
Table des Matières

Introduction 1

1 Fonctions réelles d�une variable réelle 3
1.1 Notions de bases sur les fonctions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Parité et périodicité . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Fonctions majorées, minorées, bornées . . . . . . . . . . . . . . . . . . 6
1.1.3 Fonctions croissantes, décroissantes . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Maximum local, Minimum local . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Quelques fonctions usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Limite d�une fonction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Propriétés des limites . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Notation de Landau . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Fonctions continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Continuité en un point . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Discontinuité de première et de seconde espèce . . . . . . . . . . . . . 15
1.4.3 Propriétés des fonctions continues . . . . . . . . . . . . . . . . . . . . 16
1.4.4 Prolongement par continuité . . . . . . . . . . . . . . . . . . . . . . 16
1.4.5 Continuité uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.6 Continuité sur un intervalle . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.7 Fonctions monotones et bijections . . . . . . . . . . . . . . . . . . . . 21

1.5 Exercices Corrigés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



2 Enseignante: A.BOUDIAF - Faculte Des Sciences Universit Setif 1



Chapitre 1

Fonctions réelles d�une variable
réelle

1.1 Notions de bases sur les fonctions

Dé�nition 1.1.1. Une fonction d�une variable réelle à valeurs réelles est une application
f : E ! R, où E est une partie de R. En général, E est un intervalle ou une réunion
d�intervalles. Les éléments de E qui ont une image par f forment l�ensemble de dé�nition de
f , noté Df : (On appelle E le domaine de dé�nition de la fonction f ).

Exemple 1. La fonction f : x 7!
p
x2 � 1 est dé�nie pour tout x 2 R tel que x2�1 � 0:

Donc x 2 ]�1;�1] [ [1;+1[ = Df : L�image de 4 par f est
p
15; on dit que 4 est un

antécédent de
p
15:

� On appelle graphe, ou courbe représentative, d�une fonction f dé�nie sur un intervalle
Df � R, l�ensemble

Gf = f(x; f (x)) : x 2 Dfg

� formé des points (x; f (x)) 2 R2 du plan muni d�un repère orthonormé
�
o;
!
i ;
!
j
�
.

Exemple 2. Le ghraphe de la fonction f (x) = x3 � x sur l�intervalle [�3; 3] :

3
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En fait, son domaine de dé�nition est Df = R: On remarque que la courbe Cf est
symétrique par rapport à l�origine du repère orthonormé.

1.1.1 Parité et périodicité

Dé�nition 1.1.2. Soit I un intervalle de R symétrique par rapport à 0 (c�est-à-dire de la
forme [�a; a] ou ]�a; a[ ou R): Soit f : I ! R une fonction dé�nie sur cet intervalle. On dit
que :

� f est paire si 8x 2 I f (�x) = f (x) ;
� f est impaire si 8x 2 I f (�x) = �f (x) :
Interprétation graphique :
� f est paire si et seulement si son graphe est symétrique par rapport à l�axe des ordonnées

(�gure de gauche).
� f est impaire si et seulement si son graphe est symétrique par rapport à l�origine (�gure

de droite).

Exemple 3.
� La fonction dé�nie sur R par x 7! x2n (n 2 N) est paire.
� La fonction dé�nie sur R x 7! x2n+1 (n 2 N) est impaire.
� La fonction cos : R! R est paire. La fonction sin :R! R est impaire.

Dé�nition 1.1.3. Soit f :R! R une fonction et T un nombre réel, T > 0. La fonction f
est dite périodique de période T si 8x 2 R f (x+ T ) = f (x) :
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Interprétation graphique : f est périodique de période T si et seulement si son
graphe est invariant par la translation de vecteur T

!
i , où

!
i est le premier vecteur de coor-

données.
Exemple 4.
Les fonctions sinus et cosinus sont 2� périodiques. La fonction tangente est � périodique.

Dé�nition 1.1.4. (Opérations sur les fonctions) Si f et g sont deux fonctions dé�nies
sur le même intervalle I � R, on a alors les résultats suivants :

1. Somme : la fonction somme f + g est dé�nie pour tout réel x de l�intervalle I par :

(f + g) (x) = f (x) + g (x) :

2. Produit : la fonction produit fg est dé�nie pour tout réel x de l�intervalle I par :

(fg) (x) = f (x) g (x) :

3. la multiplication de f par un scalaire � 2 R est dé�nie par �:f : I ! R : (�:f) (x) =
�:f (x) pour tout x 2 I.

4. Quotient : lorsque la fonction g ne s�annule pas sur l�intervalle I, la fonction quotient
f

g
est dé�nie pour tout réel x de I par

�
f

g

�
(x) =

f (x)

g (x)
:

Dé�nition 1.1.5. (Restriction). Soit f une application dé�nie sur un intervalle I de
R. Soit I0 un intervalle de R inclus dans I. On appelle restriction de f à I0 que l�on
note f jI0 , la fonction dé�nie sur I0 par :

pour tout x 2 I0; f jI0 (x) = f (x) :

Dé�nition 1.1.6. (Composition de fonctions) Soit f une fonction dé�nie d�un
intervalle I de R à valeurs dans un intervalle J de R. Soit g une fonction dé�nie de
l�intervalle J de R vers un intervalle K de R. La fonction composée des fonctions
f et g est la nouvelle fonction que l�on écrit g � f (et que l�on lit g rond f) dé�nie
pour tout x dans l�intervalle I par : (g � f) (x) = g (f (x)) ; et que l�on peut écrire de
la façon suivante :

g � f : I
f! J

g! K

x 7! f (x) 7! g (f (x)) :
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1.1.2 Fonctions majorées, minorées, bornées

Dé�nition 1.1.7. Soient f : I ! R et g : I ! R deux fonctions. Alors :

� f � g si 8x 2 I f (x) � g (x)

� f � 0 si 8x 2 I f (x) � 0

� f > 0 si 8x 2 I f (x) > 0

� f est dite constante sur I si 9a 2 R 8x 2 I f (x) = a

� f est dite nulle sur I si 8x 2 I f (x) = 0:

Dé�nition 1.1.8. Soit f : I ! R une fonction. On dit que :
� f est majorée sur I si 9M 2 R 8x 2 I f (x) �M
� f est minorée sur I si 9m 2 R 8x 2 I f (x) � m
� f est bornée sur I si f est à la fois majorée et minorée sur I, c�est-à-dire si 9M 2 R

8x 2 I jf (x)j �M:

1.1.3 Fonctions croissantes, décroissantes

Dé�nition 1.1.9. Soit f : I ! R une fonction. On dit que :

� f est croissante sur I si 8x; y 2 I x � y ) f (x) � f (y)

� f est strictement croissante sur I si 8x; y 2 I x < y ) f (x) < f (y)

� f est décroissante sur I si 8x; y 2 I x � y ) f (x) � f (y)

� f est strictement décroissante sur I si 8x; y 2 I x < y ) f (x) > f (y)

� f estmonotone (resp. strictement monotone) sur I si f est croissante ou décroissante
(resp. strictement croissante ou strictement décroissante) sur I.

1.1.4 Maximum local, Minimum local

Dé�nition 1.1.10. Soit f : I ! R une fonction, si f est majorée, on appelle borne
supérieure de f le nombre réel

sup f
I

= sup ff (x) ; x 2 Ig :

� On dé�nit de même la borne inférieure.

� On dit que f admet un maximum en a a 2 I si f(a) est le maximum de la partie f(I) =
ff(x) ; x 2 Ig:
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� On dit que f admet un maximum local en a 2 I s�il existe un intervalle ouvert U
contenant a tel que f(a) soit le maximum de f(I \ U). On dé�nit de même la notion
de minimum et de minimum local.

� Un extremum (local) est un maximum (local) ou un minimum (local).

Exemple 5.

1. Soit f : ]0; 1[ ! R dé�nie par f (x) = x: Alors f est bornée. On a sup]0;1[ f = 1; mais
max]0;1[ f n�existe pas.

On a inf ]0;1[ f = 0; mais min]0;1[ f n�existe pas.

2. Une fonction peut admettre un maximum en plusieurs points. Ainsi f(x) = sinx admet

un maximum en les points x =
�

2
+ 2k� avec k 2 Z:

1.2 Quelques fonctions usuelles

1) Fonction constante

La fonction constante est la fonction dé�nie sur I = R de la façon suivante :

f R ! R
x 7! a

où a est un nombre réel.

2) Fonction identité

La fonction identité est la fonction dé�nie sur I = R de la façon suivante :

f R ! R
x 7! x:

La fonction identité n�est rien d�autre qu�une fonction linéaire de la forme f(x) = mx
dont le coe¢ cient directeur m vaut 1:

3) Fonction puissances entières n 2 N

Commençons par rappeler la dé�nition de la puissance entière d�un nombre réel a.

Dé�nition 1.2.11. (Puissance entière) Soient a un réel non nul et n un entier naturel.
La puissance n-ième de a est dé�nie par :

an = a� a� a� :::� a (où a est multiplié n fois)

Notons que si n = 0; a0 = 1:
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� La fonction puissance entière peut donc être dé�nie de la façon suivante :

f R ! R
x 7! xn:

Remarque.
1. Si n = 0 on retrouve la fonction constante dé�nie plus haut.

