
Licence en Systèmes Informatiques

Les objectifs de la licence en Systèmes Informatiques sont l’acquisition des compétences
fondamentales, des méthodes théoriques et pratiques et du savoir-faire techniques représentatifs des
différentes tâches de la discipline informatique. Cette formation couvre l'ensemble de la filière : fondements,
architectures et matériels, conception d’interface homme-machine, technologies Web, objets, réseaux,
systèmes, méthodes et technologies logicielles, applications informatiques, systèmes d'information, langages
de programmation, systèmes d’exploitation, algorithmique, logique... A l’issue de la formation, construite de
façon suffisamment généraliste, les étudiants peuvent intégrer des masters variés, comme ils auront la
possibilité à l’insertion dans le monde du travail de tous les domaines de l’informatique, les débouchés étant
nombreux et intéressants.

Unité
d'Enseignement

Matière
Cré-
dits

Coeff-
icient

Volume horaire
hebdomadaire

VHS
14

Semaines

Mode d'évaluation

Cours TD TP Continu Examen
UE Fondamentale 1

Crédits : 10
Coefficients : 6

Système
d'exploitation 2

5 3 1h30 1h30 1h30 63h 40% 60%

Compilation 5 3 1h30 1h30 1h30 63h 40% 60%
UE Fondamentale 2

Crédits : 10

Coefficients : 6

Génie logiciel 5 3 1h30 1h30 1h30 63h 40% 60%

Interface homme
machine

5 3 1h30 1h30 1h30 63h 40% 60%

UE Méthodologie
Crédits : 8

Coefficients : 4

Programmation
linéaire

4 2 1h30 1h30 42h 40% 60%

Probabilités et
statistique

4 2 1h30 1h30 42h 40% 60%

UE Transversale
Crédits : 2

Coefficients : 1

Economie
numérique et

veille stratégique
2 1 1h30 21h 100%

Total Semestre 5 30 17 9h 10h30 6h 357h

Matière : Génie logiciel

1. Chapitre 1: Introduction
1.1. Définitions et objectifs
1.2. Principes du Génie Logiciel
1.3. Qualités attendues d'un logiciel
1.4. Cycle de vie d'un logiciel
1.5. Modèles de cycle de vie d'un logiciel

2. Chapitre 2: Modélisation avec UML
2.1. Introduction : Modélisation, Modèle, Modélisation Orientée Objet, UML en application.
2.2. Eléments et mécanismes généraux
2.3. Les diagrammes UML
2.4. Paquetages

3. Chapitre 3: Diagramme UML de cas d'utilisation : vue fonctionnelle
3.1. Intérêt et définition, Notation

4. Chapitre 4: Diagrammes UML de classes et d'objets : vue statique
4.1. Diagramme de classes
4.2. Diagramme d'objets

5. Chapitre 5: Diagrammes UML : vue dynamique
5.1. Diagramme d'interaction (Séquence et collaboration)
5.2. Diagramme d'activités
5.3. Diagramme d'état/transitions

6. Chapitre 6: Autres notions et diagrammes UML
6.1. Composants, déploiement, structures composite.
6.2. Mécanismes d'extension : langage OCL + les profils.

7. Chapitre 7: Introduction aux méthodes de développement : (RUP, XP)
8. Chapitre 8: Patrons de conception et leur place au sein du processus de développement

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 a Université Ferhat Abbas. Sétif -1

Matière : Génie Logiciel

Table des matières

1. Chapitre 1: Introduction ... 1
1.1. Définitions et objectifs .. 1
1.2. Principes du Génie Logiciel .. 1
1.3. Qualités attendues d'un logiciel... 2
1.4. Cycle de vie d'un logiciel .. 2

1.4.1. Définition ... 2
1.4.2. Activités .. 2
1.4.3. Documents .. 4

1.5. Modèles de cycle de vie d'un logiciel ... 4
1.5.1. Modèle en cascade ... 4
1.5.2. Modèle en V ... 5
1.5.3. Modèle incrémental .. 5
1.5.4. Modèle de prototypage ... 6
1.5.5. Modèle en spirale ... 6
1.5.6. Processus unifié et modèles dérivés ... 7
1.5.7. Développement rapide d'applications et Modèles agiles ... 7

2. Chapitre 2: Modélisation avec UML ... 8
2.1. Introduction ... 8
2.2. Modèles ... 8
2.3. Concepts de l’orientation objet ... 9

2.3.1. Objet ... 9
2.3.2. Classe ... 9
2.3.3. Encapsulation ... 10
2.3.4. Message .. 10
2.3.5. Héritage ... 11
2.3.6. Polymorphisme ... 12
2.3.7. Associations entre classes .. 12

2.4. UML ... 13
2.4.1. Définition ... 13
2.4.2. Historique UML ... 14
2.4.3. Diagrammes UML .. 14
2.4.4. Utilisation du langage .. 15

3. Chapitre 3: Modélisation des fonctionnalités-Diagramme UML de cas d'utilisation .. 16
3.1. Introduction ... 16
3.2. Diagramme de cas d’utilisation ... 16

3.2.1. Cas d’utilisation ... 16
3.2.2. Acteurs ... 17
3.2.3. Liaisons .. 17

3.2.3.1. Associations ... 17
3.2.3.2. Relations entre acteurs ... 18
3.2.3.3. Relations entre cas d’utilisation ... 19

3.3. Développement de diagrammes de cas d’utilisation ... 20
3.3.1. Identification des acteurs ... 20
3.3.2. Identification des cas d’utilisation ... 21
3.3.3. Description des cas d’utilisation .. 21

3.4. Intérêt et définition, Notation .. 22
La partie : Travaux Dirigés ... 24

1. TD N°1 : Introduction à la Modélisation Objet ... 25
Correction TD N°1 ... 26

La partie : Travaux Pratiques .. 28
1. TP N°1: Expression des besoins et analyse ... 28
Correction TP N°1 .. 30
2. TP N°2 : Installation de StarUML ... 33

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 1 Université Ferhat Abbas. Sétif -1

La partie : Cours

1. Chapitre 1: Introduction

Les logiciels et les solutions informatiques spécialisées sont de plus en plus utilisés dans la
plupart des aspects de la vie quotidienne (systèmes d’exploitation, outils, logiciels d’entreprises,
logiciel scientifiques, systèmes embarqués, etc.). La plupart des systèmes de communication, de
transport, de production et de contrôle utilisent des solutions logicielles intégrées afin de renforcer
leur rentabilité, leur flexibilité et leur qualité.

Le développement de ces logiciels, souvent complexes et de grande taille, présente de
nombreux défis tels que la maîtrise des coûts et des délais de réalisation, l’évolution des besoins des
utilisateurs, le développement collectif et la difficulté de communication entre les différents
intervenants, l’évolution du matériel, la diversification des architectures et des environnements, etc.

Les défis ont mis en évidence, depuis les années 60, la crise du logiciel qui se caractérise par
le fait que les projets de développement de solutions logicielles n'ont pas toujours été réalisés avec
succès. En fait, la plupart de ces projets ont été abandonnés, annulés ou refusés, à cause de l’absence
de maîtrise de ces projets, au niveau des coûts, des délais, et de la mauvaise qualité des produits
logiciels développés.

Ce constat d'échec a conduit au développement et à l’adoption de nouveaux procédés, outils
et formalismes permettant de développer efficacement des solutions logicielles fonctionnelles et de
qualité en dépit de leur complexité et de tout autre défi. Le domaine d’étude de ces procédés, outils et
formalismes est appelé génie logiciel.

1.1. Définitions et objectifs

Le génie logiciel est un domaine des sciences de l'ingénieur dont la finalité est la conception,
la fabrication et la maintenance de systèmes logiciels complexes, sûrs et de qualité. C'est un
ensemble de méthodes, techniques et outils pour la production et la maintenance de composants
logiciels corrects et de qualité.

Contrairement à la programmation individuelle (production individuelle d'un système
simple), le génie logiciel soutient une production collective d'un système complexe caractérisée par
un ensemble de documents de conception, de programmes et de jeux de tests avec souvent de
multiples versions2. Cet appui est traduit par la définition et le développement de plusieurs concepts
du génie logiciel répondant à différents types de besoins tels que les processus de développement ou
modèles de cycles de vie de logiciels (besoins de gestion de ressources, coûts et délais), les méthodes
d’analyse et de conception (besoins de gestion du développement), les langages de modélisation
(besoins de communication), les design patterns et les frameworks (besoins de réutilisation), etc.

