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Abraham de Malvre (1667-1754) l.eonhard Euler (1707-1783)

Mathematics is the most beautiful and most powerful creation of the human spirit.
— Stefan Banach (1892-1945, Polish mathematician)

1.1 Complex Numbers

Let z and y be real numbers.
e The imaginary unit ¢ is a number such that

The rectangular form of a complex number is an expression of the form

z =x + iy, where x,y € R

The real and imaginary parts of z = = + iy are the real numbers

The conjugate z of the complex number z = = + iy is

Z=x—1y

The set of all complex numbers is denoted

C={z=z+iy: z,yc Randi*= -1}
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Arithmetic Operations.

If 2y = x1 +iy1 and 25 = 22 + iys are complex numbers, then the arithmetic operations of
addition, subtraction, multiplication and division can be carried out as follows:

21+ 20 = (z1 4+ 1y1) + (x2 +iy2) := (z1 + x2) + i(y1 + y2)
21 — 22 = (x1 +iy1) — (w2 +iy2) := (v1 — 22) + i(y1 — y2)
21 - 22 = (w1 +iy1)(z2 + iy2) = (v122 — Y1y2) +i(T1Y2 + T201)

2Tty s iy —iye (0132 +yixe) H il — 21ye) |

i (22 #0)

zg  xatiys o+ iys T2 — iyo x5+ 3

Laws of Complex Arithmetic

Let z1, 29, 23 € C, then we have the following algebraic properties:

Closure: 21 + 20 € C, 21 +20€C

Additive and multiplicative identity: z +0=zand 1 -z =z, forall z € C
Commutative laws: z; + 29 = 29+ z1 and 21 - 29 = 29 - 21

Associate laws: zq(z2 + 23) = 2122 + 2123

Distributive laws: (z; + 2z2) + 23 = 21 + (22 + 23) and (21 - z2) - 23 = 21 - (22 - 23)

o AW

Inverses: z; + (—z1) =0and z; - — =1, (21 #0)
21
7. Zero factors: z;-29=0= 2z =00rz; =0
The above laws make (C, +, -) into a field (Corps) .

This is the set of numbers obtained by appending ¢ to the real numbers.
C=R+iR

So the real numbers can be viewed as a subset of C because R =R + 0 C C.
The same can be said for the pure imaginary numbers iR = 0 + iR C C.
Algebraic Construction of Complex Numbers
If we endow R? with the following operation:

Equality [a,b] =[c,d| <= a=c,b=d

Addition [a,b] + [¢,d] = [a+ ¢, b+ d]
Multiplication [a,b] - [¢,d] = [ac — bd, be + ad]

One can easily show that the above operations of addition and multiplication are com-
mutative, associative and that multiplication is distributive with respect to addition. Then

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR
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topologically speaking we say that R? and C are isomorphic.

Numbers of the form [a, 0] behave like real numbers so we identify a := [a,0]. We also
identify ¢ := [0, 1] and the pure imaginary numbers ib := [0, 1][b, 0]. Hence for any complex
number z = a + ib we have

z=a+1b=[a,0] + [0,1][b,0] = [a, 0] + [0,b] = [a, b].

The real numbers correspond to the z-axis in the Euclidean plane. The complex numbers
of the form iy are called purely imaginary numbers. They form the imaginary axis iR in
the complex plane, which corresponds to the y-axis in the Euclidean plane.

We know for real algebra that the equation 2% + 1 = 0 does not have a solutions in R since

22 +1 > 0. However one can see that
i? = (i) (i) = [0,1][0,1] = [(0)(0) — (1)(1), (0)(1) + (1)(0)] = [~1,0] := —1

Hence the above equation identifies ;> = —1 and shows that 4 are solutions to the equa-
tion 2% +1 = 0.

Remark.
It is remarkable that the addition of i lets us not only solve the equation z* + 1 = 0, but
every polynomial equation. In fact if z € C then

p(z) = anz" + -+ a1z +ag

is complex polynomial of degree n > 0, where ay, . . . a,, are complex numbers, and a,, # 0.
A key property of the complex numbers, not enjoyed by the real numbers, is that any
polynomial with complex coefficients can be factored as a product of linear factors.

Fundamental Theorem of Algebra. Every complex polynomial p(z) of degree n > 1 has
a factorization

p(z) = clz — 21)™ -+ (2 — 2,)™,

where the z;’s are distinct and m; > 1. This factorization is unique, up to a permutation
of the factors.

Example. The polynomial p(z) = x* + 1 with real coefficients cannot be factored as a
product of linear polynomials with real coefficients, since it does not have any real roots.
However, the complex polynomial p(z) = z? + 1 has the factorization

241=(z2—i)(z+1),

corresponding to the two complex roots +i of z? + 1.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR
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Solving Equations

Example: Solve 2% + 2z +1 = 0.

—24+—4

5 —1+3.

2422 41=0=2=

Example: Solve 2 = Z.

P2=7= @ —y?)+i2xy) =z — iy
=22 —y?=zand 22y = —y

1 3
:>m:—§and y2:10r y=0and z =0, 1.

The solutions are given by

Absolute value and complex conjugate

For x and y real and z = x + iy we define:
e Z = x — iy as the conjugate of the complex number z.
e |z| = \/22 + y? as the absolute value or modulus of the complex number =.

A

z=x+1y
1

1

1

1

1

1

1

1

1

|

1

1T

. >

1

1

1

1

1

1

1

1

1

1

1

|7 .
Z=x—1y

Figure 1.1: Absolute value and complex conjugate.

Properties. Let z, w € C then we have:

(1) Rz=(z+2)/2 @ (z)=2
@ Imz = (= — 2)/(2i) G) L= 2 (240
EEER

3) |2 =2z =2+
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CHAPTER 1. 'THE COMPLEX NUMBER SYSTEM 9

6) 1/2 = 2/|2%, (= £ 0)
(7) 2=z Imz=0
8) z=—ZRz=0
9 zftw=z+tw

(10) zw = zw

A1) 27 = ()"

(12) z/w = z/w, (w # 0)

Addition and subtraction

(13) Rz < |z| and Im z < ||

(14) || = |3
(15) |ow| = IZ|H|w!

z z
a6 | |1= 10y = @#0

(A7) |z +w| < |z] + |w]
(18) [z +w[ = [|2] = |w]]

Addition and subtraction of complex numbers are identical to addition and subtraction of

real numbers. Thus,

z21E 29 = (.CUl + iyl) + (332 + iyg) = (.%'1 + :CQ) + i(y1 + yg)

The Argand representations of two complex numbers and their sum are shown in the

figures below.

7z

S

A)

2
(5]

—\.2

+
2
[} ]

Vie 2 <
]

N
S

N

Figure 1.2: Vectors

We see that the sum of complex numbers results in the same line in the complex plane as

the sum of two vectors in the z—y plane.

Figure 1.3: The sum of two vectors

There are two possible ways to subtract two vectors, as shown in the figure. The direction

associated with each difference vector makes vector subtraction unambiguous.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS
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)

Figure 1.4: Difference of two vectors

The Triangle Inequality

Using the geometric meaning of addition of complex numbers, and the well known result
from Euclidean geometry that the sum of the lengths of any two sides of a triangle is at
least as big as the length of the third side, we obtain the following triangle inequality for
any z1,z2 € C:

|2+ w| < 2] + |w]

Proof: For any z,w € C we have :
24wl = (zrw)(z T w) = (z4w)(z + W)
= 2Z + (20 + wZ) + ww
= |2|* + (2@ + zw) + |w|?
= |2|* + 2R(2w) + |w]|?
< |z|* 4 2|zw| + |w|?
= [2[* + 2|z |[w] + w]”
= [2[* + 2|z w| + w]”
= (2] + Jw))>

Now take positive square root.

21+ 22

|21]

Figure 1.5: Triangle inequality

Remark.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




CHAPTER 1. 'THE COMPLEX NUMBER SYSTEM 11

e The triangle inequality can also be verified analytically by using the Cauchy-Schwarz
inequality.

e It we replace w by —w we get |z + w| < |z| + |w|

e By applying the triangle inequality to z = (z — w) + w, we obtain |z| < |z — w| + |w].
Subtracting |w|, we obtain this very useful inequality,

|2+ w| > [|z] = fwl].

The Argument of a Complex Number

The argument of a complex number denoted arg(z), is the angle that the vector with tail
at the origin and head at z = = + iy makes with the positive z-axis see figure (1.6).

Note that the argument is defined for all nonzero complex numbers and is only deter-
mined up to an additive integer multiple of 27. That is, the argument of a complex
number is the infinite set of values:

arg z = arg(x + iy) = tan"'(y/z) = 0 + 2kmw, where k=0,+1,4+2 +3, ...

The complex valued-function w = f(z) = arg(z) is an infinite valued function, because for
each z € C we may have an infinite number of distinct values of arg z. Such functions are
known as multivalued.

A

y:‘Z|Sin9‘* ————————————————— Z:.’L'—i-Zy

LY S

8
Il
Q
o]
»n
Y

Figure 1.6: Polar form of a complex number

The principal argument of a non zero complex number denoted by Arg 2 is the unique
angle in the set arg(z) which lies in (—m,7w]. We can define argz in terms of Argz as
follows:

0 =argz=Argz+ 2kn where k=0,£1,£2,43,---

Note that Arg z is a single-valued function of z.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR
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We can now write the polar form of a complex number:

z=x +iy = |z|(cosh + isinh)

Remarks.

A single-valued function w = f(z) yields one value w for a given complex number z.
A multivalued function admits more than one value w for a given z.

arg(z) of any (non-zero) complex number has infinitely many possible values.

The function arg(z) is the simplest example of a multi-valued function.

The zero complex number 0 = |z|e” has |z| = 0 and § = arg z is arbitrary.

The function Arg(z) is a single-valued function called a branch of arg(z) .

We can define other single valued branches of arg(z) as Arg,(z); t < Arg, <t + 2m.

Example. Find Arg(z), Argy(z), Args.(2) and arg(z) if z =1 — 4.

Solution.

Arg(1 —i) = —%

Argy(1— i) = =
4
3T 237
A 1—13)= —_— =
rgs( i) =5m + 1 1

arg(1 — i) = —%—F%w;k €z

We list below a few properties of arguments which the reader should prove.

Properties. If z, 21, 2z # 0 we have

arg(z122) = arg(22) + arg(z2)

arg(z1/22) = arg(z2) — arg(z2)
arg(1/2) = arg(z) = — arg(2)

arg(z) = arg(z) = —arg(z)

Arg(z122) = Arg(z2) + Arg(ze) + 2km, k=0,+£1

where each formula is understood as a set equality and hold modulo adding integral

multiples of 2.

Warning ! The reader should verify the following:

arg(2?) = arg(z) + arg(z) # 2arg(2)

Arg(z122) # Arg(z2) + Arg(22)

Unlike real numbers, the complex numbers are not ordered. So inequalities, such as
Z1 > 29 OF z1 < 29, do not make sense in C unless 21,20 € R .

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR
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1.2 Euler’s Formula and Polar form of a Complex Number

Named after Leonhard Euler, is a mathematical formula in complex analysis that estab-
lishes the fundamental relationship between the trigonometric functions and the complex
exponential function.

As seen in the real analysis courses the Euler number is given by

1\" 1
e:z#ingo(l+n> :Zﬁ

n=0

and Euler’s formula states that, for any real number 6 € R,

¢ = cosf + isinf = cis(h)

where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the
trigonometric functions cosine and sine respectively, with the argument 6 given in radians.

Polar Form of a Complex Number

Let z be any non-zero complex number then the polar form 2 is given by:

z=x+iy = |z|(cos O +isinf) = |z|e? = |z]cis ()

where 6 is the argument of z. Consequently we have

Z=x—iy=|z|(cosf —isinh) = |z|e”? = |z|cis(—0)

Note that
z=x+ iy = ’Z|(COSQ +isin9) — |z’ez‘6’ — ‘Z|€iarg(z) _ |Z|eiArg(z)ez‘2k7r _ |z‘eiArg(z)

Polar form of fundamental complex numbers:

WM1=e0=¢?m ke (2) i = /2

3) —-1= e” (4) —i = e—iw/?

(5) 1+:7= \TQG:HW/4 (6) —144i= \/ie:ti37r/4

(7) (1 4iV3) = 265777 (8) (~1£iV/3) = 26*27/3

(9) (\/?::l: Z) = 2€iiﬂ-/6 (10) (—\/3 + Z) — 26i5iﬂ‘/6

Properties. For all 0, 6,,05 € R; k € Z we have :

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




1.2. EULER’S FORMULA AND POLAR FORM OF A COMPLEX NUMBER

(0,1)

(—1,0) (1,0)

360° 2n T

Figure 1.7: Fundamental Trigonometric Angles

14

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




CHAPTER 1. 'THE COMPLEX NUMBER SYSTEM 15

) ¥ =1 (5) 1/ = e = ¢if
(2) (eie)k — eika (6) ei91 . ei91 — ez‘(01+02)
(3) ei2k7r -1 (7) 6191/ei91 — ei(91792)
(4) ei(9+2kﬂ') —_ ei@ (8) ei(2k+1)7r —

Proposition. Let z;, = |z|e’* for k € N,n € Z and z = |z|¢?. Then we have the following:

2120 = |21)|22]{cos(01 + 02) + isin(0; + 62)} = |21 20|’ @1 F02) (1)

FL 2 fcos(0r — 02) +isin(fr — 09)} = | 21| ei0102) 2
29 29 z2
21 2m = |21] - |Zm|{cos(61 + - -+ 0p) +isin(01 + - -+ 0) } 3)
— ‘Z1| . ’Zm|€i(91+'--+9m)
(cos 4+ isin )" = ()" = ™ = (cosnf + isinnd) 4)
2" = |2["(cos O + isinB)" = |z|"(cos nf + isinnf) = |z["e™? (5)
Equation (5) is the famous De Moivre’s formula.
Remark: Using Euler formula we have the following:
(D e = cos® +isind 2 e = cos —isin®
0 ,—if i0 _ ,—if
(3) cos bl = ete (4) sinf = 7‘6
2 2
(5) €™ = cosnf + i sin nb (6) e ™ = cosnf — insin
inf —inf nf _ _—inb
(7) cosnf = ¢ QT ———
2 23

Example. Find w = (1 —4v/3)'? and z = (1 — iv/3) ! in the form a + ib.
Solution. It is easy to see that (1 — iv/3) = 2¢~"/3, thus

w = 2127127/ = 92— — 912 _ 912(cog 4y — isindr) = 212,
z =271t/ = 97V (cos(n/3) + isin(n/3)) = (1 +iV/3)/4.

The Binomial Theorem. For z1, 25 € C and n € N we have

n
_ n\ n\ ,_ n\ ,_
(z21+ 22)" = E Rk =t (1)2? 1z2—|—<2>z? 2z§+---+<k>z? Koe 4+ 25
k=0

For all n € N we have :

(cosf +isin0)" = ()" = ") = cos(nh) + i sin(nd).

This formula can help us find cos(n#) and sin(nf) in terms of powers of sin # and cos 6.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




1.3. N—THROOTS OF A COMPLEX NUMBER 16

Example. Find cos 36 and sin 36 in terms of powers cos § and sin 6.

cos(36) + isin(36) = (cos @ + isin@)>
= c0s® 0 + 3i cos® 0 sin 0 + 3i° cos O sin? 0 + i° sin> 0
= cos® 0 + 3icos® sinh — 3cosfsin® @ — isin® O

= (cos® § — 3cos fsin” ) + (3 cos? fsin § — sin® 6).
Hence we have
cos(30) = cos®>§ — 3cosfsin’@ and  sin(30) = 3cos? fsinf — sin® 6.

Example. Use Euler formula to linearize cos® z.

Solution.

2—3(63ix +362ix6—z’m +3eix€—2ix +e—3ix)
2—3(631'32 _’_Seix +3€—ix +€—3ix)

= 273(2cos 3z + 6 cos x)
27(

~2(cos 3z + 3cos x)

0

If z = re' = r(cos @ + isinf) we have

2" = [r(cos@ + isin6)]" = r"[cos(nd) + isin(nd)].

