Licence en Systémes Informatiques

Les objectifs de la licence en Systémes Informatiques sont I’acquisition des compétences
fondamentales, des méthodes théoriques et pratiques et du savoir-faire techniques représentatifs des
différentes taches de la discipline informatique. Cette formation couvre I'ensemble de la filiére : fondements,
architectures et matériels, conception d’interface homme-machine, technologies Web, objets, réseaux,
systémes, méthodes et technologies logicielles, applications informatiques, systémes d'information, langages
de programmation, systémes d’exploitation, algorithmique, logique... A I’issue de la formation, construite de
facon suffisamment généraliste, les étudiants peuvent intégrer des masters variés, comme ils auront la
possibilité a I’insertion dans le monde du travail de tous les domaines de I’informatique, les débouchés étant
nombreux et intéressants.

Unité .y Cré- | Coeff- Volume hOl’Z}ll‘e VHS Mode d'évaluation
d'Enseignement Matiére dits icient hebdomadaire 14
Cours TD TP | Semaines | Continu | Examen
UE Fondamentale 1 Systéme
Crédits 10 | desploitation2 | 3 1h30 | 1h30 | 1h30 | 63h bl
Coefficients : 6 Compilation 5 3 1h30 1h30 | 1h30 63h 40% 60%
UE Fondamentale 2 Génie logiciel 5 3 1h30 1h30 | 1h30 63h 40% 60%
Crédits: 10 | Interface homme | 3 1h30 | 1h30 | 1h30 | 63h 40% | 60%
Coefficients : 6 machine
UE Méthodologie Profﬁg‘;:“‘m 4 2 1h30 | 1h30 42h 40% 60%
Crédits : 8 DT . .
Coefficients : 4 e 4 2 1h30 1h30 42h 40% 60%
UE Transversale Economie
Crédits : 2 numérique et 2 1 1h30 21h 100%
Coefficients : 1 | veille stratégique
Total Semestre 5 30 17 %h 10h30 6h 357h

Matiére : Génie logiciel

Chapitre 1: Introduction

1.1.Définitions et objectifs

1.2.Principes du Génie Logiciel

1.3.Qualités attendues d'un logiciel

1.4.Cycle de vie d'un logiciel

1.5.Modéeles de cycle de vie d'un logiciel

Chapitre 2: Modé¢lisation avec UML

2.1.Introduction : Modélisation, Modé¢le, Modélisation Orientée Objet, UML en application.
2.2.Eléments et mécanismes généraux

2.3.Les diagrammes UML

2.4.Paquetages

Chapitre 3: Diagramme UML de cas d'utilisation : vue fonctionnelle
3.1.Intérét et définition, Notation

Chapitre 4: Diagrammes UML de classes et d'objets : vue statique
4.1.Diagramme de classes

4.2.Diagramme d'objets

Chapitre 5: Diagrammes UML : vue dynamique

5.1.Diagramme d'interaction (Séquence et collaboration)
5.2.Diagramme d'activités

5.3.Diagramme d'état/transitions

Chapitre 6: Autres notions et diagrammes UML

6.1.Composants, déploiement, structures composite.

6.2.Mécanismes d'extension : langage OCL + les profils.

Chapitre 7: Introduction aux méthodes de développement : (RUP, XP)
Chapitre 8: Patrons de conception et leur place au sein du processus de développement

3"Licene en Systémes Informatiques Q Génie Logiciel |2020

Matiére : Génie Logiciel

Table des matiéres

L. Chapitre 11 INTrOAUCIION.cc.eeitietieiiite ettt ettt et e ette st et e et e e tesaesseesse e seanseesseanseessessaesseensannseensesnnesseenseansennsenns 1
1.1. DEfINItIONS € ODJECHITSeevireitiiteciiitieeee ettt 1
1.2. Principes du GEnie LOZICIEL......cceiuiiiiiiiiiiriiccteeeee ettt st e 1
1.3. Qualités attendues d'un 10ZICIEL.......coviiiiiiiiriiii e e 2
1.4. Cycle de VIe dUN TOZICICL.....ueiruiiiiiiiiieiit ettt ettt e e sat e e st e e s e e sateesateesatessteesareeneas 2

1.4.1. YD 27177177 7o O RSSO PRSP 2
1.4.2. ACHIVITES ..ottt ettt st ettt st s et s r e e a e et a et e et e e b e b e bt e n e e nesneesreenn e e reeneene 2
1.4.3. DIOCUTNERILS ...ttt ettt et s ae s bt s bt e sa e bt et e me e e b e e be e r e e nesanesaeeneee 4
1.5 Modeles de cycle de vie d'Un LOZICIELcoevviririiiiiiiiicce ettt 4
1.5.1. Y el L LR e R el T2 LSRR 4
1.5.2.)Y e L L= LA SR 5
1.5.3. MOARIE INCTEMENLAL......cc.eeeceev ettt ettt ae s te st e et e e s ste e sabe e sabeesbeessbeessteessseensteessseesses 5
1.54. MOdEle de PrOtOYDAZE........c.eoeueeeieiiiieiieeeiee sttt sttt et s e s s e r e r e e ne s s nae 6
1.5.5. Modéele en spirale
1.5.6. Processus unifié et MOAELES AETIVESc.covcueiiiiiiiiiiiisie sttt ettt ettt e ste e sate e s reesaeas 7
1.5.7. Développement rapide d'applications et Modeles QQIlEscccuvininircircincecciiiinineiieeeeeeeeees 7
2. Chapitre 2: Modé€lisation Ve UMLccooiiiiiiieie ettt sttt et e st st esseessessesnaesseesseanseensenns 8
2.1. IIEEOAUCTION ...ttt ettt et st he ettt e abeeh e e ebe e e bt e be e beeabesaeesaeesbe e bt e bt eabeebbesbeesbeenbean 8
2.2. IMLOAERIES ...ttt ettt ettt bbbt et e st she e s he e beea bt e ateeh b e eh e e bt e b e e beea e e et e saeeeheeebeeabeeabeehbeeheesbeenbean 8
2.3. Concepts de ["0rieNtation ODJETc.ecverierieiieiere ettt s st s e sr e r e seeesnesneesreennees 9
2.3.1. OBJEL ittt et b h e b he e a et b bRt b e Rt e h et et b sa b eae bt et enr e 9
2.3.2. CLASSE .ttt sttt b ettt et e Rt R et ae e Rt R et et h e s R r e e n e s ane e naes 9
2.3.3. ENCADSULIATION ..ottt st st st et s it e st e st e s abe e b be e sateesat e e sabeesateesabeenaeas 10
2.34. MESSAGE......ceviiiiiii i e 10
2.3.5. HEFIIAGE ... e s 11
2.3.6. POIYIOTDRISTIC.oviiiiiiiiiiiieieteee sttt s st r ettt ae 12
2.3.7. ASSOCIATIONS @RIFE CLASSES ..vouvveeeveescieeeiiiesiieeseieesiteestee st e stee st e sbeesteesteessbeesabeesateasaseesnseassseesnseesnsenan 12

2.4. UML ettt bbbt et bt e h e e bt e st e s et e bt b e bt e b e e ae st et e R e bt eh e b e e ae ekt et et e b sheebe bt eaee e eneen
2.4.1. YD 27177177 7o/ U TP OOOPRO PP PPRUPPRRRPRTOt
2.4.2. HISTOVIQUE UML ...ttt ettt ettt ettt sttt ettt e s b e s bt e s ba e s bt e s baesbaesabeesbeesabaesseeenne
2.4.3. Diagrammes UML................cccccooiiiiiiiiiiiiiiiii it
2.44. Utilisation du langage

3. Chapitre 3: Modélisation des fonctionnalités-Diagramme UML de cas d'utilisationccoeceevevevveecvenveneennenn 16
3.1. IIEEOAUCTION ...ttt h ettt ea e eh e e s bt et e et e st e s atesaeesae e bt eabeeaeesabeebeenbeeabeentesaeenaas 16
3.2 Diagramme de €as d’ UtIlISAtION.uerreerieieriiree ettt s e 16

3.2.1. CAS A ULILISALION ...ttt st st st s et e bt et e e e enaenneenneen 16

3.2.2. B U 72 TP USRS PR PP 17

3.2.3. LIQESOMS .ottt sttt et st sr e Rt e r e et e re e b e ne s 17

3.2.3. 1. ASSOCIALIONS ..uuetteutienteeteeuteete st e ste e bt e bt et e euteeueeshe e be e bt eabeeabesaeesheeshe e be e bt ea b e eateehte b e e be e beenbeeaee st nas 17

3.2.3.2. RelAtiONS ©NIE ACTEULS ...veruveritiriieriientieste et eiteettesttesbee bt e besrbesaeesaeesaeesbeebeeatesaseebsesbeesbeenbeebesaeesaeesaes 18

3.2.3.3. Relations entre cas d UtilISAtIONccoueerveeiiieiiieiieieesteese ettt ettt st sb bbb s s 19

3.3. Développement de diagrammes de cas d’UtiliSAtIONcc.coiviriririeiiniee e 20
3.3.1. TAentifiCAtION dES ACTEUTSuveeueeesiiieeiiiesiieeete ettt ettt ettt b e s sae e e sbe e s bt e s sbeeesbeeebaesnseesane 20

3.3.2. Identification des CaS A ULIIISATIONcocuueeveeiiiieiii ettt ettt sttt e b e s sbe e s baesnaeesans 21

3.3.3. Description des cas d ULTTISATIONcoovieveiiiiiesii ettt ettt sbe e saee s sbaessaeesbeessseesane 21

3.4. Intérét et dEfINTtion, NOTAtIOMeeiiiieeieeitiieitie ettt eseeete et ee et e et eeesteeestee e teeesseeesbeeesseeesseeesseeseeenseesseesssnnene 22

La partie : TraVAUX DIFIEESccuiecuieieeieeieeteereeste et steste st eteesteeebeesaeeseesseeseenseessesssesseesseesseanseanseensesssessaeseeseensesnsesnnenses 24
1. TDNP°1 : Introduction & 1a Mod@lisation ODJELcceeruirirrieiieniierieeiee ettt e eeeeeeeetessaesteesseesseesessesneenes 25
COTTECLION T INCT Luiiiitietii ettt b et a et ettt b e bt b e eb e et ea et et e e bt s bt eb e e bt eb b et et et e sbeebenbeebe et entenee 26
La partie : TravVaUuX PratigUeS........coecieieriesieeeite et stestestte it et et e et e st e st e seenseessessaesseesseesseenseanseenseessenseenseenseansesnsesnsenses 28

1. TP N°1: Expression des DeSOINS €t QNalYSEceeecuiiiiiieeiiieiiiieeiieiieeeieesree st e sreesbeesveessbeesseessseessseesnseesnseenssas 28

(07035 (<Tv1a o) s U o e (OO OO RRRR 30

2. TP N°2 : Installation de StarUMLcoooioiiiiiiiiee ettt ettt et saee bt e b et e beseesaeenae 33

a Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

La partie : Cours

1. Chapitre 1: Introduction

Les logiciels et les solutions informatiques spécialisées sont de plus en plus utilisés dans la
plupart des aspects de la vie quotidienne (systemes d’exploitation, outils, logiciels d’entreprises,
logiciel scientifiques, systémes embarqués, etc.). La plupart des systéemes de communication, de
transport, de production et de contrdle utilisent des solutions logicielles intégrées afin de renforcer
leur rentabilité, leur flexibilité et leur qualité.

