Théorie des langages

Christine Solnon

Table des matiéres
1 Motivations

2 Alphabets, Langages et Grammaires

2.1 Alphabets et mots
2.2 Langages o e e e
2.3 Grammaires e e e e e e e e e e e e e e

2.4 Typesde grammaires L L e

Langages réguliers et Automates finis

3.1 Grammaires réguliéres et langages réguliers L0
3.2 Automates Finis Indéterministes oL oL oL
3.3 Automates Finis Déterministes L
3.4 Equivalence entre AFT et AFD
3.5 Equivalence entre automates finis et langages réguliers
3.6 Expressions réguliéres Lo L e

3.7 Quelques propriétés des langages réguliers

Langages hors-contexte et Automates a pile

4.1 Arbres syntaxiques e e e e
4.2 La forme de BACKUS-NAUR d’une grammaire
4.3 Propriétés de fermeture des langages hors-contexte
4.4 Automates apile
4.5 Automates a pile déterministes

4.6 Automates a pile et langages hors-contexte L.

12

15
15
16
18
19
21
22
23

25

1 Motivations

L’objet de ce cours est une initiation & la théorie des langages formels. De maniére générale, les
langages sont les supports naturels de communication. Ils permettent aux hommes d’échanger
des informations et des idées, ils leur permettent également de communiquer avec les machines.
Les langages utilisés dans la vie de tous les jours entre étres humains sont dits naturels. Ils sont
généralement informels et ambigus et demandent toute la subtilité d’un cerveau humain pour étre
interprétés correctement. Les langages créés par ’homme pour communiquer avec les ordinateurs
sont des langages artificiels. Ils doivent étre formalisés et non ambigus pour pouvoir étre interprétés
par une machine.

Au départ, un ordinateur ne comprend qu’un seul langage, pour lequel il a été congu : son langage
machine. Pour communiquer avec des langages plus évolués, il est nécessaire d’utiliser un interpréte
(qui traduit inter-activement les instructions entrées au clavier), ou bien un compilateur (qui traduit
tout un programme). L’interprétation ou la compilation d’un texte se décomposent généralement
en trois étapes.

1. Une premiére phase d’analyse lexicale permet de décomposer le texte en entités élémentaires
appelées lexémes (token en anglais).

2. Une deuxiéme phase d’analyse syntazique permet de reconnaitre des combinaisons de lexémes
formant des entités syntaxiques.

3. Une troisiéme phase d’analyse sémantique permet de générer le code objet directement com-
préhensible par la machine (ou bien un code intermédiaire qui devra étre de nouveau traduit
dans un code machine).

Considérons par exemple, le (morceau de) texte C suivant : cpt = i + 3.14;

1. L’analyse lexicale permet d’identifier les lexémes suivants : un IDENTIFICATEUR de valeur
cpt, un OPERATEUR de valeur =, un IDENTIFICATEUR de valeur i, un OPERATEUR de valeur +,
un REEL de valeur 3.14 et un POINT VIRGULE.

2. L’analyse syntaxique permet de reconnaitre que cette combinaison de lexémes forme une ins-
truction C syntaxiquement correcte, et qu’il s’agit d’une affectation entre la variable d’identi-
ficateur cpt et I’expression arithmétique résultant de ’addition de la variable d’identificateur
i avec le réel 3.14.

3. Enfin, Panalyse sémantique vérifie le bon typage des variables cpt et i, puis génére le code
objet correspondant & cette instruction.

Les phases d’analyse lexicale et syntaxique constituent en fait un méme probléme (& deux niveaux
différents). Dans les deux cas, il s’agit de reconnaitre une combinaison valide d’entités : une com-
binaison de caractéres formant des lexémes pour I'analyse lexicale, et une combinaison de lexémes
formant des programmes pour l'analyse syntaxique. La théorie des langages permet de résoudre ce
type de probléme.

Plan du cours

En théorie des langages, ’ensemble des entités élémentaires est appelé I’alphabet. Une combinaison
d’entités élémentaires est appelé un mot. Un ensemble de mots est appelé un langage et est décrit
par une grammaire. A partir d’'une grammaire, on peut construire une procédure effective (appelée
automate) permettant de décider si un mot fait partie du langage. Dans la partie 2 de ce cours,
nous définissons ces différentes notions, et nous décrivons certaines de leurs propriétés.