1.3 n—th roots of a complex number

Let w = r(cos# + isin ) be a nonzero complex number and n be a positive integer. Then
there are n nth roots of w, defined to be the set of complex numbers

W™ ={zeC: 2" =w}

and given for k = 0,1,...,n — 1 by

1 04+2kr . . O+ 2kw
/n +1

ZE=T cos sin

Equivalently we can write

wl/n _ {Tl/nei(9+27rk)/n k=0,1,...n— 1}

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR
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If w = 1, we get the nth roots of unity which is the set of complex numbers z such that
1Wm={zeC:2"=1}
and given for k = 0,1,...,n — 1, by

, 2k 2k
— eZikm/n _ | cog il + 7sin i)
n n

23

These values are equally spaced points on the unit circle in the complex plane.

So we can write

11/n — {e’LQﬂ'k‘/TL : k‘ :071’..-7’11_ 1}

Example. The 6 th-roots of unity are

16 = (k)6 | = 0,1,...,6} = {il, LEiV3 1+ “/g}

2 7 2

&

Z92 T z1

2’3‘—1 ‘1

24 - zZ5

Figure 1.8: The 6 th-roots of unity

Remark.

We have seen earlier that arg z is an infinite valued function of z and above we saw that
for n € N the function z'/" is n—valued function of the complex variable z. This type of
multivalued functions is specific to complex analysis and is not known in the real case.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




1.4. POINT AT'INFINITY AND THE STEREOGRAPHIC PROJECTION 18

1.4 Point at Infinity and the Stereographic Projection

Complex infinity. In real variables, there are only two ways to get to infinity. We can either
go up to approach +oo or down to approach —oo on the number line. Thus signed infinity
makes sense. In the complex plane there are an infinite number of ways to approach
infinity. We stand at the origin, point ourselves in any direction and go straight. We could
walk along the positive real axis and approach infinity via positive real numbers.

We could walk along the positive imaginary axis and approach infinity via pure imaginary
numbers. We could generalize the real variable notion of signed infinity to a complex
variable notion of directional infinity, but this will not be useful for our purposes. Instead,
we introduce complex infinity or the point at infinity as the limit of going infinitely far
along any direction in the complex plane. The complex plane together with the point at
infinity form the extended complex plane C, = C U {o0}.

Stereographic projection determines a one-to-one correspondence between the unit sphere
in R? minus the north-pole, S, and the complex plane via the correspondence

T1 + 172

1—:63’
2Rz 2Imz |22 -1
TTITRR P T IARR P R L

The origin is mapped to the south pole. The point at infinity, |z| = oo, is mapped to the
north pole. In the stereographic projection, circles and lines in the complex plane are
mapped to circles on the unit sphere. If we define Co, = CU {o0}, then we have a one-to-
one correspondence between S and C.,. This allows us to define a metric on C,, which

is given by

2|21 — 29| 2

W) = P )

1.5 Topology of complex plane

The concepts in ordinary calculus in the setting of R, like convergence of sequences, or
continuity and differentiability of functions, all rely on the notion of closeness of points
in R. For example, when we talk about the convergence of a real sequence (c,),n € N
to its limit L € R, we mean that given any positive ¢ , there is a large enough index N
such that beyond that index, the corresponding terms ¢,, all have a distance to L which
is at most e. This "distance of ¢, to L” is taken as |¢, — L|, and this is the length of the

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




CHAPTER 1. 'THE COMPLEX NUMBER SYSTEM 19

Figure 1.9: Stereographic projection.

line segment joining the numbers ¢,, and L on the real number line. Now in order to do
calculus with complex numbers, we need a notion of distance d(z1, z2) between pairs of
complex numbers d(z1, z2), and the first order of business is to explain what this notion is.

Metric on C . Since C is isomorphic to R?, we use on C the Euclidean distance . Hence,
for 21 = x1 +iy; and 29 = x5 + iyo we define the distance by:

d(z1,22) = /(@1 — 22)2 + (Y1 — y2)? = |21 — 22]. (6)
(C,| ) is a complete metric space (Banach space).

22 = (72,92)

‘yl _ y2| d(Zl,Zg) = |Zl — 22|

—

zZ1 = ($1,y1)

X1 — T2

Figure 1.10: Pythagoras theorem

The equation of the circle centered at a = (a;, a) with radius r is given by :

(x —a1)” + (y —az)? = r?
if we let z = (z,y) and use equation (6), then the equation of the circle can simply be
written as

lz—aP=r?e|z—a|=r
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hence in C we can define the equation of the the points on the circle centered at a and

with radius r by

Cla;r)={2z€C:|z—a|l =7}

Open discs, open sets, closed sets and compact sets

(1)

(2)
(3)

(4)

(5)

6)

(7)

(8)

9)

(10)

Open disc. The set D(a;r) = {z € C: |z — a| < r} is called the open disc (open ball
) centered at a € C and with radius r > 0.

Unit disc. D = D(0;1) = {z € C : |z| < 1} is called the open unit disc of C.

Open set. A set U C Cis open in C if for all z € U there exists » > 0 such that
D(z;r) C U. The half planes {z € C : #z > a} and {z € C : Imz > b} are open in
C.

Closed set. A set F' C C is closed in C if its complement C \ F' is open in C.

If Fc Cand OF C F = @ then F is closed in C.

A set is closed if it contains all its boundary points.

D(a;r) ={z € C:|z—a| <r}isclosed in C, and called a closed disc.

The annulus A(a,r, R) = {z € C:r < |z —a| < R} is closed in C.

A set F' C C is closed if and only if every convergent sequence (z,) in F' has a its
limitin F, z, —» z € F.

Adherence or Closure of a set. If S C C then the set S = S U 95 is the adherence
or the closure of S. The adherence of the open disc D(a;r) is the closed disc D(a; 7).

Bounded set. A set S C C is bounded if there exists M > 0 such that |z| < M for
all z € S. Equivalently we say that S is bounded if S € D(0;r) for some r > 0.
The set |z| < 4 is bounded, but {z € C : ®z > 0} is not.

Compact set . Aset K C Cis compact in C if it is bounded and closed in C. The
set |z| < 4 is compact, but |z| < 4 is not.

Connected by arcs. An open set S C C is said to be connected by arcs if any two
points can be connected by a path that is entirely in S.

Connected set. An open set S C C is said to be connected if it can not be the union
of two non-empty disjoint open sets.

Any set of C connected by arcs is connected.

The open unit disc |z| < 1 and the annulus 1 < |z| < 2 are connected because they
are connected by arcs.

Region. A region is an open polygonally-connected set S together with all, some or
none of its boundary points. We assume polygonal-connectedness to avoid infinite
length paths and fractal-like open sets.
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(11) Simply connected sets. A connected by arcs set S C C is said simply connected

if any closed path on S can be continuously reduced (by homotopy) to a point.
Intuitively, one can shrink the closed path until it forms one point. It is a region
which contains no holes.
The disc |z| < 1 is simply connected, but the crown 1 < |z| < 2 is not. The private
plan of a C \ {z} point is connected but not merely connected. In other words,
a simply connected set does not have "holes”. 1If it has holes it is called multi-
connected. The annulus is an example of a multi-connected region.

(12) Domain. A non-empty open and connected set D in C is called a domain or a open

region.

Argand Diagrams

Example: Indicate graphically, on a single Argand diagram, the sets of values of » deter-
mined by the following relations:

(@) Pointz=1-2¢ (e) Ellipse |z +i| + |z + 2i| = 2
(b) Line [z +1+i|=]z—1—1] (0 Annulus1 < |z +3| <2
(c) Circle [z —1—i| =1 (g) Strip3 <Rz <5
(d) Disc|lz—1—1i| <1 (h) Ray Argz = —3n/4
A
W
€3
Lo TR (©)
A ® N @
’/ ,z' ‘\\ \“ Q‘i‘l
——r— =
. . W@
| 1 2i
()

Figure 1.11: Argand Diagrams

Examples of Planar Sets
e Open and Closed Discs:
Disc (d) |z — 1 —i| < 1 is an open disc.
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Disc (i) |z — 1 —i| < 11is a closed disc.

Disc (d) is the interior of disc (i).

The exterior of disc (d) |z — 1 —i| > 1 is closed.

Regions:

The disc (d), the annulus (f) and the strip (g) are regions.

The open elliptical disc (§) |z — i| + |z — 2| < 2 is also a region.

Boundaries:

The boundary of Disc (d) is the Circle (c).

The boundary of Annulus (f) is the union of the circles |z + 3| = 1 and |z + 3| = 2.
The boundary of the Strip (g) is the union of the lines ®z = 3 and =z = 5.

Open and Closed Sets:

The planar sets (d) and the Elliptical Disc (j) |z — i| + |z — 2i| < 2 are open.

The sets (a), (b), (c), (e), (D), (g) are closed.

The Ray (h) and the strip 3 < Rz < 5 are neither open nor closed.

Note the Ray (h) does not contain the boundary point at the origin since Arg z is not
defined there.

Bounded and Compact Sets:

The sets (a), (c), (d), (e), (f) are bounded.

The sets (b), (g), (h) are unbounded.

The sets (a), (c), (e), (f) are compact.

Connected Open Sets: The Disc (d), the open Elliptical Disc (j) |z —i| + |z — 2¢| < 2
and the interiors of the Annulus (f) and Strip (g) are connected.

The disjoint union of the open sets (d) and (j) is not connected.

Likewise the set C \ {|z| = 1} is not connected.

The Annulus (f) is connected but not simply connected because loops around the
hole cannot be continuously shrunk to zero.

Domains:

The unit disc D(0,1) = {z € C : |z| < 1}, the annulus 1 < |z| < 2 and the half-plane
{# € C:Imz < 0} are domains, but S = {z € C: |z| # 1} is not a domain because
it is not connected.
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A A |Z| # 1
,/ |Z| 1 \\ ,I \\
The Uf it Disk Plane Witho-lt unit circle
A
S I<|fl<2 s
/ / \ v Lower HLlf Plane R
. Annjulus ,’/ : Im(z) <0 :
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2 Complex Differentiation and Analytic Functions

Augustin Louis Cauchy (1789-1857) Georg Friedrich Bernhard Riemann (1826—1866)

Nothing in our experience suggests the introduction of [complex numbers]. Indeed,
if a mathematician is asked to justify his interest in complex numbers, he will point,
with some indignation, to the many beautiful theorems in the theory of equations,
of power series, and of analytic functions in general, which owe their origin to the
introduction of complex numbers. The mathematician is not willing to give up his
interest in these most beautiful accomplishments of his genius.

— Eugene Paul Wigner

In real analysis, one studies (rigorously) calculus in the setting of real numbers. Thus
one studies concepts such as the convergence of real sequences, continuity of real-valued
functions, differentiation and integration. Based on this, one might guess that in complex
analysis, one studies similar concepts in the setting of complex numbers. This is partly
true, but it turns out that up to the point of studying differentiation, there are no new fea-
tures in complex analysis as compared to the real analysis counterparts. But the subject
of complex analysis departs radically from real analysis when one studies differentiation.
Thus, complex analysis is not merely about doing analysis in the setting of complex num-
bers, but rather, much more specialized:

Complex analysis is the study of “complex differentiable” functions.

2.1 Complex valued functions

Real-valued functions of a real variable can be visualized by graphing them in the plane
R?. The graph of a complex-valued function f(z) of a complex variable z requires four
(real) dimensions. To visualize the behavior of w = f(z), we create two planes, a z-plane
for the domain space and a w-plane for the range space. We then view f(z) as a mapping

24
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from the z-plane to the w-plane, and we analyze how various geometric configurations in
the z-plane are mapped by w = f(z) to the w-plane. Which geometric configurations in
the z-plane to consider depends very much on the specific function f(z).

w = f(z+iy) = u(z.y) +iv(z, y)
A

A

Domain D

Figure 2.1: The mapping w = f(z)

A complex-valued function f of the complex variable z is a rule that assigns to each com-
plex number z in a set D one and only one complex number w. We write w = f(z) and call
w the image of z under f. The set D is called the domain of f, and the set of all images
{w = f(z) : z € D} is called the range of f. We can define the domain to be any set that
makes sense for a given rule. It could be the domain of definition of f or any subset of it.
Determining the range for a function defined by a formula is not always easy, but we will
see plenty of examples later on. In some contexts functions are referred to as mappings
or transformations. When the context is obvious, we omit the phrase complex-valued, and
simply refer to a function f, or to a complex function f.

Just as z can be expressed by its real and imaginary parts, = = x + iy, we can write
f(z) = w = u + iv, where u and v are the real and imaginary parts of w, respectively.
Doing so gives us the representation

w= f(z) = f(z,) = f(x +1y) = u+iv.

Because u and v depend on x and y, they can be considered to be real-valued functions of
the real variables = and y; that is, v = u(x, y) and v = v(z,y) . Combining these ideas, we
often write a complex function f in the form

f(z) = f(z +1y) = u(z,y) + iv(z, y).

Let us look at the simple example of a complex-valued function is given by the formula
w = f(z) = z%. We can define the domain to be any set that makes sense for a given rule,
so for w = f(z) = 2%, we could have the entire complex plane C for the domain D, or
we might artificially restrict the domain to some set such as the unit disc D. Using the
binomial formula, we obtain

w=f(z) = (x+iy)* = (2* - y*) +i(2xy)
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so that u(z,y) = 2% — y* and v(z,y) = 2xy.

2.2 Single and Multiple-Valued Functions

Consider the complex valued function w = f(z). If only one value of w corresponds to
each value of z , we say that w is a single-valued function of z or that f(z) is single-valued.
If more than one value of w corresponds to each value of z , we say that w is a multiple-
valued or many-valued function of z. A multiple-valued function can be considered as
a collection of single-valued functions, each member of which is called a branch of the
function. It is customary to consider one particular member as a principal branch of the
multiple-valued function and the value of the function corresponding to this branch as the
principal value.
Example.
(a) If w = 2%, then to each value of z there is only one value of w .
Hence, w = z? is a single-valued function of z .
(b) If w? = 2, then to each value of z there are two values of w .
Hence, w? = z defines a multiple-valued (in this case two-valued) function of z .
Whenever we speak of function, we shall, unless otherwise stated, assume single-valued
function.

2.3 Convergence and Continuity

We can also talk about convergent sequences in C. A sequence (z,)ncn is said to be
convergent with limit L if for every e > 0, there exists an index NV € N such that for every
n > N, there holds that |z, — L| < e. It follows from the triangle inequality that for a
convergent sequence the limit is unique, and we write nlggo Zn = L.

Example. Let z be a complex number with z < 1.
Then the sequence (z"),cn converges to 0. Indeed, |z" — 0| = |2"| = |2|* — 0. Let Sbea
subset of C, 2o € S and f : S — C. Then f is said to be continuous at z if for every ¢ > 0,
there exists a 0 > 0 such that whenever z € S satisfies |z — zp| < 0, then |f(2) — f(20)| < e.
f is said to be continuous in S if it is continuous for every z € S.

One can also give a characterization of continuity at a point in terms of convergent se-
quences.

f S — Cis continuous at zy € S if and only if for every sequence (z,),cn in S convergent
to zp, then the sequence ( (f(z,))nen is convergent to f(z).

Example. = Complex conjugation is continuous, f : C — C such that f(z) = z is
continuous. Indeed, we have |z — Zy| = |z — 29| = |z — 20| for all z, 2y € C.
This shows that complex conjugation is continuous at each zy € C, and so it is a continuous
mapping. This is geometrically obvious, since complex conjugation is just reflection in
the real axis, and so the image stays close to the reflected point if we are close to the

point. Since (z) = z for all z € C, complex conjugation is its own inverse. So complex
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conjugation is invertible with a continuous inverse. Thus complex conjugation gives a
homeomorphism (that is, a continuous bijective mapping with a continuous inverse) from
Cto C.

2.4 Complex differentiability and analyticity

Definition.
(1) Let D be an open subset of C, f : D — C and a € D. Then f is said to be complex
differentiable at « if there exists a complex number L such that

FE) = f@) o flatA2) - f(@)

;I—I}i z—a Az—0 Az
: : : / df
We denote this L (which can be shown to be unique) by f'(a) or d—(a).
z

(2) A function f : D — C is said to be analytic (holomorphic) at z = q if it is differen-
tiable in a neighborhood of a .

(3) A function analytic at every point of complex plane C is called entire.

(4) We say that f has a singularity at z = a if f is not analytic at z = a.