1.2. Principes du Génie Logiciel

Le génie logiciel se préoccupe des procédés de fabrication de logiciels de façon à garantir que
les quatre critères suivants soient satisfaits :

 Le système développé doit fournir les fonctionnalités attendues
 Les coûts de développement doivent rester dans les limites prévues au départ
 Les délais doivent rester dans les limites prévues au départ
 Le système développé doit garantir les qualités requises par le contrat de service

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 2 Université Ferhat Abbas. Sétif -1

1.3. Qualités attendues d'un logiciel

La qualité désigne l’appréciation générale d'un logiciel selon des critères comme :

 fiabilité : capacité d'un logiciel à assurer de manière continue le service attendu
 correction (validité) : aptitude d'un logiciel à réaliser exactement les tâches telles qu'elles

ont été définies par sa spécification
 robustesse : aptitude d'un logiciel à fonctionner même dans des conditions anormales
 extensibilité: facilité d'adaptation d'un logiciel aux changements de spécification
 réutilisabilité: aptitude d'un logiciel à être réutilisé en tout ou partie
 compatibilité : aptitude des logiciels à être combinés les uns aux autres
 efficacité: capacité d'un logiciel à optimiser l’utilisation de ressources (mémoire,

processeur, bande passante, etc.)
 portabilité: facilité à être porté sur différents environnements matériels et/ou logiciels
 traçabilité: capacité à identifier et/ou suivre un élément du cahier des charges lié à un

composant logiciel
 autres critères: simplicité, intégrité, réparabilité, vérifiabilité, etc.

Ces qualités sont parfois contradictoires et doivent être pondérées selon le type du
logiciel (critique/grand public, systèmes sur mesure/produits logiciels de grande diffusion,
etc.).

1.4. Cycle de vie d'un logiciel
1.4.1. Définition

Le cycle de vie du logiciel est un ensemble cohérent d’activités pour spécifier, concevoir,
implémenter et tester des systèmes logiciels. A chaque activité sont associés différents livrables qui
se présentent sous forme de documents tels que le plan du projet, les plans de tests, les modèles
d’analyse, les modèles de conception, le code source, les rapports de tests et les manuels
d’utilisation.

1.4.2. Activités

Le cycle de vie de logiciels définit de nombreuses activités qui peuvent être de différentes
natures : activités de définition (planification, Spécification), activités de production (conception,
implémentation et vérification), activités de livraison (installation et déploiement, conversion de
données et formation) et activités de maintenance.

1. Phase de définition

a. Planification du projet : il s’agit d’une étude préliminaire pour déterminer les possibilités
de réalisation du projet. Les sous-activités principales de cette activité sont les suivantes :

 définition globale du problème
 étude de la faisabilité et analyse du marché
 évaluation des stratégies possibles
 évaluation des ressources, coûts et délais
 assurance qualité
 élaboration du calendrier du projet

Le document résultat de l’activité de planification est le rapport de planification.

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 3 Université Ferhat Abbas. Sétif -1

b. Analyse des besoins : il s’agit de déterminer ce qu’il faut faire. Les sous-activités de base
de l’analyse des besoins sont les suivantes :

 recueil d’informations
 déterminer les exigences fonctionnelles
 déterminer les exigences non-fonctionnelles (contraintes)
 spécification du système (modèles d’analyse)
 construction de prototypes (pour élaborer la spécification)

Les documents associés à cette activité sont le cahier des charges, les modèles d’analyse, le
plan de tests et le prototype.

2. Phase de développement

a. Conception : l’objectif de l’activité est de déterminer comment procéder pour réaliser ces
besoins. Les sous-activités essentielles étant :

 conception architecturale du système : décomposition et organisation du système en
modules et définition des interfaces entre modules

 conception détaillée de modules : description de la manière dont les services et les
fonctions sont réalisés

Les documents produits de l’activité de conception sont les modèles de conception, le
prototype, le plan de tests global et le plan de tests par module.

b. Implémentation : Il s’agit de construire les composantes logicielles par mise en œuvre de
la conception dans un langage de programmation ou en utilisant des outils de développement.

Les documents produits de cette activité sont les dossiers de programmation, le code source
commenté et le prototype.

c. Vérification : déterminer si le produit réalise correctement le travail attendu par évaluation
de la solution en fonction de la spécification (test) :

 test unitaire : vérifier séparément le module développé
 test d’intégration : tester le produit durant l’intégration d'un module
 test du système : évaluer la conformité du produit logiciel par rapport aux exigences

spécifiées
 test d’acceptation : évaluer la conformité du produit logiciel par rapport aux

spécifications en présence effective des différents acteurs du projet

Le document associé à cette activité est le rapport de tests.

3. Phase de Livraison

a. Installation et déploiement : mettre le produit logiciel en fonctionnement opérationnel
dans son environnement (chez les utilisateurs)

b. Conversion des données: transférer les données de l’ancien système et les données
manquantes dans le nouveau système c. Formation : former les utilisateurs à utiliser le logiciel

4. Phase de maintenance

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 4 Université Ferhat Abbas. Sétif -1

a. Maintenance : mettre-à-jour le logiciel pour garantir une utilisation efficace continue et
faciliter les opérations de maintenance à venir :

 maintenance corrective : corriger les erreurs
 maintenance adaptative : s’adapter à des changements d’environnement
 maintenance perfective : améliorations

1.4.3. Documents

Les livrables des différentes activités sont représentés par plusieurs types de documents, dont
les plus importants sont :

 Plan du projet : décrit l’ordre des tâches et estime les besoins en matière de délais et
d'efforts

 Plan de tests: décrit comment le produit serait testé afin de garantir un comportement correct
 Spécification des besoins: décrit ce que doit faire le logiciel
 Modèles d'analyse: décrivent la solution logicielle indépendamment des choix techniques ou

organisationnels
 Modèles de conception: décrivent la solution logicielle finale retenue
 Exécutables : désignent le ou les différents composants exécutables du produit final
 Code source : comprend la totalité du code source du produit final
 Rapport de tests: décrit quels sont les tests effectués et quel était le comportement du

système enregistré

1.5. Modèles de cycle de vie d'un logiciel

Un modèle de cycles de vie ou processus de développement est une description abstraite et
personnalisée de l'organisation des activités de développement d’un logiciel. Il présente alors la
description détaillée du cycle de vie d’une perspective particulière tout en négligeant les parties
inutiles.

1.5.1. Modèle en cascade

C’est un modèle linéaire axé sur la documentation dans lequel le déroulement des activités est
réalisé de manière séquentielle d'une activité à l'autre (figure 1). Il s’agit d’un modèle simple et
efficace pour les systèmes complexes si tous les besoins sont déterminés à priori et ne changent pas
au cours du développement.

D’autre part, ce modèle impose des écarts de temps considérables entre l’expression des
besoins et l’implémentation et manipule des délivrables volumineux à chaque activité.

Figure 1 : Modèle en cascade

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 5 Université Ferhat Abbas. Sétif -1

Il existe plusieurs versions et variantes du modèle linéaire qui mettent l’accent sur certaines
activités plutôt que d’autres selon les besoins et le contexte. Les deux variantes les plus importantes
du modèle séquentiel sont le modèle en V et le modèle incrémental.

1.5.2. Modèle en V

C’est une variante du modèle séquentiel axée sur la vérification où chaque étape de
développement (analyse ou conception) a un niveau de tests qui lui est associé (figure 2). Cette
liaison activité-test permet de définir des tests pertinents et de haute qualité.

Figure 2 : Modèle en V

1.5.3. Modèle incrémental

Le modèle incrémental est une autre variante du modèle en cascade axée sur la décomposition
du système global en sous-projets indépendants (conception générale) et l’itération, comme le
montre la figure 3, du développement (conception détaillée et implémentation pour chaque sous-
projet) et de l’intégration des incréments au système final. Le modèle offre la possibilité de
développement parallèle d’incréments, réduisant ainsi le temps nécessaire pour la livraison du
produit final.

Figure 3 : Modèle incrémental

L’approche incrémentale souffre en général, en plus des problèmes du modèle en cascade, du
sérieux problème d’intégration dans le cas où les sous-projets ne sont pas complètement
indépendants.

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 6 Université Ferhat Abbas. Sétif -1

1.5.4. Modèle de prototypage

Le modèle de prototypage est un modèle de développement itératif3 dans lequel les activités
d’analyse, de conception et d’implémentation sont réalisées de façon concurrente. L'objectif
principal est de livrer rapidement un minimum de fonctions stables (prototype jetable ou évolutif) qui
sera fourni aux clients pour éventuel feedback. Sur la base de ce retour d’information, les besoins
sont raffinés et le développement de la prochaine version du prototype se poursuit en procédant de la
même manière. Le modèle de prototypage est, alors, adapté pour les projets où les besoins ne sont
pas clairement définis ou qui sont susceptibles de changer avec le temps.

1.5.5. Modèle en spirale

C’est un modèle axé sur de la gestion des risques et implémente les éléments des modèles en
cascade, incrémental et prototypage. L’image du modèle est une spirale qui commence au milieu et
qui réitère continuellement les tâches de base (figure 4).

NB : le développement itératif décompose les besoins du système global en versions qui sont
développées séquentiellement en commençant par les besoins les plus importants et en passant
par les mêmes activités de développement.