Il existe différentes classes de langages, correspondant & différentes classes de grammaires et d’au-
tomates. Dans la partie 3, nous étudions la classe des langages réguliers, correspondant aux gram-
maires réguliéres et aux automates finis. Cette classe de grammaire est typiquement utilisée pour
décrire les entités lexicales d’'un langage de programmation.

Dans la partie 4, nous étudions la classe des langages hors contexte, correspondant aux gram-
maires hors contexte et aux automates a pile. Cette classe de grammaire, plus puissante que la
classe des grammaires réguliéres, est typiquement utilisée pour décrire la syntaxe d’un langage de
programmation.

2 Alphabets, Langages et Grammaires

2.1 Alphabets et mots

En théorie des langages, ’ensemble des entités élémentaires est appelé I’alphabet. Une combinaison
d’entités élémentaires est appelé un mot.

Définition (Alphabet) : Un alphabet, noté A, est un ensemble fini non vide de symboles
FExzemples d’alphabets :

A = {e, %0}
A = {a,b,c,...,z}
As = {if, then, else, id, nb, =, + }

Définition (Mot) : Un mot, défini sur un alphabet A, est une suite finie d’éléments de A.

Ezxemples de mots :

- sur lalphabet Ay, le mot e @ x

- sur Ualphabet Az, le mot if

- sur lalphabet As, le mot if id = nb

Terminologie :

— Lors de 'analyse lexicale d’un programme, I’alphabet est ’ensemble des symboles du clavier,
tandis que les mots sont les mots clés, les identificateurs, les nombres, les opérateurs, ... et sont
généralement appelés lexémes.

— Lors de 'analyse syntaxique d’un programme, les éléments de base de ’alphabet sont les mots
clés, les identificateurs, les nombres, les opérateurs, ... (autrement dit, les lexémes de 1’analyse
lexicale), tandis qu'un mot est une suite de lexémes et forme un programme.

— D’une facon plus générale, lorsque les éléments de 1’ensemble de base A sont des mots au sens
linguistique, on emploie le terme de vocabulaire & la place d’alphabet pour désigner A, et le terme
de phrase (ou chaine) a la place de mot pour désigner une séquence finie de mots linguistiques.

Définition (Longueur d’un mot) : La longueur d’'un mot u défini sur un alphabet A, notée
|u|, est le nombre de symboles qui composent w.

Par exemple :

- sur Ualphabet Ay, | @ e % |=3

- sur Ualphabet Ag, | if |= 2

- sur Ualphabet As, | if id =nb|=4

Définition (Mot vide) : le mot vide, noté e, est défini sur tous les alphabets et est le mot de
longueur 0 (autrement dit, |¢| = 0).

Définition (A™) : on note AT ensemble des mots de longueur supérieure ou égale & 1 que ’'on
peut construire & partir de ’alphabet A.

Définition (A*) : on note A* I'ensemble des mots que 'on peut construire a partir de A, y
compris le mot vide : A* = {e} UAT

Définition (Concaténation) : Soient deux mots u et v définis sur un alphabet A. La conca-
ténation de u avec v, notée u.v ou simplement uv s’il n’y a pas d’ambigiiité, est le mot formé en
faisant suivre les symboles de u par les symboles de v. On notera u™ le mot u concaténé n fois
(u® =€, u™ = u.(u""1) pour n > 1).
Par exemple, sur Ualphabet Az, si u = aabb et v = cc, alors u.v = aabbcc et u? =
aabbaabbaabb.

Propriétés : La concaténation est associative mais non commutative. La concaténation est une
loi de composition interne de A* et € est son élément neutre. Par conséquent, (A*,.) est un monoide.