Remark.

The key feature of the definition of differentiability is that the limiting value f’(z) of the
difference quotient must be independent of how z converges to a. On the real line, there
are only two directions to approach a limiting point thats is either from the left or from the
right. These lead to the concepts of left and right handed derivatives and their equality is
required for the existence of the usual derivative of a real function. In the complex plane,
there are an infinite variety of directions for the variable z to approach the point a, and
the definition requires that all of these “directional derivatives” must agree. This is the
reason for the more severe restrictions on complex derivatives, and, in consequence, the

source of their remarkable properties.

Remark.
Note that if f is differentiable at every point of an open set in C it is automatically analytic;
in fact, it is automatically infinitely differentiable. This is of course vastly different from

the real case.

Example. Consider the function f : C — C defined by f(z) = 2. We show that f is
entire. Note that for every a € C we have:

_ 2 _ 2
limM:hmz a = lim(z + a) = 2a = f/(a).

z—a zZ—a z—=a 2 —Q z—a
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Hence f is entire and f'(z) = 2z.

Example. Consider the function f : C — C defined by f(z) = z. We show that f is
differentiable nowhere. Note that for every a € C we have:

lim = lim ——— = lim =
—1 if Az=0

fla+Az) — f(a) a+Az—a Az +1 if Ay=0
Az—0 Az Az—0 Az - Aiao Az

Hence f is nowhere differentiable and hence nowhere analytic.

Theorem. If f(z) is differentiable at z, then f(z) is continuous at z.

This follows from the sum and product rules for limits. We write

f(z) = fla)

Z—a

(z—a)

f(z)=f(z) +

Since the difference quotient tends to f'(a) and (z — a) tends to 0 as z — a then conse-

quently, f(z) — f(a) as z — a.

Example. The function f(z) = |z|? is only differentiable at 0 and is analytic nowhere.

We have the following implications.

Analyticity =—> C-Differentiability —> Continuity

Definition of differentiability at a point (assumes function is defined in a neighborhood of
the point). Most of the consequences of differentiability are quite different in the real and
complex case, but the simplest algebraic rules are the same, with the same proofs. First of
all, differentiability at a point implies continuity there. If f and ¢ are both differentiable
at a point a, then so are f + g, f - g, and, if g(a) # 0, f/g, and the usual sum, product,
and quotient rules hold. If f is differentiable at a and g is differentiable at f(a), then
g o f is differentiable at a and the chain rule holds. Suppose that f is continuous at a, g
is continuous at f(a), and g(f(z)) = z for all z in a neighborhood of a. Then if ¢'(f(a))
exists and is non-zero, then f'(a) exists and equals 1/¢'(f(a)).

Rules for Differentiation. Suppose f(z), g(z), and h(z) are analytic functions of z. Then
the following differentiation rules (identical with those of elementary calculus) are valid.

(1) L) £ 9(2)] = () % S-g(2)

d d .
(2) @kf(z)] = c£f(z) where c is a constant.
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() L 7()9() = F(2)0(2) + 9() 4 F(2)

SEFCHPICTERCIE

(5) 1fw = f(t) where t = g(=) then 5 = 2 — 1ig(2)(2)

(6) If w = f(z) has a single-valued inverse f~*, then z = f~!(w), and %’ = dz/l "

2.5 Cauchy-Riemann Equations

Let f : D — C such that f = u + ¢v and D C C open. We will abuse the notation slightly
by writing f(x,y) as an alternative for f(z + iy). Fix a point z € D. We will compute the

complex derivative

Fo)— tim A S)

Az—0 Az

in two different ways, first by letting z + Az tend to z along the horizontal z—axis (that

is, Az = Az real), then by letting z + Az tend to z along the vertical imaginary axis

(that is, Az = iAy imaginary). This yields two expressions for f/(z), which lead to the

Cauchy-Riemann equations.

If f'(2) exists for some z = x + iy € D, then if let Ay = 0 we get Az = Ax and
Fer=my ™A =4 A ~ o

and if let Az = 0 we get Az = Ay and

 Az—0 Az N Ay—0 ZAy 8y

Thus complex-differentiability of f at z implies not only that the partial derivatives of f
exist there, but also that they satisfy the Cauchy-Riemann equation

of _ 01

or Oy’

If f = u + iv, then this equation is equivalent to the system also known as the Cauchy-

Riemann equations

ou_ov o o
or Oy or 0Oy’
or simply
Uy =vy and vy = —uy.
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Theorem. (Cauchy-Riemann) Let f = u + iv be defined on a domain D in the complex
plane, where u and v are real-valued. Then f(z) is analytic on D if and only if u(x,y)
and v(z, y) have continuous first-order partial derivatives that satisfy the Cauchy-Riemann
equations.

Remark.

The theorem can be weakened to say that if f is continuous on D and the partial deriva-
tives exist and satisfy the Cauchy-Riemann equations there (without assuming that the
partial derivatives are continuous), then the complex derivative of f exists on D (which is
equivalent to f being analytic on D. This is the Looman—-Menchoff Theorem.

We do need at least continuity, since otherwise we could take f to be the characteristic
function of the coordinate axes.

If f is analytic then its derivative can be written as

J'(2) = ug + iuy = vy — iuy

Notice that if f'(z) = 0 ten u, = uy = v, = v, = 0 and thus we have the following
theorem.

Theorem If f(z) is analytic on a domain D, and if f’(z) = 0 on D, then f(z) is constant.

Another convenient notation is to introduce

of 1 (of .of of 1 (of .of
L) i)

0z 2

ox Z@y 6x+26y

(These are motivated by the equations = (z + 2)/2, y = (2 — 2)/(24), which, if z and
z were independent variables, would give 0x/0z = 1/2, 0y/Jdz = —i/2, etc.) In terms of
these, the Cauchy—Riemann equations are exactly equivalent to

af _
0z

of _of _
0 or a—%—f(Z)

Example. Consider the function f : C — C defined by f(z) = z°. We show that f
is entire. Note that f(z + iy) = (z + iy)> = (2® — y?) + i(2zy) and hence we have
uy = 2x = vyandv, = 2y = —u, which shows that Cauchy Riemann equations are
satisfied and furthermore all partial derivatives are continuous. Hence f is entire and
f(x +iy) = ug + v, = 22 + 2y = 22.

Example. Consider the function f(z) = Z. Since % =1 # 0, then f is nowhere analytic.
z
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Example. The function log, z = In|z| +1i0, —t <6 < ¢+ 27 is a branch of log z. It is
analytic in the indicated domain and its derivative is given by

1
—log, z = —.
z

dz

In particular the the derivative of the principal logarithm is
d 1
e Logz = 2
Example. Let w = f1(z) = v/z be the principal branch of the square root function. Then

it is an analytic bijection between the slit plane C \ (—oo, 0] and the open right-half plane
Re z > 0. Furthermore its derivative is given by

d 1 1
N A TIE

Example: Show that the function f(z) = e* = €” cosy + ie” sin y is entire with derivative

Solution: The first partial derivatives are continuous and satisfy the Cauchy-Riemann
equations everywhere in C

Uy = Vy = €7 COoS T, Uy = —Uy = e”siny
Hence by the Cauchy-Riemann theorem f(z) = ¢* is entire and

f/(Z) = Uy, + v, = e’ cosx +ie’ siny = €°.

1z iz eiz 6iz
Example. The functions sin(z) = o and cos(z) = —y— are entire complex
(3
valued functions and we have
o sin(z) = cos(z) | and o cos(z) = —sin(z)

Example. Discuss where the function f(z 4 iy) = (z* 4+ y) +i(y* — z) is (a) differentiable
and (b) analytic.

Solution: Since u(z,y) = 2% 4+ y and v(x, y) = y*> — z, we have

Uy =22, Uy =2y, Uy =—Uy=—1
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These partial derivatives are continuous everywhere in C . They satisfy the Cauchy-
Riemann equations on the line y = z but not in any open region. It follows by the
Cauchy-Riemann theorem that f(z) is differentiable at each point on the line y = « but
nowhere analytic.

Cauchy-Riemann equations in polar form

Proposition. Let f(r,0) = u(r, ) + iv(r, #) be analytic function at zy = rge'®.

Then the Cauchy Riemann equations in polar form take the form:

ru, = vy et rv, = —uy (D

Proof. Let z = re®

It is clear that f(z) = u(z,y) + iv(z,y) :

oux =rcosf,y =rsinf, we will have § = arg z and |z| = r.

Ou _Qudw  Oudy 4 Ou_dudx  Oudy
or  Oxor  Oyor’ 00 0z 00 0y 08’
that is

Uy = ugycos +uysing and wup = —uyrsind + uyrcosb. 2)

We will also get
vy = vy cos0 4+ vysinf  and vy = —vyrsind + vyrcosd. 3)

Since f is analytic at zy then the Cauchy-Riemann equations u, = v,, u, = —v, are
satisfied and (3) becomes

Up = —uycosf + uysinf et wg = uyrsinf + u,rcosb. 4

Thus we get from (2) and (4) that ru, = vy and rv, = —uy. [ |
Corollary. If f(z) = f(re) = u(r,0) + iv(r, ), polar for of f'(z) is

f(2) = e (u, +iv,) = %e_ie(vg — 1vp) (5)

1

Example. Consider the complex valued function f(z) = — in C — {0}.
z

Let z = r¢* then we will have

)= = st~ ising)
2) = — = =r — jisin
retd r

and thus we get

u(r,0) =rtcosf w(r,0) = —r"Lsind
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the Cauchy-Riemann equations are satisfied since

ur = —r"2cosf@=r"tvy et v, =r2sinf=—r"tuy.

The derivative est then
"(2) = e P (u, —ivy) = e O (—r 2 cosh +ir 2sin@) = —r 2e 20 = .72,
f ( ) T IS8

2.6 Inverse Mappings and the Jacobian

Let f = u+iv be analytic on a domain D. We may regard D as a domain in the Euclidean
plane R? and f as a map from D to R? with components (u(z,y),v(z,y)). The Jacobian
matrix of this map is

Uy U
J=1" ",

Uy Uy

and the determinant of the Jacobian matrix is
|Jf‘ = UgUy — UyUy = (uw)2 + (Um)Q = |ug + i”m‘Q = \f’(z)|2.

Theorem. Suppose f(z) is analytic on a domain D, a € D and f’(a) # 0. Then there is
a (small) disc U C D containing a such that f(z) is one-to-one on U, the image V' = f(U)
of U is open, and the inverse function f~' : V — U is analytic and satisfies

FY(f(2)=1/f(2), zeUl.

Figure 2.2: Inverse mapping

If we write w = g(z), the above identity becomes

dz_ 1
T~
dz

which is the usual formula for remembering the derivative of the inverse function.

Once we know that f~! is analytic, we can easily derive the formula for the derivative
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from the chain rule. Since f~'(f(z))z, the chain rule yields (f 1) (f(z))f'(z) = 1, which
gives the above identity of the derivative of the inverse.

Example. The principal logarithm function w = Log z is a continuous inverse for z = ¢"
for —m < argw < 7. Since e is analytic and(e")’ # 0, the preceding theorem applies,
with z and w interchanged. From that theorem we conclude that Log z is analytic. If we
use the chain rule to differentiate

5= elogz

we get

d 1
Logz) = — Logz = —.
z

d d
1=e8* —(Logz) =z P

dz ﬁ(

2.7 Harmonic Functions

A real-valued function ¢(z,y) is said to be harmonic in a domain D if if all its first and
second order partial derivatives exist, are continuous and satisfy Laplace’s equation

¢xx + ¢yy =0

at each point of D.

In the case of functions of two variables, there is an intimate connection between analytic
functions and harmonic functions.

The Laplace equation occurs in many areas of two-dimensional physics including contin-
uum and fluid mechanics, aerodynamics and the heat equation. We see that the solutions
to these equations (harmonic functions) are naturally associated with analytic functions.

Theorem (Harmonic Functions).

If f = u+ v is analytic in an open connected domain D , then v and v are harmonic in D.
Proof: Since f(z) is analytic, u(z,y) and v(zx, y) are C*° (possess continuous partial deriva-
tives of all orders). We will prove this later. In particular, since they are C? , the mixed
second derivatives are equal

(uz)y = (uy)a, (Vy)z = (v)y

Substituting for the first partial derivatives from the Cauchy-Riemann equations give
Vyy = —Vzg, —Uyy = Ugg-

Remark.

(1) The harmonicity of u and v is a simple consequence of the Cauchy-Riemann equations.
(2) The second hypothesis of the theorem is redundant. We will see in page (101 ) that
an analytic function is infinitely differentiable and thus has continuous partial derivatives
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of all orders.

Note that
0 0 00 1
020z 0202 4
This shows that any analytic function is harmonic (equivalently, its real and imaginary
parts are harmonic). It also shows that the conjugate of an analytic function, while not

analytic, is harmonic.

Let u(x,y) and v(z,y) be two functions harmonic in a domain D that satisfy the Cauchy-
Riemann equations at every point of D . Then, u(z,y) and v(z,y) are called harmonic
conjugates of each other. Knowing one of them, we can reconstruct the other to within an
arbitrary constant.

Example. Show that u(z,y) = xy is harmonic, and find a harmonic conjugate for w.
Solution. Since u,, = 0 = —u,,, then v is harmonic. To find a harmonic conjugate v, we
solve the Cauchy-Riemann equations.

Uy =y = vy = v(z,y) = y*/2 + h(x)

where h(z) depends only on z and not on y. Since u, = —v, = h'(z) = —z which gives
that h(z) = —z?/2 + C where C est a constant . Thus

fl@+iy) = u(x,y) +iv(z,y) = 2y +i(y*/2 — 2°/2+ C) = —iz* ]2+ iC.

Example. Does there exist an analytic function on the complex plane whose real part is
given by u(x,y) = 3x2 +xy +y2?
Solution. Clearly, u,, = 6,u,, = 2, and hence u,, + u,, # 0 ; i.e., u is not harmonic.

Thus, no such analytic function exists.

Example Find an analytic function f whose imaginary part is given by e Y sinx .
Solution. Let v(z,y) = e Ysinx. Then it is easy to check that v,, + vy, = 0. We have to
find a function u(z,y) such that

(Dugy =vy = —e Ysinz, (2uy = —v, = —e Ycosz
From (1) we get u(z,y) = e Y cosx + ¢(y). Substituting this expression in (1), we obtain
—e Vsinz + ¢/ (y) = —e Ysinz.

Hence, ¢'(y) = 0 ; i.e., ¢(y) = c for some constant c .
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Thus,u(z,y) = e Y cosx + ¢ and

f(z)=eVYcosx+c+ie Vsine =e VT 4 c=e”* +c.

36
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3 Elementary Complex Valued Functions

The only way to learn mathematics is to do mathematics.
— Paul Halmos (1916-2006; Hungarian-born mathematician)

In this chapter we will see, for some special functions, what happens to regions in the z
plane when mapped onto the regions in the w plane.

The graph of a complex-valued function f(z) of a complex variable z requires four (real)
dimensions. To visualize the behavior of w = f(z), we create two planes, a z-plane for the
domain space and a w-plane for the range space. We then view f(z) as a mapping from
the z-plane to the w-plane, and we analyze how various geometric configurations in the
z-plane are mapped by w = f(z) to the w-plane. Which geometric configurations in the
z-plane to consider depends very much on the specific function f(z).

w = f(x+iy) = u(z.y) +iv(r,y)
A

A

Domain D

Figure 3.1: The mapping w = f(z)

Suppose that D and E are subsets of C. A complex (single-valued) function or mapping
f : D — FE of the complex variable z is a rule that assigns to each complex number z € D
one and only one complex number w = f(z) € E.

e We call w the image of z under f.

e We call z the preimage of w under f.

e We call D C C the domain of f, and can be any set that makes sense for a given

rule.

e The set F is called the co-domain of f.

e We call the set f(D) = {w = f(z) : z € D} of all images of D the range of f.

e We say that f is onto if f(D) = E.

e We say that f is one-to-one on D if z; # 29 = f(z1) # f(22)-
For each b € E, we define f~!(b) to be the set of elements in D whose image is b. Note that
f~1(b) may be empty if f is not onto. However, if f is one-to-one and onto, f~!: E — D
is also a one-to-one and onto function, called the inverse function of f.