Figure 4 : Modèle en spirale

Les principaux risques (et leurs solutions) sont les suivants :

 défaillance de personnel : embauches de haut niveau, formation mutuelle, adéquation
profil/fonction, etc.

 calendrier et budgets irréalistes : estimation détaillée, développement incrémental,
réutilisation, adaptation des besoins, etc.

 développement de fonctions inappropriées : revues d’utilisateurs, manuel d’utilisation
précoce, etc.

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 7 Université Ferhat Abbas. Sétif -1

 développement d’interfaces utilisateurs inappropriées : maquettage, analyse des tâches, etc.
 produit "plaqué or" : analyse des coûts/bénéfices, conception tenant compte des coûts, etc.

volatilité des besoins : développement incrémental de la partie la plus stable d’abord, masquage
d’information, etc.

 problèmes de performances : simulations, modélisations, essais et mesures, maquettage, etc.
 exigences démesurées par rapport à la technologie : analyses techniques de faisabilité,

maquettage, etc.
 tâches ou composants externes défaillants : audit des sous-traitants, contrats, revues, essais et

mesures, etc.

1.5.6. Processus unifié et modèles dérivés

Le processus unifié est un processus d'ingénierie logicielle générique qui regroupe les
caractéristiques communes et essentielles des différents processus de développement objet :

 itératif et incrémental
 modélisation visuelle avec UML (Unified Modeling Language)
 piloté par les cas d’utilisation
 centré sur l’architecture
 guidé par les patrons de conception (Design Patterns)

Ces caractéristiques sont, toutefois, génériques ; le processus unifié ne peut pas être utilisé
directement et nécessite une spécialisation qui tient compte des facteurs techniques et
organisationnels du domaine. Ses principaux modèles dérivés sont : RUP (Rational Unified Process),
ESA (Extreme System Analysis), EUP (Enterprise Unified Process), 2TUP (2 Tracks Unified
Process) et Catalysis.

1.5.7. Développement rapide d'applications et Modèles agiles

L'objectif de ces catégories de modèles est d'éviter les écarts importants entre les résultats
obtenus et l'expression des besoins initiaux et avoir ainsi une livraison dès que possible du produit
final. Les modèles de ces catégories choisissent les solutions les plus simples, impliquent au
maximum les clients et favorisent les interactions et les applications fonctionnelles plutôt que les
processus et les documents exhaustifs.

Le développement rapide d'applications (RAD) priorise les itérations rapides et les versions
de prototypes en utilisant des techniques spéciales et des outils d’aide tels que les outils CASE
(Computer-Aided Software Engineering), la génération automatique du code, la programmation
visuelle, etc. L’utilisation de ces techniques et outils permet d’accélérer les phases d'analyse, de
conception et d’implémentation. Ce type de développement rapide peut être réalisé de différentes
manières : développement itératif, prototype évolutif ou prototype jetable4.

Le développement agile est un ensemble de modèles de développement plus récents, centrés
sur la programmation, qui se caractérisent par des cycles de développement courts et itératifs
destinés aux projets d’applications simples. Chaque itération comprend les activités essentielles d'un
projet (planification, analyse des besoins, conception, codage, tests et documentation) mais avec
élimination d’une grande partie de la modélisation et de la documentation. Des exemples de modèles
agiles peuvent comprendre les modèles de déveoppement XP (eXtreme Programming), ASD
(Adaptative Software Development), FDD (Future Driven Development), etc.

NB : prototypes considérés en tant que nouveau système (prototypage de système) ou
destinés uniquement à explorer des alternatives de conception (prototypes jetables).

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 8 Université Ferhat Abbas. Sétif -1

2. Chapitre 2: Modélisation avec UML

2.1. Introduction

L'un des principaux défis auxquels sont confrontés les projets de développement
d’applications logicielles est de déterminer avec précision les exigences exactes du futur système
dans chacune des étapes de développement. La manière de communication avec le client, dans
l’étape d’expression des besoins, et entre développeurs (analyste, concepteur, programmeur, etc.),
dans le reste des étapes, est cruciale pour la réussite du projet. L’utilisation du langage naturel dans
ce contexte est fortement déconseillée car il est imprécis et ambiguë ; des malentendus peuvent
facilement survenir si des personnes, de milieux différents ou de spécialités différentes, utiliseront le
langage naturel comme moyen de définition de leurs besoins (spécifications incomplètes,
spécifications surchargées, mauvaise compréhension, etc.).

Il est, donc, nécessaire de pouvoir créer un modèle du système à développer. Un modèle qui
met en évidence les aspects importants de ce système sous une forme de notation claire aussi simple
que possible, et qui ne tient pas compte des détails non pertinents qui rendent la description plus
compliquée que nécessaire. Des modèles séparés peuvent être construits, à différentes étapes et pour
différents aspects, afin d’éviter de présenter trop d'informations à la fois et faciliter ainsi la lecture,
l’interprétation et la mise en œuvre de ces modèles.

Pour répondre à ce besoin, différents langages de modélisation ont été développés afin de
permettre une description structurée de systèmes réels à base de règles clairement définies. Ces
langages peuvent être textuels (logiques, langages de programmation, etc.) ou graphiques (modèles
entité-association, graphes de flux, etc.). Ils peuvent être complets, et couvrent ainsi, tous les aspects
du système développé, ou destinés à la modélisation d’un aspect particulier de l’application (par
exemple, l’utilisation des modèles d’automates pour des besoins de vérification). Ils peuvent être,
également, spécifiques à un domaine particulier (langage de modélisation des applications web) ou à
objectifs d'utilisation générale. UML est un langage de modélisation graphique, complet et à
objectifs d’utilisation générale. Il est très adapté pour le développement des applications logicielles à
base de concepts objet.

2.2. Modèles

Les modèles présentent un moyen pour décrire les systèmes1 de manière efficace et détaillée.
Ils permettent de limiter la représentation du système à l'essentiel afin de réduire la complexité du
système à des aspects maîtrisables. Les caractéristiques principales qui permettent de déterminer la
qualité des modèles sont les suivantes :

 Abstraction : les détails qui ne sont pas pertinents dans un contexte spécifique sont
cachés ou supprimés ce qui permet une meilleure concentration sur l’essentiel

 Compréhension : les détails pertinents sont présentés le plus intuitivement possible grâce
à l'expressivité du langage de modélisation

NB : un système est un ensemble intégré constitué d'éléments qui sont liés les uns aux autres
et qui s'influencent mutuellement de telle sorte qu'ils peuvent être perçus comme une unité unique, à
base de tâches ou d’objectifs (voiture, université, logiciel, etc.).

 Précision : un modèle doit mettre en évidence les propriétés pertinentes qui reflètent le
plus fidèlement possible la réalité ;

 Prédictivité : un modèle doit permettre de prévoir (par simulation ou analyse) des
propriétés évidentes du système modélisé ;

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 9 Université Ferhat Abbas. Sétif -1

 Rentabilité : il est moins coûteux de créer le modèle que de créer le système modélisé
Généralement, un système est décrit par plusieurs vues qui, ensemble, fournissent une
représentation globale unifiée. Par exemple, une vue peut décrire les objets du système et
leurs relations, une autre vue peut décrire les interactions entre ces objets et une troisième
vue pour présenter la dynamique intra ou inter-objets.

2.3. Concepts de l’orientation objet

Afin de pouvoir traiter la modélisation objet, il est nécessaire de clarifier certains concepts
essentiels de l’orientation objet. Cette approche est basée sur la notion d’objets qui sont des éléments
du système dont les données et les opérations sont décrites. Les objets peuvent interagir et
communiquer entre eux pour réaliser les fonctions du système. Les concepts génériques de
l’approche orientée objet peuvent être résumés dans les points clés suivants :

NB : la capacité à présenter un contenu complexe avec le moins de concepts possible ce qui
réduit l'effort intellectuel nécessaire pour comprendre le contenu représenté.

2.3.1. Objet

Un objet définit une représentation d’un concept réel ou virtuel qui encapsule une partie des
connaissances du monde dans lequel il évolue. Il est caractérisé par une identité et possède un état et
un comportement en ne laissant visible que son interface (les opérations que l’on peut appliquer sur
cet objet) :

 Identité : donnée implicite qui permet de distinguer l'objet de manière non ambiguë
indépendamment de son état

 Etat : l’ensemble des valeurs des attributs de l’objet à un moment donné (et qui évolue au
cours du temps)

 Comportement : compétences ou services d’un objet décrivant les actions et les réactions
de cet objet. Chaque comportement élémentaire d'un objet est appelé opération et est
déclenché suite à une stimulation externe (message envoyé par un autre objet)

Figure 1 : Objets

2.3.2. Classe

Une classe décrit les attributs et le comportement d'un ensemble d'objets de façon abstraite et
donc de regrouper les caractéristiques communes de ces objets.

Figure 2 : Classes

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 10 Université Ferhat Abbas. Sétif -1

La démarche d'abstraction se définit par rapport à un point de vue (critères pertinents du
domaine considéré) et procède à l'identification des caractéristiques communes à un ensemble
d'objets, puis à la définition de ces caractéristiques dans une classe. La classe représente, ainsi, le
domaine de définition de cet ensemble d'objets.