Le développement de ces logiciels, souvent complexes et de grande taille, présente de
nombreux défis tels que la maitrise des cofits et des délais de réalisation, I’évolution des besoins des
utilisateurs, le développement collectif et la difficulté de communication entre les différents
intervenants, 1’évolution du matériel, la diversification des architectures et des environnements, etc.

Les défis ont mis en évidence, depuis les années 60, la crise du logiciel qui se caractérise par
le fait que les projets de développement de solutions logicielles n'ont pas toujours été réalisés avec
succes. En fait, la plupart de ces projets ont été abandonnés, annulés ou refusés, a cause de 1’absence
de maitrise de ces projets, au niveau des colts, des délais, et de la mauvaise qualité des produits
logiciels développés.

Ce constat d'échec a conduit au développement et a 1’adoption de nouveaux procédés, outils
et formalismes permettant de développer efficacement des solutions logicielles fonctionnelles et de
qualité en dépit de leur complexité et de tout autre défi. Le domaine d’étude de ces procédés, outils et
formalismes est appelé génie logiciel.

1.1. Définitions et objectifs

Le génie logiciel est un domaine des sciences de l'ingénieur dont la finalité est la conception,
la fabrication et la maintenance de systémes logiciels complexes, sirs et de qualité. C'est un
ensemble de méthodes, techniques et outils pour la production et la maintenance de composants
logiciels corrects et de qualité.

Contrairement a la programmation individuelle (production individuelle d'un systéme
simple), le génie logiciel soutient une production collective d'un systéme complexe caractérisée par
un ensemble de documents de conception, de programmes et de jeux de tests avec souvent de
multiples versions2. Cet appui est traduit par la définition et le développement de plusieurs concepts
du génie logiciel répondant a différents types de besoins tels que les processus de développement ou
modeles de cycles de vie de logiciels (besoins de gestion de ressources, cofits et délais), les méthodes
d’analyse et de conception (besoins de gestion du développement), les langages de modélisation
(besoins de communication), les design patterns et les frameworks (besoins de réutilisation), etc.

1.2. Principes du Génie Logiciel

Le génie logiciel se préoccupe des procédés de fabrication de logiciels de fagon a garantir que
les quatre critéres suivants soient satisfaits :

» Le systéme développé doit fournir les fonctionnalités attendues

» Les colts de développement doivent rester dans les limites prévues au départ

» Les délais doivent rester dans les limites prévues au départ

» Le systéme développé doit garantir les qualités requises par le contrat de service

1 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

1.3. Qualités attendues d'un logiciel
La qualité désigne 1’appréciation générale d'un logiciel selon des critéres comme :

fiabilité : capacité d'un logiciel a assurer de maniére continue le service attendu
correction (validité) : aptitude d'un logiciel a réaliser exactement les taches telles qu'elles
ont été définies par sa spécification

robustesse : aptitude d'un logiciel a fonctionner méme dans des conditions anormales
extensibilité: facilité d'adaptation d'un logiciel aux changements de spécification
réutilisabilité: aptitude d'un logiciel a étre réutilisé en tout ou partie

compatibilité : aptitude des logiciels a étre combinés les uns aux autres

efficacité: capacité d'un logiciel a optimiser I’utilisation de ressources (mémoire,
processeur, bande passante, etc.)

‘‘‘‘‘

YV VVVVVY VY

tracabilité: capacité a identifier et/ou suivre un élément du cahier des charges li¢ a un
composant logiciel
autres critéres: simplicité, intégrité, réparabilité, vérifiabilité, etc.

Ces qualités sont parfois contradictoires et doivent €Etre pondérées selon le type du
logiciel (critique/grand public, systémes sur mesure/produits logiciels de grande diffusion,
etc.).

1.4. Cycle de vie d'un logiciel
1.4.1. Définition

Le cycle de vie du logiciel est un ensemble cohérent d’activités pour spécifier, concevoir,
implémenter et tester des systémes logiciels. A chaque activité sont associés différents livrables qui
se présentent sous forme de documents tels que le plan du projet, les plans de tests, les modéles
d’analyse, les modéles de conception, le code source, les rapports de tests et les manuels
d’utilisation.

1.4.2. Activités

Le cycle de vie de logiciels définit de nombreuses activités qui peuvent étre de différentes
natures : activités de définition (planification, Spécification), activités de production (conception,
implémentation et vérification), activités de livraison (installation et déploiement, conversion de
données et formation) et activités de maintenance.

1. Phase de définition

a. Planification du projet : il s’agit d’une étude préliminaire pour déterminer les possibilités
de réalisation du projet. Les sous-activités principales de cette activité sont les suivantes :

définition globale du probléme

¢tude de la faisabilité et analyse du marché
évaluation des stratégies possibles
évaluation des ressources, colts et délais
assurance qualité

¢laboration du calendrier du projet

YVVYVYVYYVY

Le document résultat de 1’activité de planification est le rapport de planification.

2 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

b. Analyse des besoins : il s’agit de déterminer ce qu’il faut faire. Les sous-activités de base
de I’analyse des besoins sont les suivantes :

recueil d’informations

déterminer les exigences fonctionnelles

déterminer les exigences non-fonctionnelles (contraintes)
spécification du systéme (modeles d’analyse)
construction de prototypes (pour élaborer la spécification)

YVVYY

Les documents associés a cette activité sont le cahier des charges, les modeles d’analyse, le
plan de tests et le prototype.

2. Phase de développement

a. Conception : I’objectif de I’activité est de déterminer comment procéder pour réaliser ces
besoins. Les sous-activités essentielles étant :

» conception architecturale du systéme : décomposition et organisation du systéme en
modules et définition des interfaces entre modules

» conception détaillée de modules : description de la maniére dont les services et les
fonctions sont réalisés

Les documents produits de I’activité de conception sont les modéles de conception, le
prototype, le plan de tests global et le plan de tests par module.

b. Implémentation : Il s’agit de construire les composantes logicielles par mise en ceuvre de
la conception dans un langage de programmation ou en utilisant des outils de développement.

Les documents produits de cette activité sont les dossiers de programmation, le code source
comment¢ et le prototype.

¢. Vérification : déterminer si le produit réalise correctement le travail attendu par évaluation
de la solution en fonction de la spécification (test) :

» test unitaire : vérifier séparément le module développé

» test d’intégration : tester le produit durant 1’intégration d'un module

» test du systéme : évaluer la conformité du produit logiciel par rapport aux exigences
spécifiées

» test d’acceptation : ¢valuer la conformité du produit logiciel par rapport aux
spécifications en présence effective des différents acteurs du projet

Le document associ¢ a cette activité est le rapport de tests.
3. Phase de Livraison

a. Installation et déploiement : mettre le produit logiciel en fonctionnement opérationnel
dans son environnement (chez les utilisateurs)

b. Conversion des données: transférer les données de I’ancien systeme et les données
manquantes dans le nouveau systéme c. Formation : former les utilisateurs a utiliser le logiciel

4. Phase de maintenance

3 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

a. Maintenance : mettre-a-jour le logiciel pour garantir une utilisation efficace continue et
faciliter les opérations de maintenance a venir :

» maintenance corrective : corriger les erreurs
» maintenance adaptative : s’adapter a des changements d’environnement
» maintenance perfective : améliorations

1.4.3. Documents

Les livrables des différentes activités sont représentés par plusieurs types de documents, dont
les plus importants sont :

> Plan du projet : décrit 'ordre des taches et estime les besoins en matiere de délais et
d'efforts

Plan de tests: décrit comment le produit serait testé afin de garantir un comportement correct
Spécification des besoins: décrit ce que doit faire le logiciel

Modéles d'analyse: décrivent la solution logicielle indépendamment des choix techniques ou
organisationnels

Modzéles de conception: décrivent la solution logicielle finale retenue

Exécutables : désignent le ou les différents composants exécutables du produit final

Code source : comprend la totalité¢ du code source du produit final

Rapport de tests: décrit quels sont les tests effectués et quel était le comportement du
systeme enregistré

YV VYV

YVVVY

1.5. Modeles de cycle de vie d'un logiciel

Un modéle de cycles de vie ou processus de développement est une description abstraite et
personnalisée de l'organisation des activités de développement d’un logiciel. Il présente alors la
description détaillée du cycle de vie d’une perspective particuliere tout en négligeant les parties
inutiles.

1.5.1. Modeéle en cascade

C’est un modele linéaire ax¢é sur la documentation dans lequel le déroulement des activités est
réalis¢ de manicre séquentielle d'une activité a l'autre (figure 1). Il s’agit d’un modéle simple et
efficace pour les systémes complexes si tous les besoins sont déterminés a priori et ne changent pas
au cours du développement.

D’autre part, ce modele impose des écarts de temps considérables entre 1’expression des
besoins et I'implémentation et manipule des délivrables volumineux a chaque activité.

‘ Planification 1_ iy
1

-

¥

[Analyse |;_,
1]

1
.
' i —_

Conception J'_ -y
L}
b [

¥

—
[I plémentation I" -
1]
J
——, -
[- verification]
L J

Figure 1 : Modéle en cascade

4 Université Ferhat Abbas. Sétif -1

3"Licene en Systémes Informatiques Q Génie Logiciel |2020

I1 existe plusieurs versions et variantes du modele linéaire qui mettent 1’accent sur certaines
activités plutdt que d’autres selon les besoins et le contexte. Les deux variantes les plus importantes
du modele séquentiel sont le modele en V et le modéle incrémental.

1.5.2. Modeéle en V

C’est une variante du mode¢le séquentiel axée sur la vérification ou chaque étape de
développement (analyse ou conception) a un niveau de tests qui lui est associé (figure 2). Cette

liaison activité-test permet de définir des tests pertinents et de haute qualité.
Installation &
Maintenance

Specification : Tests
Analyse : d'acceptation
Conceplion Tests

| architecturale 1 dintégration

[Conception J :1{ Tests unitaires |

PManification
Projet

dénailléa

Implémentation I, I

Figure 2 : Modéle en V

1.5.3. Modeéle incrémental

Le modéle incrémental est une autre variante du modéle en cascade axée sur la décomposition
du systeme global en sous-projets indépendants (conception générale) et I’itération, comme le
montre la figure 3, du développement (conception détaillée et implémentation pour chaque sous-
projet) et de l’intégration des incréments au systeme final. Le modele offre la possibilité de
développement parallele d’incréments, réduisant ainsi le temps nécessaire pour la livraison du
produit final.

