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Chapitre 1

Partie2 Mesures positives

1.1 Mesures positives.

Définition 1.1.1 Soit (X, M) un espace mesurable, une mesure positive sur (X, M) (ou,
plus simplement, sur X ) est une application d’ensembles p: M — [0, +o0] vérifiant les
propriétés suivantes

(c1) u(@) = 0.

(c2) Pour toute suite (An)n>1 C M de parties mesurables deux-a-deux disjointes, on a

+oo o]
u(JAn) = 3 A,
n=1 n=1
On dit que (X, M, 1) est un espace mesuré.

Commentaires
- La condition (c2) s’appelle la propriété de o-additivité de la mesure.
- On dira souvent "mesure" au lieu de "mesure positive".

- On admettra +o0o comme valeur possible, R est de longueur infinie.

Remarques 1.1.2 1) Dans la définition précédente, la condition (c1) peut étre remplacée

par la condition

JA € M : pu(A) < oo, (i.e. u(A) est finie).



2) La o-additivité contient, en particulier, la propriété d’additivité simple pour tout n > 1,

si les n ensemble mesurables, A1, ..., A, sont deuzr-a-deux disjointes, alors
p(AyU. . UA,) = w(A) + .o+ p(An),
il suffit de prendre A1 = Apya =+ = ¢.

Définition 1.1.3 Soient X un ensemble et M wune tribu sur X. On appelle probabilité
une mesure P sur M telle que P(X) = 1.
On dit que (X, M,P) est un espace probabilisé et les éléments de M sont appelés les

événements.

Exemples 1.1.4 1) Mesure de comptage. Sur (X,P(X)), on définit la mesure de
comptage par

p(A) = card(A), si A est fini

p(A) = oo, sinon
2) Mesure de Dirac en un point. Soit X un ensemble et xog € X un point de X. Pour

tout sous-ensemble A de X, la mesure 6., de Dirac (sur P(X)) au point xq est définie par

dro(A) =1, sizg € A
020(A) =0, sizg ¢ A
On peut remarquer que la mesure de Dirac est une probabilité.

3) Mesures discrétes. Soit X un ensemble, (ay)n>1 une suite de points de X et (ap)n>1

une suite de réels strictement positifs. Pour toute partie A de X on pose

pA) = e, (A= > a,
n=1 n=1,a,€A

On définit ainsi une mesure positive sur P(X) que l’on note

= i ap.Oq,, -
n=1



Proposition 1.1.5 Soit (X, M, u) un espace mesuré. La mesure i posséde les propriétés
suivantes

1) (La monotonie). Si A,B € M avec A C B alors u(A) < u(B).

2) St A, B € M avec A C B et u(A) < oo alors p(B\A) = u(B) — u(A).

3) (La sous-additivité). Pour toute suite (A,),>1 dans M on a

p(JAn) <D (A

Démonstration. 1) Si A, B € M avec A C B alors B = AU(B\A), puisque AN(B\A) =

¢, par 'additivité de la mesure on a

1(B) = u(A) + p(B\A) = p(A).

2) Si de plus p(A) < oo alors u(B\A) = u(B) — u(A).

3) A partir de la suite (A,),>1, on construit la suite (B,),>1 définie par (??). On a
+o0o

+oo
B, C A, pour tout n > 1, les B,, sont disjoints deux a deux dans M et UA" = UB”
n=1

n=1
(voir la preuve de la Proposition ?7). La monotonie de la mesure donne u(B,,) < p(A,)

pour tout n > 1. D’autre part, d’aprés la o-additivité de la mesure on a

(U4 = wUBn) = D uBa) < > n(A).

Définition 1.1.6 On dit qu’une mesure positive i est finie si elle est a valeurs finies
c-a-d

p(A) < oo pour tout A € M
Autrement dit, p(X) < oo.

Définition 1.1.7 Soit u une mesure sur (X, M). On dit qu’elle est o-finie s’il existe une
+o0

suite de parties mesurables (E,)n>1 telle que X = UE” et pu(E,) < oo pour tout n > 1.

n=1



Exemples 1.1.8 1) La mesure de Direc ¢, est finie car §,(X) =1 < 0.
2) La mesure de compage sur X est :
i) finie si et seulement si X est fini

it) o-finie si et seulement si X est dénombrable.

1.2 Propriétés des mesures, mesures extérieures, me-
sures complétes.

La propiété de la continuité de la mesure sera & la base d’'un des théorémes les plus
importants et 1'un des plus utilisés pour l'intégrale de Lebesgue et le théoreme de conver-

gence monotone.