Les attributs correspondent aux propriétés statiques de la classe. Par exemple, les étudiants
ont un nom, une adresse et un numéro d’inscription, les cours ont un identifiant, un titre et une
description, etc.

En phase d'analyse, il est recommandé de ne pas confondre entre objet et attribut ; si l'on ne
peut demander à un élément que sa valeur, il s'agit d'un simple attribut. Si plusieurs questions s'y
appliquent, il s'agit plutôt d'un objet qui possède lui-même des attributs, des opérations ou des liens
avec d'autres objets.

Une classe définit également un ensemble d’opérations qui peuvent être appliquées à ses
instances (constructeurs, sélecteurs, itérateurs, etc.). Par exemple, il est possible d’enregistrer un
nouvel étudiant, de consulter la description d’un cours, de réserver une salle à une date, d’inscrire un
étudiant à un cours, etc.

En phase d’analyse et/ou de conception, les opérations sont identifiées après étude des
scénarios - interactions entre objets - qui décrivent les différentes fonctionnalités du système.

2.3.3. Encapsulation

L'encapsulation permet de protéger, via une interface définie de manière unique, l'état interne
d'un objet contre les accès non autorisés. Différents niveaux de visibilité des interfaces permettent de
définir différentes autorisations d'accès. Java, par exemple, adopte les indicateurs de visibilité
explicites public, privé et protégé, qui permettent respectivement l'accès pour tous, uniquement dans
l'objet, et uniquement pour les membres de la même classe, de ses sous-classes, et du même package.

2.3.4. Message

Les objets collaborent pour réaliser les fonctions de l’application. Le comportement global de
l'application repose sur la communication entre les objets. Cette communication est réalisée par
envoi et réception de messages qui représentent des demandes d'exécution d'opérations. L'opération
n'est exécutée que si l'objet expéditeur est autorisé à faire appel à cette opération - condition de
visibilité - et qu’une implémentation appropriée de l’opération est disponible. Le concept de
surcharge de définition est supporté dans la plupart des langages de programmation et de
modélisation objet. Ce concept permet de définir des comportements différents d’une opération selon
les types de ses paramètres.

Figure 3 : Communication entre objets

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 11 Université Ferhat Abbas. Sétif -1

2.3.5. Héritage

L’héritage définit une classification des objets au sein d'une arborescence de classes
permettant de gérer leur complexité par réutilisation des caractéristiques héritées. C'est une relation
asymétrique non réflexive. Suivant le besoin, la définition de la relation d'héritage peut prendre l'une
des deux formes : généralisation ou spécialisation.

Figure 4 : Héritage

La généralisation est employée une fois que les classes du domaine sont identifiées. Elle
consiste alors à factoriser les informations communes entre classes dans une nouvelle classe, super-
classe de classes déjà existantes.

La spécialisation permet, toutefois, de capturer des caractéristiques (d'un sous-ensemble
d'objets d’une classe) non couvertes par les classes déjà identifiées. Les nouvelles caractéristiques
sont représentées par une nouvelle classe, sous-classe de classes déjà existantes. La sous-classe
dérivée hérite de tous les attributs et opérations visibles (spécification et implémentation) et des
associations de la super-classe. La sous-classe peut, en plus, définir de nouveaux attributs et/ou
opérations, remplacer l’implémentation des opérations héritées, ajouter son propre code aux
opérations héritées ou avoir de nouvelles associations.

La définition des relations d’héritage doit répondre à un critère de classification pertinent
(différence de structure) et non pas sur la base de changement de valeurs particulières d’attributs
d'une même classe (voiture blanche, voiture noire, etc.) ou de changement de rôles de classes par
rapport à une association (étudiant inscrit et étudiant délégué de classe, etc.).

Figure 5 : Critères de classification non pertinents (valeurs, rôles, etc.) – Résolu

De plus, l’héritage n'est pas adapté pour représenter les métamorphoses. En fait,
l’instanciation d’objets introduit un couplage statique très fort et non mutable entre classe et instance;
une instance ne peut jamais changer sa dépendance à sa classe de définition.

Dans l’exemple de la figure, l’employé stagiaire est titularisé après une certaine période de
stage ; c’est sa situation qui change et non pas l’employé lui-même.

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 12 Université Ferhat Abbas. Sétif -1

Figure 6 : Critère de classification non pertinent (métamorphose) – Résolu

2.3.6. Polymorphisme

Le polymorphisme d’attributs implique qu'un attribut peut avoir des références à des objets de
différentes classes sous-classes du type de cet attribut polymorphe.

Le polymorphisme d'opérations offre la possibilité d’exécuter des opérations de différentes
implémentations sur des objets de différentes classes (appartenant à une même hiérarchie de classes)
en réponse à un même message (spécification donnée au niveau de la super-classe de cette
hiérarchie).

2.3.7. Associations entre classes

Une association entre classes représente une abstraction des liens - d’une même sémantique -
qui existent entre objets de ces classes. L’association peut prendre différentes formes : association
simple uni ou bidirectionnelle, agrégation ou composition.

 Association simple : connexion sémantique uni ou bidirectionnelle entre objets. Par
exemple, un étudiant suit un ou plusieurs cours.

Figure 7 : Association simple

 Agrégation : une association qui exprime un rapport maître-esclave entre objets
(ensemble-élément, tout-partie, composé-composant, etc.). Par exemple, un comité est
constitué de plusieurs enseignants et un enseignant peut être membre de plusieurs
comités.

NB : en général, le polymorphisme est la capacité d’un élément à adopter différentes formes.

Figure 8 : Agrégation

 Composition : une forme d'agrégation avec couplage plus important ; les éléments
agrégés ne sont pas partageables et la destruction de l'élément agrégat engage celle des

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 13 Université Ferhat Abbas. Sétif -1

éléments agrégés. Par exemple, un étudiant possède un compte Moodle et le compte est
associé à un seul étudiant.

Figure 9 : Composition

En phase d’analyse, la classe peut exister indépendamment des autres éléments du système,
alors que l’existence de l’association est conditionnée par celle des éléments qui participent à cette
association. La même remarque s’applique aux concepts liés aux associations tels que les rôles
d’objets et les attributs des classes-associations.

Par exemple, dans la règle "une classe possède un étudiant délégué", les concepts possède
(association entre classe et étudiant) et délégué (rôle de l’étudiant dans cette association) ne peuvent
pas exister sans qu’il y ait étudiant et classe. De même, selon la règle "un étudiant obtient une note
dans une matière", la note ne peut pas exister s’il n’y a pas étudiant et cours. Les concepts étudiant,
classe et cours peuvent exister seuls et constituent, donc, des classes dans le modèle.

Figure 10 : Association, Classe-association et Rôle

2.4. UML

Le langage UML constitue une référence dans le domaine de la modélisation objet adopté par
l'OMG (Object Management Group), la structure la plus importante de normalisation des concepts de
développement orienté objet. Le langage fournit un support considérable et extensible pour les
différentes activités de développement (analyse, conception d’architecture, conception de modules,
implémentation, etc.) et les différentes classes de systèmes à développer (systèmes d’information,
applications web, systèmes temps réel, etc.).

2.4.1. Définition

Le langage UML est un standard de modélisation graphique semi-formelle qui regroupe les
meilleures pratiques de modélisation objet. Grâce à une notation très riche et suffisamment
expressive, UML permet la modélisation de la structure et du comportement de systèmes logiciels
indépendamment des méthodes de développement et des langages de programmation. En général,
UML permet de spécifier, construire, visualiser et décrire les artefacts des systèmes logiciels :

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 14 Université Ferhat Abbas. Sétif -1

 Spécifier et Documenter : les éléments de modélisation UML possèdent une syntaxe et
une sémantique bien définies ce qui permet de produire une modélisation précise, non
ambiguë et complète

 Construire : le passage entre modèles UML et implémentation peut être réalisé
manuellement ou de manière semi-automatique grâce aux correspondances déjà mises en
place entre constituants UML et langages de programmation objet

 Visualiser : UML propose un ensemble exhaustif de diagrammes couvrant les différentes
vues d’un système logiciel (fonctionnalités, structure, dynamique, etc.) et les différents
niveaux d’abstraction (modèles d’analyse, modèles d’architecture, modèles de
conception, etc.)

2.4.2. Historique UML

L'introduction de concepts objet au début des années 1960 [SIMULA] a marqué le début
d'une révolution dans le développement de systèmes logiciels. Les décennies suivantes ont connu
l’apparition de plusieurs langages de programmation basés sur le paradigme objet tels que C++,
Eiffel, Smalltalk, Java, C#, etc. En parallèle, beaucoup de méthodes d’analyse et de conception objet,
comme OMT (Object Modeling Technique), BOOCH (auteur Grady Booch) et OOSE (Object
Oriented Software Engineering), se sont imposées grâce à leurs démarches et notations
incontournables dans le domaine de développement de systèmes logiciels.