2. Si n = 1 on retrouve la fonction identité Id dé�nie plus haut.

3. Si n est pair, la fonction f est paire.

4. Si n est impaire, la fonction f est impaire.

5. Si n est un entier négatif, il faut bien faire attention au domaine de dé�nition qui devient
Df = R�:

4) Fonction polynôme

f R ! R

x 7! a0 + a1x+ a2x
2 + :::+ anx

n =
nX
i=0

aix
i;

où les a0; a1; :::; an sont des réels (qui peuvent être nuls) appelés coe¢ cients du polynôme.

5) Fonction racine n-ième, puissance rationnelle

On peut alors dé�nir la fonction racine n-ième de la façon suivante :
- Si n est pair :

f R+ ! R
x 7! n

p
x;

- Si n est impair :

f R ! R
x 7! n

p
x:

Et d�un autre côté la fonction puissance rationnelle (pour n�importe quels p 2 Z et
q 2 N�) :

f R�+ ! R

x 7! x
p
q :

Remarque.
1. Noter que si p = 1 et q = 2 on obtient

p
a et a > 0 qui est la racine carrée comme

nous la connaissons (mais dé�nie seulement pour a > 0).
2. Noter que si p = 1 et q = 3 on obtient 3

p
a, et a > 0 qui est la racine cubique que

nous connaissons également (et qui peut être dé�nie sur R).
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6) Fonction logarithme népérien

La fonction logarithme népérien (notée ln) est connue depuis la terminale. Cette fonction

peut être construite de plusieurs façon : c�est la primitive de la fonction inverse x 7! 1

x
(c�est

même en fait l�intégrale entre 1 et x de la fonction inverse).
La fonction ln est dé�nie de la façon suivante :

f R�+ ! R
x 7! ln (x) :

Propriété (Logarithme népérien)

1. Il existe un nombre e = 2; 71828 tel que ln(e) = 1.

2. Soient a et b deux réels strictement positifs, alors

ln (ab) = ln (a) + ln (b) et ln
�a
b

�
= ln (a)� ln (b) :

Cette dernière égalité nous permet d�ailleurs de déduire (en posant a = b) que ln(1) = 0.

3. Soient n un entier naturel non nul, et a un réel strictement positif, on a alors :

ln (an) = n ln (a) et ln
�
a�n

�
= �n ln (a) :

Dé�nition 1.2.12. (Logarithme de base a) Soient a un réel strictement positif. Pour
tout réel x strictement positif, on dé�nit son logarithme de base a noté loga(x) par

loga(x) =
ln (x)

ln (a)
:

7) Fonction exponentielle

Intimement liée à la fonction ln (c�est sa fonction réciproque), la fonction exponentielle
est dé�nie comme suit :

exp R ! R�+
x 7! ex:

Propriété (Exponentielle)

1. Pour tous réels a et b :
ea+b = eaeb; ea�b =

ea

eb
:
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2. Pour tout réel a et pour tout entier naturel n :

(ea)n = ena; (ea)�n =
1

ena
:

3. Pour tout réel strictement positif a et pour tout réel b :

eln a = a; ln (ea) = a et eb ln a = ab:

8) Fonctions circulaires (ou trigonométriques)

La trigonométrie est connue depuis le collège. Les formules avec sinus, cosinus et tangente;...
sont à connaître par coeur, (voir le dernier chapitre (Fonctions �el�ementaires).

1.3 Limite d�une fonction

Limite �nie d�une fonction en un point

Dé�nition 1.3.13. Soit f : I ! R une fonction. Soit x0 2 R un point de I ou une
extrémité de I: Soit ` 2 R: On dit que f a pour limite ` en x0 si

8" > 0 9� > 0 8x 2 I jx� x0j < � ) jf (x)� `j < "

On dit aussi que f(x) tend vers ` lorsque x tend vers x0. On note alors lim
x!x0

f (x) ou

bien lim
x0
f .

Exemple 5.

� lim
x!x0

x2 = x20 pour tout x0 2 R:

� la fonction partie entière E n�a pas de limite aux points x0 2 Z:

Limites in�nie d�une fonction en un point

Dé�nition 1.3.14. (Limite +1 en un point) Soit f une fonction dé�nie sur un ensemble
de la forme ]a; x0[ [ ]x0; b[ :
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� On dit que f a pour limite +1 en x0 si

8A > 0 9� > 0 8x 2 I jx� x0j < � ) f (x) > A

On note alors lim
x!x0

f (x) = +1:

� On dit que f a pour limite �1 en x0 si

8A > 0 9� > 0 8x 2 I jx� x0j < � ) f (x) < �A

On note alors lim
x!x0

f (x) = �1:

Limite en l�in�ni
Soit Soit f : I ! R une fonction dé�nie sur un intervalle de la forme I =]a;+1[:

Dé�nition 1.3.15. � Soit ` 2 R: On dit que f a pour limite ` en +1 si

8" > 0 9B > 0 8x 2 I x > B ) jf (x)� `j < ":

On note alors lim
x!+1

f (x) = ` ou lim
+1
f (x) = `:

� On dit que f a pour limite +1 en +1 si

8A > 0 9B > 0 8x 2 I x > B ) f (x) > A:

On note alors lim
x!+1

f (x) = +1:

� On dé�nirait de la même manière la limite en �1 pour des fonctions dé�nies sur les
intervalles du type ]�1; a[ :

Exemple 6. On a les limites classiques suivantes pour tout n � 1 :

� lim
x!+1

xn = +1 et � lim
x!�1

xn =

�
+1 si n est pair
�1 si n est impair

� lim
x!+1

�
1

xn

�
= 0 et � lim

x!�1

�
1

xn

�
= 0:

Limite à gauche et à droite
Soit f une fonction dé�nie sur un ensemble de la forme ]a; x0[ [ ]x0; b[ :

� On appelle limite à droite en x0 de f la limite de la fonction fj]x0;b[ en x0 et on la note
lim
x+0

f:

� On dé�nit de même la limite à gauche en x0 de f : la limite de la fonction fj]a;x0[ en x0 et
on la note lim

x�0

f:

� On note aussi lim lim f (x)
x!x0
x>x0

pour la limite à droite et lim lim f (x)
x!x0
x<x0

pour la limite à gauche.
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1.3.1 Propriétés des limites

Proposition 1. Si f admet une limite en x0, cette limite est unique.
Preuve. La démonstration est identique à celle donnée pour les suites. On procède

par l�absurde en supposant que f admet deux limites ` et `0 avec ` < `0 en x0: On prend

" =
`0 � `
2

: Il existe alors � > 0 tel que jx� x0j < � implique que jf (x)� `j < " et �0 > 0

tel que jx� x0j < �0 implique que jf (x)� `0j < ": On a

`0 � ` =
��`0 � f (x) + f (x)� `�� � ��`0 � f (x)��+ jf (x)� `j

par l�inégalité triangulaire. Si jx� x0j < min
�
�; �0

�
; on obtient `0 � ` < 2

`0 � `
2

; ce qui

absurde.
Propriétés de la limite d�une fonction
Les propriétés des limites de suites se généralisent facilement au cas des fonctions.
Soient deux fonctions f et g. On suppose que x0 est un réel, ou que x0 = �1.
Proposition 2. Si lim

x0
f = ` 2 R et lim

x0
g = `0 2 R, alors :

� lim
x0
(�:f) = �:` pour tout � 2 R

� lim
x0
(f + g) = `+ `0

� lim
x0
(f � g) = `� `0

� Si ` 6= 0; alors lim
x0

1

f
=
1

`

De plus, si lim
x0
f = +1 (ou �1) alors lim

x0

1

f
= 0:

� Si lim
x0
f = 0 et si g est bornée sur un intervalle ouvert contenant x0 alors lim

x0
f (x) g (x) = 0:

Cette proposition se montre de manière similaire à la proposition analogue sur les limites
de suites.
Proposition 3. Si lim

x0
f = ` et lim

x0
g = `0; alors lim

x0
g � f = `0:

Forme indéterminée. Voici une liste de formes indéterminées :

+1�1; 0�1;11 ;
0

0
; 11;10:

� Si f � g et si lim
x0
f = ` 2 R et lim

x0
g = `0 2 R, alors : ` � `0:

� Si f � g et si lim
x0
f = +1 alors lim

x0
g = +1:

� Théorème des gendarmes

Si f � g � h et si lim
x0
f = lim

x0
h = `; alors g a une limite en x0 et lim

x0
g = `:
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� limites usuelles

1: lim
x!0

sinx

x
= 1; 2: lim

x!0

1� cosx
x2

=
1

2

3: lim
x!0

ex � 1
x

= 1; 4: lim
x!0+

ln (1 + x)

x
= 1

5: lim
x!+1

ln (x)

x
= 0; 6: lim

x!0+
ln (x) = �1

7: lim
x!0+

shx

x
= 1 8: lim

x!0

tan (x)

x
= 1:

1.3.2 Notation de Landau

Dans ce qui suit, on considère des fonctions f, g, ... à valeurs dans R, dé�nies sur un voisinage
pointé V d�un point a 2 R [ f�1g :

Dé�nition 1.3.16. La fonction f est dite négligeable devant g au voisinage de a, s�il
existe un voisinage V de a et une fonction " : V ! R de limite nulle en a, telle que f = ":g
(dans V ). On écrit

f �
a
g
de f, 9" : V ! R t.q. f = ":g et lim "

a
= 0;

On appelle f = o(g) la notation de Landau et f� g la notation de Hardy.