Définirles besoins

2

Assigner les besoins
aux incréments

¥

Concevoir
I"archite cture systéme

e »

|_)I Dévelapper }*l valider] =| Intégrer }_{ Valider Systéme }_}

l Incrément Incréme nt Incréme nit

e

Figure 3 : Modéle incrémental

L’approche incrémentale souffre en général, en plus des problémes du modele en cascade, du
sérieux probléme d’intégration dans le cas ou les sous-projets ne sont pas complétement
indépendants.

5 Université Ferhat Abbas. Sétif -1

3“"Licene en Systemes Informatiques Q Génie Logiciel |2020
1.5.4. Modéle de prototypage

Le mode¢le de prototypage est un modele de développement itératif3 dans lequel les activités
d’analyse, de conception et d’implémentation sont réalisées de fagon concurrente. L'objectif
principal est de livrer rapidement un minimum de fonctions stables (prototype jetable ou évolutif) qui
sera fourni aux clients pour éventuel feedback. Sur la base de ce retour d’information, les besoins
sont raffinés et le développement de la prochaine version du prototype se poursuit en procédant de la
méme maniere. Le modele de prototypage est, alors, adapté pour les projets ou les besoins ne sont
pas clairement définis ou qui sont susceptibles de changer avec le temps.

1.5.5. Modeéle en spirale

C’est un modele ax¢é sur de la gestion des risques et implémente les ¢léments des modeles en
cascade, incrémental et prototypage. L’image du mode¢le est une spirale qui commence au milieu et
qui réitére continuellement les taches de base (figure 4).

NB : le développement itératif décompose les besoins du systéme global en versions qui sont
développées séquentiellement en commencant par les besoins les plus importants et en passant
par les mémes activités de développement.

-~
Détermination des i g = S T T Identitication
obyjectifs e Sy Résolution desrisques
f“- “'1. - —
- P i =
fz ‘-_._-d' ‘-_|‘-| l.\‘ -
o - -
- o lypsm cles T A}
& P - "2
’ s et 9 - -
‘ 2 S = b N
¢ C4 - ™.
l_" . .-"' S kx I.'.
& - ~ & L)
¥ td -k
[l r’ zJ _..-’" Teey }{: "I. .I.

a

i
1
e ' sde protolype | !
L e 4 R (N A B e el SO
T T T T] M 1 ' | i
\ [L A ! Besoips I I 1
) .
11 . 'z 1 m! le wie Concepts I x UJnr.IEpluu'l X
' 1 3 O T A H délrhlllée H
£y o i
"I. l,h *Plan développenen .-'r ! J :
- Hal OO - 2
LN it Comeglon [
L T F . "
.'\ . T TR e = i Implrﬁm‘ttﬁnn .'I
s L"., Plan teils " i >
it “mi validatian 2 [
., L e e Tests initaires «
. e T e LF J"
Sl Inﬁ-_gr';-ﬁﬁ; _,"/
- i e - -
Bl TR -mEeptation e

o

Panification do s) | R A Développement
phase s surrante s Bk s ' " AIrEs I(-----

Figure 4 : Modéle en spirale
Les principaux risques (et leurs solutions) sont les suivants :

» défaillance de personnel : embauches de haut niveau, formation mutuelle, adéquation
profil/fonction, etc.

» calendrier et budgets irréalistes : estimation détaillée, développement incrémental,
réutilisation, adaptation des besoins, etc.

» développement de fonctions inappropriées : revues d’utilisateurs, manuel d’utilisation
précoce, etc.

6 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

» développement d’interfaces utilisateurs inappropriées : maquettage, analyse des taches, etc.

» produit "plaqué or" : analyse des colits/bénéfices, conception tenant compte des coits, etc.
volatilité des besoins : développement incrémental de la partie la plus stable d’abord, masquage
d’information, etc.

» problémes de performances : simulations, modélisations, essais et mesures, maquettage, etc.

> exigences démesurées par rapport a la technologie : analyses techniques de faisabilité,
maquettage, etc.

» taches ou composants externes défaillants : audit des sous-traitants, contrats, revues, essais et
mesures, etc.

1.5.6. Processus unifié et modéles dérivés

Le processus unifi¢ est un processus d'ingénierie logicielle générique qui regroupe les
caractéristiques communes et essentielles des différents processus de développement objet :

itératif et incrémental

modélisation visuelle avec UML (Unified Modeling Language)
piloté par les cas d’utilisation

centré sur I’architecture

guidé par les patrons de conception (Design Patterns)

VVVYVYY

Ces caractéristiques sont, toutefois, génériques ; le processus unifié ne peut pas €tre utilisé
directement et nécessite une spécialisation qui tient compte des facteurs techniques et
organisationnels du domaine. Ses principaux modéles dérivés sont : RUP (Rational Unified Process),
ESA (Extreme System Analysis), EUP (Enterprise Unified Process), 2TUP (2 Tracks Unified
Process) et Catalysis.

1.5.7. Développement rapide d'applications et Modéles agiles

L'objectif de ces catégories de modéles est d'éviter les écarts importants entre les résultats
obtenus et l'expression des besoins initiaux et avoir ainsi une livraison dés que possible du produit
final. Les modéles de ces catégories choisissent les solutions les plus simples, impliquent au
maximum les clients et favorisent les interactions et les applications fonctionnelles plutét que les
processus et les documents exhaustifs.

Le développement rapide d'applications (RAD) priorise les itérations rapides et les versions
de prototypes en utilisant des techniques spéciales et des outils d’aide tels que les outils CASE
(Computer-Aided Software Engineering), la génération automatique du code, la programmation
visuelle, etc. L’utilisation de ces techniques et outils permet d’accélérer les phases d'analyse, de
conception et d’implémentation. Ce type de développement rapide peut étre réalisé de différentes
manieres : développement itératif, prototype évolutif ou prototype jetable4.

Le développement agile est un ensemble de modéles de développement plus récents, centrés
sur la programmation, qui se caractérisent par des cycles de développement courts et itératifs
destinés aux projets d’applications simples. Chaque itération comprend les activités essentielles d'un
projet (planification, analyse des besoins, conception, codage, tests et documentation) mais avec
¢limination d’une grande partie de la modélisation et de la documentation. Des exemples de modeles
agiles peuvent comprendre les modeles de déveoppement XP (eXtreme Programming), ASD
(Adaptative Software Development), FDD (Future Driven Development), etc.

NB : prototypes considérés en tant que nouveau systéme (prototypage de systéme) ou
destinés uniquement a explorer des alternatives de conception (prototypes jetables).

7 Université Ferhat Abbas. Sétif -1

3“"Licene en Systemes Informatiques Q Génie Logiciel 12020
2. Chapitre 2: Modélisation avec UML

2.1. Introduction

L'un des principaux défis auxquels sont confrontés les projets de développement
d’applications logicielles est de déterminer avec précision les exigences exactes du futur systéme
dans chacune des étapes de développement. La maniére de communication avec le client, dans
I’étape d’expression des besoins, et entre développeurs (analyste, concepteur, programmeur, etc.),
dans le reste des étapes, est cruciale pour la réussite du projet. L’utilisation du langage naturel dans
ce contexte est fortement déconseillée car il est imprécis et ambigué ; des malentendus peuvent
facilement survenir si des personnes, de milieux différents ou de spécialités différentes, utiliseront le
langage naturel comme moyen de définition de leurs besoins (spécifications incomplétes,
spécifications surchargées, mauvaise compréhension, etc.).

Il est, donc, nécessaire de pouvoir créer un modele du systéme a développer. Un modéele qui
met en évidence les aspects importants de ce systéme sous une forme de notation claire aussi simple
que possible, et qui ne tient pas compte des détails non pertinents qui rendent la description plus
compliquée que nécessaire. Des modéles séparés peuvent €tre construits, a différentes étapes et pour
différents aspects, afin d’éviter de présenter trop d'informations a la fois et faciliter ainsi la lecture,
I’interprétation et la mise en ceuvre de ces modeles.

Pour répondre a ce besoin, différents langages de modélisation ont ét¢ développés afin de
permettre une description structurée de systemes réels a base de régles clairement définies. Ces
langages peuvent étre textuels (logiques, langages de programmation, etc.) ou graphiques (modeles
entité-association, graphes de flux, etc.). IIs peuvent étre complets, et couvrent ainsi, tous les aspects
du systeme développé, ou destinés a la modélisation d’un aspect particulier de 1’application (par
exemple, I'utilisation des modeéles d’automates pour des besoins de vérification). Ils peuvent é&tre,
¢galement, spécifiques a un domaine particulier (langage de modélisation des applications web) ou a
objectifs d'utilisation générale. UML est un langage de modélisation graphique, complet et a
objectifs d’utilisation générale. Il est trés adapté pour le développement des applications logicielles a
base de concepts objet.

2.2. Modéles

Les modeles présentent un moyen pour décrire les systemesl de maniére efficace et détaillée.
Ils permettent de limiter la représentation du systéme a l'essentiel afin de réduire la complexité du
systeme a des aspects maitrisables. Les caractéristiques principales qui permettent de déterminer la
qualité des mode¢les sont les suivantes :

» Abstraction : les détails qui ne sont pas pertinents dans un contexte spécifique sont
cachés ou supprimés ce qui permet une meilleure concentration sur 1’essentiel

» Compréhension : les détails pertinents sont présentés le plus intuitivement possible grace
a l'expressivité du langage de modélisation

NB : un systéme est un ensemble intégré constitué d'éléments qui sont liés les uns aux autres
et qui s'influencent mutuellement de telle sorte qu'ils peuvent étre percus comme une unité unique, a
base de taches ou d’objectifs (voiture, université, logiciel, etc.).

» Précision : un modeéle doit mettre en évidence les propriétés pertinentes qui reflétent le
plus fidélement possible la réalité ;

» Prédictivité : un modéle doit permettre de prévoir (par simulation ou analyse) des
propriétés évidentes du systeme modélisé ;

8 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

» Rentabilité : il est moins coliteux de créer le modeéle que de créer le systéme modélisé
Généralement, un systéme est décrit par plusieurs vues qui, ensemble, fournissent une
représentation globale unifiée. Par exemple, une vue peut décrire les objets du systéme et
leurs relations, une autre vue peut décrire les interactions entre ces objets et une troisieme
vue pour présenter la dynamique intra ou inter-objets.