La plupart de ces méthodes objet étaient liées uniquement par un accord sur les concepts de
base de l'objet (objet, classe, héritage, etc.). Toutefois, chacune de ces méthodes proposait sa propre
notation et aucune méthode ne pouvait prétendre couvrir tous les besoins, ni modéliser correctement
les différentes vues d’une application logicielle.

En 1995, des efforts d'unification des méthodes objet, pratiques industrielles et notations
(menés principalement par Ivar Jacobson (OOSE), Grady Booch (BOOCH) et James Rumbaugh
(OMT)) ont conduit à la proposition de la méthode unifiée (Unified Method 1995). Les résultats
d’unification n’ont pas pu aboutir à cause de deux problèmes majeurs : (i) la dissemblance des styles
de conception des développeurs et (ii) la diversité des classes de systèmes à développer. En fait, les
méthodes objet partagent les concepts objets et non pas les démarches et il serait insensé d’imposer
une approche unifiée pour des styles de conception très variés et des classes de systèmes fortement
différentes. Par la suite, les efforts ont été redirigés vers l'unification des notations manipulées par les
méthodes. En 1996, l'OMG (Object Management Group), a lancé un premier appel pour la
spécification d'une norme de modélisation uniforme.

La première version d’UML adopté par l'OMG (Object Management Group) était la version
UML 1.1 en novembre 97. De nombreuses versions, ensuite, ont été adoptées par l’OMG dont la plus
importante est UML 2.0 (juillet 2005) qui a connu des révisions majeures du langage avec la
définition de nouveaux types de diagrammes. La version actuelle est UML 2.5.1 (depuis décembre
2017) et les travaux d'amélioration du langage continuent toujours.

A partir de sa version 1.4, UML a été publié en tant que norme ISO approuvée. Cette norme
est révisée périodiquement pour couvrir la dernière révision UML [ISO/IEC 19505- 2:2012].

2.4.3. Diagrammes UML

En UML, le modèle du système est représenté graphiquement sous forme de diagrammes.
Chaque diagramme fournit une vue d’une partie du système décrit par ce modèle. Certains
diagrammes présentent quelle fonctionnalité du système est utilisée par quel utilisateur et d’autres
décrivent les composants du système et leur déploiement. Il existe également des diagrammes qui

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 15 Université Ferhat Abbas. Sétif -1

représentent l’aspect statique du système et d’autres qui décrivent sa dynamique. Dans la version
actuelle, UML propose 14 diagrammes qui peuvent être répartis en deux grandes catégories ; des
diagrammes de structure et des diagrammes de comportement (figure 11).

Figure 11 : Diagrammes UML (taxonomie structure-comportement)

2.4.4. Utilisation du langage

UML est une notation et ne définit pas de démarche et n'impose pas de processus de
développement. Cependant, le langage est facilement intégrable à des méthodes d’analyse et de
conception objet ou dans le cadre d’un processus de développement mettant en œuvre les
caractéristiques essentielles du processus unifié. La figure 12 présente l'une des organisations
communes des différents diagrammes UML en vues (4+1 vues - UML 2.0).

Figure 12 : Organisation des diagrammes UML 2.0 en 4+1 vues

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 16 Université Ferhat Abbas. Sétif -1

3. Chapitre 3: Modélisation des fonctionnalités-Diagramme UML de cas d'utilisation

3.1. Introduction

Les fonctionnalités du système à développer désignent les exigences du client et ses attentes
de ce système. Lors de l’analyse des besoins, il est essentiel de pouvoir repérer et représenter
soigneusement ces fonctionnalités ; si des fonctionnalités sont oubliées ou spécifiées de manière
imprécise ou incorrecte, les conséquences peuvent être sérieuses, à savoir les coûts de
développement et de maintenance augmentent, les utilisateurs sont insatisfaits, etc.

La modélisation de ces fonctionnalités est un concept clé du développement objet qui est
exploité tout au long des activités d'analyse et de conception. Le langage UML comprend les
diagrammes de cas d’utilisation qui constituent un moyen pratique et très efficace pour documenter
les fonctionnalités des systèmes à développer.

3.2. Diagramme de cas d’utilisation

Le diagramme de cas d'utilisation permet de décrire les scénarios d'utilisation possibles pour
lesquels un système est développé. Il exprime ce que le système doit faire mais ne traite pas les
détails de réalisation (structures de données, algorithmes, etc.) qui sont couverts par d'autres
diagrammes (diagramme de classe, diagrammes d'interaction, etc.).

Le diagramme des cas d'utilisation modélise également quel utilisateur du système utilise
quelle fonctionnalité, c'est-à-dire qu'il exprime qui travaillera réellement avec le système à
construire. Pour résumer, ce diagramme peut être utilisé pour modéliser (i) ce qui est décrit
(système), (ii) qui est en interaction avec le système (acteurs), (iii) ce que peuvent faire les acteurs
(cas d'utilisation).

Figure 1 : Diagramme de cas d’utilisation

3.2.1. Cas d’utilisation

Un cas d'utilisation décrit une fonctionnalité attendue du système à développer. Cette
fonctionnalité constitue un avantage significatif aux acteurs qui communiquent avec le cas
d’utilisation qui la représente. Le cas d’utilisation inclut un certain nombre de tâches qui sont
exécutées lors de l'utilisation de ce système. En général, un cas d'utilisation est déclenché soit par un
acteur, soit par un événement déclencheur. Un exemple d’événement déclencheur est que c’est la fin
de la formation et que, par conséquent, le cas d'utilisation "Délivrer diplôme" doit être exécuté.
Un cas d'utilisation est généralement représenté par une ellipse. Le nom du cas d'utilisation est

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 17 Université Ferhat Abbas. Sétif -1

spécifié directement dans l'ellipse. D’autres alternatives de notation existent et sont toutes valables
(par exemple, un rectangle qui contient le nom du cas d'utilisation dans le centre et une petite ellipse
dans le coin supérieur droit), mais la première forme de représentation est communément utilisée.

Les cas d'utilisation sont généralement regroupés dans un rectangle qui indique les limites du
système à décrire. L'exemple de la figure 1 montre le système de suivi de formations, qui propose
trois cas d'utilisation : "Inscrire au cours", "Explorer cours" et "Passer examen". Ces cas d'utilisation
peuvent être déclenchés par l'acteur Etudiant.

3.2.2. Acteurs

En plus des fonctionnalités du système, il est essentiel de préciser qui travaille et interagit
réellement avec le système. Le diagramme de cas d'utilisation permet de représenter les acteurs qui
interagissent avec le système dans le cadre des cas d'utilisation avec lesquels ils sont associés. Les
acteurs sont représentés par l'icône standard en forme de bâton, des rectangles (contenant
l'information complémentaire «acteur»), ou par un symbole librement définissable. L'exemple de la
figure 1 ne contient que l'acteur Etudiant, qui peut s’inscrire à un cours, explorer un cours et passer
examen.

Les acteurs ne représentent pas des utilisateurs spécifiques dans le système ; ils représentent
les rôles que les utilisateurs assument. Si un utilisateur a adopté un rôle donné, cet utilisateur est
autorisé pour exécuter les cas d'utilisation associés à ce rôle.

Les diagrammes de cas d'utilisation peuvent contenir des acteurs humains (par exemple,
étudiant ou professeur) ou non humains (par exemple, serveur de courrier électronique), des acteurs
actifs ou passifs et des acteurs primaires ou secondaires.

Un acteur en interaction avec le système peut être actif, ce qui signifie que l'acteur initie
l'exécution du cas d'utilisation (par exemple, le professeur). Si l'interaction implique plutôt que
l'acteur soit utilisé par le système pour fournir un service pour l'exécution du cas d'utilisation, l'acteur
est qualifié de passif (serveur de courrier par exemple).

Les acteurs secondaires prennent toujours un avantage réel de l'exécution du cas d'utilisation,
tandis que les acteurs secondaires ne reçoivent aucun avantage direct de l'exécution du cas
d'utilisation.

Un acteur est toujours manifestement en dehors du système, c'est-à-dire qu'un utilisateur ne
fait jamais partie du système et n'est donc jamais implémenté. Les données concernant cet utilisateur
peuvent être, cependant, nécessaires pour le système et doivent être donc implémentées. Il est donc
crucial de distinguer entre éléments faisant partie du système à implémenter et ceux qui servent
d'acteurs.

3.2.3. Liaisons

Les diagrammes de cas d'utilisation définissent différentes formes de liaisons entre éléments
de modélisation ; des associations entre acteurs et cas d’utilisation, des relations entre acteurs et des
relations entre cas d’utilisation.