Dé�nition 1.3.17. On dira que f et g sont équivalentes au voisinage du point a ssi :
f (x)

g (x)
!
x!a

1

Notation : f (x) �
a
g (x) ou f (x) �

x!a
g (x) ou encore f (x) � g (x) s�il n�y a pas

d�ambiguïté.

� On démontre facilement que � est ré�exive, symétrique et transitive.

� Les limites usuelles en 0, nous donnent les équivalents suivants au voisinage de 0 :

� sinx � x � tanx � x � 1� cosx � x2

2
� ln (1 + x) � x

� [ex � 1] � x � (1 + x)� � 1 � �x � shx � x:

Théorème 1.3.18. (Généralisation) Plus généralement, au voisinage de a lorsque f(x)
!
x!a

0; on a :

� sin f(x) � f(x) � tan f(x) � f(x) � 1� cos f(x) � f(x)2

2
� ln (1 + f(x)) � f(x)

�
h
ef(x) � 1

i
� f(x) � (1 + f(x))� � 1 � �f(x) � shf(x) � f(x):

Preuve. Ces résultats proviennent directement des limites vues dans le cours sur les
fonctions usuelles.
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1.4 Fonctions continues

1.4.1 Continuité en un point

Dé�nition 1.4.19. Soit I un intervalle de R et f : I ! R une fonction.

� On dit que f est continue en un point x0 2 I si

8" > 0 9� > 0 8x 2 I jx� x0j < � ) jf (x)� f (x0)j < "

c�est-à-dire si f admet une limite en x0 (cette limite vaut alors nécessairement f (x0)).

� On dit que f est continue sur I si f est continue en tout point de I.

� une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever
le crayon » , c�est-à-dire si sa courbe représentative n�admet pas de saut. Voici des
fonctions qui ne sont pas continues en x0 :

Exemple 7. Les fonctions suivantes sont continues :

� une fonction constante sur un intervalle,

� la fonction racine carrée x 7!
p
x sur [0;+1[;

� les fonctions sin et cos sur R,
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� la fonction valeur absolue x 7! jxj sur R,

� la fonction exp sur R,

� la fonction ln sur ]0;+1[.

Par contre, la fonction partie entière E n�est pas continue aux points x0 2 Z , puisqu�elle
n�admet pas de limite en ces points. Pour x0 2 R n Z, elle est continue en x0.

� De façon similaire on utiliserait la limite à gauche pour parler de continuité à gauche et
de limite à droite pour parler de continuité à droite.

Dé�nition 1.4.20. (Continuité à gauche et à droite)

1. On dit que la fonction f est continue à gauche de x0 si et seulement si :

lim
x!x0�

f (x) = f (x0) :

2. On dit que la fonction f est continue à droite de x0 si et seulement si :

lim
x!x0+

f (x) = f (x0) :

Remarque.

1. On remarque que f est continue en x0 si et seulement si f est continue à droite et à
gauche de x0.

2. On dit f est continue sur l�intervalle I si et seulement si f est continue en tout point de
I.

1.4.2 Discontinuité de première et de seconde espèce

Dé�nition 1.4.21. On dit que f admet une discontinuité de 1re espèce en a si et seulement
si :

1. f n�est pas continue en a

2. f admet une limite �nie à gauche en a (si f est dé�nie à gauch de a )

3. f admet une limite �nie à droite en a (si f est dé�nie à droite de a ).

� Si f admet une limite �nie à gauche en a et une limite �nie à droite en a; on appelle saut
de f en a; le réel �f (a) dé�ni par :

�f (a) = lim f
a+

� lim f
a�

:

� Sous ces hypothèses, f est continue en a si et seulement si : �f (a) = 0:
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� Lorsque f n�est pas continue en a et n�admet pas une discontinuité de 1re espèce en a; on
dit que f admet une discontinuité de 2nde espèce en a:

Exemple 7. La fonction f : R! R dé�nie par

f (x) =

�
1
x si x 6= 0
0 si x = 0

admet une discontinuité de 2nde espèce en 0:

1.4.3 Propriétés des fonctions continues

Comme pour les limites, nous pouvons énoncer quelques propriétés de continuité.
Propriété 1 (Continuité et opérations sur les fonctions)
Soient f et g : I ! R deux fonctions continues en un point x0 2 I. On a alors les

propriétés suivantes :

� �:f est continue en x0 (pour tout � 2 R) ;

� f + g est continue en x0;

� f � g est continue en x0;

� si g (x0) 6= 0; alors
f

g
est continue en x0: En conséquence,

� Une fonction polynôme est continue sur R,

� Toute fonction rationnelle f dé�nie pour tout x dans l�intervalle I de R par f(x) =P (x)
Q(x)

;

où P et Q sont des polynômes dé�nis sur I avec Q(x) 6= 0 sur I, est continue sur I.

� Continuité et composition de fonctions

Soient f : I ! R et g : J ! R deux fonctions telles que f (I) � J: Si f est continue en
un point x0 2 I et si g est continue en f (x0) ; alors g � f est continue en un point x0:

1.4.4 Prolongement par continuité

Dé�nition 1.4.22. Soit I un intervalle, x0 2 I et f : I n fx0g ! R une fonction.

� On dit que f est prolongeable par continuité en x0 si f admet une limite �nie en x0.
Notons alors ` = lim

x0
f:

� On dé�nit alors la fonction g : I ! R en posant pour tout x 2 I

g (x) =

�
f (x) si x 6= x0
` si x = x0;
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alors g est continue en x0 et on l�appelle le prolongement par continuité de f
en x0.

Exemple 7. Considérons la fonction f dé�nie sur R� par f (x) =
sinx

x
: Alors la

fonction g dé�nie par :

g (x) =

�
1 si x = 0
sinx
x sinon

est un prolongement par continuité de f .

Continuité par morceaux

Dé�nition 1.4.23. Soient (a; b) 2 R2; tel que a < b; et f :[a; b]! R:
On dit que f est continue par morceaux sur [a; b] si et seulement s�il existe n 2 N� et

(a0; a1; :::; an) 2 [a; b]n+1 tel que :

� a = a0 < ::: < an = b:

� Pour tout i 2 f0; :::; n� 1g ; f est continue sur ]ai; ai+1[ et admet une limite �nie à droite
en ai et une limite �nie à gauche en ai+1:

1.4.5 Continuité uniforme

Dé�nition 1.4.24. Soit f : I ! R une fonction. On dit que f est uniformément continue
sur I si et seulement si :

8" > 0; 9� > 0; 8 (x; y) 2 I2; (jx� yj � � ) jf (x)� f (y)j � ") :

La proposition suivante est immédiate.
Proposition 4. Si f est uniformément continue sur I, alors f est continue sur I:
La réciproque de cette proposition est fausse : une fonction f est continue sur I sans être

uniformément continue sur I:
Exemple 9. La fonction f (x) = x2 n�est pas uniformément continue sur l�intervalle

[1;+1[ : En e¤et, considérons les suites
xn = n+

1

n
et yn = n: On a toujours

jf (xn)� f (yn)j = 2 +
1

n2
> 2;
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bien que jxn � ynj =
1

n
: Aucun nombre � ne peut correspondre à " = 2:

Dé�nition 1.4.25. La fonction f : I ! R est dite k-Lipschitzienne d�ordre � 2 R+� si
pour tous x1; x2 2 I; il existe une constante k 2 R tel que

jf (x2)� f (x1)j � k jx2 � x1j� :

Toute fonction k-lipschitziene d�ordre �, 0 < � < 1, est uniformément continue, puisque
pour " un réel positif donné, on peut choisir � = "=k indépendamment de x.

Suites et continuité
Proposition 5. Soit f : I ! R une fonction et x0 un point de I. Alors :

f est continue en x0 , pour toute suite (un) qui converge vers x0
la suite (f(un)) converge vers f (x0) :

1.4.6 Continuité sur un intervalle

Le théorème des valeurs intermédiaires

Théorème 1.4.26. (Théorème des valeurs intermédiaires)

Soit f : [a; b]! R une fonction continue sur un segment.
Pour tout réel y compris entre f (a) et f (b) ; il existe c 2 [a; b] tel que f (c) = y:
Une illustration du théorème des valeurs intermédiaires (�gure de gauche), le réel c n�est

pas nécessairement unique.
De plus si la fonction n�est pas continue, le théorème n�est plus vrai (�gure de droite).

Démonstration. Montrons le théorème dans le cas où f(a) < f(b). On considère alors
un réel y tel que que f(a) � y � f(b) et on veut montrer qu�il a un antécédent par f .

1. On introduit l�ensemble suivant
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A = fx 2 [a; b] f (x) � yg :

Tout d�abord l�ensemble A est non vide (car a 2 A) et il est majoré (car il est contenu
dans [a; b]) :

il admet donc une borne supérieure, que l�on note c = supA. Montrons que f(c) = y.

2. Montrons tout d�abord que f(c) � y. Comme c = supA, il existe une suite (un)n2N
contenue dans A telle que (un) converge vers c. D�une part, pour tout n 2 N, comme
un 2 A, on a f(un) � y.

D�autre part, comme f est continue en c, la suite (f(un)) converge vers f(c). On en
déduit donc, par passage à la limite, que f (c) � y.