2.3. Concepts de ’orientation objet

Afin de pouvoir traiter la modélisation objet, il est nécessaire de clarifier certains concepts
essentiels de 1’orientation objet. Cette approche est basée sur la notion d’objets qui sont des ¢léments
du systetme dont les données et les opérations sont décrites. Les objets peuvent interagir et
communiquer entre eux pour réaliser les fonctions du systeme. Les concepts génériques de
I’approche orientée objet peuvent étre résumés dans les points clés suivants :

NB : la capacité a présenter un contenu complexe avec le moins de concepts possible ce qui
réduit 1'effort intellectuel nécessaire pour comprendre le contenu représenté.

2.3.1. Objet

Un objet définit une représentation d’un concept réel ou virtuel qui encapsule une partie des
connaissances du monde dans lequel il évolue. Il est caractérisé par une identité et possede un état et
un comportement en ne laissant visible que son interface (les opérations que 1’on peut appliquer sur
cet objet) :

» Identité : donnée implicite qui permet de distinguer 1'objet de maniére non ambigué
indépendamment de son état

» Etat : ’ensemble des valeurs des attributs de 1’objet a un moment donné (et qui évolue au
cours du temps)

» Comportement : compétences ou services d’un objet décrivant les actions et les réactions
de cet objet. Chaque comportement ¢lémentaire d'un objet est appelé opération et est
déclenché suite a une stimulation externe (message envoy¢ par un autre objet)

objet: Classe : Classa
id="36548"

Figure 1 : Objets
2.3.2. Classe

Une classe décrit les attributs et le comportement d'un ensemble d'objets de fagon abstraite et
donc de regrouper les caractéristiques communes de ces objets.

«Sterectypas ClasseSimple | | ClassaAbstraite
Package:Classe
-id: Long
+Attribut: Long
#0peration(i: int): int
+OperationAbstraile|)

Figure 2 : Classes

9 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

La démarche d'abstraction se définit par rapport a un point de vue (critéres pertinents du
domaine considéré) et procede a l'identification des caractéristiques communes a un ensemble
d'objets, puis a la définition de ces caractéristiques dans une classe. La classe représente, ainsi, le
domaine de définition de cet ensemble d'objets.

Les attributs correspondent aux propriétés statiques de la classe. Par exemple, les étudiants
ont un nom, une adresse et un numéro d’inscription, les cours ont un identifiant, un titre et une
description, etc.

En phase d'analyse, il est recommandé de ne pas confondre entre objet et attribut ; si 1'on ne
peut demander a un élément que sa valeur, il s'agit d'un simple attribut. Si plusieurs questions s'y
appliquent, il s'agit plutot d'un objet qui posséde lui-méme des attributs, des opérations ou des liens
avec d'autres objets.

Une classe définit également un ensemble d’opérations qui peuvent étre appliquées a ses
instances (constructeurs, sélecteurs, itérateurs, etc.). Par exemple, il est possible d’enregistrer un
nouvel étudiant, de consulter la description d’un cours, de réserver une salle a une date, d’inscrire un
étudiant a un cours, etc.

En phase d’analyse et/ou de conception, les opérations sont identifiées aprés étude des
scénarios - interactions entre objets - qui décrivent les différentes fonctionnalités du systéme.

2.3.3. Encapsulation

L'encapsulation permet de protéger, via une interface définie de maniére unique, I'état interne
d'un objet contre les acces non autorisés. Différents niveaux de visibilité des interfaces permettent de
définir différentes autorisations d'acces. Java, par exemple, adopte les indicateurs de visibilité
explicites public, privé et protégé, qui permettent respectivement l'acceés pour tous, uniquement dans
l'objet, et uniquement pour les membres de la méme classe, de ses sous-classes, et du méme package.

2.3.4. Message

Les objets collaborent pour réaliser les fonctions de 1’application. Le comportement global de
l'application repose sur la communication entre les objets. Cette communication est réalisée par
envoi et réception de messages qui représentent des demandes d'exécution d'opérations. L'opération
n'est exécutée que si l'objet expéditeur est autorisé a faire appel a cette opération - condition de
visibilité - et qu’une implémentation appropriée de l’opération est disponible. Le concept de
surcharge de définition est support¢ dans la plupart des langages de programmation et de
modélisation objet. Ce concept permet de définir des comportements différents d’une opération selon
les types de ses parameétres.

bjet: Cl
objet; Classe — objet: Classe
Process_data() -data;
+Process_datai),

Figure 3 : Communication entre objets

10 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020
2.3.5. Héritage

L’héritage définit une classification des objets au sein d'une arborescence de classes
permettant de gérer leur complexité par réutilisation des caractéristiques héritées. C'est une relation
asymétrique non réflexive. Suivant le besoin, la définition de la relation d'héritage peut prendre I'une
des deux formes : généralisation ou spécialisation.

Utilisateur

=MNam
..Fw-d
#changer _pwd()

T T

Formateur Apprenant
-num_contrat -date_inscription

Figure 4 : Héritage

La généralisation est employée une fois que les classes du domaine sont identifiées. Elle
consiste alors a factoriser les informations communes entre classes dans une nouvelle classe, super-
classe de classes déja existantes.

La spécialisation permet, toutefois, de capturer des caractéristiques (d'un sous-ensemble
d'objets d’une classe) non couvertes par les classes déja identifiées. Les nouvelles caractéristiques
sont représentées par une nouvelle classe, sous-classe de classes déja existantes. La sous-classe
dérivée hérite de tous les attributs et opérations visibles (spécification et implémentation) et des
associations de la super-classe. La sous-classe peut, en plus, définir de nouveaux attributs et/ou
opérations, remplacer I’implémentation des opérations héritées, ajouter son propre code aux
opérations héritées ou avoir de nouvelles associations.

La définition des relations d’héritage doit répondre a un critére de classification pertinent
(différence de structure) et non pas sur la base de changement de valeurs particuliéres d’attributs
d'une méme classe (voiture blanche, voiture noire, etc.) ou de changement de rdles de classes par
rapport a une association (étudiant inscrit et étudiant délégué de classe, etc.).

ingerit

Vaituire Clasze -~ Etudiart
-coulaur{blancha, naire,. .} 1 l:-'élégu&':
e
0.1 1

Figure S : Critéres de classification non pertinents (valeurs, roles, etc.) — Résolu

De plus, P’héritage n'est pas adapté pour représenter les métamorphoses. En fait,
I’instanciation d’objets introduit un couplage statique trés fort et non mutable entre classe et instance;
une instance ne peut jamais changer sa dépendance a sa classe de définition.

Dans I’exemple de la figure, I’employ¢ stagiaire est titularisé aprés une certaine période de
stage ; c’est sa situation qui change et non pas I’employ¢ lui-méme.

11 Université Ferhat Abbas. Sétif -1

3"Licene en Systémes Informatiques Q Génie Logiciel |2020

Employé Situation

T

Stagiaire Titulaire
-periode_stage -date_titularisation

Figure 6 : Critére de classification non pertinent (métamorphose) — Résolu
2.3.6. Polymorphisme

Le polymorphisme d’attributs implique qu'un attribut peut avoir des références a des objets de
différentes classes sous-classes du type de cet attribut polymorphe.

Le polymorphisme d'opérations offre la possibilité d’exécuter des opérations de différentes
implémentations sur des objets de différentes classes (appartenant a une méme hiérarchie de classes)
en réponse a un méme message (spécification donnée au niveau de la super-classe de cette
hiérarchie).

2.3.7. Associations entre classes
Une association entre classes représente une abstraction des liens - d’une méme sémantique -
qui existent entre objets de ces classes. L’association peut prendre différentes formes : association

simple uni ou bidirectionnelle, agrégation ou composition.

» Association simple : connexion sémantique uni ou bidirectionnelle entre objets. Par
exemple, un étudiant suit un ou plusieurs cours.

Cours Etudiant

A suivre
1 - -

Figure 7 : Association simple

» Agrégation : une association qui exprime un rapport maitre-esclave entre objets
(ensemble-¢élément, tout-partie, composé-composant, etc.). Par exemple, un comité est
constitu¢ de plusieurs enseignants et un enseignant peut étre membre de plusieurs
comités.

NB : en général, le polymorphisme est la capacité d’un élément a adopter différentes formes.

Comité Enseignant

Figure 8 : Agrégation

» Composition : une forme d'agrégation avec couplage plus important ; les éléments
agrégés ne sont pas partageables et la destruction de 1'élément agrégat engage celle des

12 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

¢léments agrégés. Par exemple, un étudiant possede un compte Moodle et le compte est
associé a un seul étudiant.

Etudiant Compte Moodle

; 1

Figure 9 : Composition

En phase d’analyse, la classe peut exister indépendamment des autres éléments du systéme,
alors que I’existence de 1’association est conditionnée par celle des €éléments qui participent a cette
association. La méme remarque s’applique aux concepts liés aux associations tels que les roles
d’objets et les attributs des classes-associations.

Par exemple, dans la régle "une classe posséde un étudiant délégue", les concepts possede
(association entre classe et étudiant) et délégué (role de I’étudiant dans cette association) ne peuvent
pas exister sans qu’il y ait étudiant et classe. De méme, selon la régle "un étudiant obtient une note
dans une matiere", la note ne peut pas exister s’il n’y a pas étudiant et cours. Les concepts étudiant,
classe et cours peuvent exister seuls et constituent, donc, des classes dans le modéle.

Classe inscrit Etudiant
-{;—:I delé A
elague
%..1 1
g suivre W
157
Cours

Figure 10 : Association, Classe-association et Role
2.4.UML

Le langage UML constitue une référence dans le domaine de la modélisation objet adopté par
I'OMG (Object Management Group), la structure la plus importante de normalisation des concepts de
développement orienté objet. Le langage fournit un support considérable et extensible pour les
différentes activités de développement (analyse, conception d’architecture, conception de modules,
implémentation, etc.) et les différentes classes de systémes a développer (systemes d’information,
applications web, systemes temps réel, etc.).

2.4.1. Définition

Le langage UML est un standard de modélisation graphique semi-formelle qui regroupe les
meilleures pratiques de modélisation objet. Grace a une notation trés riche et suffisamment
expressive, UML permet la modélisation de la structure et du comportement de systémes logiciels
indépendamment des méthodes de développement et des langages de programmation. En général,
UML permet de spécifier, construire, visualiser et décrire les artefacts des systémes logiciels :

13 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

» Spécifier et Documenter : les éléments de modélisation UML possédent une syntaxe et
une sémantique bien définies ce qui permet de produire une modélisation précise, non
ambigué et compléte

» Construire : le passage entre modéles UML et implémentation peut étre réalisé
manuellement ou de mani¢re semi-automatique grace aux correspondances déja mises en
place entre constituants UML et langages de programmation objet

» Visualiser : UML propose un ensemble exhaustif de diagrammes couvrant les différentes
vues d’un systéme logiciel (fonctionnalités, structure, dynamique, etc.) et les différents
niveaux d’abstraction (modeles d’analyse, modéles d’architecture, modeles de
conception, etc.)