3.2.3.1. Associations

Un acteur est connecté avec les cas d'utilisation via des associations (représentées par des
lignes pleines) qui expriment le fait que l'acteur communique avec le système et utilise une certaine

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 18 Université Ferhat Abbas. Sétif -1

fonctionnalité. Une association est toujours binaire, ce qui signifie qu'elle est toujours spécifiée entre
un cas d'utilisation et un acteur, mais des multiplicités peuvent être spécifiées pour indiquer le
nombre d’acteurs impliqués dans l'exécution du cas d'utilisation.

Dans un diagramme de cas d’utilisation, chaque acteur doit communiquer avec au moins un
cas d'utilisation et chaque cas d'utilisation doit avoir une association directe ou indirecte avec au
moins un acteur.

3.2.3.2. Relations entre acteurs

Certains cas d'utilisation peuvent être utilisés par différents acteurs ce qui signifie que ces
acteurs possèdent des propriétés communes qui peuvent être regroupées et décrites dans un super-
acteur commun. Par exemple, il est possible que le professeur principal et l’assistant soient autorisés
à créer des travaux pratiques.

Pour une meilleure structuration du diagramme de cas d’utilisation, ces acteurs sont
représentés dans une relation d'héritage les uns avec les autres. Lorsqu'un acteur hérite
d'un autre acteur, le sous-acteur sera impliqué dans tous les cas d’utilisations associées au super-
acteur.

L’héritage entre acteurs est représenté graphiquement de la même façon que dans le cas
d’héritage entre classes. S'il n'y a pas d'instance d'un acteur, celui-ci peut être étiqueté avec le mot-
clé {abstract}. Alternativement, les noms des acteurs abstraits peuvent être représentés en caractères
italiques.

Il y a une différence majeure entre acteurs participants eux-mêmes à un cas d’utilisation et
acteurs ayant un super-acteur commun qui participe à ce cas. Dans la première situation, les acteurs
doivent participer au cas d’utilisation ; dans la deuxième situation, chacun d'entre eux hérite
l'association avec le cas d’utilisation et participe ensuite individuellement à ce cas.

Dans l'exemple de la figure 2, les acteurs Principal et Assistant héritent de l'acteur abstrait
Professeur et peuvent, par conséquent, exécuter le cas d'utilisation "Créer TPs". Seuls les professeurs
principaux peuvent créer un nouveau cours ; en revanche, les TPs ne sont publiés que par les
assistants. Pour le cas "Evaluer étudiant", le professeur principal est un acteur requis ; en outre,
l’assistant peut être impliqué de manière facultative, ce qui s'exprime par la multiplicité 0..1.

Figure 2 : Diagramme de cas d’utilisation avec héritage entre acteurs

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 19 Université Ferhat Abbas. Sétif -1

3.2.3.3. Relations entre cas d’utilisation

Les cas d'utilisation peuvent avoir trois différentes formes de relations entre cas ; des
relations "d'inclusion", des relations "d'extension" et des relations d’héritage entre cas d'utilisation.

Si un cas d'utilisation de base inclut un autre cas d'utilisation, le comportement du cas
d’utilisation inclus est intégré dans le comportement du cas d’utilisation de base ; le cas d'utilisation
de base requiert toujours le comportement du cas d'utilisation inclus pour pouvoir offrir sa
fonctionnalité, mais le cas d'utilisation inclus peut être exécuté seul. La relation d’inclusion est
représentée par une flèche en pointillé (allant du cas de base au cas inclus) étiquetée avec le
stéréotype «include».

Dans le diagramme de cas d'utilisation de la figure 3, l'utilisation Les cas "Annoncer
événement" et "Affecter conférencier" sont dans une relation "d'inclusion", où l’annonce
d’événement représente le cas d'utilisation de base. Par conséquent, chaque fois qu’un nouvel
événement est annoncé, le cas d'utilisation inclus "Affecter conférencier" doit être également
exécuté. Dans cet exemple, l'acteur Professeur est impliqué dans l'exécution des deux cas
d’utilisation et le cas inclus peut être exécuté indépendamment du cas de base ; par exemple, il est
possible d’affecter des conférenciers à un événement déjà existant.

Un cas d'utilisation peut inclure plusieurs autres cas d'utilisation et peut être inclus par de
multiples cas d'utilisation. Dans de telles situations, il faut veiller à ce qu'aucun cycle ne se produise.
Si un cas d'utilisation est dans une relation d'extension avec un cas d'utilisation de base, alors le cas
d’utilisation de base peut utiliser le comportement du cas d'extension mais n'est pas obligé de le faire.

Le cas d'extension peut donc être activé par le cas de base afin d'insérer son comportement
dans le cas de base. Les deux cas d'utilisation peuvent aussi être exécutés indépendamment les uns
des autres.

Une relation d'extension est représentée par une flèche en pointillé (allant du cas d'utilisation
d'extension au cas d'utilisation de base) étiquetée avec le stéréotype «extend».

La relation définit deux éléments additionnels ; la condition et le point d’extension.

La condition qui doit être remplie pour que le cas d'utilisation de base puisse insérer le
comportement du cas d'utilisation d’extension peut être spécifiée pour chaque relation d’extension.
Elle est indiquée par le mot-clé Condition et spécifiée entre parenthèses dans une note attachée à la
relation d’extension correspondante.

Le point d'extension définit l’endroit auquel le comportement du cas d’extension doit être
inséré dans le cas d'utilisation de base. Les points d'extension sont écrits directement dans le cas
d'utilisation ou dans une note attachée à la relation d’extension correspondante et sont indiqués par le
mot clé Extension Point.

Dans l'exemple de la figure 3, les deux cas d'utilisation "Annoncer événement" et "Réserver
salle" sont reliés par une relation d’extension. Lorsqu'un nouvel événement est annoncé, il est
possible (et non pas obligatoire) de réserver une salle de conférence.

Un cas d'utilisation étend plusieurs cas et peut lui-même être étendu par plusieurs cas
d'utilisation. Là encore, aucune forme de cycle ne peut être tolérée.

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 20 Université Ferhat Abbas. Sétif -1

Tout comme dans le cas des acteurs, l’héritage entre cas d'utilisation est également possible.
Ainsi, les propriétés communes et le comportement commun de différents cas d'utilisation peuvent
être regroupés dans un cas d'utilisation père. Le cas d'utilisation fils hérite du comportement du cas
père et adopte par conséquent, sa fonctionnalité de base, mais peut aussi soit étendre, soit modifier ce
comportement. Le cas fils hérite également toutes les relations du cas père. Si un cas d'utilisation est
étiqueté {abstract}, il ne peut pas être exécuté directement ; seuls les cas d'utilisation qui spécialisent
ce cas sont exécutables.

Le diagramme de la figure 3 montre un exemple de relation d’héritage entre le cas
d'utilisation abstrait "Annoncer événement" et les cas "Annoncer exposé" et "Annoncer conférence".
Les deux cas d’utilisation héritent l’association entre le cas père et l’acteur Professeur et sont ainsi
liés à au moins un acteur Professeur. Les deux cas d'utilisation doivent également exécuter le
comportement du cas d'utilisation "Affecter conférencier" en raison de la relation d'inclusion définie
entre ce cas et le cas père "Annoncer événement".

Figure 3 : diagramme de cas d’utilisation avec relations entre cas.

3.3. Développement de diagrammes de cas d’utilisation

Le développement de diagrammes de cas d'utilisation consiste à identifier d’abord les acteurs
et les cas d'utilisation, puis à les mettre en relation les uns avec les autres et enfin, à décrire de
manière détaillée les cas d'utilisation.

Les cas d'utilisation sont généralement identifiés par analyse des documents d'exigences ou
des attentes des futurs utilisateurs. Les documents relatifs aux exigences sont généralement des
spécifications en langage naturel qui expliquent ce que le client attend d'un système. Ils doivent
documenter de manière relativement précise qui utilisera le système (acteurs) et comment il l'utilisera
(cas d’utilisation).

L’approche basée sur l’analyse des attentes des futurs utilisateurs procède d’abord par
l’identification des futurs utilisateurs, c'est-à-dire les acteurs et détermine ensuite les cas d’utilisation
associés à ces acteurs.

3.3.1. Identification des acteurs

Afin d’identifier les acteurs du diagramme de cas d’utilisation, l’analyse des attentes des
futurs utilisateurs doit répondre aux questions suivantes :

- qui utilise les principales fonctionnalités du système ?

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 21 Université Ferhat Abbas. Sétif -1

- qui a besoin de soutien pour son travail quotidien ?
- qui est responsable de l'administration du système ?
- quels sont les systèmes logiciels ou dispositifs externes avec lesquels le système doit

communiquer ?
- qui est intéressé par les résultats du système ?

3.3.2. Identification des cas d’utilisation

Après identification des acteurs, il est possible d’en déduire les cas d'utilisation en répondant
aux questions suivantes :

- quelles sont les principales tâches qu'un acteur doit accomplir ?
- un acteur veut-il consulter ou modifier des informations internes dans système ?
- un acteur veut-il informer le système sur des changements dans d'autres systèmes ?
- un acteur doit-il être informé des événements inattendus au sein du système ?