Théoréme 1.2.1 Soit (X, M, u) un espace mesuré, alors

1) La continuité croissante. Si (A,), ., est une suite croissante de parties mesurables,

on a N
p(J4) = Jim je(4,)
n=1

2) La continuité décroissante. Si (A,), -, est une suite décroissante de parties mesu-

rables avec

i (4y) < o0, (1.1)
alors, on a
+0o0
a(()A) = Tim pu(A,)
n=1
Démonstration. 1) Posons
B1 = Al

B, = A, \A,_1, pour n > 2



les ensembles B, sont mesurables et A, = UBk pour tout n > 1, ce qui implique que

k=1
+oo +o0

UB” = UA"' De plus, les B,,, n > 1, sont deux-a-deux disjoints, donc

n=1 n=1

,U(UAn> = M(UBn) :Zﬂ(Bn):nh_I}noozlu(Bk)

= lim ,LL(UBk> = lim pu(A,)

k=1
2) Pour tout n > 1 posons B, = A1\ A, = A; N AS. Comme la suite (A,),>1 est décrois-

sante, la suite (B,,),>1 est croissante, en utilisant 1)

+o0
p(UBa) = lim pu(B,) = p(A) — lim pu(A,),
n=1

d’autre part on a
+oo +o0o +oo
UBn == A1 N <UAZ> - Al\ﬂAm
n=1 n=1 n=1
il résulte que
+o0 +o00
p(\Bn) = n(Ar) = u([)An)-
n=1 n=1

En fin, on peut simplifier par p(A;) puisque cette derniére quantité est finie,

+o00o
N(ﬂAN) = nh_r>noo 1 (Ay)
n=1

n
La condition p(A;) < oo dans 2) du théoréme précédent est nécessaire comme le

montre I'exemple suivant.

Exercice corrigé 1.2.2 Considérons l’espace mesuré (N, P(N), card) et la suite des par-

ties mesurables (A,),, telle que

A, ={n,n+1,n+2 ..}



pour montrer que la condition (1.1) est nécessaire pour la continuité décroissante de la

mesure.
Démonstration. La suite (A,),,., est décroissante,
Appi={n+1n+2n+3.}CA,={nn+1,n+2 ..}

et

w(Ay) = card ({1,2,...}) = +oo.
+o00
Sixe ﬂAn alors x > n pour tout n > 1. D’ott N est borné, ce qui est une contradiction.

n=1
Donc

+o0o
A = ¢.
n=1

D’autre part

n—-aoo —00

+oo
0=up (ﬂAn> # lim p(A,) = lim card ({n,n+1,n+2,..}) =+o0
n=1
[ |
Exercice corrigé 1.2.3 Soit (X, M) un espace mesurable. Montrer que toute fonction

additive définie sur M a valeur dans [0, +00] satisfaisant la continuité croissante est une

mesure.

Démonstration. i) u(¢) = u(p U ¢) = u(¢p) + u(¢) alors u(¢) = 0.

i) Il s’agit de vérifier la o-additivité. Soit (A,),, une suite de M disjoints deux a deux.

n —+o0 400
Posons B,, = UAk' Cette suite est croissante et de plus on a U B, = U A,,. La continuité
k=1 n=1 n=1

croissante et 'additivité de la mesure ;1 donne

ﬂ(UAn) = N(UBn> :nh_r>nooﬂ<Bn)

= Jim >4 = 3 (4l
k=1 n=1

Ensemble négligeable et mesure complétes



Définition 1.2.4 Soit (X, M, u) un espace mesuré et N C X. L’ensemble N est dit
négligeable dans (X, M, ) s’il existe E € M tel que N C E et u(E) = 0.

+oo
Remarque 1.2.5 Si(A,),>1 une suite de parties négligeables dans (X, M, 1) alors UA”

n=1
est négligeable. En effet, pour tout n > 1 il existe E,, € M tel que A, C E, et u(E,) = 0.
Or

~+o00 +00 +o0 0
UAnC UE” et u(UEn) SZH(En):O-
n=1 n=1 n=1 n=1

+oo
Donc UA” est négligeable.

n=1
Définition 1.2.6 Un espace mesuré (X, M, i) est dit complet si toute partie négligeable

est mesurable (et donc de mesure nulle). Dans ce cas on dit que la mesure p est compléte.
Mesures extérieurs

Définition 1.2.7 Soit X un ensemble quelconque. On appelle mesure extérieure sur X
une application p* : P(X) — [0, 4+00] possédant les propriétés suivantes

i) w(¢) =0

ii) si AC B C X alors u*(A) < p*(B).

iii) Pour toute suite (A,), de parties de X on a

wr(JA) <3 (A

Remarque 1.2.8 I est clair que toute mesure positive sur (X, P(X)) est une mesure
extérieure sur X. Mais la réceproque n’est pas vraie en générale, comme le montre l’exemple

sutvant

Exemple 1.2.9 Soit X un ensemble non-vide. L’application p* : P(X) — {0,1} définie
par (o) =0 et p*(A) =1, si A # ¢ est une mesure extérieure sur X.