Remarks.

37
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Figure 3.2: Riemann surface of w = arg z

e When the context is obvious, we omit the phrase complex-valued, and simply refer to
a function f, or to a complex function f.

e Strictly speaking, f stands for the function and f(z) for the value of the function at
z. However, when there is no ambiguity, we will sometimes use the time-honored
notational abuse of referring to f(z) as a function.

e In some contexts functions are referred to as mappings or transformations.

Examples.

(1) The function w = f(z) = az + b,a # 0, is one-to-one and onto in C and the inverse
function is defined by z = (w — b)/a. Note that both are defined in the whole plane
C.

(2) The function f defined by f(z) = 2? is not one-to-one because f(i) = f(—i) = —1.
However if we restrict the domain to Re z > 0 it would be one-to-one.

(3) The function f defined by w = f(z) = arg z is infinite valued as for each z we have
infinitely may representations of arg z. We have in figure 3.2 the Riemann surface
representation of w = arg z.

3.1 Extending Functions from R to C

We are about to extend real valued functions such as ¢* from a function defined on R to
a function defined on C. It is reasonable to expect that this is possible in many ways, and
that our extensions are chosen for “historical reasons only”. Amazingly, this is false. It
turns out that there is at most one way to extend a function defined on a subset of R to a
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holomorphic extension over the complex numbers. This is due a very important principle
of complex analysis called analytic continuation.

Most standard functions of calculus satisfy certain identities. For example for every real
number = we have sin® z 4 cos? z = 1. Amazingly, these identities remain true over the
complex numbers, and even more amazingly, there is an abstract theorem which proves
this without bothering to check any special case.

Here are the two theorems in question, known as the identity theorems.

Identity Theorem 1. Suppose D is a domain in C such that D N R # @. If f is a complex
valued function defined on D N R, then f can be extended to a holomorphic function on
D in at most one way.

Identity Theorem 2. Suppose D is a domain in C such that D "R # &. Suppose f(z)
and g(z) are analytic on D and f(z) and g(x) satisfy an algebraic identity on D NR. Then
f(2) and g(=) satisfy the same identity on all of D.

3.2 The Square and Square Root Functions

The Function w = 2°

Let us consider the the square function w = 2.

w=u+iv= (2% — y?) +i(2zy)

This function maps the point (a, a) in the z plane onto the point (0, 2a?) in the w plane.
That is, the ray y = =, with = > 0, is mapped onto the ray (0, v), with v > 0; and the ray
y = z,x < 0, is also mapped onto the ray (0,v),v > 0. In other words, the line y = x is
twice mapped onto the ray (0,v),v > 0 (see Figure ). Observe that the function w = 22 is
not one-to-one.

<Y

2

Figure 3.3: Image of the line y = z under w = 2

In general the point (z,mz) is mapped onto the point (u,v) = ((1 — m?)z?, 2ma?).

Since
v 2m

W= T2 ED:
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the straight line y = ma is mapped twice onto the ray

2m
T e

where u assumes all the nonnegative real numbers if |m| < 1 and all nonpositive real

numbers if |m| > 1.

If we write z = re? then

thus we have

2

lw| =7%=|2|> and argw =260 =2argz.

Thus a point with polar coordinates (r, ) in the z plane is mapped onto the point with

polar coordinates (2, 26) in the w plane, a point whose distance from the origin is squared

and whose argument is doubled.

z—plane w-plane
A y A v

20

Figure 3.4: The square function w = f(z) = 2%

Using the above equations we can show that:

The circle |z| = r( in the z—plane is mapped to the circle |w| = 72 in the w-plane.
Furthermore, as z makes one complete loop, the image w makes two complete loops.
A ray arg z = 0 from the origin in the z-plane is mapped to a ray in the w-plane of
twice the angle. As z traverses the ray from the origin to oo constant speed, the value
w traverses the image ray from 0 to oo, starting slowly and increasing its speed.

The positive real axis in the z-plane, which is a ray with angle 0, is mapped to the
positive real axis in the w-plane.

The right half-plane Re z > 0 is mapped onto the slit plane C \ (—o0, 0].

The sector | Arg(z)| < 6y € (0,7/2] is mapped onto the sector | Arg(w)| < 26,.

The upper half z—plane including the real axis, Imz > 0, is mapped to the entire
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w—plane.
e Any semi circle of radius r centered at the origin is mapped onto circle of radius r>
centered at the origin.

Let us compare the function w = 22 with its real-valued counterpart, the parabola y = =

2

. The line y = ¢ in the z plane is transformed into v = 2% — ¢* and v = 2z¢, from which

we obtain

2
v 2

YT g2
Hence the horizontal line y = ¢ # 0 is mapped onto the parabola

1)2 2

4c2

If ¢ = 0, the parabola degenerates into the ray (u,0),u > 0.

In a similar fashion, we can show that the vertical line x = a # 0 maps onto the parabola
(see Figure)

v2 L2
U=———=+a*.
4c2

y=10

y=by

Figure 3.5: Image of lines parallel to coordinate axes under w = z

Example. Determine the region of the w plane into which each of the following is mapped
by the transformation w = 2.
(a) First quadrant of the z—plane.

(b) Region bounded by x = 1,y =1 and = + y = 1.

Solution.

(a) We would like to find the image of A = {rew : 0 < 6 < 7/2} under the map w = 22,
Thus f(A) = {w : |w| = r’and arg(w) = 260 € (0,7)}.
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z plane w plane

¥ w

(b) Since w = u + iv = (z + iy)? = (2? — y?) 4 i(2xy) then
z=1mapsontou=1—y>v=2y=u=1-0v%/4;

y =1mapsontou = 2> — 1,v =2r = u=v>/4 — 1 and
z+y=1mapsontou =z>— (1—2)%v=2x(1—-2)=>v=(1-u?)/2

z plane w plane
y v
/2 C
y=1 2 2
A ™ k ¢ wu=2_1 u=1-2
’53 ‘z‘g 4 \Ds 2 4
ks 4
T x=1 A’ B u
) sIA
4\
X N/
B 7
oo
D

The function w = 2'/2

Now we turn to the problem of finding an inverse function for w = z2. Every point w # 0
is hit by exactly two values of z, the two square roots £+/w. In order to define an inverse
function, we must restrict the domain in the z-plane so that values w are hit by only one
value of z in the z—plane.
Note if z = re? where € (—n/2,7/2), then argw € (-, ).
This leads us to draw a slit, or branch cut, in the w-plane along the negative axis from
(—00,0], and to define the inverse function on the slit plane C \ (—o0,0]. Every value
w in the slit plane is the image of exactly two z-values, one in the open right half-plane
Rez > 0, the other in the left half-plane Rez < 0. Thus there are two possibilities for
defining a (continuous) inverse function on the slit plane which make the square root a
2-valued function. We refer to each determination of the inverse function as a branch of
the inverse. One branch f;(w) of the inverse function is defined by declaring that f;(w)
is the value z such that Rez > 0 and 2?> = w. Then f;(w) maps the slit plane C \ (—oo, 0]
onto the right half-plane Re z > 0, and it forms an inverse for z* on that half-plane.
The function f; : C\ (—o0,0] — {Rez > 0} is called the principal branch of w'/? and is
expressed as

fi(w) = [w|' 2 A2 = w, w e C\ (—o0,0].
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The other branch of w!'/? is f, : C\ (=00, 0] — {Re z < 0} is defined as
Fo(w) = w2 AT = fy () = — v,
and maps the slit plane C \ (—o0, 0] onto the open left half-plane Re z < 0.

z = f,(w) = y'w (principal branch)
N

el N+++++H+

z=f(w) = ~fi(w)
t’lﬂ—“\\

++F+++++

qrrri b Iy+++++4H+

Figure 3.6: Branches of the square root function.

Notation. If z is a positive real number the z'/? = \/z. However if z € C then z"/? = £1/z
i.e. both branches of branches of the square root function.

3.3 The Exponential Function w = ¢*

If z = 2 + iy € C, then the exponential complex valued function is defined as:

w=e*=e"T =¢e"(cosy +isiny) = u+iv

where e is the natural base of logarithms. Note that when y = 0, the right hand side is
simply the real function e”. So our definition extends the usual real valued exponential

function. We can conclude from the definition of ¢ = ¢* 7% = ¢%e¥ that
le*| =e* and arg(e®) =y + 2km.

Note that since |e*| = ¢” > 0, then ¢ # 0. Furthermore ¢*™™ = ¢?e?™ = ¢, this
means that e” is periodic function with period 2i7w. We can easily check using the Cauchy-

z

Riemann equation that e* is an entire function and that its derivative (¢*)’ = e®. The

image of any horizontal strip of width 27 is C* = C — {0}.
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z—plane w-plane
“y A
it + 2z w = e c*
% % %
R T

The special case map exp : Sy — C* is one-to-one and onto on Sy and admits an inverse.

z—plane w-plane
“y A
7.’7T w = ez (C*
So
T U
> X >
I
Remark.
€™ 4+1=0

is the most beautiful equation in all of mathematics. It contains the five most important
constants as well as the three most important operations (addition, multiplication and

exponentiation).

Properties: For z = x + iy, 21, 22 € C, the following assertions are true:
(1) €® =¢e%(cos0 +isin0) = 1.
(2) e# #A0forall zin C.
B) e =1 2z =2ikm; k € Z.
(4) e*=1/€"
(5) |e*| = e® = eR°% and arg(e®) = y + 2kn.
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(6) e*+t2™) = ¢* which shows that e* is periodic with period 2ir.
(7) e*1h72 = g*1e%2,
(8) lim ef =e*.

z—r 21

9) (e*) = e~

z—plane

ry T = g

27T

Y= Yo

3

Figure 3.7: Images of a vertical and horizontal line via the mapping w = €*.

Mapping Properties of w = ¢°.

Since ez+2ik7r

= ¢ for every k € Z then the points xo+1i(yo+2k7) have the same image for
every integer k. Hence we may examine the mapping properties by restricting ourselves
to the infinite strip —m < Imz < w. Whatever occurs in this strip will also occur in the
strip —m + 2km < Imz < 7w + 2kw. With this restriction, Arg(w) € (—m,n]. We have the

following:

e The line segment x = xg, —m < y < 7, is mapped one-to-one onto the circle in the

w—plane having center at the origin and radius e*°.

1

Image of line segments parallel to coordinate y—axes
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e Since |e”| = e” > 1 if and only if > 0, the semi-infinite-strip
{z:Rez>0,—m<Imz <7}
is mapped one-to-one onto {w : |w| > 1}, while the strip
{z:Rez<0,—7 <Imz <}

is mapped onto the punctured unit disc {w : 0 < |w| < 1}.
YA VA

a7

ho

3 )
;,‘II’

Image of line segments parallel to coordinate y—axes

e As|e’| =e” < 1if and only if z < 0, the semi-infinite strip
{z:Rez<0,0<Imz <7}
is mapped one-to-one onto the upper semi-disc
{w:Imw >0, |w| < 1}

excluding the origin.
e Since e” describes the positive reals, the line y = yy is mapped one-to-one onto the
ray Argw = yo. Therefore, the infinite strip

{z:0<Imz <7}
is mapped one-to-one onto the upper half-plane {w : Im w > 0}, while the strip
{z: -7 <Imz <0}

is mapped onto the lower half-plane {w : Imw < 0}.

e Note that the z—axis, y = 0, is mapped onto the positive real axis and the line y = 7
is mapped onto the negative real axis.
Hence, under the exponential mapping w = e* , the strip

{z:—m<Imz <7}

is mapped one-to-one onto the punctured w—plane, C*.
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e We can combine the previous mappings to determine the image of the rectangles
under the mapping w = e°. Writing the image in the polar form, we have the
rectangle

{z:A<z<B,—7n<C<y<D<mn}

being mapped onto the region
{Re? :eA < R<eB,C <0< D},

bounded by arcs and rays.

/2
y=D
y=0C

Image of a rectangle under ¢*

Next consider a straight line not parallel to either of the coordinate axes. The image
of this line will have neither constant modulus nor constant argument, yet it must grow
arbitrarily large as x grows arbitrarily large, and must make a complete revolution each
time y increases by 27, thus producing a spiraling effect.

If y = mx + b, m # 0, then

w= e = eerz(merb).

Hence |w| = |e*| = e* and Arg(w) = ma + b + 2k7w, where k € Z is chosen such that
Arg(w) € (—m, 7). Eliminating = from the relations we get

|w‘ _ e(G—b—QkTr)/m _ Kea/m’

where K > 0, = 6 — 2kn € R and the above equation represents what is known as a
logarithmic spiral.
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Y vk
w = e* e T~
-~
=T 2 ~N
y=m| i} P \
5 . / A
: P / \
! My = L ! =
v - |
T U
¥
/. !
e /
y:—:]'c \\-‘ ///

Logarithmic spiral

3.4 The logarithm function w = log 2z

For z # 0, we define log z to be the multiple-valued function

w =log(z) =In|z| +iarg(z) =In|z| +iArgz +i2km, k € Z

which has infinitely many values at each point z # 0, carried from the multi-valudeness
of arg z. The values of log z are precisely the complex numbers w such that ¢¥ = z.
i Arg 2z

w o _ elogz In \z|ez Arg z622k7r

e =e = |zle = z.

Note again that log(e®) # z.

loge® = In|e?| +iarge” = In|e®| + iarg e = x + i(y + 2k7) = 2 + i2kw # 2.

As we have done for the arg z, it is appropriate to define the single valued principal branch
of the logarithm by choosing the principal argument of = that satisfies —7 < Argz < 7.
For z # 0, we call the principal branch or principal value of log z and denote it by Log =
the complex valued function defined by :

Logz:=In|z| +iArgz; —m < Argz <7

Thus Log z is a single-valued inverse for e”. The restriction in the above equation may
be viewed geometrically as a cut of the z—plane along the negative real axis. This ray is
then called the branch cut for the function Log z . Note that for positive, real numbers the
principal branch, Logx = In x is real-valued which makes it the extension of the natural
logarithm function from R to C .
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A y
D*
+m]  Branch cut‘ T
-1 0 branch Igoint

Consequently we also have

w =log(z) =In|z| +iarg(z) = In|z| + i Arg z + i2km = Log z + +i2km, k € Z.

Example Here are a few evaluations of Log z :

Log(2) = In |2] + i Arg(2) = In(2)
Log(i) = In|i| + i Arg(i) = In(1) + in/2 = im /2
Log(—2) =1In| — 2| + i Arg(—2) = In(2) +in
Log(l —iV3) =1In|1 — V3| +iArg(l — iV3) = In(2) — i7/3

Using the above information we can then write the multi-valued logarithm function as

Once we know the principal value Log z, we obtain all values of log z by simply adding
i2kw. Here are evaluations of log z :

log(2) = In|2| + i Arg(2) + i2km = In(2) + i2k7
log(i) = In |i| + i Arg(i)i2km = In(1) + iw/2 = in/2 + i2k7
log(—2) = In| — 2| + i Arg(—2)i2km = In(2) + im + i2k7
log(1 —iv3) = In|1 — iV3| + i Arg(1 — iv/3) + i2kw = In(2) — im/3 + i2km

Example. Find the values of Log(e), Log(—e), Log(1) and Log(—1).

o Log(e) =In| —e| +iArg(e) =In(e) =

o Log(—e)=In|—e|+iArg(—e) =1+1inm

Log(l) =In|1| +iArg(l) =In(1) =0
1)=In|—1|+iArg(—1) =in

e Log(—
In general if z > 0 we have

e Log(z) =In|z| +iArg(z) = In(x)
e Log(—x) =In| — x| +iArg(—x) = In(x) + ir

This confirms that indeed Log(z) is the extension of In(x) from R to C.
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Domain of Analyticity of Log 2

A branch of log z is any single-valued function F(z) that satisfies the identity ef'*) = 2
for all nonzero complex values of z. There are infinitely many branches associated with
the multiple-valued function log z. Each is an inverse of the function e¢*. Among all the
branches for log z, there is exactly one whose imaginary part (argz) is defined in the
interval (—m, 7). This branch is called the principal branch of log z and is denoted as

Logz:=In|z| +iArgz; —m < Argz <.

How do we choose a domain D* in which Log z would be analytic?