2.4.2. Historique UML

L'introduction de concepts objet au début des années 1960 [SIMULA] a marqué le début
d'une révolution dans le développement de systémes logiciels. Les décennies suivantes ont connu
I’apparition de plusieurs langages de programmation basés sur le paradigme objet tels que C++,
Eiffel, Smalltalk, Java, C#, etc. En parall¢le, beaucoup de méthodes d’analyse et de conception objet,
comme OMT (Object Modeling Technique), BOOCH (auteur Grady Booch) et OOSE (Object
Oriented Software Engineering), se sont imposées grace a leurs démarches et notations
incontournables dans le domaine de développement de systémes logiciels.

La plupart de ces méthodes objet étaient liées uniquement par un accord sur les concepts de
base de 1'objet (objet, classe, héritage, etc.). Toutefois, chacune de ces méthodes proposait sa propre
notation et aucune méthode ne pouvait prétendre couvrir tous les besoins, ni modéliser correctement
les différentes vues d’une application logicielle.

En 1995, des efforts d'unification des méthodes objet, pratiques industrielles et notations
(menés principalement par Ivar Jacobson (OOSE), Grady Booch (BOOCH) et James Rumbaugh
(OMT)) ont conduit a la proposition de la méthode unifiée (Unified Method 1995). Les résultats
d’unification n’ont pas pu aboutir a cause de deux problémes majeurs : (i) la dissemblance des styles
de conception des développeurs et (ii) la diversité des classes de systémes a développer. En fait, les
méthodes objet partagent les concepts objets et non pas les démarches et il serait insensé d’imposer
une approche unifiée pour des styles de conception trés variés et des classes de systémes fortement
différentes. Par la suite, les efforts ont été redirigés vers l'unification des notations manipulées par les
méthodes. En 1996, 'OMG (Object Management Group), a lancé un premier appel pour la
spécification d'une norme de modélisation uniforme.

La premicre version d’"UML adopté par 'OMG (Object Management Group) était la version
UML 1.1 en novembre 97. De nombreuses versions, ensuite, ont été adoptées par I’OMG dont la plus
importante est UML 2.0 (juillet 2005) qui a connu des révisions majeures du langage avec la
définition de nouveaux types de diagrammes. La version actuelle est UML 2.5.1 (depuis décembre
2017) et les travaux d'amélioration du langage continuent toujours.

A partir de sa version 1.4, UML a été publié en tant que norme ISO approuvée. Cette norme
est révisée périodiquement pour couvrir la derniere révision UML [ISO/IEC 19505- 2:2012].

2.4.3. Diagrammes UML

En UML, le modéle du systéme est représenté graphiquement sous forme de diagrammes.
Chaque diagramme fournit une vue d’une partie du systéme décrit par ce modele. Certains
diagrammes présentent quelle fonctionnalité du systeme est utilisée par quel utilisateur et d’autres
décrivent les composants du systeme et leur déploiement. Il existe également des diagrammes qui

14 Université Ferhat Abbas. Sétif -1

3“"Licene en Systemes Informatiques Q Génie Logiciel |2020

représentent 1’aspect statique du systéme et d’autres qui décrivent sa dynamique. Dans la version
actuelle, UML propose 14 diagrammes qui peuvent étre répartis en deux grandes catégories ; des
diagrammes de structure et des diagrammes de comportement (figure 11).

‘ Diagram ‘
I I
Structure Diagram Behavior Diagram
1 1
[I | | I
Class Package Object State Machine ||| Use Case
Diagram Diagram Diagram Diagram Diagram
| Component ' Profile Activity Interaction
Diagram Diagram Diagram Diagram
A
|| Composition Structure
Diagram . | |
Sequence Interaction Overview
| [Deployment Diagram Deagram
Diagram
Communication Tirming
Diagram Diagram

Figure 11 : Diagrammes UML (taxonomie structure-comportement)
2.4.4. Utilisation du langage

UML est une notation et ne définit pas de démarche et n'impose pas de processus de
développement. Cependant, le langage est facilement intégrable a des méthodes d’analyse et de
conception objet ou dans le cadre d’un processus de développement mettant en ceuvre les
caractéristiques essentielles du processus unifié. La figure 12 présente l'une des organisations
communes des différents diagrammes UML en vues (4+1 vues - UML 2.0).

Lagical View Implamentation View

Class, Object, Packﬁga‘. Component
Composile Struclure,
State Machine

Process View e Deployment View
Sequenca, 2
Communication,
Activity, Timing, _
Interaction Overview Deployrment

Figure 12 : Organisation des diagrammes UML 2.0 en 4+1 vues

15 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

3. Chapitre 3: Modélisation des fonctionnalités-Diagramme UML de cas d'utilisation
3.1. Introduction

Les fonctionnalités du systéme a développer désignent les exigences du client et ses attentes
de ce systéme. Lors de I’analyse des besoins, il est essentiel de pouvoir repérer et représenter
soigneusement ces fonctionnalités ; si des fonctionnalités sont oubliées ou spécifiées de maniere
imprécise ou incorrecte, les conséquences peuvent étre sérieuses, a savoir les colts de
développement et de maintenance augmentent, les utilisateurs sont insatisfaits, etc.

La mod¢lisation de ces fonctionnalités est un concept clé du développement objet qui est
exploité tout au long des activités d'analyse et de conception. Le langage UML comprend les
diagrammes de cas d’utilisation qui constituent un moyen pratique et trés efficace pour documenter
les fonctionnalités des systémes a développer.

3.2. Diagramme de cas d’utilisation

Le diagramme de cas d'utilisation permet de décrire les scénarios d'utilisation possibles pour
lesquels un systéme est développé. Il exprime ce que le systéme doit faire mais ne traite pas les
détails de réalisation (structures de données, algorithmes, etc.) qui sont couverts par d'autres
diagrammes (diagramme de classe, diagrammes d'interaction, etc.).

Le diagramme des cas d'utilisation modélise également quel utilisateur du systéme utilise
quelle fonctionnalité, c'est-a-dire qu'il exprime qui travaillera réellement avec le systeme a
construire. Pour résumer, ce diagramme peut &tre utilis€é pour modéliser (i) ce qui est décrit

(systéme), (i1) qui est en interaction avec le systeme (acteurs), (iii) ce que peuvent faire les acteurs
(cas d'utilisation).

Inscrire au cours

Explorer cours %

Etudiant

Passer examen

)

Figure 1 : Diagramme de cas d’utilisation
3.2.1. Cas d’utilisation

Un cas d'utilisation décrit une fonctionnalité attendue du systéme a développer. Cette
fonctionnalité constitue un avantage significatif aux acteurs qui communiquent avec le cas
d’utilisation qui la représente. Le cas d’utilisation inclut un certain nombre de taches qui sont
exécutées lors de l'utilisation de ce systéme. En général, un cas d'utilisation est déclenché soit par un
acteur, soit par un événement déclencheur. Un exemple d’événement déclencheur est que c’est la fin
de la formation et que, par conséquent, le cas d'utilisation "Délivrer diplome" doit étre exécuté.
Un cas d'utilisation est généralement représenté par une ellipse. Le nom du cas d'utilisation est

16 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

spécifié directement dans I'ellipse. D’autres alternatives de notation existent et sont toutes valables
(par exemple, un rectangle qui contient le nom du cas d'utilisation dans le centre et une petite ellipse
dans le coin supérieur droit), mais la premicre forme de représentation est communément utilisée.

Les cas d'utilisation sont généralement regroupés dans un rectangle qui indique les limites du
systeme a décrire. L'exemple de la figure 1 montre le systétme de suivi de formations, qui propose
trois cas d'utilisation : "Inscrire au cours", "Explorer cours" et "Passer examen". Ces cas d'utilisation
peuvent étre déclenchés par l'acteur Etudiant.

3.2.2. Acteurs

En plus des fonctionnalités du systéme, il est essentiel de préciser qui travaille et interagit
réellement avec le systéme. Le diagramme de cas d'utilisation permet de représenter les acteurs qui
interagissent avec le systéme dans le cadre des cas d'utilisation avec lesquels ils sont associés. Les
acteurs sont représentés par l'icone standard en forme de baton, des rectangles (contenant
lI'information complémentaire «acteur»), ou par un symbole librement définissable. L'exemple de la
figure 1 ne contient que l'acteur Etudiant, qui peut s’inscrire a un cours, explorer un cours et passer
examen.

Les acteurs ne représentent pas des utilisateurs spécifiques dans le systéme ; ils représentent
les roles que les utilisateurs assument. Si un utilisateur a adopté un role donné, cet utilisateur est
autorisé pour exécuter les cas d'utilisation associés a ce role.

Les diagrammes de cas d'utilisation peuvent contenir des acteurs humains (par exemple,
¢tudiant ou professeur) ou non humains (par exemple, serveur de courrier €lectronique), des acteurs
actifs ou passifs et des acteurs primaires ou secondaires.

Un acteur en interaction avec le systéme peut étre actif, ce qui signifie que l'acteur initie
I'exécution du cas d'utilisation (par exemple, le professeur). Si l'interaction implique plutot que
l'acteur soit utilisé par le systéme pour fournir un service pour l'exécution du cas d'utilisation, 1'acteur
est qualifi¢ de passif (serveur de courrier par exemple).

Les acteurs secondaires prennent toujours un avantage réel de 1'exécution du cas d'utilisation,
tandis que les acteurs secondaires ne recoivent aucun avantage direct de I'exécution du cas
d'utilisation.

Un acteur est toujours manifestement en dehors du systéme, c'est-a-dire qu'un utilisateur ne
fait jamais partie du systéme et n'est donc jamais implémenté. Les données concernant cet utilisateur
peuvent étre, cependant, nécessaires pour le systeme et doivent étre donc implémentées. Il est donc
crucial de distinguer entre éléments faisant partie du systéme a implémenter et ceux qui servent
d'acteurs.

3.2.3. Liaisons

Les diagrammes de cas d'utilisation définissent différentes formes de liaisons entre éléments
de modélisation ; des associations entre acteurs et cas d’utilisation, des relations entre acteurs et des
relations entre cas d’utilisation.

3.2.3.1. Associations

Un acteur est connecté avec les cas d'utilisation via des associations (représentées par des
lignes pleines) qui expriment le fait que l'acteur communique avec le systéme et utilise une certaine

17 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

fonctionnalité. Une association est toujours binaire, ce qui signifie qu'elle est toujours spécifiée entre
un cas d'utilisation et un acteur, mais des multiplicités peuvent étre spécifiées pour indiquer le
nombre d’acteurs impliqués dans l'exécution du cas d'utilisation.