Exercice : Soit 'alphabet A = {a,b}.
1. Etant donnés les mots u = aa et v = bab, écrire les mots uv, (uv)? et uv.
2. Enoncer tous les mots de longueur 2 définis sur A.
3. Soient les ensembles
Ei= {uv/ue AT ,ve AT}
Ey= {uv/ue At ve A*}
Es= {uv/ue A*,ve A*}
A quoi correspondent ces ensembles ?
Correction :
1. uv = aabab, (uv)? = aababaabab et u*v = aaaaaabab.
2. Mots de longueur 2 = {aa, ab, ba, bb}
3. By = {u € A*/|u| > 2} = ensemble des mots d’au moins 2 symboles
E2 = AJF
Es = A*

Définition (Préfixe, suffixe et facteur) : Soient deux mots u et v définis sur un alphabet A.
- u est un préfixe de v si et seulement si Jw € A* tel que uw = v;

- u est un suffixe de v si et seulement si Jw € A* tel que wu = v;

- u est un facteur de v si et seulement si Jw; € A*, Jwy € A* tels que wiuwy = v.

RN

Exercice : Montrer que les relations “étre-préfixe-de”, “étre-suffixe-de” et “étre-facteur-de” sont
des relations d’ordre partiel sur A*, c’est-a-dire qu’elles sont transitives, antisymétriques et ré-
flexives.

Correction pour “étre-préfixe-de” :
— Transitivité : soient trois mots u,v et w définis sur A tels que u est un préfixe de v et v est un
préfixe de w. Montrons que u est un préfixe de w :
— u est un préfixe de v = Ju’ € A* tel que vu’ = v
— v est un préfixe de w = ' € A* tel que vv/ = w
Par conséquent, w = uu/v’ et donc u est un préfixe de w.
— Antisymétrie : soient deux mots u et v définis sur A tels que u est un préfixe de v et v est un
préfixe de u. Montrons que u est égal & v :
— u est un préfixe de v = Ju’ € A* tel que uu’ = v
— v est un préfixe de u = v’ € A* tel que vv’ = u
Par conséquent, uu/v' = u et donc v/ = e et v/ =€ et u = v.
— Réflexivité : pour tout mot w défini sur A, on a u est un préfixe de u car u = u.€ et € € A*.

Exercice : On considére les ensembles de mots F et Fy définis sur alphabet A = {0,1,2} de
la fagon suivante :

- E; est 'ensemble des mots de longueur paire,

- E5 est I'ensemble des mots comportant autant de 0 que de 1 et autant de 1 que de 2.

Définir de fagon plus formelle ces deux ensembles et déterminer pour chacun d’eux si la concaté-
nation est une loi interne et si le mot vide en est un élément.

Correction :
- Ei={ue A/l e N, |u| =21}
— La concaténation est une loi interne pour E; car pour tout couple de mots (u,v) € E?,
luv| = |u| 4+ |v] =20+ 2" =2(1 + 1).
— €€ FEycar e, =2%0
— Pour définir formellement I’ensemble Fs, il est nécessaire d’introduire la notion de permutations
d’un mot. L’ensemble des permutations d’un mot u est I’ensemble de tous les mots que 1'on
peut former en ré-arrangeant les symboles qui composent u de toutes les fagons possibles. Plus
formellement, on peut définir cet ensemble récursivement de la fagon suivante :
— permutations(e) = {e}
— pour tout mot u € AT commencant par un symbole a € A et se terminant par une suite de
symboles v’ € A* (tel que u = a.u’), permutations(u) = {v'.a.v” /v'v" € permutations(u’)}
On peut alors définir Es de la fagon suivante : Ey = {u/3n € N, u € permutations(0™1™2")}.
La concaténation est une loi interne pour Fs et € € Es.

2.2 Langages

Définition (Langage) : Un langage, défini sur un alphabet A, est un ensemble de mots définis
sur A. Autrement dit, un langage est un sous-ensemble de A*.

Deux langages particuliers sont indépendants de ’alphabet A :
- le langage vide (£ = 0)),
- le langage contenant le seul mot vide (£ = {¢}).