3. Montrons à présent que f(c) � y. Remarquons tout d�abord que si c = b, alors on a �ni,
puisque

f(b) � y. Sinon, pour tout x 2]c; b], comme x =2 A, on a f(x) > y. Or, étant donné que
f est continue en c, f admet une limite à droite en c, qui vaut f(c) et on obtient f(c) � y.
Applications du théorème des valeurs intermédiaires
Voici la version la plus utilisée du théorème des valeurs intermédiaires.

Corollaire 1.
Soit f : [a; b]! R une fonction continue sur un segment.

Si f(a):f(b) < 0; alors il existe c 2 ]a; b[ tel que f(c) = 0:
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Démonstration. Il s�agit d�une application directe du théorème des valeurs
intermédiaires avec y = 0.
L�hypothèse f(a):f(b) < 0 signi�ant que f(a) et f(b) sont de signes contraires.
Remarque. 1. Si f est strictement monotone sur [a; b], le point c est unique.
2. Si f est continue sur un intervalle I, alors f (I) est un intervalle.
3. Si f est continue sur un segment I, alors f (I) est un segment.
Corollaire 2.
Soit f : I ! R une fonction continue sur un intervalle I. Alors f(I) est un intervalle.
Attention ! Il serait faux de croire que l�image par une fonction f de l�intervalle [a; b]
soit l�intervalle [f(a); f(b)] (voir la �gure ci-dessous).

Démonstration. Soientt y1, y2 2 f(I); y1 � y2: Montrons que si y 2 [y1; y2] ; alors
y 2 f(I): Par hypothèse, il existe x1; x2 2 I tel que y1 = f (x1) ; y2 = f (x2) et donc y est
compris entre f (x1) et f (x2) : D�après le théorème des valeurs intermédiaires, comme f est
continue, il existe donc x 2 I tel que y = f (x) ; et ainsi y 2 f(I):
Fonctions continues sur un segment

Théorème 1.4.27. Soit f : [a; b] ! R une fonction continue sur un segment. Alors il
existe deux réels m et M tels que f([a; b]) = [m;M ]. Autrement dit, l�image d�un segment
par une fonction continue est un segment.

� Comme on sait déjà par le théorème des valeurs intermédiaires que f([a; b]) est un inter-
valle, le théorème précédent signi�e exactement que

� Si f est continue sur [a; b] alors f est bornée sur [a; b], et elle atteint ses bornes.
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� Donc m est le minimum de la fonction sur l�intervalle [a; b] alors que M est le maximum.

1.4.7 Fonctions monotones et bijections

Rappels : injection, surjection, bijection

Dé�nition 1.4.28. Soit f : E ! F une fonction, où E et F sont des parties de R:

� f est injective si 8x; x0 2 E f (x) = f (x0)) x = x0:

� f est surjective si 8y 2 F 9x 2 E y = f (x) :

� f est bijective si f est à la fois injective et surjective, c�est-à-dire si f � g = idF 9!x 2 E
y = f (x) :

Proposition 6.
Si f : E ! F est une fonction bijective alors il existe une unique application g : F ! E
telle que g � f = idE et f � g = idF :
La fonction g est la bijection réciproque de f et se note f�1:
Remarque.

� On rappelle que l�identité, idE : E ! E est simplement dé�nie par x! x:

� g � f = idE se formule ainsi : 8x 2 E g (f (x)) = x:

� Alors que f � g = idF s�écrit : 8y 2 F f (g (y)) = y:

� Dans un repère orthonormé les graphes des fonctions f et f�1 sont symétriques par rapport
à la première bissectrice.

Fonctions monotones et bijections
Voici un théorème très utilisé dans la pratique pour montrer qu�une fonction est bijective.

Théorème 1.4.29. (Théorème de la bijection) Soit Soit f : I ! R une fonction dé�nie
sur un intervalle I de R. Si f est continue et strictement monotone sur I, alors
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1. f établit une bijection de l�intervalle I dans l�intervalle image J = f(I),

2. la fonction réciproque f�1 : J ! I est continue et strictement monotone sur J et elle a
le même sens de variation que f .

En pratique, si on veut appliquer ce théorème à une fonction continue f : I ! R,
on découpe l�intervalle I en sous-intervalles sur lesquels la fonction f est strictement

monotone.
Exemple 10. Considérons la fonction carrée dé�nie sur R par f(x) = x2.
La fonction f n�est pas strictement monotone sur R : elle n�est pas même pas injective
car un nombre et son opposé ont même carré.
Cependant, en restreignant son ensemble de dé�nition à ]�1; 0] d�une part et à [0;+1[
d�autre part, on dé�nit deux fonctions strictement monotones :

f1 :
�
]�1; 0]! [0;+1[

x 7! x2
et f2 :

�
[0;+1[! [0;+1[

x 7! x2

On remarque que f (]�1; 0]) = f ([0;+1[) = [0;+1[ : D�après le théorème précédent,
les fonctions f1 et f2 sont des bijections. Déterminons leurs fonctions réciproques f�11 :
[0;+1[! ]�1; 0] et f�12 : [0;+1[! [0;+1[ :

Soient deux réels x et y tels que y � 0. Alors

y = f (x), y = x2 , x =
p
y ou x = �py;

c�est-à-dire y admet (au plus) deux antécédents, l�un dans [0;+1[ et l�autre dans ]�1; 0].
Et donc

f�11 (y) = �py et f�12 (y) =
p
y:

On véri�e bien que chacune des deux fonctions f1 et f2 a le même sens de variation que
sa réciproque.
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Lemme 1.4.30. Soit f : I ! R une fonction dé�nie sur un intervalle I de R. Si f est
strictement monotone sur I, alors f est injective sur I.

Démonstration. Soient x; x0 2 I tels que f (x) = f (x0) : Montrons que x = x0: Si on
avait x < x0; alors on aurait nécessairement f (x) < f (x0) ou f (x) > f (x0), suivant que f est
strictement croissante, ou strictement décroissante. Comme c�est impossible, on en déduit
que x � x0: En échangeant les rôles de x et de x0, on montre de même que x � x0. On en
conclut que x = x0 et donc que f est injective.

Démonstration du théorème.

1. D�après le lemme précédent, f est injective sur I. En restreignant son ensemble d�arrivée
à son image J = f(I), on obtient que f établit une bijection de I dans J . Comme f
est continue, par le théorème des valeurs intermédiaires, l�ensemble J est un intervalle.

2. Supposons pour �xer les idées que f est strictement croissante.

(a) Montrons que f�1 est strictement croissante sur J . Soient y, y0 2 J tels que y < y0.
Notons

x = f�1 (y) 2 I et x0 = f�1
�
y0
�
2 I:

Alors y = f (x) ; y0 = f (x0) et donc

y < y0 =) f (x) < f
�
x0
�
=) x < x0 (car f est strictement croissante)

=) f�1 (y) < f�1
�
y0
�
;

c�est-à-dire f�1 est strictement croissante sur J .

(b) Montrons que f�1 est continue sur J . On se limite au cas où I est de la forme ]a; b[, les
autres cas se montrent de la même manière. Soit y0 2 J . On note x0 = f�1 (y0) 2 I.
Soit " > 0: On peut toujours supposer que [x0 � "; x0 + "] � I: On cherche un réel
� > 0 tel que pour tout y 2 J on ait

y0 � � < y < y0 + � =) f�1 (y0)� " < f�1 (y0) < f�1 (y0) + "

c�est-à-dire tel que pour tout x 2 I on ait

y0 � � < f (x) < y0 + � =) f�1 (y0)� " < x < f�1 (y0) + ":

Or, comme f est strictement croissante, on a pour tout x 2 I

f (x0 � ") < f (x) < f (x0 + ") =) x0 � " < x < x0 + "
=) f�1 (y0)� " < x < f�1 (y0) + ":

Comme f (x0 � ") < y0 < f (x0 + ") ; on peut choisir le réel � > 0 tel que

f (x0 � ") < y0 � � et f (x0 + ") < y0 + �

et on a bien alors pour tout x 2 I

y0 � � < f (x) < y0 + � =) f (x0 � ") < f (x) < f (x0 + ")
=) f�1 (y0)� " < x < f�1 (y0) + ":

La fonction f�1 est donc continue sur J .
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1.5 Exercices Corrigés

Exercice 1. Soient f et g deux fonctions de R dans R. Répondre par oui ou non aux
questions avec des justi�cations rigoureuses :

(1) fg = 0) f = 0 _ g = 0:

(2) f2 = 0) f = 0:

(3) sup
0�x�1

(f (x) + g (x)) = sup
0�x�1

f (x) + sup
0�x�1

g (x) ; (f et g supposées aussi bornées).

(4) sup
0�x�1

(f (x) g (x)) = sup
0�x�1

f (x) sup
0�x�1

g (x) ; (f et g supposées aussi bornées).

(5) f2 continue) f continue.

(6) La fonction x 7�! x2, dé�nie sur [0;+1[, est paire.

(7) Toute fonction continue sur ]0; 1[ est bornée.

(8) La fonction partie entière x 7�! [x] est strictement croissante.

(9) Supposons que f est continue sur [0; 1[ ; alors

f ([0; 1[) = [f (0) ; f (1)[ :

Solution.

(1) Faux . Considèrons les fonctions

f (x) =

�
1; x > 0;
0; x � 0; et g (x) =

�
0; x > 0;
2; x � 0:

Alors f et g sont non nullles mais leurs produit fg est nul car

(fg) (x) =

�
1� 0; x > 0;
0� 2; x � 0; =

�
0; x > 0;
0; x � 0; = 0; 8x 2 R:

(2) Vrais. Montrons que la contraposée est vrais, i.e. montrons que

f 6= 0) f2 6= 0 est vraie.