Dans un diagramme de cas d’utilisation, chaque acteur doit communiquer avec au moins un
cas d'utilisation et chaque cas d'utilisation doit avoir une association directe ou indirecte avec au
moins un acteur.

3.2.3.2. Relations entre acteurs

Certains cas d'utilisation peuvent €tre utilisés par différents acteurs ce qui signifie que ces
acteurs possédent des propriétés communes qui peuvent étre regroupées et décrites dans un super-
acteur commun. Par exemple, il est possible que le professeur principal et I’assistant soient autorisés
a créer des travaux pratiques.

Pour une meilleure structuration du diagramme de cas d’utilisation, ces acteurs sont
représentés dans une relation d'héritage les uns avec les autres. Lorsqu'un acteur hérite
d'un autre acteur, le sous-acteur sera impliqué dans tous les cas d’utilisations associées au super-
acteur.

L’héritage entre acteurs est représenté graphiquement de la méme facon que dans le cas
d’héritage entre classes. S'il n'y a pas d'instance d'un acteur, celui-ci peut étre étiqueté avec le mot-
clé {abstract}. Alternativement, les noms des acteurs abstraits peuvent étre représentés en caracteres
italiques.

Il y a une différence majeure entre acteurs participants eux-mémes a un cas d’utilisation et
acteurs ayant un super-acteur commun qui participe a ce cas. Dans la premicre situation, les acteurs
doivent participer au cas d’utilisation ; dans la deuxiéme situation, chacun d'entre eux hérite
l'association avec le cas d’utilisation et participe ensuite individuellement a ce cas.

Dans l'exemple de la figure 2, les acteurs Principal et Assistant héritent de l'acteur abstrait
Professeur et peuvent, par conséquent, exécuter le cas d'utilisation "Créer TPs". Seuls les professeurs
principaux peuvent créer un nouveau cours ; en revanche, les TPs ne sont publiés que par les
assistants. Pour le cas "Evaluer étudiant", le professeur principal est un acteur requis ; en outre,
’assistant peut étre impliqué de maniére facultative, ce qui s'exprime par la multiplicité 0..1.

Créer TPs

Professaur

s

__\-‘___‘_\-_‘___"‘—‘_
/ Principal

/ Assistant

Evaluer Etudiant

Publier TPs

e

Figure 2 : Diagramme de cas d’utilisation avec héritage entre acteurs

18 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

3.2.3.3. Relations entre cas d’utilisation

Les cas d'utilisation peuvent avoir trois différentes formes de relations entre cas ; des
relations "d'inclusion", des relations "d'extension" et des relations d’héritage entre cas d'utilisation.

Si un cas d'utilisation de base inclut un autre cas d'utilisation, le comportement du cas
d’utilisation inclus est intégré dans le comportement du cas d’utilisation de base ; le cas d'utilisation
de base requiert toujours le comportement du cas d'utilisation inclus pour pouvoir offrir sa
fonctionnalité, mais le cas d'utilisation inclus peut étre exécuté seul. La relation d’inclusion est
représentée par une fleche en pointillé (allant du cas de base au cas inclus) étiquetée avec le
stéréotype «include».

Dans le diagramme de cas d'utilisation de la figure 3, l'utilisation Les cas "Annoncer
événement" et "Affecter conférencier" sont dans une relation "d'inclusion", ou 1’annonce
d’événement représente le cas d'utilisation de base. Par conséquent, chaque fois qu’un nouvel
¢vénement est annoncé, le cas d'utilisation inclus "Affecter conférencier" doit étre également
exécuté. Dans cet exemple, l'acteur Professeur est impliqué dans I'exécution des deux cas
d’utilisation et le cas inclus peut étre exécuté indépendamment du cas de base ; par exemple, il est
possible d’affecter des conférenciers a un événement déja existant.

Un cas d'utilisation peut inclure plusieurs autres cas d'utilisation et peut étre inclus par de
multiples cas d'utilisation. Dans de telles situations, il faut veiller a ce qu'aucun cycle ne se produise.
Si un cas d'utilisation est dans une relation d'extension avec un cas d'utilisation de base, alors le cas
d’utilisation de base peut utiliser le comportement du cas d'extension mais n'est pas obligé de le faire.

Le cas d'extension peut donc étre activé par le cas de base afin d'insérer son comportement
dans le cas de base. Les deux cas d'utilisation peuvent aussi étre exécutés indépendamment les uns
des autres.

Une relation d'extension est représentée par une fléche en pointillé (allant du cas d'utilisation
d'extension au cas d'utilisation de base) étiquetée avec le stéréotype «extendy.

La relation définit deux ¢léments additionnels ; la condition et le point d’extension.

La condition qui doit étre remplie pour que le cas d'utilisation de base puisse insérer le
comportement du cas d'utilisation d’extension peut étre spécifiée pour chaque relation d’extension.
Elle est indiquée par le mot-clé Condition et spécifiée entre parenthéses dans une note attachée a la
relation d’extension correspondante.

Le point d'extension définit I’endroit auquel le comportement du cas d’extension doit étre
inséré dans le cas d'utilisation de base. Les points d'extension sont écrits directement dans le cas
d'utilisation ou dans une note attachée a la relation d’extension correspondante et sont indiqués par le
mot clé Extension Point.

Dans l'exemple de la figure 3, les deux cas d'utilisation "Annoncer événement" et "Réserver
salle" sont reliés par une relation d’extension. Lorsqu'un nouvel événement est annoncé, il est
possible (et non pas obligatoire) de réserver une salle de conférence.

Un cas d'utilisation étend plusieurs cas et peut lui-méme étre étendu par plusieurs cas
d'utilisation. La encore, aucune forme de cycle ne peut étre tolérée.

19 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

Tout comme dans le cas des acteurs, 1’héritage entre cas d'utilisation est également possible.
Ainsi, les propriétés communes et le comportement commun de différents cas d'utilisation peuvent
étre regroupés dans un cas d'utilisation pere. Le cas d'utilisation fils hérite du comportement du cas
pere et adopte par conséquent, sa fonctionnalité de base, mais peut aussi soit étendre, soit modifier ce
comportement. Le cas fils hérite également toutes les relations du cas pére. Si un cas d'utilisation est
¢tiqueté {abstract}, il ne peut pas étre exécuté directement ; seuls les cas d'utilisation qui spécialisent
ce cas sont exécutables.

Le diagramme de la figure 3 montre un exemple de relation d’héritage entre le cas
d'utilisation abstrait "Annoncer événement" et les cas "Annoncer exposé¢" et "Annoncer conférence".
Les deux cas d’utilisation héritent 1’association entre le cas pere et 1’acteur Professeur et sont ainsi
liés a au moins un acteur Professeur. Les deux cas d'utilisation doivent également exécuter le
comportement du cas d'utilisation "Affecter conférencier" en raison de la relation d'inclusion définie

entre ce cas et le cas pere "Annoncer événement".

Cordition: ...-nextends f';{inclu{!exr

{salle conférences libre} - n

Extension point:
Solect ealle conféroncos
[
Professeur
Annoncer exposé

Figure 3 : diagramme de cas d’utilisation avec relations entre cas.

Annoncer conférence

3.3. Développement de diagrammes de cas d’utilisation

Le développement de diagrammes de cas d'utilisation consiste a identifier d’abord les acteurs
et les cas d'utilisation, puis a les mettre en relation les uns avec les autres et enfin, a décrire de
maniére détaillée les cas d'utilisation.

Les cas d'utilisation sont généralement identifiés par analyse des documents d'exigences ou
des attentes des futurs utilisateurs. Les documents relatifs aux exigences sont généralement des
spécifications en langage naturel qui expliquent ce que le client attend d'un systéme. IlIs doivent
documenter de maniére relativement précise qui utilisera le systéme (acteurs) et comment il 1'utilisera
(cas d’utilisation).

L’approche basée sur 1’analyse des attentes des futurs utilisateurs procéde d’abord par

I’identification des futurs utilisateurs, c'est-a-dire les acteurs et détermine ensuite les cas d’utilisation
associés a ces acteurs.

3.3.1. Identification des acteurs

Afin d’identifier les acteurs du diagramme de cas d’utilisation, 1’analyse des attentes des
futurs utilisateurs doit répondre aux questions suivantes :

- qui utilise les principales fonctionnalités du systeme ?

20 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

- qui a besoin de soutien pour son travail quotidien ?

- qui est responsable de I'administration du systeme ?

- quels sont les systemes logiciels ou dispositifs externes avec lesquels le systeme doit
communiquer ?

- qui est intéressé par les résultats du systeme ?

3.3.2. Identification des cas d’utilisation

Apres identification des acteurs, il est possible d’en déduire les cas d'utilisation en répondant
aux questions suivantes :

- quelles sont les principales taches qu'un acteur doit accomplir ?

- un acteur veut-il consulter ou modifier des informations internes dans systéme ?

- un acteur veut-il informer le systéme sur des changements dans d'autres systémes ?
- un acteur doit-il étre informé des événements inattendus au sein du systéme ?

Dans de nombreuses situations, les cas d'utilisation sont développés de maniére itérative et
incrémentale. Généralement, il faut commencer par I’identification des exigences de haut niveau qui
reflétent les objectifs métiers du systeme. Ces exigences sont ensuite raffinées jusqu'a ce que, sur le
plan technique, tout ce que le systéme devrait étre en mesure de faire soit identifié.

Par exemple, une exigence de haut niveau pour un systéeme d'administration des études
pourrait étre que le systeme est utilis€¢ pour le suivi des formations. Cette exigence peut tre raffinée,
par exemple, en exigences plus détaillées telles que les professeurs devraient pouvoir créer des cours
et des examens et que les étudiants devraient pouvoir s'inscrire aux cours, explorer des cours et
passer des examens, etc.

3.3.3. Description des cas d’utilisation

Afin de maintenir la clarté et I'utilit¢ des diagrammes de cas d'utilisation méme s’ils sont
larges, il est extrémement important de choisir des noms courts et concis pour les cas d'utilisation et
de procéder a la description détaillée de ces cas d'utilisation. L’approche structurée généralement
adoptée pour la description des cas d'utilisation maintient les informations suivantes :

- Nom

- Description succincte

- Précondition : condition préalable a la bonne exécution

- Postcondition : état du systéme aprés une exécution réussie

- Situations d'erreur : erreurs relevant du domaine du probléme

- Ftat du systéme aprés occurrence d'erreur

- Les acteurs qui communiquent avec le cas d'utilisation

- Evénements déclencheur : événements qui initient/démarrent le cas d'utilisation
- Exécution standard : étapes individuelles a suivre

- Exécutions alternatives : déviation par rapport a I’exécution standard

La table 1 montre une description du cas d'utilisation "Réserver salle" dans le systéme
d'administration des études. La description est extrémement simplifi€ée mais tout a fait suffisante. Le
chemin d’exécutions standard et le chemin alternatif pourraient étre raffinés davantage ou d'autres
situations d'erreur et des exécutions alternatives pourraient étre envisagés par la suite.