Dans de nombreuses situations, les cas d'utilisation sont développés de manière itérative et
incrémentale. Généralement, il faut commencer par l’identification des exigences de haut niveau qui
reflètent les objectifs métiers du système. Ces exigences sont ensuite raffinées jusqu'à ce que, sur le
plan technique, tout ce que le système devrait être en mesure de faire soit identifié.

Par exemple, une exigence de haut niveau pour un système d'administration des études
pourrait être que le système est utilisé pour le suivi des formations. Cette exigence peut être raffinée,
par exemple, en exigences plus détaillées telles que les professeurs devraient pouvoir créer des cours
et des examens et que les étudiants devraient pouvoir s'inscrire aux cours, explorer des cours et
passer des examens, etc.

3.3.3. Description des cas d’utilisation

Afin de maintenir la clarté et l’utilité des diagrammes de cas d'utilisation même s’ils sont
larges, il est extrêmement important de choisir des noms courts et concis pour les cas d'utilisation et
de procéder à la description détaillée de ces cas d'utilisation. L’approche structurée généralement
adoptée pour la description des cas d'utilisation maintient les informations suivantes :

- Nom
- Description succincte
- Précondition : condition préalable à la bonne exécution
- Postcondition : état du système après une exécution réussie
- Situations d'erreur : erreurs relevant du domaine du problème
- État du système après occurrence d'erreur
- Les acteurs qui communiquent avec le cas d'utilisation
- Evénements déclencheur : événements qui initient/démarrent le cas d'utilisation
- Exécution standard : étapes individuelles à suivre
- Exécutions alternatives : déviation par rapport à l’exécution standard

La table 1 montre une description du cas d'utilisation "Réserver salle" dans le système
d'administration des études. La description est extrêmement simplifiée mais tout à fait suffisante. Le
chemin d’exécutions standard et le chemin alternatif pourraient être raffinés davantage ou d'autres
situations d'erreur et des exécutions alternatives pourraient être envisagés par la suite.

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 22 Université Ferhat Abbas. Sétif -1

Table 1 Table de description de cas d’utilisation

Nom Réserver salle
Description
succincte

un professeur réserve une salle de conférences à l'université pour un
événement donné

Pré-condition
(i) le professeur est un utilisateur authentifié
(ii) le professeur est autorisé à réserver des salles de

conférences.
Post-condition une salle de conférence est réservée
Situations d'erreur il n'y a pas de salle de conférences libre
Etat du système en
cas d'erreur

le professeur n'a pas réservé de salle de conférences

Acteurs Professeur

Exécution standard

(1) le professeur sélectionne la salle de conférences
(2) le professeur sélectionne la date
(3) le système confirme que la salle de conférence est libre
(4) le professeur confirme la réservation

Exécutions
alternatives

(3) la salle de conférences n'est pas libre
(4) le système propose d’autres salles de conférences
(5) le professeur sélectionne une autre salle de conférences et confirme la

réservation

3.4. Intérêt et définition, Notation

Texte…

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 23 Université Ferhat Abbas. Sétif -1

4. Chapitre 4: Diagrammes UML de classes et d'objets : vue statique

Texte…

4.1. Diagramme de classes

Texte…

4.2. Diagramme d'objets

Texte…

5. Chapitre 5: Diagrammes UML : vue dynamique

Texte…

5.1. Diagramme d'interaction (Séquence et collaboration)

Texte…

5.2. Diagramme d'activités

Texte…

5.3. Diagramme d'état/transitions

Texte…

6. Chapitre 6: Autres notions et diagrammes UML

Texte…

6.1. Composants, déploiement, structures composite.

Texte…

6.2. Mécanismes d'extension : langage OCL + les profils.

Texte…

7. Chapitre 7: Introduction aux méthodes de développement : (RUP, XP)

Texte…

8. Chapitre 8: Patrons de conception et leur place au sein du processus de
développement

Texte…

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 24 Université Ferhat Abbas. Sétif -1

La partie : Travaux Dirigés

Les méthodes d’analyse et de conception définissent une démarche (suite d’étapes) et
un langage de modélisation (série de modèles) pour mener correctement le développement
d’applications logicielles.

Le développement de programmes procéduraux (qui sont définis uniquement par des données
et des traitements) utilise seulement des modèles pour les données et des modèles pour les
traitements (comme dans le cas de la méthode Merise : MCD-MCT…). Une application objet est
caractérisée, par contre, par cinq différentes perspectives :

 Les fonctions que l’application doit assurer (diagramme de cas d’utilisation)
 La structure des objets de l’application (diagrammes de classes, d’objets)
 Les interactions entre objets de l’application pour réaliser les fonctions (diagrammes de

séquence, de communication)
 La dynamique interne et inter-objet (machine d’état et diagramme d’activité)
 L’architecture de l’application (diagrammes de packages, de composants et de

déploiement)

 Les travaux dirigés et pratiques de la matière Génie Logiciel sont axés sur la modélisation
UML dans le cadre d’un développement objet. Les objectifs, par ordre de priorité, sont les
suivants :

 Modélisation UML :

1. diagramme de cas d’utilisation
2. diagrammes de classes, d’objets
3. diagrammes de séquence, de communication
4. machine d’état et diagramme d’activité
5. diagrammes de packages, de composants et de déploiement

 Démarche de développement objet :

1. Méthode d’analyse et de conception objet
2. Processus

 Pratiques de développement objet :

1. Principes SOLID
2. Design patterns

Liens :

 Site officiel du langage de modélisation UML : https://www.uml.org/
 L’outil de modélisation starUML : https://staruml.io/

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 25 Université Ferhat Abbas. Sétif -1

1. TD N°1 : Introduction à la Modélisation Objet

1ère Partie : Abstraction & Encapsulation

Proposer une abstraction (classe, instance, attribut, méthode, etc.) des éléments suivants :

1. Une personne
2. Une personne qui s’appelle Ali
3. Un compte bancaire
4. La consultation du solde du compte bancaire
5. Un employé
6. Le nom de l’employé
7. L’adresse de l’employé
8. La modification de l’adresse de l’employé
9. La liste des employés
10. L’ajout d’un employé

2ème Partie : Associations, Multiplicités et Rôles

Modéliser les associations exprimées par les règles suivantes :

1. Les étudiants sont inscrits dans une seule classe
2. Une classe occupe une seule salle
3. Une classe regroupe entre cinq et dix étudiants et possède un seul étudiant délégué
4. Un étudiant suit plusieurs matières ; pour chaque matière, l’étudiant obtient une note
5. Un enseignant assure une ou plusieurs matières
6. Une matière possède un enseignant chargé de cours et plusieurs enseignants assistants ; un enseignant

peut être chargé de cours dans une matière et assistant dans un autre

3ème Partie : Héritage (Généralisation, Spécialisation & Polymorphisme)

Proposer une modélisation objet des relations suivantes :

1. Les enseignants sont des employés
2. Les enseignants peuvent être des maîtres_assistants, des maîtres_de_conférences ou des professeurs
3. Un enseignant peut être permanent ou vacataire ; les enseignants permanents sont caractérisés par

date_recrutement et les enseignants vacataires sont caractérisés par durée_contrat
4. Le calcul du salaire des enseignants permanents est basé sur leurs grade et échelon.

Le salaire des vacataires est calculé sur la base de leurs diplômes et du nombre
d’heures d’enseignement

5. Un enseignant permanent peut être stagiaire ou titulaire ; un stagiaire qui fait preuve
de qualités professionnelles suffisantes est titularisé dans douze mois

4ème Partie : Agrégation & Composition

Modéliser les règles suivantes :

1. Une collection regroupe plusieurs véhicules
2. Un véhicule est composé de carrosserie, moteur et de quatre roues
3. Les pièces sont caractérisées par référence_pièce et désignation_pièce
4. Les pièces peuvent être simples ou composites
5. Les pièces simples sont caractérisées par prix_achat
6. Les pièces composites sont caractérisées par coût_assemblage et peuvent être composées de plusieurs

autres pièces (simples et/ou composites)
7. Les pièces composites sont assemblées dans un seul atelier
8. Un moteur est une pièce composite

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 26 Université Ferhat Abbas. Sétif -1

Correction TD N°1

1ère Partie : Abstraction & Encapsulation

Proposer une abstraction (classe, instance, attribut, méthode, etc.) des éléments suivants :

1. Une personne : classe
2. Une personne qui s’appelle Ali : instance de la classe Personne avec attribut nom de valeur ‘Ali’
3. Un compte bancaire : classe
4. La consultation du solde du compte bancaire : méthode dans la classe Compte_Bancaire avec attribut

solde
5. Un employé : classe
6. Le nom de l’employé : attribut
7. L’adresse de l’employé : attribut
8. La modification de l’adresse de l’employé : méthode dans la classe Employé
9. La liste des employés : classe (classe container)
10. L’ajout d’un employé : méthode dans la classe Liste_Employés (l’opération désigne l’ajout d’un

élément à une liste et non pas la création de cet élément)

2ème Partie : Associations, Multiplicités et Rôles

3ème Partie : Héritage (Généralisation, Spécialisation & Polymorphisme)

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 27 Université Ferhat Abbas. Sétif -1

4ème Partie : Agrégation & Composition

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 28 Université Ferhat Abbas. Sétif -1

La partie : Travaux Pratiques

1. TP N°1: Expression des besoins et analyse

1ère Partie : Description du système - besoins fonctionnels

Une entreprise de location de voiture désire offrir ses services via le web :

Tout client peut consulter le catalogue de modèles de voitures, en explorant l'index des
modèles de voitures ou par recherche. Dans le cas de recherche, le client spécifie les détails des
modèles auxquels il est intéressé (par exemple la catégorie, la marque, etc.). Les résultats
d’exploration d’index ou de recherche sont affichés comme une collection de modèles de voitures
avec des informations de base telles que le nom du modèle de voiture. Le client peut alors choisir de
voir des informations supplémentaires (la description par exemple) pour un modèle de voiture
particulier.