Puisque f 6= 0, alors il existe un x0 2 R tel que f (x0) 6= 0: Donc f (x0) f (x0) = f2 (x0) 6=
0.

(3) Faux . Ce qui vrai est le suivant

sup
0�x�1

(f (x) + g (x)) � sup
0�x�1

f (x) + sup
0�x�1

g (x) ;
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mais on n�a pas toujours l�égalité comme le montre l�exemple suivant :
Soient f; g :[0; 1]! R telles que f (x) = x et g (x) = 1� x: Alors

sup
0�x�1

(f (x) + g (x)) = sup
0�x�1

(1) 6= sup
0�x�1

f (x) + sup
0�x�1

g (x) = 1 + 1 = 2:

(4) Faux . L�exemple précédent peut être aussi utilisé comme contre exemple dans cette
réponse. On a

sup
0�x�1

(f (x) g (x)) = sup
�
x� x2

�
0�x�1

=
1

4
6= sup
0�x�1

f (x) sup
0�x�1

g (x) = 1� 1 = 1:

(5) Faux . Par exemple, soit

f (x) =

�
2; x > 0;
�2; x < 0:

Alors f n�est pas continue (au point 0) ; mais f2 (x) = 4 est continue sur tout R:

(6) Faux . On ne peut pas parler de f paire ou impaire dans ce cas. Le problème prin-
cipal est qu�elle est dé�nie sur [0;+1[ et donc si x 2 [0;+1[, alors �x =2 [0;+1[
( sauf si x = 0) : Donc f (�x) n�a pas de sens.

(7) Faux . Par exemple, x 7! f (x) =
1

x
est continue sur ]0; 1[, mais elle n�est pas bornée

car lim
x!0+

1

x
= +1:

(8) On a pour tout couple (x; y) de R2 tel que x � y, on a [x] � [y] : Ceci veut dire que
x 7! [x] est croissante. Cependant, elle n�est pas strictement croissante. Par exemple,
0; 6 > 0; 5 mais [0; 6] = [0; 5] = 0 et donc on n�a pas [0; 6] > [0; 5] :

(9) Faux . Par exemple, x 7! f (x) = 1 � x est continue sur R et en particulier sur [0; 1[ ;
mais, on voit facilement que

f ([0; 1[) = ]0; 1] 6= [f (0) ; f (1)[ = [1; 0[ :

Donc, on doit ajouter des hypothèses pour que la réponce soit vraie. Par exemple, dans

notre cas, puisque f esr décroissante ( et continue) sur [0; 1[ ; alors f ([0; 1[) =
i
lim
x!1

f (x) ; f (0)
i
=

]0; 1] (on a utilisé la limite car on n�a pas dé�ni f en 1) : Si f est croissante et continue sur

[a; b[ ; alors f ([a; b[) =
�
f (a) ; lim

x!b
f (x)

�
:

Une fonction continue et ctoissante sur [a; b] véri�e f ([a; b]) = [f (a) ; f (b)] (voir le cours
pour les autres propriétés qui sont similaires).

Exercice 2. Montrer que toute fonction dé�nie sur intervalle symétrique peut s�écrire
sous la forme : fonction paire+fonction impaire

Application : ex = ::::+ ::::
Solution. Df = �Df ) 8x 2 Df ; �x 2 Df :
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Soit f (x) = g (x) + h (x) tel que g paire et h impaire

8x 2 Df ;�x 2 Df ) f (�x) = g (�x) + h (�x) = g (x) + (�h (x)) = g (x)� h (x)8<:
f (x) = g (x) + h (x)

et
f (�x) = g (x)� h (x)

)

8<:
f (x) + f (�x) = 2g (x)

et
f (x)� f (�x) = 2h (x)

)

8><>:
f(x)+f(�x)

2 = g (x)
et

f(x)�f(�x)
2 = h (x)

) f (x) =

�
f (x) + f (�x)

2

�
| {z }

paire

+

�
f (x)� f (�x)

2

�
| {z }

impaire

De(:) = R = R� [ R+ ) �De(:) = �
�
R� [ R+

�
=

�
�R�

�
[
�
�R+

�
= R+ [ R� = R = De(:)

) ex =

�
ex + e�x

2

�
| {z }

ch(x)

+

�
ex � e�x

2

�
| {z }

sh(x)

= ch (x) + sh (x) :

Exercice 3. Calculer les limites suivantes

1) lim
x!0

sin (px)

sin (qx)
; (p; q) 2 R� R� 2) lim

x!0
x2 cos

�
1

x

�
3) lim

x!0
sin (x) ln (x)

4) lim
x!0

ln
�
1 + x2

�
sin

�
1

x2

�
5) lim

x!0
x

�
1

x

�
6) lim

x!0

�
1
x

�
+ x�

1
x

�
� x

7) lim
x!+1

�3x2 + x+ 5
2x2 + 80

8) lim
x!+1

e2x � 3
e3x + 4

9) lim
x!+1

�
2
p
x+

p
x sinx

�
10)lim

x!0
x ln

xp
1 + x2

11) lim
x!+1

ln (ex + 2x)

x
12) lim

x!+1

�
1 +

2

x

�x
:

Solution.

1) lim
x!0

sin (px)

sin (qx)
= lim
x!0

px� sin (px)
px

qx� sin (qx)
qx

= lim
x!0

px� 1
qx� 1 =

p

q
:

2) 0 � lim
x!0

����x2 cos�1x
����� = lim

x!0
x2
����cos�1x

����� � lim
x!0

x2 � 1 = 0) lim
x!0

x2 cos

�
1

x

�
= 0;

�1 � cos

�
1

x

�
� 1) �x2 � x2 cos

�
1

x

�
� x2 ) lim

x!0
(�x)2 � lim

x!0
x2 cos

�
1

x

�
� lim
x!0

x2

) 0 � lim
x!0

x2 cos

�
1

x

�
� 0) lim

x!0
x2 cos

�
1

x

�
= 0:
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3) lim
x!0

sin (x) ln (x) = lim
x!0

�
sin (x)

x

�
(x ln (x)) =

�
lim
x!0

sin (x)

x

��
lim
x!0

x ln (x)
�
= 1� 0 = 0:

4) � 1 � sin

�
1

x2

�
� �1) � ln

�
1 + x2

�
� ln

�
1 + x2

�
sin

�
1

x2

�
� ln

�
1 + x2

�
) � lim

x!0
ln
�
1 + x2

�
� lim
x!0

ln
�
1 + x2

�
sin

�
1

x2

�
� lim
x!0

ln
�
1 + x2

�
) 0 � lim

x!0
ln
�
1 + x2

�
sin

�
1

x2

�
� 0) lim

x!0
ln
�
1 + x2

�
sin

�
1

x2

�
= 0:

5)
1

x
� 1 <

�
1

x

�
� 1

x
) 1� x < x

�
1

x

�
� 1) lim

x!0
(1� x) � lim

x!0
x

�
1

x

�
� 1

) 1 � lim
x!0

x

�
1

x

�
� 1) lim

x!0
x

�
1

x

�
= 1:

6) lim
x!0

�
1
x

�
+ x�

1
x

�
� x

= lim
x!0

x
�
1
x

�
+ x2

x
�
1
x

�
� x2

= lim
x!0

1 + 0

1� 0 = 1:

7) lim
x!+1

�3x2 + x+ 5
2x2 + 80

= lim
x!+1

�3x2
2x2

=
�3
2
:

8) lim
x!+1

e2x � 3
e3x + 4

= lim
x!+1

e2x
�
1� 3e�2x

�
e3x (1 + 4e�3x)

= lim
x!+1

e�x
�
1� 3e�2x

�
(1 + 4e�3x)

mais lim
x!+1

e�x = lim
x!+1

e�2x = lim
x!+1

e�3x = 0;

=) lim
x!+1

e2x � 3
e3x + 4

= lim
x!+1

e�x
�
1� 3e�2x

�
(1 + 4e�3x)

= 0� 1 = 0:

9) On a pour tout x positif : 2
p
x+

p
x sinx � 2

p
x�

p
x =

p
x:

Puisque lim
x!+1

p
x = +1; alors lim

x!+1

�
2
p
x+

p
x sinx

�
= +1:

10) La réponse est 0, trouvez la !
11) La réponse est 1, trouvez la !

12) Puisque on va prendre la limite en +1, alors 1 + 2

x
va être strictement positif

(pour x assez larges) ; d�où on peut écrire :

�
1 +

2

x

�x
= ex ln(1+

2
x) = e

2
ln(1+ 2

x)
2
x ! e2;

car lim
x!+1

ln
�
1 + 2

x

�
2
x

= 1: Ainsi lim
x!+1

�
1 +

2

x

�x
= e2:
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Exercice 4. Calculer les limites suivantes en utilisant les fonctions équivalentes :

1) lim
x!�1

q
1+x
x3

sin 1x
; 2) lim

x!�1
x4 + 1

cot g 1x
; 3) lim

x!0

2� cosx� cos 2x
tg2x

;

4) lim
x!1

sin 2�x

sin 5�x
; 5) lim

x!+1
sin

1

x
tg

�
2x

4x+ 3

�
; 6) lim

x!0+
log x: log [1 + log (1 + x)] :

Solution.