De plus si card(X) > 1, Uapplication p* n’est pas une mesure positive sur (X, P(X)).



Démonstration. Soit A, B € P(X) avec A C B. Si A = ¢ alors p*(4) =0 < p*(B). Si
A # ¢ alors B # ¢ et donc p*(A) = 1 = p*(B).

Soit maintenant (A,,), une suite de parties de X. Si tous les A, sont vides on a

M*<UAn) =p (o) =0= ZM*(An)~

+o00
Pour le contraire, s’il existe j € N tel que A; # ¢ on a UA” #+ ¢ et alors

+oo oo
N*(UAn) =1=p"(4;) < ZM*(An)'

ce que signifie que p* est une mesure extérieure sur X.
Du fait que card(X) > 1, on peut choisir a,b € X avec a # b. On pose A = {a} et

B = {b}. Dans ce cas pu* n’est pas additive car
p(AUB)=1+# p"(A) +p"(B) =2
Alors p* n’est pas une mesure positive sur (X, P(X)). =

Proposition 1.2.10 Toute mesure extérieure additive sur X est une mesure positive sur

(X, P(X)).

Démonstration. Il s’agit de vérifier la o-additivité. Soit (A,),, une suite de P(X)
p o0
disjoints deux a deux. Tout d’abord remarquons que UA” C UA” pour tout p > 1.

n=1

n=1
D’aprés 'hypothese de additivité et (ii) de la Définition 1.2.7 on a

STt = w(JAd) < w (A,

Par le passage & la limite quand p — 400 on obtient
+o0 +o0
Zl‘*(An) < M*(UAn)-
n=1 n=1

Cette derniére inégalité et (iii) de la Définition 1.2.7 donnent la o-additivité de p*. m



Définition 1.2.11 Soit X un ensemble non-vide et soit ;i* une mesure extérieure sur X.

Une partie & de X est dite u*-mesurable si pour tout A C X on a
p(A) = p (AN E) + p (AN E°) (1.2)

On dit aussi que E est mesurable au sens de Carathéodory (par rapport & p*).

On note M(u*) la famille des parties p*-mesurable de X .

Remarques 1.2.12 1) La mesurabilité de E ne fait pas intervenir p*(E) mais pu*(A) ot
A est appelée ensemble test.

2) Pour tout A C X on peut écrire
A=AN(EUES) =(ANE)U(ANE"),
par la sous-additivité de la mesure extérieure (iii dans la Définition 1.2.7) on a toujours
§H(A) < (AN B) 4+ (AN EF).
Alors pour montrer qu’une partie E C X est u*-mesurable, il suffit de montrer que
W(A) = W (AN E) + (AN E°) (1.3)
pour tout A C X.

Exemples 1.2.13 Soit X un ensemble non-vide
1) X et ¢ sont u*-mesurables pour toute mesure extérieure.
2) Si u* est une mesure extérieure sur X et E C X tel que p*(E) = 0, alors E est

W -mesurable.

Démonstration. 2) Il suffit de montrer que (1.3) est vrai pour tout A C X. D’aprés les
inclusions ANE C Eet ANE°C Aonapu (ANE) < pu*(F)=0et u* (AN E°) < p*(A),

ce qui implique que

AN E) + pt (AN E*) = w* (AN E°) < ().
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Théoréme 1.2.14 Soit p* une mesure extérieure sur un ensemble non-vide X. Alors

M(p*) est une tribu sur X et la restriction de p* a M(u*) est une mesure.

Démonstration. ¢, X € M(u*), par 'Exemple 1.2.13. De fagon immeédiate, a partir de

I'équation (1.2) on a E € M(u*) si et seulement si E¢ € M(p*). 1l reste donc a voir que

M(u*) est stable par réunion dénombrable. Commengons par ’établir pour une réunion

finie. Soient Ey, By € M(u*), pour tout A C X
pi(A) = (AN Ey) + p (AN EY)
On teste la p*-mesurablité de Ey par I’ensemble A N Ef
P (ANE]) =p (ANE;{N Ey) + p* (AN Ef N ES).
En portant (1.5) dans (1.4)

p(A) = p(ANE) 4+ p* (AN EfN Ey) + p* (AN Ef N ES).

> p[(ANE)U(ANENEY)] + p' (AN EY N ES).

Mais
(ANE)U(ANETNEy) =AN[ELU(E)\EL)] =AN(ELUE),),

et aussi

ANESNES = AN (Ey U By)°.