Note that Arg z is not continuous on (—oo, 0] and hence Log z is not analytic on (—oo, 0],
which makes it a set on non-isolated singularities. In order to make w = Log z analytic its
domain of analyticity must be the slit z—plane D* = C\ (—o0, 0]. Furthermore

d 1
— Log z := — for z € D*
dz z
“y
D*=C\ (—o0,0]
+m |  Branch cut' x
-t 0 branch Igoint

Remark.

We have seen that Log z is not s not continuous on the negative real axis. This does not
mean that the logarithm function is not continuous on the negative real axis. All we have
seen is that Log z , the principal branch, is not continuous at these points. By making
our cut along a different ray, we can find a branch of the logarithm that is continuous for

negative real values. For instance, the single-valued function
w = log,%(z) =In|z| +iargz; (—7/2 < argz < 37/2)

is continuous at all points on the negative real axis, but not on the ray arg z = —7/2. In
other words, the logarithm function is continuous for all nonzero complex values in the
following sense: Given zy # 0, there exists a branch for which lim0 log z = log zp.

Z—2z

However, there does not exist a branch for which log z is continuous for all nonzero com-

plex numbers.

Example. Determine the domain of analyticity of w = Log(3z — 7).
This function is analytic by the chain rule in C except where
Re(32) =3z —-1<0==z<0and Im(3z—i)=3y—1=0=y=1/3.
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Hence the domain of analyticity is C \ (—o0,i/3].

/3

V&

Mapping Properties of w = Log z.

Since the exponential function maps horizontal lines to rays issuing from the origin and
maps vertical lines to circles , its inverse, the logarithm function, maps rays issuing from
the origin to horizontal lines and circles to vertical lines . In fact, the ray Argz = 6 is
mapped onto the horizontal line Sw = 6. As z traverses the ray from 0 to oo, the image
w traverses the entire horizontal line from left to right. As 6, increases between —7 and
7, the rays sweep out the slit plane C \ (—o0, 0], and the image lines fill out a horizontal
strip —m < Imw < 7 in the w—plane. Similarly the image of {|z| = r,—7 < argz < 7} is
the vertical vertical segment {Re(w) =Inr, —7 < Imw < 7}.

Since

Logz =1In|z| +iArgz;—m < Argz <,

w=logz ++++++++l++++++++
A A A
(¢]
A A A
A . A A
—im

Image of slit plane C \ (—o0, 0] under under w = Log 2z

e The image of the circle |z| = r for the function w = Logz is the line segment
u=Inrr<v<nm
YA vA

~ w = Logz
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Image of an annulus region under w = Log z
e The ray Arg z = 6 is mapped onto the line v = 6.
YA v

b//’m‘\ i

/ a > Qo
e 4
’ /“' g ] ar 81 I
f - 3
\ \
\ /

N 7 .
~ - — 1T

—_— -

YY

Q
[R%]

~ —
=
N

=V

Image of segment of rays under under w = Log 2
Example. Find the image of the annulus e < |z| < €° via the function w = Log 2.
Solution. Since w = In |z| + i Argz then v = In|z| and v = Arg .
Furthermore e < |z| < e’ thenlne=1<wu=1In lz| < Ine® =5and —7 < v = Argz < .

Z_plane w—plane +im
A y A
w = Log (2) N

AN
NIV | 5

v<

Figure 3.8: Mapping of the annulus via w = Log z.

3.5 The complex exponent function w = z“

Consider z* where z and a are complex numbers and z is nonzero. We define this expres-
sion in terms of the exponential and the logarithm as

a _ ealogz _ ea(Log 2+2kmi) _ eaLogZQQak:m; keZ.

2kami

The first factor ¢*1°¢% is single valued but the second factor A = e may be multiple-

valued depending on the value of a.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




CHAPTER 3. "ELEMENTARY COMPLEX VALUED FUNCTIONS 53

Case 1. Ifa € Z, then A =1 and hence 2 is single valued.
Case 2. Ifa =m/n € Q, then A = e2*™™/" and hence =* is n—valued.
Case 3. Ifa ¢ Q then A and hence z“ is infinite-valued.

Next suppose that a = a; + ias (a1 and as real, as # 0). Then

ai1-+ias a1+iaz)log z — e Inr—ag(60+42km) ei(ag Inr+a10+2kmaq)

z = ¢l

as (9+2kﬂ')

Since |1 T12| = pa1¢™ , the complex number 2% 7 has a different modulus for

each branch, any two of which differ by a factor of e~2*", k an integer.

Examples. Find all possible values of the following:
(1) 512 = (1/2)log5 _ (1/2)(In5+2kim) _ (1/2)(In5) kir _ 4\ /5
2) 12 — (1/2)logi _ (1/2)(im/2+2kim) _ 4 jim/4 _ i?(l +4)
(3) ’LZ _ eilogi _ €7Z(ln 14im/2+42km) _ e_(“/2+2k“),where keZ
4) 1™ = 67rlog(1) _ e7r(ln(1)+i2k7r) _ ez’2k7r27 where k € 7

Example. Find all solutions of z!7* = 4.
If we rewrite the equation we get

e(l—z) logz _ 4 = eln4+2kz7r

so that
(1—1i)logz=2In2+ 2kir = logz = [In2 — k7| +i[In2 + kn].

So by the definition of log z, we get

5 = e[1n2fk7r]+i[ln2+k7r] _ Qefkﬂei[ln2+kﬂ‘}’ keZ.

bloga

Example. Consider 17. We apply the definition a® = e to get

) o1 2
1™ — 67r10g(1) _ 67r[hr1(1)—|—z2k7r] _ ez2k7r

Thus we see that 1™ has an infinite number of values, all of which lie on the unit circle
|z| = 1 in the complex plane. However, the set 1™ is not equal to the set |z| = 1. There
are points in the latter which are not in the former. This is analogous to the fact that the
rational numbers are dense in the real numbers, but are a subset of the real numbers.

Example Consider the harmless looking equation, i* = 1.

Before we start with the algebra, note that the right side of the equation is a single number.
i* is single-valued only when z is an integer. Thus we know that if there are solutions for
z, they are integers. We now proceed to solve the equation.

=1 <e”/2>z —1.
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Use the fact that z is an integer to get

2 =1 =T = | 2 =dkik € Z.

Now let’s consider a slightly different problem: 1 € * . For what values of z does i have

1 as one of its values.

1ei? =e?lo8t 51 ¢ {e”(“/”%“)} & 2i(m/2 + 2km) = i27n, n,k € Z

4n
_ " L kex
S iyap ™MEE

There are an infinite set of rational numbers for which ¢ has 1 as one of its values.

For example,
A5 — a, ei2/5 _idn /5 ibm/5 6i87r/5}

Warning !

Suppose z = e, r £ 0, k,n,m € Z and o, 3 € R then :

1. ZaZB — @ log ze,B logz _ ea(ln r+i0+2ikm) 6,6’(ln r+i0+2inm) (a+pB) In rei(a+ﬁ)9€2iﬂ(ka+nﬁ)

=e
2. zOH-ﬂ _ e(oc—‘rﬁ) logz _ e(a+6)(logr+i9+2im7r) _ e(a-l—ﬁ) lnrei(a+,8)062i7rm(a+,6’)

Clearly if a, 8 € Z then 2%2° = z0+5,

If either « or § is an integer, then z%z° and 2“*# assume the same set of values, although

equality for each « and $8 need not hold. In general, z*™° assumes every value of z%2°,

but the converse is not true. We have 2/2%1/2 = 2 but 21/221/2 = +2.

We leave it for the reader to show this containment for o and 5 complex numbers.

Square root revisited

If we use the definition of 2“ then we have

w = 21/2 — 6(1/2) log z
— 6(1/2)(L0g z+2ik)

_ 6(1/2)(L0g z+2ik)

_ 6(1/2)(1n |z|+i Arg z)eilwr

_ |Z|ei[(Arg z)/2+km]

we will get two branches of the square root for the the values of & = 1, 2.

we = wo = 21/2 — \/mei(Argz)/Q — \/E
ws is the principal branch and we have the second branch

1/2

wy = 2 _ ’zlei(Argz)/Q—&-iw = —wy = _\/E
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Wo

Yk v
wy

C | ’/ \/T_' -

2Y
-
4
!/
=

Figure 3.9: Mapping properties of square root function

Both w; and wy are continuous functions, except on the negative real axis. This ray is
called a branch cut for both w; and w». Each of these single-valued functions is called a
determination or branch of the multiple-valued function w = z'/2.

We now establish some mapping properties for the functions w; and ws. The punctured
plane (z # 0) is mapped by w, onto the right half-plane, including the positive imaginary
axis, and by w; onto the left half-plane, including the negative imaginary axis. These
functions also map circles onto semicircles, excluding the end point (see Figure).

Useful Identities and Inequalities.

The complex logarithm obeys many of the algebraic identities that we expect from the
real logarithm, only that we have to take into account its multiple-valuedness properly.
Therefore an identity like

log(ab) = loga + logb,

for nonzero complex numbers a and b, is still valid in the sense that having chosen a value
(out of the infinitely many possible values) for log(a) and for log(b), then there is a value
of log(ab) for which the above equation holds.
In the complex plane we have for 21, zo € C*;

log(z122) = log(21) + log(22)

however the equality is interpreted as a set equality. This means for any value of log(z; z2)
can be expressed as the sum of some value of log(z;) and some value of log(z2). In
addition, the sum of any values of log(z;) and log(z3) can be expressed as some value of
log(#122). With that in mind we have the following identities and inequalities:

o b = ¢blosa e log(l/a) = —loga

log =z Log z

e log(a/b) =loga — logh
e log(ab) =loga +logh e log(z'/") = (loga)/n,n € N

® c =€

Warning ! The reader should verify the following:
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e Log(ab) # Loga + Logb o loge® +# 2
e log(z?) # alog z e log(2%) = log(z) + log(z) # 2log(z)
e Log(z%) # aLog z e Log(z122) # Log(z2) + Log(22)

3.6 Trigonometric and Hyperbolic Functions

Trigonometric Functions

Just as we extended the real exponential function, we now extend the familiar real trigono-
metric functions to complex trigonometric functions.
From Euler formula, we have for real x that:

e¥ =cosxr+isinx and e ¥ =cosx —isinz,

which gives
ezw _"_ e—zx elﬂf _ e—lCE

cosz = ——— and sinzx = :
2 21

This prompts the following definitions. For z € C , we define:

e’LZ + e—ZZ . e’LZ _ e—ZZ
CoOSz = ———— and sing = ————
2 21

we defined the other trigonometric functions the usual way

tan(z) = :g;((z)) and cot(z) = Z?j((;)
1 1
sec(z) = cos(?) and csc(z) = Sn(2)
Properties: For z,w € C and z,y € R we have:

e cos’z+sin?z=1 e cos(iy) = cosh(y)
e ¢ =cosz+isinz e sin(iy) = i cosh(y)
e cos(z 4+ 27m) = cosz e cos(z+iy) = cosz coshy—isinxsinhy
e sin(z + 27) =sinz e |cos(2)]? = (coshy)? — (sinx)?
e cos(—z) =cosz e cos(z+ w) = coszcosw — sin zsinw
e sin(—z) = —sinz e sin(z 4+ w) = sin z cos w + cos z sin w

where coshy = (e +e7¥)/2 and sinhy = (e —e™¥)/2 are the usual real valued hyperbolic
functions.

Many of the properties familiar in the case of real trigonometric functions also hold for
the complex trigonometric functions. This is not a coincidence but due to the concept of
analytic continuation and the identity theorems.
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Hyperbolic Functions

e +e e —e %

The real valued hyperbolic functions coshz = and sinhz = can also

extended to the complex plane in the obvious way, by

z —z Z _ e %
cosh(z) = ete” and | sinh(z) = S
2 2
sinh z cosh z
tanh(z) = and th(z) =
anh(z) cosh z coth(z) sinh z
Properties: For z,w € C and z,y € R we have:
e cosh(z + 27i) = cosh z e |sin(z +iy)|*> = sin® z + sinh?y

e sinh(z + 27i) = sinh 2z | cos(z 4 iy)|? = cos® 2 4 sinh? y

cosh zcoshw +

e cos(iz) = cosh(z) e cosh(z + w) =

e sin(iz) = isinh(z)
e cosh(iz) = cos(z)

e sinh(iz) = isin(z)

sinh z sinh w
e sinh(z + w)

cosh z sinh w

sinh z coshw +

Inverse Trigonometric & Hyperbolic Functions
The arcsine function is the solution to the equation:

etw _ p—iw

z=slnw = -
21

Letting v = ™, we solve the equation
1
v+ — = 2z,
v
After simple calculations we get a quadratic equation for v,
2 ; _
v° —2izv—1=0,
whose solution is given by:
e =v=iz+(1-22)"? =izt /122

Keep in mind that since z is a complex variable, (1 — z%)'/? is the complex square-root
function which is two-valued. Solving for w = arcsin(z) in the above equation we get the

multivalued function:

arcsin(z) = —ilog [z’z +(1- 22)1/2} = —ilog [zz +V1- 22} .
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This identity is to be understood as a set identity, in the sense that w satisfies sinw = z if
and only if w is one of the values of —ilog [z’z + (1 =22V 2} . To obtain a genuine function,
we must restrict the domain and specify the branch. One way to do this is to draw two
branch cuts, from —oo to —1 and from +1 to +occo along the real axis, and to specify the
branch of \/1 — 22 that is positive on the interval (—1,1). With this branch of /1 — 22,
we obtain a continuous branch —i Log(iz+ /1 — 22) of arcsin z. This defines the principal

value of arcsin as

Arcsin(z) = —i Log (iz +v1- z2)

where we use Log(z) for the principal value of log(z) and /z to denote the positive
principal single-valued function of z'/2,

In a similar fashion we get the other inverse trigonometric functions and their respective
principal values. We summarize these functions as follows:

e Arcsin(z) = —iLog (zz +v1- z2)

e Arccos(z) = —iLog (z +iv 22 — 1)

e Arctan(z Log( n >
i+ z

e Arccot(z Log 2t z)

e arcsin(z) + arccos(z) = 37+ 2mn,n € Z
e Arcsin(z) 4+ Arccos(z) = 7

e arccot(z) = arctan (1/z)

e Arccot(z) = Arctan (1/z)

e arctan(z) + arccot(z) = 37 +7wn,n € Z
e Arctan(z) + Arccot(z) = sign(Re z)im

Useful identltles

The principal branch inverse hyperbolic functions are defined by:

e Arcsinhz := Log[z + V22 + 1]

e Arccosh z := Log[z + vz + 1v/z — 1]

e Arctanhz := }[Log(1l + z) — Log(1 — z)], 2 # +1
The multiple-valued inverse functions are obtained by replacing the Log with log and the
principal branch square root functions with the two-valued square root.

3.7 Branches of multi-valued functions

In this section we will touch on the concepts of branches, branch points and branch cuts.
These concepts (which are notoriously difficult to understand for beginners) are typically
defined in terms functions of a complex variable. Here we will develop these ideas as they
relate to arg z. Our methods of investigating continuity and other properties for single-
valued functions cannot be used for multiple-valued functions. Fortunately, a multiple-
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valued function can quite naturally be replaced by many different single-valued functions.
The nature of multiple-valued function may then be examined from the point of view of

its single-valued counterparts.

Definition: Let f(z) be a multiple-valued complex valued function.

(1) A branch of the multiple-valued function f is any single-valued function F' that is
analytic in some domain D at each point z of which the value F(z) is one of the
values of [ .

(2) A point zj is a branch point of a function f(z) if the function changes value when
you walk around the point on any path that encloses no singularities other than the
one at z = zg.

(3) The function f(z) has a branch point at infinity if f(1/z) has a branch point at 0.

(4) Abranch cut is a curve in the complex plane such that it is possible to define a single
valued analytic branch of a multi-valued function on the plane minus that curve.
Branch cuts are usually, but not always, taken between pairs of branch points.

Branch points at infinity : paths around infinity. We can also check for a branch point at
infinity by following a path that encloses the point at infinity and no other singularities.
Just draw a simple closed curve that separates the complex plane into a bounded compo-
nent that contains all the singularities of the function in the finite plane. Then, depending
on orientation, the curve is a contour enclosing all the finite singularities, or the point at

infinity and no other singularities.