1) On pose y =
1

x
) y !
x!�1

0�; alors

lim
x!�1

q
1+x
x3

sin 1x
= lim
y!0�

r
y3
�
1 + 1

y

�
sin y

:

On sait que sin y �
0
y au voisinage de 0, donc

lim
x!�1

q
1+x
x3

sin 1x
= lim

y!0�

r
y3
�
1 + 1

y

�
sin y

= lim
y!0�

jyj
p
(y + 1)

y

= lim
y!0�

�y
p
y + 1

y
= �1:

2) lim
x!�1

x4 + 1

cot g 1x
= lim

x!�1
x4 + 1

1
tg 1
x

= lim
x!�1

tg
1

x

�
x4 + 1

�
= 0�1 (F:I)

= lim
y!0�
y= 1

x

tgy

�
1

y4
+ 1

�
= lim
y!0�

y

�
y4 + 1

y4

�
= �1;

�
tgy �

0
y
�
:

3) On sait que 1� cosx �
0

1

2
x2, 1� cos (2x) �

0

1

2
(2x)2 et tgy �

0
y au voisinage de 0, donc

lim
x!0

2� cosx� cos 2x
tan2 x

= lim
x!0

1

2
x2 +

1

2
(2x)2

x� x = lim
x!0

5
2x
2

x2
=
5

2
:

4) lim
x!1

sin 2�x

sin 5�x
= 0

0 (F:I) : On pose y = x� 1) y ! 0
x!1

; donc

lim
x!1

sin 2�x

sin 5�x
= lim
y!0

sin 2� (y + 1)

sin 5� (y + 1)
= lim
y!0

sin 2�y

� sin 5�y = limy!0

2�y

�5�y =
�2
5
:

5) lim
x!+1

sin
1

x
tan

�
2x

4x+ 3

�
= lim
y!0
y= 1

x

y tan

 
2
y

4
y + 3

!
= 0� tan

�
1

2

�
= 0:
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6) On sait que log (1 + y) �
0
y, donc log [1 + log (1 + x)] �

0
log (1 + y) et on a

log x: log [1 + log (1 + x)] � (log x) log (1 + x) = (x log x)
log (1 + x)

x

) lim
x!0+

log x: log [1 + log (1 + x)] = lim
x!0+

�
(x log x)

log (1 + x)

x

�
= 0� 1 = 0:

Exercice 5. Soit h la fonction dé�nie sur R par

h (x) =

�
x2 � 3x; x 2 ]�1; 2[
2x+ b; x 2 [2;+1[

Déterminer le nombre réel b de sorte que h soit continue en 2.
Solution. h et continue en 2 ssi lim

x!2�
h (x) = lim

x!2+
h (x) = h (2) : On a

lim
x
<!2
h (x) = 22 � 3� 2 = 4� 6 = �2

lim
x
>!2
h (x) = lim

x
>!2
(2x+ b) = 4 + b

h (2) = 2� 2 + b = 4 + b

9>>=>>;) 4 + b = �2) b = �6:

Exercice 6. Etudier la continuité uniforme des fonctions suivantes :

f1 (x) =
p
x; x > 0; f2 (x) = e

1
x , x 2 ]0; 1] ; f3 (x) = sin

p
x; x > 0; f4 (x) =

1

x
; x 2 [1;+1[ :

Solution.

1) f est uniformément continue. En e¤et, on sait que
��px�py�� �pjx� yj; 8x; y 2 R+:

Par dé�nition, f est uniformément continue sur R+ ssi

8" > 0; 9� > 0; 8x; y 2 R+:
�
jx� yj < �)

��px�py�� < "� :
Soit " > 0. Si � = "2; alors pour tous x et y positifs on aura��px�py�� �pjx� yj � p"2 = ":
Ainsi f est uniformément continue.

2) f n�est pas uniformément continue sur ]0; 1]. On doit montrer que

9" > 0; 8� > 0; 9x; y 2 ]0; 1] :
�
jx� yj < � ^

���e 1x � e 1y ��� � "� :
On prend

xn =
1

lnn
2 ]0; 1] et yn =

1

ln (n+ 1)
2 ]0; 1] ; où n � 4:

D�autre part, puisque ln (n+ 1) > lnn; alors���� 1lnn � 1

ln (n+ 1)

���� = 1

lnn
� 1

ln (n+ 1)
<

1

lnn
< � pour n � N =

h
e
1
�

i
+ 1:
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De plus,
��elnn � eln(n+1)�� = jn� n� 1j = 1: Ainsi
9" = 1 > 0; 8� > 0; 9n � max

�
4;
h
e
1
�

i
+ 1
�
; xn; yn 2 ]0; 1] :�

jx� yj < � ^
���e 1

xn � e
1
yn

��� � 1� :
3) f est uniformément continue sur R�+: Montrer ceci. par dé�nition, f est uniformément

continue sur R�+ ssi

8" > 0; 9� > 0; 8x; y 2 R�+:
�
jx� yj < �)

��sinpx� sinpy�� < "� :
Soit " > 0. On a alors��sinpx� sinpy�� =

����2 sin px�py2
cos

p
x+

p
y

2

���� � ����2 sin px�py2

����
� 2

��px�py��
2

=
��px�py�� �pjx� yj:

Il su¢ t donc de prendre � = "2:

4) f est uniformément continue sur [1;+1[ (Il su¢ t de prendre � = ") :

Exercice 7. Etudier dans chacun des cas suivants si la fonction f est prolongeable par
continuité

1)f (x) = lim
x!0+

1� cos
p
x

x
; 2) f (x) = sinx sin

1

x
; 3) f (x) =

x� sin 1x
1� cosx (� 2 R ;� � 2; x 2 [��; �]) :

Solution.

1) La fonction f est dé�nie sur R� et paire, elle est prolongeable par continuité sur R si, et
seulement si, elle admet une limite �nie à droite en 0. Or

lim
x!0+

f (x) = lim
x!0+

1� cos
p
x

x
= lim
x!0+

(
p
x)

2

2

x
=
1

2
:

Par conséquent, le prolongement par continuité de f est la fonction g dé�nie par

g (x) =

(
1�cos

p
jxj

jxj si x 2 R�
1
2 si x = 0:

2) La fonction f est dé�nie sur R� et paire.

L�inégalité jsinuj � 1; vraie pour tout réel u, implique

8x 2 R�; 0 � jf (x)j � jsin (x)j :

Il résulte que lim
x!0

f (x) = 0; donc f est prolonbeable par continuité en 0 et son prolongement

g dé�ni par
8x 2 R�; g (x) = f (x) et g (0) = 0:

est une fonction continue sur R:
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3) f est dé�nie si 1� cosx 6= 0, x 6= 2k�; (k 2 Z) :

Donc Df = [��; �]� f0g
Pour étudier le prolonbeable par continuité de f sur Df on calcule :

lim
x!0

x� sin 1x
1� cosx = lim

x!0

x� sin 1x
2 sin2 x2

= lim
x!0

x� sin 1x
2x

2

4

�
car sinx �

0
x
�

= lim2
x!0

x��2 sin
1

x
:

� Si � = 2 : lim
x!0

f (x) = lim 2 sin 1x @:
x!0

� Si � > 2 : lim
x!0

f (x) = lim 2x��2 sin 1x = 0:
x!0

Alors on peut prologer f par continuité dans le cas où � > 2 et son prolongement g dé�ni
par

8x 2 [��; �]� f0g ; g (x) = f (x) et g (0) = 0:

Exercice 8. Soit f une fonction continue sur le segment [0; 1] telle que 8x 2 [0; 1] ;
f (x) 2 [0; 1] : Montrer qu�il existe c 2 [0; 1] tel que f (c) = c:

Solution. La fonction ' fé�nie sur [0; 1] par ' (x) = x�f (x) est continue sur [0; 1] ; car
elle est la di¤érence de deux fonctions continues sur cet intervalle. Donc, l�image ' ([0; 1])
est un segment contenant en particulier ' (0) et ' (1) : Or ' (0) = �f (0) est négatif ou nul
et ' (1) = 1� f (1) est positif ou nul. D�après théorème de la valeur intermédiaire, il résulte

9c 2 [0; 1] ; ' (c) = 0, c�està-dire 9c 2 [0; 1] ; f (c) = c:

Exercice 9. Montrer que l�équation

x3 � 3x+ 1 = 0

admet au moins une racine entre 0 et 1. La racine est-elle unique ?
Solution. Soit f (x) = x3� 3x+1 qu�on dé�nit sur [0; 1] : Elle est continue sur [0; 1] car

c�est un polynôme. De plus, on a f (0) = 1 et f (1) = �1: Donc par le théorème de la valeur
intermédiaire, il existe un c 2 ]0; 1[ tel que f (c) = 0:

La solution est unique entre 0 et 1 car la fonction est strictement monotone sur ]0; 1[ ;
elle est strictement décroissante comme on peut facilement le montrer.