21 Université Ferhat Abbas. Sétif -1

3"Licene en Systémes Informatiques Q Génie Logiciel |2020

Table 1 Table de description de cas d’utilisation

Nom Réserver salle
Description un professeur réserve une salle de conférences a l'université pour un
succincte événement donné

Pré-condition

(1) le professeur est un utilisateur authentifié
(i1) le professeur est autorisé a réserver des salles de
conférences.

Post-condition

une salle de conférence est réservée

Situations d'erreur

il n'y a pas de salle de conférences libre

Etat du systéme en
cas d'erreur

le professeur n'a pas réservé de salle de conférences

Acteurs

Professeur

Exécution standard

(1) le professeur sélectionne la salle de conférences

(2) le professeur sélectionne la date

(3) le systéme confirme que la salle de conférence est libre
(4) le professeur confirme la réservation

Exécutions
alternatives

(3) la salle de conférences n'est pas libre

(4) le systéme propose d’autres salles de conférences

(5) le professeur sélectionne une autre salle de conférences et confirme la
réservation

3.4. Intérét et définition, Notation

Texte...

22 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

4. Chapitre 4: Diagrammes UML de classes et d'objets : vue statique
Texte...

4.1. Diagramme de classes
Texte...

4.2. Diagramme d'objets
Texte...

5. Chapitre 5: Diagrammes UML : vue dynamique
Texte...

5.1. Diagramme d'interaction (Séquence et collaboration)
Texte...

5.2. Diagramme d'activités
Texte...

5.3. Diagramme d'état/transitions
Texte...

6. Chapitre 6: Autres notions et diagrammes UML
Texte...

6.1. Composants, déploiement, structures composite.
Texte...

6.2. Mécanismes d'extension : langage OCL + les profils.
Texte...

7. Chapitre 7: Introduction aux méthodes de développement : (RUP, XP)

Texte...

8. Chapitre 8: Patrons de conception et leur place au sein du processus de
développement

Texte...

23 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

La partie : Travaux Dirigés

Les méthodes d’analyse et de conception définissent une démarche (suite d’étapes) et
un langage de modélisation (sériec de modeles) pour mener correctement le développement
d’applications logicielles.

Le développement de programmes procéduraux (qui sont définis uniquement par des données
et des traitements) utilise seulement des modéles pour les données et des modeles pour les
traitements (comme dans le cas de la méthode Merise : MCD-MCT...). Une application objet est
caractérisée, par contre, par cinq différentes perspectives :

Les fonctions que I’application doit assurer (diagramme de cas d’utilisation)

La structure des objets de I’application (diagrammes de classes, d’objets)

Les interactions entre objets de ’application pour réaliser les fonctions (diagrammes de
séquence, de communication)

La dynamique interne et inter-objet (machine d’état et diagramme d’activité)
L’architecture de D’application (diagrammes de packages, de composants et de
déploiement)

YV VVY

Les travaux dirigés et pratiques de la matiére Génie Logiciel sont axés sur la modélisation
UML dans le cadre d’un développement objet. Les objectifs, par ordre de priorité, sont les
suivants :

» Modélisation UML :

diagramme de cas d’utilisation

diagrammes de classes, d’objets

diagrammes de séquence, de communication

machine d’état et diagramme d’activité

diagrammes de packages, de composants et de déploiement

A

» Démarche de développement objet :

1. Méthode d’analyse et de conception objet
2. Processus

» Pratiques de développement objet :

1. Principes SOLID
2. Design patterns

Liens :

» Site officiel du langage de modélisation UML : https://www.uml.org/
» L’outil de modélisation starUML : https://staruml.io/

24 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

1. TD N°1 : Introduction a la Modé¢lisation Objet

lere Partie : Abstraction & Encapsulation

Proposer une abstraction (classe, instance, attribut, méthode, etc.) des éléments suivants :

1
2
3
4.
S.
6
7
8
9
1

0.

Une personne

Une personne qui s’appelle Ali

Un compte bancaire

La consultation du solde du compte bancaire
Un employé

Le nom de I’employé

L’adresse de I’employé

La modification de 1’adresse de I’employé
La liste des employés

L’ajout d’un employé

2¢me Partie : Associations, Multiplicités et Roles

Modéliser les associations exprimées par les régles suivantes :

ANl e

Les étudiants sont inscrits dans une seule classe

Une classe occupe une seule salle

Une classe regroupe entre cing et dix étudiants et posséde un seul étudiant délégué

Un étudiant suit plusieurs matiéres ; pour chaque maticre, 1’étudiant obtient une note

Un enseignant assure une ou plusieurs maticres

Une matiére posséde un enseignant chargé de cours et plusieurs enseignants assistants ; un enseignant
peut étre chargé de cours dans une matiere et assistant dans un autre

3eme Partie : Héritage (Généralisation, Spécialisation & Polymorphisme)

Proposer une modélisation objet des relations suivantes :

—

Les enseignants sont des employés

Les enseignants peuvent étre des maitres_assistants, des maitres_de conférences ou des professeurs
Un enseignant peut étre permanent ou vacataire ; les enseignants permanents sont caractérisés par
date recrutement et les enseignants vacataires sont caractérisés par durée contrat

Le calcul du salaire des enseignants permanents est basé sur leurs grade et échelon.
Le salaire des vacataires est calculé sur la base de leurs diplomes et du nombre
d’heures d’enseignement

Un enseignant permanent peut étre stagiaire ou titulaire ; un stagiaire qui fait preuve
de qualités professionnelles suffisantes est titularisé¢ dans douze mois

4:me Partie : Agrégation & Composition

Modéliser les régles suivantes :

ANl o e

~

Une collection regroupe plusieurs véhicules

Un véhicule est composé de carrosserie, moteur et de quatre roues

Les pieces sont caractérisées par référence piece et désignation picce

Les pi¢ces peuvent étre simples ou composites

Les picces simples sont caractérisées par prix_achat

Les pieces composites sont caractérisées par colit_assemblage et peuvent étre composées de plusieurs
autres piéces (simples et/ou composites)

Les pi¢ces composites sont assemblées dans un seul atelier

Un moteur est une piéce composite

25 Université Ferhat Abbas. Sétif -1

3“"Licene en Systemes Informatiques Q Génie Logiciel |2020

Correction TD N°1

1ére Partie : Abstraction & Encapsulation

Proposer une abstraction (classe, instance, attribut, méthode, etc.) des éléments suivants :

el

=0 X 30

Une personne : classe

Une personne qui s’appelle Ali : instance de la classe Personne avec attribut nom de valeur Ali’

Un compte bancaire : classe

La consultation du solde du compte bancaire : méthode dans la classe Compte Bancaire avec attribut
solde

Un employ¢ : classe

Le nom de I’employ¢ : attribut

L’adresse de I’employ¢ : attribut

La modification de I’adresse de I’employé : méthode dans la classe Employ¢

La liste des employés : classe (classe container)

. L’ajout d’un employé : méthode dans la classe Liste Employés (I’opération désigne I’ajout d’un

¢lément a une liste et non pas la création de cet élément)

2¢éme Partie : Associations, Multiplicités et Réles

Clagze inserit Etudian
A 510
delegue
< 3
occupa ¥ o L. | suivre W
1 1.
- assistant -
Salla Matiere - . Ensaignant

chargé de cours
" 1

3¢me Partie : Héritage (Généralisation, Spécialisation & Polymorphisme)

Employeé aEnumaratons
TypaeGrade
calcularSalatrag) maitras_assi.sianfs
k maitres_de_conférences
professeurs
Enseignant
grade : TypeGrade
calcularSalaire|)
‘Vacalaire Parmanant
dunde_contrat dabe_recrutemant
calculerSalaire() | situalion : {stagiaire tlitulaire}
fnplémeaniation 1 calculerSalairel) |
} impiémentation 2
H

26 Université Ferhat Abbas. Sétif -1

3“"Licene en Systemes Informatiques Q Génie Logiciel |2020

4¢me Partie : Agrégation & Composition

[callection

¢

Piace

référence_pléce *

désignation_piece 1.7

Carmssena . Waiture & . Roue
‘r ‘r & ¢
1
Pigca Simple Pigca composite
prix_achal coll_assemblage F Moteur
assambler &

1

Alalier

27 Université Ferhat Abbas. Sétif -1

3"Licene en Systémes Informatiques Q Génie Logiciel |2020

La partie : Travaux Pratiques
1. TP N°1: Expression des besoins et analyse

1ére Partie : Description du systéme - besoins fonctionnels
Une entreprise de location de voiture désire offrir ses services via le web :

Tout client peut consulter le catalogue de modeles de voitures, en explorant l'index des
modeles de voitures ou par recherche. Dans le cas de recherche, le client spécifie les détails des
modeles auxquels il est intéressé¢ (par exemple la catégorie, la marque, etc.). Les résultats
d’exploration d’index ou de recherche sont affichés comme une collection de modéles de voitures
avec des informations de base telles que le nom du mode¢le de voiture. Le client peut alors choisir de
voir des informations supplémentaires (la description par exemple) pour un modéle de voiture
particulier.

Les clients peuvent étre membres ou non membres. Un client membre doit effectuer un logon
pour avoir accés aux services supplémentaires : effectuer réservation, annuler réservation, vérifier
détails personnels, voir ses réservations en cours, changer le mot de passe du logon, voir ses
locations en cours et effectuer un log off.

Les assistants sont impliqués dans les opérations associées aux réservations telles que
déplacer les voitures depuis et vers l'espace réservé, c’est-a-dire effectuer réservation et annuler
réservation.

Dans l'ordre de voir les détails d'un modéle de voitures, un client doit étre en cours de
consultation de la liste de modeles de voitures (résultat obtenu par voie d'exploration ou de
recherche).

Dans 1'ordre de réserver un modéle de voitures, un membre doit étre en cours de consultation
des détails de ce modele (un non-membre ne peut pas effectuer une réservation, méme quand il est en
cours de consultation des détails du modele a réserver).

Dans l'ordre d'annuler une réservation, un membre doit étre en cours de consultation de ses
réservations en cours.