Example. Once again consider the function z'/2 . We know that the function changes
value on a curve that goes once around the origin. Such a curve can be considered to be
either a path around the origin or a path around infinity. In either case the path encloses
one singularity. There are branch points at the origin and at infinity. Now consider a curve
that does not go around the origin. Such a curve can be considered to be either a path
around neither of the branch points or both of them. In this case z*/? does not change
value when we follow a path that encloses neither or both of its branch points.

Example. Consider f(z) = (22 — 1)'/2 . We factor the function.
F&) = (= )2+ )2
There are branch points at z = +1 . Now consider the point at infinity.
f(1)z) = (2 = )V2 =271 (1 - )12
Since f(1/z) does not have a branch point at z = 0, f(z) does not have a branch point at
infinity.

We could reach the same conclusion by considering a path around infinity. Consider a path
that circles the branch points at z = +1 once in the positive direction. Such a path circles
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the point at infinity once in the negative direction. In traversing this path, the value of f(z)
is multiplied by the factor (¢?27)"/2(¢?™)1/2 = (¢27) = 1. Thus the value of the function

does not change. There is no branch point at infinity

Branches of log =

In most of the examples that we will encounter, the multi-valuedness arises ultimately
from the complex logarithm log z , and in such cases the branch points are the values of z
such that the input to the logarithm is 0 or co.

Assign branch cuts in the complex plane, such that:

e Every branch point has a branch cut ending on it.

e Every branch cut ends on a branch point.
Note that any branch point lying at infinity must also obey these rules. The branch cuts
should not intersect. It is worth emphasizing again that branch points are independent of
the choice of branch cuts. Each branch point is, by definition, a point where the multi-
valued operation becomes single-valued. For the operations 2 and log z, the branch points
are at z = 0 and z = oo, but for other operations they may occur at other positions in the
complex plane.
The choice of where to place branch cuts is not unique. Branch cuts are usually chosen to
be straight lines, for simplicity, but this is not necessary. The various choices of branch cuts
simply correspond to different ways of partitioning the multi-valued operation’s various
values into distinct branches.

Example. Consider for z # 0 the multiple-valued function
w=log(z) =1In|z|+iarg(z) =In|z| + i Argz + i2km, k € Z

Note that zp = 0 is branch point of log z because if we choose a closed path around zy = 0
the arg z will increase of decrease by 2i7 at every turn.
Furthermore since log(1/z) = —log(z) then log z has a branch point at infinity.

Arbitrary Branches of log z . Let ¢ is any real number. If we restrict the value of arg z in
the definition log(z) so that t < § = Arg, z < t + 27, then the function

Log,(z) = In|z| + 1 Arg,(2); t < Arg, <t+ 27

is single-valued in the stated domain and thus is a branch of log z. Its branch cut is ray
arg z = t and z = 0 is its branch point as seen in the figure below. Its derivative is given
by

d 1
d—logt(z) = —, where [z| >0, t<Arg, z<t+2m.
z z
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Remark. The principal-value or principal branch of log(z) is defined as
Log(z) = Log__.(z) =In|z| + i Arg_.(2) = In|z| + i Arg(2)

is a particular case of log,(z) when ¢t = —.
Its domain of analyticity is D* = C\ (—oo, 0] (which is this is the complex plane with the
negative real axis removed) where the function is single valued, analytic and its derivative

is (Log(2)) = 1/z.

Other branches of log z may be defined by restricting arg z to (2k—1)7 < argz < (2k+1)m,
k an integer. The “cut line” may not be crossed while continuously varying the argument
of z without moving from one branch to another, which would destroy single-valuedness.

Example. Consider the function

w = f(Z) _ 21/2 _ 6log(z)/2 _ ‘Z‘l/Zeiarg(z)/Q _ ’Z‘l/QeiArg(z)/2+ikﬂ' _ ’zll/ZeiArg(z)/Zeikﬂ'.

If k = 0 we get wy = |z|'/2e'A18(2)/2 = \/Z. This is the principal branch of w = z'/2.
If k = 1 we get wy = |z|'/2e?A18(2)/2¢im — _ /7,
If k = 2 we get wy = |z|!/2e?Ar8(2)/2002m — /7

Since z'/2 = ¢!°%(*)/2 and log = has branch points at z = 0 and z = oo, so does w = z'/2.

In general, any time we walk around the origin, the value of z'/2

1/2

changes by the factor —1.

This makes z = 0 a branch point of z*/“. Thus the function changes value on a curve that
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goes once around the origin. Such a curve can be considered to be either a path around
the origin or a path around infinity. In either case the path encloses one singularity. There
are branch points at the origin and at infinity. Now consider a curve that does not go
around the origin. Such a curve can be considered to be either a path around neither of
the branch points or both of them. It can be show that z'/? does not change value when
we follow a path that encloses neither or both of its branch points.

Diagnosing branch points. We have the definition of a branch point, but we do not have
a convenient criterion for determining if a particular function has a branch point. We
have seen that log z and z® for non-integer « have branch points at zero and infinity. The
inverse trigonometric functions like the arcsine also have branch points, but they can be
written in terms of the logarithm and the square root. In fact all the elementary functions
with branch points can be written in terms of the functions log z and z“. Furthermore,
note that the multi-valuedness of z* comes from the logarithm, z® = ¢*!'°¢*, This gives us
a way of quickly determining if and where a function may have branch points in the result
below.

If f(z) be a single-valued function. Then log(f(z)) and (f(z))® may have
branch points only where f(z) is zero or singular.

Example. Are the functions below multi-valued? Do they have branch points?
(@) w = (:2)1/2 (b) w = (21/2)2 © w = (z1/2)3
(a) Notice that w = (2%)"/2 = £v/22 = +2. Because the (-)'/?, the function is multi-
valued. The only possible branch points are at zero and infinity.
We have [(¢?°)2]"/2 = 1 and [(¢?7)?]'/? = ¢?" = 1, thus we see that the function
does not change value when we walk around the origin. We can also consider this
to be a path around infinity. This function is multi-valued, but has no branch points.
(b) We have w = (2/?)? = (+/2)? = z, which is single valued.
(¢) For this function we have w = ('/2)'® = (£v/z)® = £(v/z)>. and thus is multi-
valued. The only possible branch points are at zero and infinity. We have [(¢?)/?]? =
1 and [(e7)Y/?]> = €™ = —1. Since the function changes value when we walk
around the origin, it has a branch point at z = 0 . We can also show that it has a
branch point at infinity.

1
Example Consider the function f(z) = log 1) Since 1 is only zero at infinity
s

5
and its only singularity is at z = 1, the only possibilities for branch points are at z = 1

log (zil) — log(z—1)

and and log z has branch points at zero and infinity, we see that f(z) has branch points at

and z = oo. Since

z=land z =0 .
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Example Find the branch points if any of the following functions

(@) w = sin(z/?) (b) w = (sin z)'/? (@) w = z"/?sin(z1/?) (d) w = (sin 22)"/?
(@) w = sin(z'/?) = sin(£+/z) = +sin(y/z) and since z'/? has branch points at z = 0
and z = oo so does sin z'/2,

1/2 — ++/sin z is multi-valued. The possible branch points

are at sinz = 0 and sinz = co. Since sinz = 0 when z, = kr then (sinz)'/? has

(b) The function w = (sin z)

branch points at z; = km; k € Z.
Since the branch points at z = k7 go all the way out to infinity. It is not possible to
make a path that encloses infinity and no other singularities. The point at infinity
is a non-isolated singularity. A point can be a branch point only if it is an isolated
singularity.

(¢) The function w = z"/2sin(z"/?) = +/zsin(+/z) = Vzsin(v/z) is single valued.
Thus there could be no branch points

(d) The function w = (sin 2%)"/? = +V/sin 22 is multi-valued, its possible branch points
are when sin 22 = 0 which are at z;, = Vkr.
First we consider the case when z = 0. We have seen that (22)/? does not have a
branch point at z = 0 and thus (sin 22)*/? does not either.
Now we consider z, = kx with k € N. Since (z — Vkr)'/2 has branch points at z =
Vkr so does (sin 22)'/2. Thus w = (sin 2?)'/2 has branch points at z;, = Vkr; k € Z*.
This is the set of numbers {+/7, £v/27, ..., +iy/7, £iv/27, ...}
The point at infinity is a non-isolated singularity.

Example. Find the branch points of w = f(z) = (2% — 2)/.

If we expand f(z) we get
w=f(z) = z1/3(z - 1)1/3(2 + 1)1/3
which has branch points at z = —1,0, 1. We consider also the points at infinity
FU/2) = (7 =2 = (= )L )
for which z = 0 is not a zero and hence z = oo is not a branch point of f(z).

Below some possible branch cuts of the function.

Ay Ay hy

Three Possible Branch Cuts for f(z) = (2% — 2)'/3.
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3.8 Riemann Surfaces

Consider the mapping w = log(z). Each nonzero point in the z—plane is mapped to an
infinite number of points in the w—plane.

w = {ln|z| +iarg(z)} = {In|z| + i(Arg(z) + 2kn)|k € Z}

This multi-valuedness makes it hard to work with the logarithm. We would like to select
one of the branches of the logarithm. One way of doing this is to decompose the z—plane
into an infinite number of sheets. The sheets lie above one another and are labeled with
the integers, k € Z. (See Figure 3.11.)

LI
\\3_*:

=
a:,-///f‘

Figure 3.11: The z—plane decomposed into flat or corkscrew sheets

We label the point z on the n—th sheet as (z,n). Now each point (z,n) maps to a single
point in the w-plane. For instance, we can make the zeroth sheet map to the principal
branch of the logarithm. This would give us the following mapping.

log(z,n) = Log z + i2mk

This is a nice idea, but it has some problems. The mappings are not continuous. Consider
the mapping on the zeroth sheet. As we approach the negative real axis from above z is
mapped to In |z| + i7 as we approach from below it is mapped to In |z| + i7 . The mapping
is not continuous across the negative real axis. Let’s go back to the regular z—plane for a
moment. We start at the point z = 1 and selecting the branch of the logarithm that maps
to zero (log(1) = i2km). We make the logarithm vary continuously as we walk around the
origin once in the positive direction and return to the point z = 1. Since the argument of
z has increased by 2, the value of the logarithm has changed to 2iw. If we walk around
the origin again we will have log(1) = 4iw. Thus log(z) has a branch point at z =0 .

Furthermore since log(1/t) = —log(t), we see that log(t) has a branch at ¢t = 0 which
implies that log z has a branch point at infinity.
Our flat sheet decomposition of the z—plane does not reflect this property. We need a de-
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composition with a geometry that makes the mapping continuous and connects the various
branches of the logarithm. Drawing inspiration from the plot of arg(z), we decompose the
z—plane into an infinite corkscrew with axis at the origin. (See Figure 3.11.) We define
the mapping so that the logarithm varies continuously on this surface. Consider a point z
on one of the sheets. The value of the logarithm at that same point on the sheet directly
above it is 2i7 more than the original value. We call this surface, the Riemann surface
for the logarithm. The mapping from the Riemann surface to the w—plane is continuous
and one-to-one.

Figure 3.12: Riemann surface of Im(log z) = arg z

A plot of the multi-valued imaginary part of the complex logarithm function, which shows
the branches. As a complex number z goes around the origin, the imaginary part of the
logarithm goes up or down. This makes the origin a branch point of the function.

The real part of the logarithm is the single-valued In |z|; the imaginary part is the multi-
valued arg z.

Example. Determine the domain of analyticity of w = Log(z% — 1).

Since 2> — 1 = (2% — y* — 1) + i(2zy) then w is analytic in C except at points where

22 —y?—1<0and 22y =0.Ifz =0thenRew = —y> —1 < 0forally e Randify =0

then Rew = 2% — 1 < 0 for all 2 € (—1,1). Hence the domain of analyticity is C \ [~1, 1]

My

€T
— e ) e
—1 1
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4 Conformal Maps and Bilinear Transformations

August Ferdinand Mdbius (1790-1868) Nikolai Egorovich Joukowsky (1847—-1921)

FPhotographs (© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)

Mathematics is an independent world created out of pure intelligence.
— William Wordsworth

4.1 Analytic functions as conformal mappings

Definition: A conformal map f : U — V is a function which preserves angles (in mag-
nitude as well as in orientation). More specifically, f is conformal at a point if the angle
between any two C'! curves through the point is preserved under the mapping.

Jom
w= f(z) for
"
/\ .
6
a
Y2
f(a)

Figure 4.1: Angle preserving mappings

The following result shows where a mapping by an analytic function is conformal.
Theorem. Let f be an analytic function in the domain D, and let a be a point in D. If
f'(a) # 0, then f is conformal at a.

66
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Proof: If v : [0,1] — Cisa C! curve and f[y(t)] its image. The tangent slopes are
arg(v'(t)),7'(t) # Oz arg[f (v(t)]', [f (v()] = f[y(®)]Y () # O if f'(2) # 0 and 7/(¢) # 0.
Let 1 : [0,1] — C and » : [0,1] — C be C"* curves through the point z = a with;
M(t1) =72(t2) =a

The tangents to the curves at z = a are arg~;(t1) and arg~4(t2) and the angle between

them is arg 7} (t1) — arg y5(t2), 71 (t1) # 0,75(t2) # O.
Assuming f'(a) # 0 and applying the chain rule gives

[f(r2(t2))]” _ f'(2(t2))va(t2) _ f'(a)ya(ta) _ 5(ta)
@) fn@)nt)  flant)  nt)

The result follows by taking the argument since arg(za/21) = arg(z2) — arg(z1).

Remarks.

e The above Theorem says that an analytic function is conformal at all points where
the derivative is nonzero.

e If f is analytic in an open neighborhood of z = a with f’(a) # 0 then by conti-
nuity, f/(z) # 0 in an open neighborhood of a, it follows that f is conformal in a
neighborhood of a.

e Suppose f is conformal in a neighborhood of a and b is near a, then we have:

wy —wa = f(b) — fa) = f(a)(b—a).

Hence we have

|wp — wa| ~ | (a)||b - al.

Therefore we say that short distances in the z plane in the neighborhood of z = a are
magnified (or reduced) in the w plane by an amount given approximately by |f’(a)|,
called the linear magnification factor. Large figures in the z plane usually map into
figures in the w plane that are far from similar.

e Similarly conformal mappings, transform small figures in the neighborhood of a
point z = « in the z plane into similar small figures in the w plane and are mag-
nified (or reduced) by an amount given approximately by |f’(a)|?, called the area
magnification factor.

e Conformal maps preserve both angles and the shapes of infinitesimally small figures,

but not necessarily their size or curvature.

We have already discussed a number of examples of conformal maps without referring to
the name “conformal”. For instance, f(z) = e* is conformal on C and maps vertical and
horizontal lines into circles and orthogonal radial rays, respectively.
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z—plane w-plane
ny T =z Ay
i w = e*

Y =1%o

VH

Example. Show that the mapping w = f(z) = cosz is conformal at the points a =
i, 1,7+ i, and determine the angle of rotation given by arg f/(a) at the given points.

Solution. Since f’(z) = — sin 2, we conclude that the mapping w = cos z is conformal at
all points except z = nm, where n € Z. Calculation reveals that:

f'(i) = —isinh(1), f(1) = —sin(1) and f'(7 + i) = i sinh(1).

Therefore the angle of rotation is given respectively by:

arg f'(i) = —n/2,arg f'(1) = 7 and arg f'(7 + i) = 7/2.

2

Example. The mapping w = f(z) = z° maps the square

S={z+iy:0<z<1,0<y<1}

onto the region in the upper half plane Im(w) > 0, which lies under the parabolas u =
1—v%/4and u = —1+v?/4, as shown in Figure. Since the derivative is f'(z) = 2z, and we
conclude that the mapping w = 2% is conformal for all z # 0. It is worthwhile to observe
that the right angles at the vertices z = 1,1 + ¢, are mapped onto right angles at the
vertices w = 1,2i, —1, respectively. At the point z = 0 we have f/(0) = 0 and f”(0) # 0.
Hence angles at the vertex z = 0 are magnified by the factor £ = 2. In particular, we see
that the right angle at z = 0 is mapped onto the straight angle at w = 0.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




CHAPTER 4. “CONFORMAL MAPS AND BILINEAR TRANSFORMATIONS 69

z—plane
A y

V:

—@

Image showing angle preserving property at points where f is conformal

2 is conformal in C* because f'(z) = 2z = 0 only

Example. The function w = f(z) = z
when z = 0. For any fixed 0y,0 < 6 < /2, f maps the sector {|argz| < 6y} conformally
onto the sector {| arg z| < 26y} of twice the aperture.