Exercice 10. On dé�nit une fonction f sur R par f (x) =
x

1 + jxj : Montrer que f est

bijective sur un intervalle qu�on déterminera. Donner explicitement la fonction f�1:
Solution. Deux cas sont à examiner, x � 0 et x < 0:

1) Si x � 0, alors f (x) =
x

1 + x
: On voit bien que f est continue sur [0;+1[ : Montrer

qu�elle strictement croissante sur R+:
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On écrit f (x) = 1� 1

1 + x
: On a donc

x > y ) 1 + x > 1 + y ) 1

1 + x
<

1

1 + y
) � 1

1 + x
> � 1

1 + y

) 1� 1

1 + x
> 1� 1

1 + y
, f (x) > f (y) :

Donc f est bien strictement croissante. On a aussi f ([0;+1[) = [0; 1[ : Ainsi f est une
bijection entre [0;+1[ et [0; 1[ :

Trouver f�1 dans ce cas. On a, pour x � 0 et y 2 [0; 1[ ;

x

1 + x
= y , x = y + xy , x (1� y) = y , x =

y

1� y

et donc f�1 (x) =
x

1� x:

2) Si x < 0, alors f (x) =
x

1� x: f est continue sur ]�1; 0] et on peut montrer facilement
qu�elle est strictement croissante sur cet intervalle et que f (]�1; 0]) = ]�1; 0[ : Donc
f est une bijection entre ]�1; 0] et ]�1; 0[ : on trouve f�1 (x) = x

1 + x
:

Finalement, f est une bijection entre R et ]�1; 1[ : La fonction réciproque f�1 et donnée
par f�1 (x) =

x

1� jxj :

Exercice 11. Soit l�application f dé�nit sur R par f (x) =
1

x2 + x+ 1
:

a) f est-elle injective?

b) f est-elle surjective?

c) Soit les deux ensembles A et B tels que A = [1; 2] et B = [1;+1[ : Déterminer f (A) et
f�1 (B) :

Solution.

a) f est-elle injective ?

1�ere méthode : on a 0 6= �1; mais f (0) = f (�1) = 1; donc f n�est pas injective.
2�eme méthode : soit x1; x2 2 R tel que f (x1) = f (x2) ; alors

1

x21 + x1 + 1
=

1

x22 + x2 + 1
, x21 + x1 + 1+ = x

2
2 + x2 + 1

, x21 � x22 + x1 � x2 = 0
, (x1 � x2) (x1 + x2 + 1) = 0
, x1 = x2 _ x1 = � (x2 + 1) :

Donc f n�est pas injective.
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b) f est-elle surjective?

f est surjective ssi 8y 2 R 9x 2 R / y = f (x) :

y = f (x), y =
1

x2 + x+ 1
, yx2 + yx+ y � 1 = 0;

on a 4 = y2 � 4y (y � 1) = �3y2 + 4y = y (4� 3y) :

Si y 2 ]�1; 0[ [
�
4
3 ;+1

�
4 < 0;

Donc l�équation y = f (x) n�admet pas de solution, par suite f n�est pas surjective.

c) � On a A = [1; 2] ; alors f (A) = ff (x) 2 R / x 2 Rg :

x 2 A, 1 � x � 2, 1 � x2 � 4, 2 � x2 + x � 6

, 3 � x2 + x+ 1 � 7, 1

7
� 1

x2 + x+ 1
� 1

3

) f (A) =

�
1

7
;
1

3

�
:

� B = [1;+1[ ; alors

f�1 (B) = fx 2 R / f (x) 2 Bg =
�
x 2 R / 1

x2 + x+ 1
2 B

�
:

1

x2 + x+ 1
2 B , 1

x2 + x+ 1
� 1

, x2 + x+ 1 � 1, x2 + x � x (x+ 1) � 0
) x 2 [�1; 0] ; d�où f�1 (B) = [�1; 0] :
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Série d�exercices N�3 d�Analyse1

Exercice 1: Donner le domaine de dé�nition des fonctions suivantes :

1) f (x) =
1

p
x+

p
2� x

; 2) f (x) = ln
�p

1� x2
�
; 3) f (x) =

p
cos 2x;

4) f (x) = xx; 5) f (x) =
1

1� [x] :

Où [ ] désigne la partie entière de x:
Exercice 2:

a) Calculer les limites suivantes

1) lim
x!+1

�3x2 + x+ 5
2x2 + 80

; 2) lim
x!0

x2 cos

�
1

x

�
; 3) lim

x!0
x

�
1

x

�
;

4) lim
x!0

x3 ln
�

3
p
1 + 2=x3

�
; 5) lim

x!+1

�
2
p
x+

p
x sinx

�
:

b) Calculer les limites suivantes en utilisant les fonctions équivalentes :

1) lim
x!0

tan 2x

x
; 2) lim

x!0

2� cosx� cos 2x
tan2 x

; 3) lim
x!1

sin 2�x

sin 5�x
;

4)� lim
x!0+

lnx: ln [1 + ln (1 + x)] :

Exercice 3: Soit la fonction f dé�nie par :

f (x) =
1

x
ln

�
ex + e�x

2

�
1) Quel est le domaine de dé�nition de f ? Etudier sa patité.

2) Trouver lim
x!+1

f (x) et en déduire lim
x!�1

f (x)

Exercice 4: Soit h la fonction dé�nie sur R par

h (x) =

�
x2 � 3x; x 2 ]�1; 2[
2x+ b; x 2 [2;+1[

Déterminer le nombre réel b de sorte que h soit continue en 2.
Exercice 5: Etudier dans chacun des cas suivants si la fonction f est

1



prolongeable par continuité

1) f (x) =
sinx

x
; 2) f (x) =

1

1 + e
1
x

; 3) f (x) =
x� sin 1

x

1� cosx (� 2 R ;� � 2; x 2 [��; �]) :

Exercice 6. Montrer que l�équation

1 + sinx� x2 = 0

admet au moins une racine entre 0 et �.
Exercice 7. Soit f une fonction continue sur [�1; 1] à valeurs réelles
telle que f (1) = f (�1) :
Montrer qu�il existe un nombre c 2 ]0; 1[ tel que f (c) = f (c� 1) :
Exercice 8. Soit la fonction f dé�nie de [0; 1] dans R; par :

f (x) =
x

x2 + 1
:

a) Montrer directement que f est strictement monotone.

b) En déduire que f est bijective et déterminer f�1:

Rappel: limites usuelles

1) lim
x!0

sinx

x
= 1; 2) lim

x!0

1� cosx
x2

=
1

2
;

3) lim
x!0

ex � 1
x

= 1; 4) lim
x!0+

ln (1 + x)

x
= 1;

5) lim
x!+1

ln (x)

x
= 0; 6) lim

x!0+
ln (x) = �1;

7) lim
x!0+

shx

x
= 1; 8) lim

x!0

tan (x)

x
= 1: 9) lim

x!0+
x ln (x) = 0:

Les limites usuelles en 0, nous donnent les équivalents suivants au voisi-
nage de 0 :

� sinx � x � tanx � x � 1� cosx � x2

2
� ln (1 + x) � x

� [ex � 1] � x � (1 + x)� � 1 � �x � shx � x:

2
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Corrigé type Série d�éxercices N�3 Analyse1

Exercice 1:

1) f (x) =
1

p
x+

p
2� x

;

f est dé�nie,

8<:
x � 0

2� x � 0p
x+

p
2� x 6= 0

,

8<:
x � 0
x � 2p

x+
p
2� x 6= 0

or, pour 0 � x � 2;
p
x+

p
2� x � 0; et

p
x+

p
2� x = 0 si x = 0 et x = 2;

ce qui est impossible. Donc Df = [0; 2] :

2) f (x) = ln
�p
1� x2

�
;

f est dé�nie,
�

1� x2 � 0p
1� x2 > 0 ,

�
x 2 [�1; 1]
x2 6= 1 , x 2 ]�1; 1[ :

3) f (x) =
p
cos 2x;

f est dé�nie, cos 2x � 0, 2x 2
h
��
2
;
�

2

i
+ 2k�:

Donc Df =
h
��
4
+ k�;

�

4
+ k�

i
:

4) f (x) = xx;

On a par dédinition, si a > 0; alors ax = ex ln a:

Donc si x > 0; alors xx = ex ln x: Donc Df = ]0;+1[ ;

(mais attention dans ce cas le x qui doit être positif est celui de la base pas
celui de la puissance):

il faut aussi savoir que

(1) x 7! xn est dé�nie sur R si n 2 N et indépendent de x:

(2) x 7! xp est dé�nie sur R� si p 2 Z et indépendent de x:

(3) x 7! ax est dé�nie sur R si a > 0 et indépendent de x:

5) f (x) =
1

1� [x] ;

1



f est dé�nie, 1 � [x] 6= 0 , x =2 [1; 2[ ; car [x] = 1 , x 2 [1; 2[ : Donc
Df = ]�1; 1[ [ [2;+1[ :

Exercice 2: a)

1) lim
x!+1

�3x2 + x+ 5
2x2 + 80

= lim
x!+1

�3x2
2x2

=
�3
2
.