Donner :

- laliste des acteurs avec description succincte

- laliste des cas d'utilisation avec description succincte de chaque cas
- le diagramme de cas d'utilisation

- la description détaillée de chaque cas d'utilisation

28 Université Ferhat Abbas. Sétif -1

3“"Licene en Systemes Informatiques Q Génie Logiciel |2020

2éme Partie : Analyse du probléme - analyse statique

La phase recueil d'information a permis de dégager la description suivante des données
pertinentes du systéme :

Un modele de voitures est caractérisé par nom et prix et possede des détails supplémentaires
(capacité moteur, description, vidéo et poster). Un modele de voitures est fabriqué par un ou
plusieurs constructeurs (nom). Il est vendu par un seul vendeur (nom). Les modé¢les de voitures sont
classés en catégories (nom) ; un modéle de voiture appartient a une seule catégorie et une catégorie
regroupe plusieurs modeles de voitures. Un modele de voitures peut avoir plusieurs voitures et une
voiture (identifiant et distance parcourue) est liée a un seul modele de voitures. Une voiture possede
des détails supplémentaires (code a barres et immatriculation).

Une location est caractérisée par numero, date début, date fin et montant total. Elle concerne
une ou plusieurs voitures et une voiture peut étre concernée par une seule location. Un client peut
effectuer plusieurs locations et une location est associ€e a un seul client.

Les clients (nom, numeéro téléphone et montant dii) peuvent étre membres ou non membres.

Un membre est caractérisé par numero, position et montant di. Il posséde un compte internet
(mot de passe), une adresse (numéro, rue, ville et code postal) et une carte de crédit (numéro, type et
date expiration). Les cartes de crédit et les adresses peuvent tre partagées par plusieurs membres.

Les non-membres sont caractérisé€s par leurs numéros du permis de conduire.

Un client peut réserver plusieurs modeles de voitures et un modeéle de voitures peut étre
réservé par plusieurs clients. Les informations numéro, échéance et état réservation caractérisent
chaque réservation d'un modele de voiture par un client.

Donner :

- laliste des classes entités

- les propriétés de chaque classe
- le diagramme de classes

29 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques Q Génie Logiciel [2020

Correction TP N°1

1ére Partie : Description du systéme - besoins fonctionnels

1) Liste des cas d'utilisation :

Client : ...
Membre : ...
Non membre : ...
Assistant : ...

2) Liste des cas d'utilisation :

Ul: Index de navigation: un client navigue sur l'index des modéeles de voiture. (Spécialisé¢ U13, inclut
U2))

U2: Afficher les résultats: un client voit le sous-ensemble de modéles de voitures qui ont été
récupérés. (Inclus par Ul et U4, prolongé par U3.)

U3: Afficher les détails du modele de voitures: Un client voit les détails d'un modéle de voitures
récupéreé, tels que description et annonce. (Prolonge U2, prolongé par U7.)

U4: recherche: un client recherche des modéles de voiture en spécifiant des catégories, des marques et
un moteur. tailles. (Spécialis¢ U13, comprend U2.)

US: connexion: un membre se connecte a iCoot en utilisant son numéro de membre et mot de passe.
(Prolongé par U6, U8, U9, U10 et U12.)

U6: Afficher les détails du membre: un membre affiche certains des détails stockés par iCoot, comme
le nom, adresse et détails de la carte de crédit. (Prolonge US5.)

U7: Faire une réservation: un membre réserve un modéle de voitures lors de la visualisation de ses
détails. (Prolonge U3.)

US8: Afficher les locations: un membre consulte un résumé des voitures qu'il loue actuellement.
(Prolonge US.)

U9: Modifier le mot de passe: un membre modifie le mot de passe qu'il utilise pour se connecter.
(Prolonge US.)

U10: Afficher les réservations: un membre consulte les résumés de ses réservations non conclues,
comme la date, I'heure et le mod¢le de voitures. (Prolonge U5, prolongé par Ul1.)

Ul1: Annuler la réservation: un membre annule une réservation non conclue. (Prolonge U10.)

U12: Déconnexion: un membre se déconnecte d'iCoot. (Prolonge US5.)

U13: Rechercher des modéles de voitures: un client récupére un sous-ensemble de modéele de
voitures du catalogue.

3) La description détaillée de chaque cas d'utilisation

U4: Recherche.

Conditions préalables: aucune.

AN

Le client sélectionne les catégories requises (le cas échéant).

Le client sélectionne les marques requises (le cas échéant).

Le client sélectionne les tailles de moteur requises (le cas échéant).
Le client lance la recherche.

Incluez U2.

Post-conditions: aucune.

30 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques

@

Génie Logiciel |2020

Chemins anormaux: al. Si le client ne spécifie aucune catégorie, marque ou taille de moteur, plutot qu’en

récupérant l'intégralité du catalogue, iCoot ne doit pas autoriser le lancement de la recherche.

4) Le diagramme de cas d'utilisation:

Y

iCoot

Ul_Index de navigation

wextendy. ---~

@fﬁcher les résultats o
wmcludes

U4_Recherche

X

U13_Rechercher des modéles de

0
.
.
.
[y

Non membre

!

Ug_Afficher les locations

U6_Afficher les détails de memb_,D\

e wextends \
EN

sexiends

@Jdiﬁer le mot de@

Chient

%, U12_Déconnexion
‘\

e
—_sexend» .- \
_seextends \

U10_Afficher les réservations

< U3_Afficher les détails du des

“~zgxtend» Membre

z A 2 ———
......... U7_Faire une réservation
wextend»

Assistant

2¢me Partie : Description du systéme - besoins fonctionnels

— - Location Client
Détails de voiture Voiture - ‘
+Capacité_Moteur _l%‘ +Nom 1;2 ; 0.1 :g;:;f:ébut) TETec e{l :#J:Irgphone
+Description +Prix FLONCeMer | .pate fin H +Montant_di
+Video +Montant_total
+Poster *
+Exemple de "
Constructeur | +Fabriquer :
+Nom 1*
oL Réservation Membre Nan membire
+Détails Modéle de voiture +Numéro +Numéro HVLIm: parTEy condiis
D +Echéance +Paosition
1 (+Distance DarCOUME +Etat réservation| |+Montant_di
Détails de modéle = | gy
+Code_a_barres x l +Assurer par "~ |1+Connecter
+Immatriculation " !)
+Apparpient +Vehdu par +Rési
1 1 1 1 1
Catégorie Veckour Carte de crédit Adresse Compte internet
- +Numéro +Numéro +Mot_de_passe
+Nom +Nom +Type +Rue -
+Date_expération | | +Ville
+Code_postal

31 Université Ferhat Abbas. Sétif -1

3“"Licene en Systémes Informatiques

Génie Logiciel |2020

searm] m&'ea} huemhérshp}naﬁrars] Hasa'vatm] Pas;mm]

calegory a o
category b]
category ¢

category d il
manufacturer a engine size a 0y
manufacturer b onging slze b]
manufacturer c engine size ¢
manufacturer d engine slze d

Cll

kY

@

UII: créer requéte

S\:arch-Ll | Hd-&q Membersh p\l R{:‘llzlh] Ru:m':!h{ns\l Pasmmﬂ]

Category [Sports |
Make(s) [Abc, Def |
Model [358 |
Engine Size [3.8 |
|

|

Description |Waffle
Daily Price [€89.50

|| Advert... || Poster... |

[< Go Back | [Reserve...
RN

\®

UI3: consulter détails modele de voiture

Saardh | Ird e P.'Iumb:rsl‘lpj_Rm!.ds] Ft:.ﬁurv.‘mnrﬁ-]ﬁwswrd\l
- Personal Details
L]
——:]
Addrass
_]
] 1
Credit Card
[|
—:i]]
|< Go Back | |Reserve... || Advert... || Poster... |

UIS5: consulter détails membre

EBEI'CI'I] |I'ﬂBH.] Memba’shlplﬁarﬂals] Resamvations ! Password

Search| index| Membership| Rentals| Reservations | Password

—

car model a
car model b
car model ¢
car model d
car model e
car model
car model g
car model h
car model i i

[1=

[=Go Ba-::l-: |] Detaﬂs 3

N \@

UI2: consulter résultats

SBarch] Inda:] Mermarshln-} Fbamﬂa] Raaawmlnnﬂ Pnsaw:rd]

index entry a
index entry b
indax entry ¢
index entry d
index entry e
indsx entry f
index entry g
indax entry h
index entry i |l

=

Refrieve,,, | ——¥ Proceed as for Search page

Ul4: sélectionner un titre index

Senmh] Irecden Mﬁ'nbu'&hlp] FtnnL"!Is] RE."i:wahm:i] P‘:lmurd]
rental a 8
rental b H
rental c
rental d

[¥]

UI6: consulter locations

Se:rth] Irndﬁ'.x] Mh‘nb&rsl‘u'p] Rﬂ‘lmh} Rpsen-aljm:] F'a.-,sr.md]_

|
|
|
reservation a B i
reservation b u !

reservation ¢ ! Old Password [-e=ee |
|

E NEW P_assmrd [iiiiiii' I

i Repeat New Password [xs=s = |
|

o : [Change...J[Clear Fields|
i
|
i
________Ul7: consulter réservations e UI8: changer le motde passe
32 Université Ferhat Abbas. Setif -1

3“"Licene en Systemes Informatiques Q Génie Logiciel |2020
2. TP N°2 : Installation de StarUML

Pour avoir une version stable de StarUML suivez les étapes suivantes:

1. Télécharger une version StarUML, 7-Zip et le plugin Asar.zip

2. Installer StarUML et 7-Zip.

3. Installer sur 7-Zip le plugin Asar (Créer le sous-dossier «Formats» dans le dossier
d’installation de 7-Zip «...\ProgramFiles\7-Zip». Puis, copier a partir de plugin «Asar.zip» le
fichier «Asar.64.dll» ou «Asar.32.dll» dans le dossier «...\ProgramFiles\7-Zip\Formats». 7-Zip
cherche automatiquement «Asar7z» et 1’utilise pour ouvrir des fichiers «.asar»).

4. Extraire le fichier «...\ProgramFiles\StarUML\resources\app.asar» dans un dossier «...\app».

5. Ouvrir le fichier «...\app\src\engine\license-manager.js» par un éditeur de texte puis modifier
la fonction checkLicenseValidity () comme suite :

checkLicenseValidity () {
this.validate().then(() => {
setStatus(this, true)
b ()=
IIsetStatus(this, false)
//UnregisteredDialog.showDialog()
setStatus(this, true) //<-- add this line

)
}

6. Enregistrer les modifications et créer un nouveau fichier «app.azar» par 7-Zip en utilisant
le dossier modifié «...\app».

7. Enfin, replacer le fichier «...\ProgramFiles\StarUML\resources\app.asar» par le nouveau
fichier «app.azar».

8. Lancer StarUML.

33 Université Ferhat Abbas. Sétif -1