Opérations ensemblistes définies sur les langages : Soient deux langages £, et Lo respec-

tivement définis sur les alphabets A; et A5 :

— L’union de £; et Ly est le langage défini sur A; U Ay contenant tous les mots qui sont soit
contenus dans L1, soit contenus dans L :

LiULy={u/u€ Liouu€ Lo}

— L’intersection de £ et Lo est le langage défini sur A; N As contenant tous les mots qui sont
contenus a la fois dans £; et dans Lo :

Elﬂﬂgz{u/ueﬁl etueﬁg}

— Le complément de £; est le langage défini sur A; contenant tous les mots qui ne sont pas dans
El .
C(Ly) ={u/uec Al et u¢ Ly}

— La différence de £y et Lo est le langage défini sur A; contenant tous les mots de £; qui ne sont
pas dans L, :
£1_£2:{U/U€£1 etu¢£2}

Définition (Produit de deux langages) : Le produit ou concaténation de deux langages £
et Lo, respectivement définis sur les alphabets A; et As, est le langage défini sur A; U.As contenant
tous les mots formés d’un mot de £; suivi d’'un mot de Ly :

L1.Lg = {uv/u € Lietv e ﬁg}

Le produit de langages est associatif, mais non commutatif.

Considérons par exemple les deuz langages L1 = {00,11} et Lo = {0,1,01} définis sur

{0,1}.
Ly.L5 = {000,001,0001,110,111,1101}

Définition (Puissances d’un langage) : Les puissances successives d'un langage £ sont défi-
nies récursivement par

- £0 = {6}7

-Lr=L.L pour n > 1.

Par exzemple, si £, = {00,11}, alors £2 = {0000,0011,1100, 1111}

Définition (Fermeture itérative d’un langage) : La fermeture itérative d’un langage £ (ou
fermeture de Kleene ou itéré de L) est 'ensemble des mots formés par une concaténation de mots
de L :

LY =Au/Tk >0 et uy,...,up € L tels que u = ujug...uy}

Autrement dit, £* = U2 L}
De méme, on définit LT = U2, L¢

Description d’un langage :

Un langage fini peut étre décrit par I’énumération des mots qui le composent.

Certains langages infinis peuvent étre décrits par 'application d’opérations a des langages plus
simples.

Certains langages infinis peuvent étre décrits par un ensemble de régles appelé grammaire (voir
la section suivante).

Enfin, certains langages infinis ne peuvent pas étre décrits, ni par I’application d’opérations,
ni par un ensemble de régles. On parle alors de langage indécidable. On peut noter que si un
langage est indécidable, alors il n’existe pas d’algorithme permettant de déterminer si un mot
donné appartient a ce langage. On dit alors que le probléme est indécidable. Par exemple, le
langage des programmes C++ qui “terminent" (qui ne bouclent pas indéfiniment) ne peut étre
décrit par des régles formelles : ce langage est indécidable et le probléme consistant & déterminer
si un programme C+-+ donné termine est un probléme indécidable, pour lequel il n’existe pas
d’algorithme (ce probléme est plus connu sous le nom de “probléme de larrét de la machine de
Turing").

Exercice : Sur 'alphabet A = {0,1}, on considére les langages £1 et Lo définis par

Ly
Lo

{01"/n € N}
{0"1/n € N}

Définir les langages £1Lo, £1 N Ly et L3,

Correction :

L1Ly = {Ol”Oml/n S N,m (S N}
L1 Ly = {01}
£2 = {0101 /n € N,m € N}

Exercice : Sur lalphabet A = {a, b}, on considére le langage £; des mots formés de n fois la
lettre a suivi de n fois la lettre b, et le langage L, des mots comportant autant de a que de b.

- Définir formellement ces deux langages.

- Que sont les langages suivants : £ U Lo, £1 N Lo, L2, L37?

- Que peut-on dire de £} et L3 par rapport & £q et Lo ?

Correction :

L1 = {a"b"/n € N}

Lo = {u/In € N,u € permutations(a™b™)}
LiULy=Loet L1NLy =Ly car L1 C Lo
£2 = {a"b"a™b™ /n € N,m € N}

£2= L
£1C£TC£2
Ly = Lo

2.3 Grammaires

Un langage peut étre décrit par un certain nombre de régles. Cette vue du concept de langage a son
origine dans des essais de formalisation du langage naturel. Le but était de donner une description
précise des régles permettant de construire les phrases correctes d’une langue.