Hence f maps the right half-plane {Re z > 0} conformally onto the slit plane C \ (—o0, 0].

Image of Im z > 0 under under w = z?

Example. The principal branch of the logarithm w = f(z) = Log z is a conformal mapping
of the slit plane C \ (—o0, 0] onto the horizontal strip {—7 < Imw < 7}.

Terminology.
(1) In complex analysis, an analytic (holomorphic) function on an open subset of the

are conformal.
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(2) If U and V are two open subsets of the complex plane, then f : U — V is bianalytic
(or biholomorphic) if it is analytic (holomorphic) and bijective. (So, implicitly, it’s
inverse is holomorphic.)

(3) If U is an open proper subset of C, U # C, and if U is homeomorphic to D, then U
is conformally equivalent to . That is, there is a holomorphic mapping f : U — D
which is one-to-one and onto.

Some properties of conformal maps

We list below some of main results about conformal mappings:

(1) If f(z) is analytic and f/(z) # 0 in a region D, then the mapping w = f(z) is
conformal at all points of D.

(2) If f(2) is analytic at z = a with f’(a) # 0, then f(z) is one-to-one in some neighbor-
hood of z = a.

(3) If f(2) is analytic and one-to-one in a domain D, then f’(z) # 0 in D, so that f is
conformal on D.

(4) Let f(z) be analytic in a domain D and z = a € D. Then f is bi-analytic at z = a iff
f'(a) #0.

(5) Let f(z) be analytic in a simply connected domain D and on its boundary, the simple
closed contour C'. If f(z) is one-to-one on C ,then f(z) is one-to-one in D.

(6) Suppose f(z) is analytic at z = a, and that the derivative f’(z) has a zero of order
k — 1 at z = a. If two smooth curves in the domain of f intersect at an angle 6, then
their images intersect at an angle k6.

(7) (Boundary Behavior) Suppose that f is analytic and one-to-one on a region D . Then
f maps the boundary of D onto the boundary of f[D].
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4.2 The Riemann Mapping Theorem

We have already discussed a number of examples of analytic functions between various
domains of the complex plane. In some cases, we have given complete characterizations
for mappings between certain domains such as discs and half-planes. Also, we know
from the open mapping theorem that non constant analytic functions map domains into
domains. Now, suppose D; and D are simply connected domains. Then there is always
almost an analytic function mapping D; onto Ds.

We first discuss a “typical” exception. Suppose D; = C and D, = . There can be no
function analytic in the plane (entire) that maps onto the (bounded) disc D, for, according
to Liouville’s theorem, constant functions are the only entire functions whose images are
contained in the disc. Our major theorem of this section says that a one-to-one analytic
mapping exists between any two simply connected domains, neither of which is the whole
plane.

The Riemann Mapping Theorem

Let D be a nonempty proper (D C C ) simply connected open subset of C, and
let ¢ € D. Then there exists a unique one-to-one analytic function f : D — D
such that f(c) =0, f'(¢) > 0 and f(D) =D.

The proof of the Riemann mapping theorem extends beyond the scope of these notes. A
proof of this theorem can be found in L. Ahlfors: Complex Analysis, 3rd Ed., Inter. Ser. in
Pure & Applied Math. McGraw-Hill Ed, 1979 or in J. Conway: Functions of One Complex
Variable I, GTM 11, 2nd Ed., Springer 1978.

The RMP states that any proper open simply connected subset of C is conformally equiva-
lent to D.

“y L Y3

V:

Riemann Mapping Theorem
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Corollary. If D is a nonempty simply connected domain in C, then D is conformally
equivalent to one and only one of the following domains:
(i) C if the boundary of D consists of no points.
(i) C if the boundary of D consists of one point.
(iii) I if the boundary of D consists of more than one point.

Remarks.
(1) A non-constant analytic function maps open connected sets to open connected sets.
(2) Since a one-to-one analytic map is invertible, it follows that any open simply-connected
domain can be mapped onto any other open simply-connected domain (by a passage
through D) provided neither is C.
(3) The Riemann Mapping Theorem (RMP) does not give a practical algorithm for find-
ing the actual mapping.

g-1(f(2))

Riemann Mapping Theorem between two simply connected sets

4.3 The Linear and Inversion Mappings

In this section we study special case of bilinear mappings, namely:

Translations

Rotations

Dilations (Scaling)
Inversions

These transformations will play a major role in explaining the behavior of Mobius trans-
formations.
The Function w = az + b

Consider the function f : C — C such that z — w = f(z) = az + b where a and b are
constant complex numbers. We have seen previously that if a # 0 then f is one-to-one
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and onto. We will study the family of these functions in separate cases.

Case 1.

Case 2.

Case 3.

If a = 0 and b € C then the function w = f(z) = b is the constant function and we
have f(C) = {b}. So the whole complex z—plane is mapped to a single point w = b
in the w—plane. Obviously in this case the function is neither one-to-one no onto.

If a =1and b € C then we have w = f(z) = z+b which maps any sets in the z-plane
onto a set in the w-plane displaced through the vector b. This mapping is known as
a translation. Note that the set in the w plane will have the same shape and size as
the set in the z-plane.

For instance, the function w = z + (1 + 2¢) maps the square having vertices 0,1, 1+
and i onto a square having vertices 1 + 24,2 + 2,2 + 3i, and 1 + 3i .

To show this, let z = 2 + iy and w = u + iv. Then u +iv = (x + iy) + (1 + 29), i.e. ,
u=uxz+ 1,v =y + 2. As = describes the interval [0, 1], u describes the interval [1, 2];
as y describes the interval [0, 1], v describes the interval [2, 3].

2+ 3

translation

Figure 4.2: The translation w = z + (1 + 2i).

If a > 0,a # 1and b = 0 then we have w = f(2) = az = az + iay is known as
a dilation or rescaling and maps any set of the z-plane onto a set in the w plane
scaled by a factor of a. Note that

lw1 —wa| = |f(21) — f(22)| = |a|[21 — 22

so that the distance between any two points is multiplied by |a].

If a > 1 we call the mapping a magnification and if 0 < a < 1 we call it a contrac-
tion. The image in the w-plane is a scaled shape of the set in the z-plane. The image
below show the mapping of the square with vertices {0, 1,1 + 7,7} by the function
w = 2z, which is the square with vertices {0, 2,2 + 2i, 2i}.

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




4.3. THE LINEAR AND'INVERSION MAPPINGS 74

z-plan w-plan
A A

/ magnification

2+ 2

Y

»
>

Figure 4.3: The magnification w = 2z.

Case 4. If a = ¢'*,a # 1 and b = 0 then w = f(z) = az = €'z = |z[e"®&*+), Hence we
have |w| = |z| and arg(w) = « + arg(z), so the mapping is simply a rotation by the
angle «. Note that |a| = 1, so any set of the z-plane is mapped onto a set in the w
plane rotated by an angle «. The figure below shows action the mapping w = ¢™/4?2
on the square with vertices {0,1,1 +i,4}.

z-plan w-plan
A A
(V2

141

A 4
Y

Figure 4.4: The rotation w = ¢™/*z.

Case 5. If a = |ale!**8® £ 0 and b € C then

f(z)=az+b=lale’ M2 +b = (f30 fr0 fi)(2)

iArga

where fi(z) = e z is a rotation, fs(z) = |a|z is dilation and f3(z) = z+ b is a

translation.Furthermore, it is one-to-one and onto.

Example 4.1. Find the image square with vertices {0, 1, 1+, ¢} under the linear mapping
w= f(z) = 2"z — 2.
Solution. We have

f(z) =262 — 2i = (fz0 foo fi)(2)

m/42 is a rotation by and angle of 7 /4, f(z) = 2z is dilation by a factor of

where fi(z) =e
2 and f3(z) = z — 2i is a translation by —2i.
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N N o 7N

rotation A dilation translation

V2

1+

Y
A 4
Y

Figure 4.5: Linear Transformation w = f(z) = 2¢/*2 — 2i.

There is a relationship between a complex linear function and the more familiar real-
valued linear function y = ax+b, a straight line. The complex- valued function w = az+b,
with a and b are complex constants, maps straight lines in of z—plane onto straight lines
in the w-plane. Note that the complex linear functions (a # 0) always map oo to oco. We
leave the determination of the effect of the constants a and b on the slope of the image
line as an exercise for the reader. Observe that w = az + b, like its real-valued counterpart,
is a one-to-one function.

Properties of linear maps

If a # 0 then the linear function w = f(z) = az + b maps:
(1) Lines of the z—plane onto lines of the w—plane.
(2) Circles of the z—plane onto circles of the w—plane.
(3) Regions of the z—plane to geometrically similar regions of the w—plane.

The Function w = 1/z

Let us now consider the inversion function w = f(z) = 1/z.

This function can be considered a function of the type f : Co. — Co, where C,, denotes
the extended complex plane. We write formally f(0) = oo and f(c0) = 0.

The function w = f(z) = 1/z maps points close to the origin in the z—plane onto points
far from the origin in the w—plane and points far from the origin in the = plane onto points
close to the origin in the w plane. In particular, as z approaches the origin, w approaches
the point at oo in the extended complex plane. We thus have a one-to-one map from the
extended plane C,, onto itself with the origin being mapped onto the point at co.

If we let z = re? then w = (1/r)e~*. Thus we have |w| = 1/r = 1/|z| and argw = —0 =
—arg z. Clearly circles of the z—plane centered at the origin and radius r are mapped
by the inversion map onto circles of the w—plane centered at the origin and radius 1/r.
There is also a certain symmetry with respect to both the unit circle and the real axis.
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Yk

i) =t

Figure 4.6: Inversion map w = 1/z

Points inside (outside) the unit circle are mapped onto points outside (inside) the unit
circle, and points above (below) the real axis are mapped onto points below (above) the
real axis (see Figure).

If we let z = x + iy then we have

iy 1 z T — 1y T —y
W=utivn=—=rm = s, U= —F5—s; V= 55—
z |22 2?4 y? z2 4 y? x? 4 y?
But since z = 1/w we also get by symmetry
iy 1 w U — v U -
z=r4ilYy=—=—5=—5—=; T=-—5—>7; -
Y= w2 u?+ 0?2 Wror YT w22

Moreover since wz = 1 then we have
wl|2]? = (u? +0%)(a® +¢°) = 1.
Now consider the equation
a(®> +y?)+br+cy+d=0

where a, b, ¢, and d are real constants. This equation represents a circle if a # 0 and a

straight line if a = 0. If we multiply the above equation by (u? + v?) we get
a(z? + y?) (u® + v?) + bz (u® 4+ v?) + cy(u® 4 v?) + d(u® +v?) = 0
which show that the function w = 1/z maps the equation onto the set
du?* +v?) +bu—cv+a=0

which describes a circle for d # 0 and a straight line if d = 0.
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Theorem 4.2. The inversion function f : Coc — Co, given by w = f(2) = 1/z for every
non-zero z € C, and f(0) = oo and f(co) = 0, is one-to-one and onto. On the other hand,
its inverse function is itself. Furthermore, the image under this function of a line or a circle in

Co 1s also a line or a circle in Cy.

Properties of the inversion map w =1/z

(1) The origin maps onto the point at co.
(2) The point at oo maps onto the origin.
(3) Its inverse is itself.
(4) Every straight line passes through the point at co.
(5) No circle passes through the point at oc.
(6) Circles not passing through the origin (that is, with a # 0 and d # 0) are mapped
onto circles not passing through the origin.
(7) Circles passing through the origin (that is, with a # 0 and d = 0)are mapped onto
straight lines not passing through the origin.
(8) Straight lines not passing through the origin (that is, with « = 0 and d # 0) are
mapped onto circles passing through the origin.
(9) Straight line passing through the origin (that is, with « = 0 and d = 0) are mapped
onto straight lines passing through the origin.
(10) The inversion w = 1/z maps circles and straight lines onto circles and straight lines.
(11) The circle |z| = 1 maps onto the circle |w| = 1.
(12) The punctured disc D\ {0} maps onto C \ D, and conversely.
(13) All points on C\ D map onto D\ {0}.
(14) The interior of a circle containing the origin maps onto the exterior of a circle.
(15) The interior of a circle not containing the origin (nor having the origin as a boundary
point) maps onto the interior of a circle.

Example. Show that the image of the right half plane Rez > 1/2, under the mapping
w = 1/z, is the disc |w — 1| < 1.

So

. . 1 U
Solution. We have seen that under the transformation w = —
z

ST=
1 u 1 2 2 2,2
Rez>-= 5—5>-=uv-2u+l+v'<l=(u—-1) "+v<l=|lw-1 <1
2 w402 2
which is an inequality that determines the set of points in the w plane that lie inside the
circle |[w — 1| = 1. Since the reciprocal transformation is one-to-one, preimages of the
points in the disc |w — 1| < 1 will lie in the right half plane Rez > 1/2.

Example. Find the images of the vertical lines z = a and the horizontal lines y = b under
the mapping w = 1/z.

Solution. The image of the line x = 0 is the line u = 0; that is, the y—axis is mapped onto
the v—axis. Similarly, the x—axis is mapped onto the u—axis. If a # 0, then we see that
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Figure 4.8: Images of horizontal and vertical lines under w = 1/z.

the vertical line x = a is mapped onto

1L
2a| 2|a|’
Similarly, the horizontal line y = b # 0 is mapped onto the circle

Y —beu?+ v—l—i 2* 1 :
w2 +0v2 26)  \ 2b

1
2|b|"

w —

which is the equation of a circle in the w plane

which is the equation of a circle in the w—plane

L
w -+ —| =
2b
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4.4 WMobius Transformations

An important class of elementary mappings was studied by Augustus Ferdinand Mobius
(1790-1868). These mappings are conveniently expressed as the quotient of two linear
expressions and are commonly known as linear fractional or bilinear transformations. In
this section we will show how they are used to map a disc one-to-one and onto a half
plane.

Definition A Mobius transformation (linear fractional or bilinear transformation) is any

non-constant function on C, of the form

w:T(z):CCij__Z, ad # be, a,b,c,d e C.

Properties of Fractional Linear Transformations

b
Letw=T(2) = Zzz—i—i—_d ad # be, a,b,c,d € C then we have the following:

(1) If ad = bc then T would yield a constant.

(2) The coefficients are not unique, since we can multiply them all by any nonzero
complex constant.

(8) To each Mobius transformation we can associate the nonsingular matrix
A =
c d
of its coefficients, which is determined up to a non-zero multiple.

(4) The linear (but non-constant) polynomials w = Az + B, A # 0 are special cases of
Mobius transformations. Thus translations, rotations and dilations are special cases
of Mébius transformations.

(5) The inversion mapping w = 1/z is special cases of Mobius transformations.
(6) If 2 # —d/cthen T(z) € C and T'(z) = (ad — be)/(cz + d)* # 0.
(7) T is conformal and thus one-to-one and onto in C \ {—d/c} where ¢ # 0.

(8) T admits an inverse, given by:

T_l(w):dw:_b if w#a/c,w# .
—cw +a
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)]

(10)

(11

(12)

(13)

(14)

(15)

(16)

(17)

(18)

If ¢ # 0 we may extend the definition of 7' : C,, — C to the extended complex

plane as follows:

az+b .
f _
ot d if 24 —d/c,z # o0
T(z) = { 0 ifz=—d/c
4 if z = o0
c

and T defined in this way is then one-to-one onto the extended complex plane.

The inverse 77! : Coo — Co is

dw—0b
Y
“ewta ifw+#a/c,w+#
T w) =< 0o if z=a/c
—g if z =00
c

If S and T are Mobius transformations, then so is S o T, its coefficient matrix being
the product of the coefficient matrices of S and 7T'.

If T is a non-linear Mobius transformation we can rewrite it as

Az + B (B — AD)
T(z) = T s
& ="7p T D

Thus any Mobius transformation can be written as a composition of a translation, a
rotation, a dilation and an inversion.

Any Mobius transformation maps lines and circles onto lines and circles.

