
f0)=1 et f(r)=1-7*<0.

Donc d’apreés le théoréme des valeurs intermédiares : 3ec € 10,7 :f (¢) = 0.
Exercice 7*. Posons

g(@)=f(z) = f(z—1) sur [0,1]
Alors g est continue sur [0, 1]. De plus
g(0)=f(0)=f(=1) et g(1)=f(1)-f(0).

Puisque f (1) = f(—1), alors g(0) = —g (1) et donc g (0)g (1) < 0.
Donc d’aprés le théoréme des valeurs intermédiares :

dce€]0,1[:g(c) =0,i.e Ic€]0,1[: f(c)=f(c—1).
Exercice 8. Soit la fonction f définie de [0, 1] dans R, par :

fla) =

T
241
a) Montrons que f est strictement monotone.

Soit (z1,x2) € [0,1] x [0, 1], supposons que 1 > x2. On a

(£E1 — 172) (1 — 1’1332)
(@i +1) (23 +1) ~

f(z1) = f(x2) =

donc le signe de f (x1) — f (z2) est celui de (1 — z125), mais



0<z1 <1 et 0<z3<1 donc: 1—z129>0= f(21)— f(22) > 0.
f est alors strictement croissante, donc f est strictement monotone.

b) f étant continue sur [0, 1], strictement monotone donc elle est bijective de

0.1] sur 7 (0,1) = 0.5

Déterminons ! :

1
f~1 est définie sur [0, 2} a valeurs dans [0, 1], continue et strictement

1 1
croissante sur {0, 2] . De plus par définition on a pour x € {0, 2} et y€l0,1]

y=f"@) sr=F(y) =>y=?

donc x = 5 sof—-y+x=0
Y
1 1—+v1—422
ce qui donne pour x € [0, 2} une unique solution : y = 2796 €10,1].
x
1—+1—4z2
Dou f~1(z) = e
2z
e Rappel: limites usuelles
i 1-— 1
Dlim b = 1, 2)lim —— o0 —
z—0 X z—0 x 2
! In(1
3) lim 1, g tim 20D
z—0 X rz—0t T
|
5) lim In() 0, 6) lim In(z) = -0
r—+o00 I x—0+
h t
D — 1 gum 2 g
z—0+ L z—0 €T
Q)mlirngm In(z) = 0.

e Les limites usuelles en 0, nous donnent les équivalents suivants
au voisinage de 0 :

2
T
esinz ~ x etanx ~x 01—cosm~? eln(l4+z)~z

ofe*—1] ~ z e(l+z)*—1~azx eshr~ux.