2) lim
x!0

x2 cos

�
1

x

�
; on a

0 � lim
x!0

����x2 cos� 1x
����� = lim

x!0
x2
����cos� 1x

����� � lim
x!0

x2�1 = 0) lim
x!0

x2 cos

�
1

x

�
= 0;

ou)

�1 � cos

�
1

x

�
� 1) �x2 � x2 cos

�
1

x

�
� x2 ) lim

x!0
(�x)2 � lim

x!0
x2 cos

�
1

x

�
� lim

x!0
x2

) 0 � lim
x!0

x2 cos

�
1

x

�
� 0) lim

x!0
x2 cos

�
1

x

�
= 0:

3) lim
x!0

x

�
1

x

�
; on a

1

x
� 1 <

�
1

x

�
� 1

x
) 1� x < x

�
1

x

�
� 1) lim

x!0
(1� x) � lim

x!0
x

�
1

x

�
� 1

) 1 � lim
x!0

x

�
1

x

�
� 1) lim

x!0
x

�
1

x

�
= 1:

4) lim
x!0

x3 ln
�

3
p
1 + 2=x3

�
= lim

x!0
x3 ln

�
1 + 2=x3

� 1
3 = lim

x!0
x3
1

3
ln
�
1 + 2=x3

�
= lim

2

3
x!0

ln
�
1 + 2=x3

�
2=x3

=
2

3
:

�
car lim

x!0+

ln (1 + x)

x
= 1

�
:

5) lim
x!+1

(2
p
x+

p
x sinx) : On a pour tout x positif :

2
p
x+

p
x sinx � 2

p
x�

p
x =

p
x:

Puisque lim
x!+1

p
x = +1; alors lim

x!+1

�
2
p
x+

p
x sinx

�
= +1:

b) Calculer les limites suivantes en utilisant les fonctions équivalentes :

1) lim
x!0

tan 2x

x
=
0

0
(FI) ; on sait que : tg2x �

0
2x;

�
puisque lim

x!0

tanx

x
= 1

�
donc lim

x!0

tan 2x

x
�
0
lim
x!0

2x

x
= 2:

2) lim
x!0

2� cosx� cos 2x
tan2 x

=
0

0
(FI) :

2



On sait que 1� cosx �
0

1

2
x2 ) 1� cos (2x) �

0

1

2
(2x)

2 et tan y �
0
y, donc

lim
x!0

2� cosx� cos 2x
tan2 x

= lim
x!0

1

2
x2 +

1

2
(2x)

2

x� x = lim
x!0

5
2x

2

x2
=
5

2
:

3) lim
x!1

sin 2�x

sin 5�x
=
0

0
(FI) :

On pose y = x� 1) y ! 0
x!1

; et x = y + 1; donc

lim
x!1

sin 2�x

sin 5�x
= lim

y!0

sin 2� (y + 1)

sin 5� (y + 1)
= lim

y!0

sin 2�y

� sin 5�y = limy!0

2�y

�5�y =
�2
5
:�

car : sin y �
0
y, sin (�+ �) = ��:

�
4) � lim

x!0+
lnx: ln [1 + ln (1 + x)] = �1� 0 (FI) :

On sait que ln (1 + x) �
0
x

) lim
x!0+

lnx: ln [1 + ln (1 + x)] = lim
x!0+

lnx: ln [1 + x]

= lim
x!0+

(lnx) : (x) = 0 (lim ite usielle)

Exercice 3: Soit la fonction f dé�nie par :

f (x) =
1

x
ln

�
ex + e�x

2

�

1) Df =

8>><>>:x 2 R /x 6= 0 et
ex + e�x

2
> 0| {z }

vraie

9>>=>>;, x 6= 0

, x 2 ]�1; 0[ [ ]0;+1[) Df = ]�1; 0[ [ ]0;+1[:

2) 8x 2 Df ; x 6= 0, �x 6= 0, �x 2 Df ) Df est symetrique

� 8x 2 Df ; f (�x) =
1

�x ln
�
e�x + e�(�x)

2

�
=

1

�x ln
�
e�x + e+x

2

�
= �f (x)

) f est impaire.

3) lim
x!+1

f (x) = lim
x!+1

1

x
ln

�
ex + e�x

2

�
= lim

x!+1

1

x
ln

�
ex

2

�
= lim

x!+1

1

x
(ln ex � ln 2)

= lim
x!+1

1

x
(x� ln 2) = lim

x!+1

�
1� ln 2

x

�
= 1

3



)
lim

x!�1
f (x) = � lim

x!+1
f (x) = �1

:
Exercice 4: Soit h la fonction dé�nie sur R par

h (x) =

�
x2 � 3x; x 2 ]�1; 2[
2x+ b; x 2 [2;+1[

� h est continue en 2, lim
x
<!2

h (x) = lim
x
>!2

h (x) = h (2) :

lim
x
<!2

h (x) = 22 � 3� 2 = 4� 6 = �2

lim
x
>!2

h (x) = h (2) = 2� 2 + b = 4 + b

9=;) 4 + b = �2) b = �6:

Exercice 5: Etudier dans chacun des cas suivants si la fonction f est
prolongeable par continuité.

1) f (x) =
sinx

x
; Df = R�; f est continue sur R�:

� lim
x!0

f (x) = lim
x!0

sinx

x
= 1: Donc le prolongement continu de f; noté

�
f ; est

donné par
�
f (x)

(
sinx

x
; x 6= 0;

1; x = 0:

2) f (x) =
1

1 + e
1
x

; Df = R�; f est continue sur R�;

En e¤et,

lim
1

x
x!0+

= +1) lim f (x)
x!0+

= 0; et

lim
1

x
x!0�

= �1) lim f (x)
x!0�

= 1 6= 0:

Doù f n�admet pas un prolongement par continuité en 0.

(On peut bien entendu prolonger f par continuité en 0 à droite

et on peut aussi prolonger à gauche de 0):

3) f (x) =
x� sin 1

x

1� cosx (� 2 R ;� � 2; x 2 [��; �]) :

� f est dé�nie si 1� cosx 6= 0, x 6= 2k�; (k 2 Z) :
Donc Df = [��; �]� f0g :

4



� Pour étudier le prolonbeable par continuité de f sur Df on calcule :

lim
x!0

x� sin 1
x

1� cosx = lim
x!0

x� sin 1
x

2 sin2 x2
= lim

x!0

x� sin 1
x

2x
2

4

�
car cosx = cos2

x

2
� sin2 x

2
et sinx �

0
x
�

= lim
x!0

2x��2 sin
1

x
:

� Si � = 2 : lim
x!0

f (x) = lim 2 sin 1
x @:

x!0

� Si � > 2 : lim
x!0

f (x) = lim 2x��2 sin 1
x = 0:

x!0

Alors on peut prologer f par continuité dans le cas où � > 2 et
son prolongement g dé�ni par

g (x) =

8<: x� sin 1
x

1� cosx; si x 2 [��; �]� f0g ;
0; si x = 0:

Exercice 6. posons f (x) = 1 + sinx� x2: f est dé�nie, continue sur [0; �]
et on a

f (0) = 1 et f (�) = 1� �2 < 0:
Donc d�après le théorème des valeurs intermédiares : 9c 2 ]0; �[ :f (c) = 0:
Exercice 7�. Posons

g (x) = f (x)� f (x� 1) sur [0; 1]

Alors g est continue sur [0; 1] : De plus

g (0) = f (0)� f (�1) et g (1) = f (1)� f (0) :

Puisque f (1) = f (�1) ; alors g (0) = �g (1) et donc g (0) g (1) < 0:
Donc d�après le théorème des valeurs intermédiares :

9c 2 ]0; 1[ : g (c) = 0; i:e 9c 2 ]0; 1[ : f (c) = f (c� 1) :

Exercice 8. Soit la fonction f dé�nie de [0; 1] dans R; par :

f (x) =
x

x2 + 1
:

a) Montrons que f est strictement monotone.

Soit (x1; x2) 2 [0; 1]� [0; 1] ; supposons que x1 > x2: On a

f (x1)� f (x2) =
(x1 � x2) (1� x1x2)
(x21 + 1) (x

2
2 + 1)

;

donc le signe de f (x1)� f (x2) est celui de (1� x1x2) ; mais

5



0 � x1 � 1 et 0 � x2 � 1 donc: 1� x1x2 � 0) f (x1)� f (x2) > 0:

f est alors strictement croissante, donc f est strictement monotone.

b) f étant continue sur [0; 1] ; strictement monotone donc elle est bijective de

[0; 1] sur f ([0; 1]) =
�
0;
1

2

�
:

Déterminons f�1 :

f�1 est dé�nie sur
�
0;
1

2

�
à valeurs dans [0; 1] ; continue et strictement

croissante sur
�
0;
1

2

�
: De plus par dé�nition on a pour x 2

�
0;
1

2

�
et y 2 [0; 1]

:
y = f�1 (x), x = f (y)) y =?

donc x =
y

1 + y2
, xy2 � y + x = 0

ce qui donne pour x 2
�
0;
1

2

�
une unique solution : y =

1�
p
1� 4x2
2x

2 ]0; 1] :

D�où f�1 (x) =
1�

p
1� 4x2
2x

:

� Rappel: limites usuelles

1) lim
x!0

sinx

x
= 1; 2) lim

x!0

1� cosx
x2

=
1

2

3) lim
x!0

ex � 1
x

= 1; 4) lim
x!0+

ln (1 + x)

x
= 1

5) lim
x!+1

ln (x)

x
= 0; 6) lim

x!0+
ln (x) = �1

7) lim
x!0+

shx

x
= 1; 8) lim

x!0

tan (x)

x
= 1:

9) lim
x!0+

x ln (x) = 0:

� Les limites usuelles en 0, nous donnent les équivalents suivants
au voisinage de 0 :

� sinx � x � tanx � x � 1� cosx � x2

2
� ln (1 + x) � x

� [ex � 1] � x � (1 + x)� � 1 � �x � shx � x:
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