Any Mobius transformation is orientation preserving in the sense that, if we traverse
a circle in the order of three distinct points on it, z1, 29, 23, the region to the left of
the circle will map to the region to the left of the image circle, with respect to the
image orientation.

T preserves the property of two points being symmetric with respect to a circle, i.e.,
lying on the same ray from the center, and such that the geometric mean of their
distances from the center equals the radius.

A Mobius transform different from the identity has either one or two fixed points, as

a map defined on the extended plane.
A Mobius transform that leaves three distinct points invariant is the identity.

Given three distinct points, z1, 2o and z3 in the extended z plane and three distinct

points w;, w2 and ws in the extended w plane, there exists a unique bilinear trans-
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formation w = T'(z) such that T'(z1) = w1, T(22) = we and T'(z3) = ws. We denote
that by T{z1, 22, 23} = {w1, w2, ws}. An implicit formula for the transformation is
given by the equation:

w — W1 Wy — ws Z— 2122 — X3
w — W3 wy — Wi Z— 2322 — X1

(19) There is a unique Mobius transformation 7" such that 7'{z1, 22, 23} = {0, 1, 00} and it

is given by :
Z—Z1 % — X3

:T = .
v (Z) Z— 2322 —Z1

Example 4.3. Find the FLT T'(z) such that 7{0,4,00} = {—1,0,1} .

Solution. If T'(z) = aziz then T'(c0) = a/c = 1 yields a = ¢ = 1 and thus we can write
Ccz

the fractional linear transformation in the form 7'(z) = w = : J_ CZZ
z
The condition 7'(0) = —1 yields d = i. Thus
z—1
T(z) = .
Q Z+1

Example 4.4. Find the FLT T'(z) such that 7{1 —i¢,1+4,—1+i} = {0,1,00} .
Solution. We can write the fractional linear transformation in the form
Z— 2129 — 23 z—(1—=4) (14+4)—(-144) =z—(1-1)

T s s —a im0+ Q0 -(-9 z+(+0)

Example 4.5. Find the FLT T'(z) such that T'{:,2, -2} = {i,1, -1} .
Solution. We use the equation

w—9)1+1) (z—i)2+2)
(w+D(1—i) (2+2)(2—1)

then solve for w to get
 3242i

iz 46

Example 4.6. Find a bilinear transformation which maps the disc |z + i| < 1 onto the
exterior disc |w| > 4.

. b .
Solution. Let 7'(z) = azi_ and assume that 7'(—i) = oo, then
cz
T(z) = az —I-'b.
zZ+1
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Figure 4.9: Mapping of |z —i| < 1 onto |w| > 4.

Note that 7'(0) = —ib and T'(—2i) = 2a + ib. These images must lie on the circle |w| = 4.
This gives |b| = 4 and |2a + ib| = \/4a? + b?> = 4. A choice satisfying the two conditions
are b =4 and a = 0. Hence

1—
Example 4.7. Show that T'(z) = f maps the right half plane onto the unit disc.
z

Solution. Notice that 7'{:,0, —i} = {—i,1,47} . That is the points from the boundary of
the right half plane {i,0, —i} get mapped onto the points {—i, 1,7} which constitute the
boundary of the unit disc. As 7" is one-to-one, it maps imaginary axis Rez = 0 onto the
unit circle |w| = 1. The image of right half plane is either the interior or the exterior of
the unit circle |w| = 1. Now checking a point in the right half plane like 7(1/2) =1/3 < 1
shows that indeed the right half plane Re z > 0 is mapped onto |w| < 1.

te maps the unit disc onto the upper half plane.

Example 4.8. Show that T'(z) = 11

Solution.

The image of the unit circle |z| = 1 is a line in the w plane because the point z = 1 belongs
to the unit circle and 7'(1) = oo. Since T{—1, —i,1} = {0, 1, 00} then the circle |z| = 1 is
mapped onto the real line Imw = 0 which is the u—axis of the w—plane. So either the
unit disc |z| < 1 is mapped onto the upper half plane Imz > 0 or the lower half plane
Imw < 0. Since 7'(0) = i then |z| < 1 is mapped onto the upper half plane Im w > 0.
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Figure 4.10: Mapping of the right half-plane onto the unit disc
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Figure 4.11: Mapping of the unit disc onto the upper half-plane.

4.5 Mapping between half planes and the unit disc

A very important class of Mobius transformation are those which map a half plane from

the z plane onto the unit disc |w| < 1 of the w plane. The boundary of a half plane

is usually a line. We have seen in chapter 1 if z; and z, are two distinct points of the

complex plane C, then the set

A={zeC:|z—2z|=|z— 2|}

represents the set of points on the line bisecting the line segment whose end points are z;

and zy. Clearly if we divide by |z — b| then we can re-write

A:{zEC:V_ﬁ

|z — 29|

:1}_
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Let w =T(z) = (2 — z1)/(z — z1) then for every z € A we have |T(z)| = 1. We can draw
the following conclusions:
(1) T maps A onto the unit circle i.e. T(A) = {w € C: |w| = 1}.
(2) T(21) = 0 then according to the RMT the half-plane containing the point z; is
mapped onto the unit disc |w| < 1.
(3) T'(z2) = oo then the half-plane containing the point z» is mapped onto the exterior
of the closed unit disc {w € C : |w| > 1}.

z—plane w-plane
A v

<1

22

Figure 4.12: Bilinear mappings between a half-plane and the unit disc

Since T is one-to-one and onto then its inverse 7! is well defined and maps the unit disc
of the z plane onto the w half plane containing the point z;.

Some important bilinear mappings

We list below the main bilinear mappings between some key half planes and the unit
disc.The boundary of the upper and lower half plane is the real axis R and the boundary
of the right and left half plane is the imaginary axis /R. The points « and —i are symmetric
about the the real axis and 1 and —1 are symmetric about the imaginary axis. Using these
points and their respective half plane we can explicitly write the the bilinear mappings
between half planes and the unit disc. Furthermore, these bilinear mappings are one-to-
one and onto. Therefore if let us say w = T'(z) is the mapping of the upper half plane onto
the unit disc, then its inverse z = 7! (w) would be the mapping of the unit disc onto the
upper half plane.

1. Bilinear mapping between the upper half plan and the unit disc.

The mapping w = T'(z) = : _Z, is known as the Cayley transform and maps the

z+1
1
upper half plane onto the the unit disc. Obviously its inverse z = T~ (w) = z%
maps the unit disc onto the upper half plane.
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z—plane w-plane

<

\,
1

2. Bilinear mapping between the lower half plan and the unit disc.
z—plane w-plane
A v

e

3. Bilinear mapping between the right half plan and the unit disc.
z-plane w-plane
A y A v

>

4. Bilinear mapping between the left half plan and the unit disc.

z—plane w-plane
A y A v
1 \ U
@ @ 2 o—>
=il / 1

Remark.

The above mappings are not unique, because if 7'(z) is a bilinear map between a half plane
and the unit disc then for every a € R the bilinear mapping e'“T'(z) would also map this
half plane one-to-one and onto the unit disc.

Problem. Characterize all bilinear transformations that map the upper half-plane Im z > 0
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onto the unit disc |w| < 1.

Answer. Let zy € C such that Im zy > 0. Define the bilinear transformation

w:T(z):Z_Z0

z2—7Z

Then T has the following characteristics:

1. T'(2p) = 0 and T'(Zp) = 0.

2. T maps the the real line Im z = 0 onto the unit circle |w| = 1,

3. T maps the upper half lane line Im z > 0 onto the unit disc |w| < 1, and

4. T maps the lower half plane Im z < 0 onto |w| > 1.
The most general bilinear transformation of the real line R onto the unit circle |w| = 1, is
given by

w=_S(z)=¢€eT(z) =¢ po—

where o € R and Im 2y > 0. Since S(zy) = 0 then S maps the upper half plane onto the
unit disc.

Problem. Characterize all bilinear transformations that map the right half plane Rez > 0
onto the unit disc |w| < 1.

Answer. Let zy € C such that Rezp > 0, o € R and define the bilinear transformation

i 2 — 20
e —.
Z+ 20

z—plane w-plane
X

z4+1

Problem. Find T(A) if A={z:Imz > Rez} and T'(z) = 2 1 3i.
z
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Solution. Note that we can rewrite 7" as a composition of two simpler transformations

as follows: T'(z) = (S3 0 S2) where S1(z) = 25:; and S2(z) = 2z. Recall that j+ ’

z—a . . . . o
of the form —— which transforms the line bissecting the segment joining « and b onto

is

the unit circle |w| = 1. In our case a = —i and b = —1, and note that the image of —i is
the origin. Hence the image Im z > Re z is the unit disc D. Henceforth S; maps A onto
B ={w: |w| > 2}. Sa(z) translates B by —3i to get C' = {w : |w + 2i| > 2} .

z4+1 .
w =2 — 3
z—plane z+1 R w—plane
“y Sl A 52 “v
—_— _ u
¢'—— ..~\ "
4 g ‘\
Imz > Rez |$1 (%) > 2 . JUEE ERO
I’ 1 ’¢ ~s
_1- 'fL; : >‘| " \\
"m0 ‘
) Y 1(7/ _ 1 : |T(Z)+3'L >2 ‘|
p 1 R 4 ] ¢3¢ !
\~\ I,' ‘\ l’
~~--__’¢ \ y
A Y 4
A Y ,
~ ’
\~~ "'

4.6 Conformal Self-Maps of the Disc

We call T : D — D a conformal self-map of the unit disc D or an automorphism of the
disc D, if it is conformal and maps the unit disc D to itself, i.e. 7(D) = D. In this section
characterize all conformal maps of the unit disc to itself.

The automorphisms (that is, conformal self-mappings)

For a € C, |a| < 1, we define
zZ—a

#alz) = 1-az

Then each ¢, is a conformal self-map of the unit disc.
If z € OD then |z| = 1, and

z—a Z(z—a)|

[pa(2)] =

'1—2@

’1—@z

1—az 1—az 1—az 1—az

Clearly ¢, maps the unit circle |z| = 1 onto itself.
Furthermore since ¢,(a) = 0,a € D, then the D is mapped onto D. The same reasoning
applies to

(pa) ' =,

hence ¢, is a one-to-one conformal map of the the unit disc D to itself.

The general form of biholomorphic conformal self maps of the disc is then

T(z) = eiagaa(z) = ¢l F—a

1—az’

METHODS OF COMPLEX ANALYSIS — MASTER 1- UFAS (©PROF. YALLAOUI EL-BACHIR




4.7. COMPOSITIONS OF CONFORMAL TRANSFORMATIONS 88

where a € R.
In other words, any conformal self-map of the unit disc to itself is the composition of a
Mobius transformation with a rotation. It can also be shown that any conformal self-map

of the unit disc can be written in the form
T(z) = (pa(eiaz),

for some Mobius transformation , and some some real number «.

A special case of these maps are the self maps of D which fix the origin i.e. ,(0) = 0.
Clearly in this case we have ¢,(0) = —a = 0 and ¢o(z) = z, hence the general form of
such maps is given by

To(2) = ez

4.7 Compositions of Conformal Transformations

Recall that the function w = f(z) = €* is a one-to-one mapping of the fundamental period
strip —m < y < 7 in the z plane onto the w plane with the point w = 0 deleted. Since
f'(z) # 0, the mapping w = exp z is a conformal mapping at each point z in the complex
plane. The family of horizontal lines y = ¢,—7 < ¢ < 7 and the segments z = a and
—7 < y < 7 form an orthogonal grid in the fundamental period strip. Their images under
the mapping w = ¢* are the rays ¢ > 0 and arg w = ¢ and the circles |w| = e, respectively.
These images form an orthogonal curvilinear grid in the w plane, as shown in Figure. The
inverse mapping is the principal branch of the logarithm z = Log w.

z—plane 8 w-plane
A y

2

—T

X

5%"

2 —q
41

mapping of the horizontal strip 0 < y < 7 onto the disc |w| < 1. Furthermore, the = axis

. e .
Example 4.9. Show that the transformation w = f(z) = is a one-to-one conformal

is mapped onto the lower semicircle bounding the disc, and the line y = 7 is mapped onto

the upper semicircle.
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Solution. Solution The function w = f(z) can be considered as a composition of the
Z-i
exponential mapping Z = e* followed by the fraction linear transformation w = Z.

The image of the horizontal strip 0 < y < 7 under the mapping Z = ¢* is the upper half
plane Im(Z) > 0; the z axis is mapped onto the positive X axis; and the line y = 7 is
mapped onto the negative X axis. The bilinear transformation w = Zi—T—z then maps the
upper half plane Im(Z) > 0 onto the disc |w| < 1; the positive X axis is mapped onto the
lower semicircle; and the negative X axis onto the upper semicircle. The figure illustrates

the composite mapping.

1 2
Example 4.10. The transformation w = f(z) = ¥ is a one- to-one conformal
—Z

mapping of the portion of the disc |z| < 1 that lies in the upper half plane Im(z) > 0 onto
the upper half plane Im(w) > 0. Furthermore, the image of the semicircular portion of
the boundary is mapped onto the negative u axis, and the segment —1 < z < 1,y = 0 is
mapped onto the positive u axis.

Solution. The function w = f(z) is the composition of the bilinear transformation Z =
(1+ 2)/(1 — z) followed by the mapping w = Z2. The image of the half-disc under the
bilinear mapping Z = (1 + z)/(1 — z) is the first quadrant X > 0,Y > 0; the image of the
segment y = 0, —1 < x < 1, is the positive X axis; and the image of the semicircle is the
positive Y axis. The mapping w = Z? then maps the first quadrant in the Z plane onto
the upper half plane Im(w) > 0, as shown in the figure.
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z—plane yh Ay

1
Example 4.11. Show that the transformation w = f(z) = Log (1—'_2) is a one-to-one
—Z

conformal mapping of the unit disc |z| < 1 onto the horizontal strip |v| < 7/2. Further-
more, the upper semicircular is mapped onto the line v = 7/2 and the lower semicircular
is mapped onto the line v = —x /2.

Solution. The function w = f(z) is the composition of the bilinear transformation Z =
(14 2)/(1 — z) followed by the mapping w = Log Z. The image of the disc |z| < 1 under
the bilinear mapping Z = (1 + 2)/(1 — z) is the right half plane Re Z > 0; the upper
semicircle is mapped onto the positive Y axis; and the lower semicircle is mapped onto
the negative Y axis. The logarithmic function w = Log Z then maps the right half plane
onto the horizontal strip; the image of the positive Y axis is the line v = 7/2; and the

image of the negative Y axis is the line v = —7/2.
z—plane Z—plane w—plane
A
Y Y v .
21 = 11 N le =im/2
PP STy Z1 = (A il Sl
/// \\\—>:
y ) 1+2, w = Log Z
/ Z = 1 :
4 1 -z 1 X U
I il : . . :
/ Z3=1
N >
w = Log ( i Z)
. . 1—2 T -
20 %+ —1 Zy = —i wy = —im/2

Example 4.12. Show that the bilinear mapping

(1—i)z+2

w=TE) =G50 52

maps the disk |z + 1| < 1 onto the upper half plane Im(w) > 0.

Solution. Fist we show that 7" maps the circle |z + 1| = 1 onto the real line Im(w) = 0.
The map 7" has a pole at z = —1 + ¢ which belongs to the circle , hence T'(—1 + i) = oo.
Furthermore we have T'(—1 —4) = 0 and 7°(0) = 1. That is we have T{—1—1¢,0, -1 +i} =
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{0,1, 00} and the three points on the circle of the z plane are mapped on u axis of the w
plane, hence the circle |z + 1| = 1 is mapped onto the u axis. Since 7'(—1) = i then maps

the disk |z + 1| < 1 onto the upper half plane Im(w) > 0.

z—plane w—plane
A A
14 Yy . v
JPEEL EEV /\ X
S <1 N w=T(2) Imw > 0
'l i x u
; ® A TR ®----- >
ool 0, 0 1
~~~-.-“’¢
11—z
Figure 4.13: Image of |z + 1| < 1 under the ma T(2) (L—i)z+2
I o i z w = )= /7 =
° i P (14+i)z+2

Problem. Find a transformation that maps the set A = {z € C: Imz > 0,Rez > 0} onto
the unit disk D?
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