Les clients peuvent être membres ou non membres. Un client membre doit effectuer un logon
pour avoir accès aux services supplémentaires : effectuer réservation, annuler réservation, vérifier
détails personnels, voir ses réservations en cours, changer le mot de passe du logon, voir ses
locations en cours et effectuer un log off.

Les assistants sont impliqués dans les opérations associées aux réservations telles que
déplacer les voitures depuis et vers l'espace réservé, c’est-à-dire effectuer réservation et annuler
réservation.

Dans l'ordre de voir les détails d'un modèle de voitures, un client doit être en cours de
consultation de la liste de modèles de voitures (résultat obtenu par voie d'exploration ou de
recherche).

Dans l'ordre de réserver un modèle de voitures, un membre doit être en cours de consultation
des détails de ce modèle (un non-membre ne peut pas effectuer une réservation, même quand il est en
cours de consultation des détails du modèle à réserver).

Dans l'ordre d'annuler une réservation, un membre doit être en cours de consultation de ses
réservations en cours.

Donner :

- la liste des acteurs avec description succincte
- la liste des cas d'utilisation avec description succincte de chaque cas
- le diagramme de cas d'utilisation
- la description détaillée de chaque cas d'utilisation

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 29 Université Ferhat Abbas. Sétif -1

2ème Partie : Analyse du problème - analyse statique

La phase recueil d'information a permis de dégager la description suivante des données
pertinentes du système :

Un modèle de voitures est caractérisé par nom et prix et possède des détails supplémentaires
(capacité moteur, description, vidéo et poster). Un modèle de voitures est fabriqué par un ou
plusieurs constructeurs (nom). Il est vendu par un seul vendeur (nom). Les modèles de voitures sont
classés en catégories (nom) ; un modèle de voiture appartient à une seule catégorie et une catégorie
regroupe plusieurs modèles de voitures. Un modèle de voitures peut avoir plusieurs voitures et une
voiture (identifiant et distance parcourue) est liée à un seul modèle de voitures. Une voiture possède
des détails supplémentaires (code à barres et immatriculation).

Une location est caractérisée par numéro, date début, date fin et montant total. Elle concerne
une ou plusieurs voitures et une voiture peut être concernée par une seule location. Un client peut
effectuer plusieurs locations et une location est associée à un seul client.

Les clients (nom, numéro téléphone et montant dû) peuvent être membres ou non membres.

Un membre est caractérisé par numéro, position et montant dû. Il possède un compte internet
(mot de passe), une adresse (numéro, rue, ville et code postal) et une carte de crédit (numéro, type et
date expiration). Les cartes de crédit et les adresses peuvent être partagées par plusieurs membres.

Les non-membres sont caractérisés par leurs numéros du permis de conduire.

Un client peut réserver plusieurs modèles de voitures et un modèle de voitures peut être
réservé par plusieurs clients. Les informations numéro, échéance et état réservation caractérisent
chaque réservation d'un modèle de voiture par un client.

Donner :

- la liste des classes entités
- les propriétés de chaque classe
- le diagramme de classes

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 30 Université Ferhat Abbas. Sétif -1

Correction TP N°1

1ère Partie : Description du système - besoins fonctionnels

1) Liste des cas d'utilisation :

- Client : …

- Membre : …

- Non membre : …

- Assistant : …

2) Liste des cas d'utilisation :

- U1: Index de navigation: un client navigue sur l'index des modèles de voiture. (Spécialisé U13, inclut

U2.)

- U2: Afficher les résultats: un client voit le sous-ensemble de modèles de voitures qui ont été

récupérés. (Inclus par U1 et U4, prolongé par U3.)

- U3: Afficher les détails du modèle de voitures: Un client voit les détails d'un modèle de voitures

récupéré, tels que description et annonce. (Prolonge U2, prolongé par U7.)

- U4: recherche: un client recherche des modèles de voiture en spécifiant des catégories, des marques et

un moteur. tailles. (Spécialisé U13, comprend U2.)

- U5: connexion: un membre se connecte à iCoot en utilisant son numéro de membre et mot de passe.

(Prolongé par U6, U8, U9, U10 et U12.)

- U6: Afficher les détails du membre: un membre affiche certains des détails stockés par iCoot, comme

le nom, adresse et détails de la carte de crédit. (Prolonge U5.)

- U7: Faire une réservation: un membre réserve un modèle de voitures lors de la visualisation de ses

détails. (Prolonge U3.)

- U8: Afficher les locations: un membre consulte un résumé des voitures qu'il loue actuellement.

(Prolonge U5.)

- U9: Modifier le mot de passe: un membre modifie le mot de passe qu'il utilise pour se connecter.

(Prolonge U5.)

- U10: Afficher les réservations: un membre consulte les résumés de ses réservations non conclues,

comme la date, l'heure et le modèle de voitures. (Prolonge U5, prolongé par U11.)

- U11: Annuler la réservation: un membre annule une réservation non conclue. (Prolonge U10.)

- U12: Déconnexion: un membre se déconnecte d'iCoot. (Prolonge U5.)

- U13: Rechercher des modèles de voitures: un client récupère un sous-ensemble de modèle de

voitures du catalogue.

3) La description détaillée de chaque cas d'utilisation

U4: Recherche.

Conditions préalables: aucune.

1. Le client sélectionne les catégories requises (le cas échéant).

2. Le client sélectionne les marques requises (le cas échéant).

3. Le client sélectionne les tailles de moteur requises (le cas échéant).

4. Le client lance la recherche.

5. Incluez U2.

Post-conditions: aucune.

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 31 Université Ferhat Abbas. Sétif -1

Chemins anormaux: a1. Si le client ne spécifie aucune catégorie, marque ou taille de moteur, plutôt qu’en

récupérant l'intégralité du catalogue, iCoot ne doit pas autoriser le lancement de la recherche.

4) Le diagramme de cas d'utilisation:

2ème Partie : Description du système - besoins fonctionnels

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 32 Université Ferhat Abbas. Sétif -1

UI1: créer requête

UI2: consulter résultats

 UI3: consulter détails modèle de voiture

UI4: sélectionner un titre index

 UI5: consulter détails membre

UI6: consulter locations

UI7: consulter réservations

UI8: changer le mot de passe

3emeLicene en Systèmes Informatiques Génie Logiciel |2020

 33 Université Ferhat Abbas. Sétif -1

2. TP N°2 : Installation de StarUML

Pour avoir une version stable de StarUML suivez les étapes suivantes:

1. Télécharger une version StarUML, 7-Zip et le plugin Asar.zip
2. Installer StarUML et 7-Zip.
3. Installer sur 7-Zip le plugin Asar (Créer le sous-dossier «Formats» dans le dossier

d’installation de 7-Zip «…\ProgramFiles\7-Zip». Puis, copier à partir de plugin «Asar.zip» le
fichier «Asar.64.dll» ou «Asar.32.dll» dans le dossier «…\ProgramFiles\7-Zip\Formats». 7-Zip
cherche automatiquement «Asar7z» et l’utilise pour ouvrir des fichiers «.asar»).

4. Extraire le fichier «…\ProgramFiles\StarUML\resources\app.asar» dans un dossier «…\app».
5. Ouvrir le fichier «…\app\src\engine\license-manager.js» par un éditeur de texte puis modifier

la fonction checkLicenseValidity () comme suite :

checkLicenseValidity () {
this.validate().then(() => {

setStatus(this, true)
 }, () => {

//setStatus(this, false)
//UnregisteredDialog.showDialog()
setStatus(this, true) //<-- add this line

})
}

6. Enregistrer les modifications et créer un nouveau fichier «app.azar» par 7-Zip en utilisant

le dossier modifié «…\app».
7. Enfin, replacer le fichier «…\ProgramFiles\StarUML\resources\app.asar» par le nouveau

fichier «app.azar».
8. Lancer StarUML.