Finalement on obtient
pw(A) > p" [AN (EyU Ey)] + " [AN (B U Ey)T,

d’ou E1 U E2 S M(u*)

(1.4)

(1.5)

Pour terminer la preuve de que M (u*) est une tribu, montrons la stabilité par rapport

a la réunion dénombrable. Considérons une famille (E),), ., d’éléments de M(p*) deux a

deux disjoints (si (A,),, est une famille d’éléments de M(u*), on peut toujours écrire

11



Un>14n = U1 E, , avec les éléments F,, deux & deux disjoints. Voir la preuve de la
n

Proposition ??7). Pour tout n > 1, posons F,, = UE"? et montrons par récurrence sur n
k=1
que pour tout partie A C X on a

n

p(ANFE,) =) p'(ANE). (1.6)

La propriété est vraie au rang n = 1 et si 'on suppose qu’elle est vraie au rang n. Puisque
F, € M(p*) est une réunion finie des éléments dans M (u*), on teste sa mesurbilité par
AN Fp,

(AR Fut) = (A0 Fogt 0 Fy) + (A0 Fya 0 F9), (L.7)

d’autre part le fait que F, 1 N F, = F, et F,,;1 N FS = E, 41, I'égalité (1.7) donne

pANE ) = p(ANF,) +p (AN Eyn)

n

= > W (ANE) 4y (AN Enyy)
k=1
n+1

= ZM*(A N Ek).

+00

Maintenant si on pose I = UEk ona ANF D AN F, pour tout n > 1. Donc d’aprés la
k=1

monotonie de la mesure extérieure et (1.6) on a

PHANF) > p (AN F,) =Y u* (AN Ey)

k=1

En prenant la limite lorsque n tend vers +oo, on trouve

+oo
PANF) 2 Y (AN B
k=1
Inversement, par (iii) de la Définition 1.2.7,
+oo +oo
wANF) = || J(An By < S rAan B,
k=1 k=1

12



d’ou pour tout partie A C X,

“+oo
PANF) =) u* (AN Ey). (1.8)
k=1
On a F D F° pour tout n > 1 et

pr(A) = (AN E) + pt (AN E)

n

= Y W(ANE)+p (ANEY)
k=1

> > (AN Ey) +pt (AN FO),

k=1

par le passage a la limite lorsque n tend vers +oo et par (1.8),
p(A) = W (ANE) + p (AN FY)

+o0
donc F = UEk € M(pn*).
k=1
La o-additivité de p* sur M (pu*) résulte de la formule (1.8) en prenant pour ensemble test

A=X. =

1.3 Mesure de Lebesgue sur la tribu des boréliens.
Mesure de Lebesgue sur R

Théoréme 1.3.1 [?/

Il existe une unique mesure positive sur (R, B(R)), notée A, telle que
MJa, b)) =b—a

pour tout a,b € R, a < b.

On Uappelle la mesure de Lebesgue sur R

13



Remarques 1.3.2 1) Il est clair que la mesure A est o-finie puisque

AM[—n,n]) =2n < 400 et R= U [—n,n]

n=1

2) Pour tout x € R on a A({z}) = 0 et par conséquent

/\(]CL, bD = )‘(]a7b]) = )‘([a7b[) = /\([Cb,b]) =b—a.

+oo
En effet, {z} = ﬂ}x—%, z+ [, donc par la continuité décroissante, (2) dans le Théoreme
n=1
1.2.1, on a
Ao} =l A= =,a+ )= lim = =0
T = 1m r——. 2 —) = im — =
n——>+00 n’ n n—-+007

On en déduit immédiatement que

Proposition 1.3.3 Tout ensemble dénombrable D de R posséde une mesure de Lebesque
nulle, \(D) = 0.

+o0
Démonstration. Puisque D = U {z,}, nous avons
n=1,z, €R

AD) < 3 A{za}) =0

ce qui implique que A(D) =0. =

La mesure de Lebesgue possede des propriétés importantes.

Proposition 1.3.4 [?/La mesure de Lebesque \ est invariante par translation et inva-

riante par symétrie. C’est-a-dire pour tout o € R, on a
Ma+ A)=AA) et AN(—A) =A(A)

pour tout borélien A de R, ot o+ A={a+a, a€ A} et —A={—a, ac A}.
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Mesure de Lebesgue sur R™.
Rappelons que un pavé P de R™ est un produit d’intervalles bornés P = I; X ... X I,,,

ou I; CR (j=1,...,m) est intervalle borné. La mesure du pavé P est donnée par
m(P) = L] x ... x |I,],
ot |I;| est la longueur du segment I;.

Définition 1.3.5 Pour toute partie A de R™, on définit

n=1

“+o0o +oo
A (A) = inf {Zm(ﬂ) tAC UR-, P; pavé ouwvert de Rm}
n=1
Linfimum est pris sur tous les recouvrements dénombrables de A par des pavés ouverts.

Théoréme 1.3.6 [?7/On a les assertions suivantes

i) \* est une mesure extérieure sur R™.

i) La tribu M(p*) contient la tribu de Borel, B(R™).
i11) \*(P) = m(P), pour tout pavé P C R™.
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