Prenons par exemple le sous-ensemble suivant de la grammaire francaise :
— le vocabulaire est défini par I’ensemble :

T = { le, la, fille, jouet, regarde }
— les catégories syntaxiques sont :

la phrase, notée PH

le groupe nominal, noté GN

le verbe, noté V

le déterminant, noté D

le nom, noté N

— les régles permettant de combiner des éléments du vocabulaire et des catégories syntaxiques pour
construire des catégories syntaxiques sont les suivantes :

PH— GN V GN N — fille
GN— DN N — jouet
D —le V — regarde
D —la

ou le symbole — est une abréviation de “peut étre composé de”.
— la catégorie syntaxique de départ est la phrase PH.

La phrase “la fille regarde le jouet” est une phrase correcte pour la grammaire envisagée, comme
le montre ’analyse suivante :

PH= GNVGN= DNYVGN=la NV GN= la fille VGN = la fille regarde GN
= la fille regarde D N = la fille regarde le N = la fille regarde le jouet

ol le symbole = est une abréviation de “se dérive en”.

Notons que :

1. La grammaire considérée ne prend pas en compte certains aspects du francais, comme les
accords de genre.

2. “le jouet regarde la fille” est aussi une phrase syntaxiquement correcte, mais dont la séman-
tique n’est pas assurée.

La fonction d’une grammaire telle que celle que nous venons de donner est double : la grammaire
indique comment construire des phrases appartenant au langage (fonctionnement en production) ;
la grammaire permet également de décider si une phrase donnée appartient ou non au langage
(fonctionnement en reconnaissance).

Dans le cas d’un langage de programmation, on se sert d’une grammaire pour décrire les entités
du langage. La forme de Backus-Naur (BNF), souvent utilisée pour décrire la syntaxe des langages
de programmation, est en fait une grammaire au sens ot nous allons le définir.

Définition (Grammaire) : Une grammaire est un quadruplet G = (T, N, S, R) tel que

— T est le vocabulaire terminal, c’est-a-dire 'alphabet sur lequel est défini le langage.

— N est le vocabulaire non terminal, c¢’est-a-dire ’ensemble des symboles qui n’apparaissent pas
dans les mots générés, mais qui sont utilisés au cours de la génération. Un symbole non terminal
désigne une “catégorie syntaxique”.

— R est un ensemble de régles dites de réécriture ou de production de la forme :

ul — u2, avecul € (NUT)T etu2 € (NUT)*

La signification intuitive de ces régles est que la suite non vide de symboles terminaux ou non
terminaux ul peut étre remplacée par la suite éventuellement vide de symboles terminaux ou
non terminaux u?2.

S € N est le symbole de départ ou axiome. C’est & partir de ce symbole non terminal que ’on
commencera la génération de mots au moyen des régles de la grammaire.

Terminologie :

— une suite de symboles terminaux et non terminaux (un élément de (N U T)*) est appelée une
forme.

— une régle ul — u telle que u € T™* est appelée une régle terminale.

Notation : Lorsque plusieurs régles de grammaire ont une méme forme en partie gauche, on
pourra “factoriser” ces différentes régles en séparant les parties droites par des traits verticaux. Par
exemple, 'ensemble de régles S — ab, S — aSb, S — ¢ pourra s’écrire S — ab | aSb | c.

Le langage défini, ou généré, par une grammaire est ’ensemble des mots qui peuvent étre obtenus
a partir du symbole de départ par application des régles de la grammaire. Plus formellement, on
introduit les notions de dérivation entre formes, d’abord en une étape, ensuite en plusieurs étapes.
Enfin, on définit le langage généré par une grammaire comme étant I’ensemble des mots pouvant
étre dérivés depuis I’axiome.

Définition (Dérivation en une étape) : Soient une grammaire G = (T, N, S, R), une forme
non vide u € (N UT)* et une forme éventuellement vide v € (N UT)*. La grammaire G permet
de dériver v de u en une étape (noté u = v) si et seulement si :

— u = zu'y (u peut étre décomposé en x, u’ et y; = et y peuvent étre vides),

— v =20’y (v peut étre décomposé en z, v’ et y),

— u — v est une régle de R.

Définition (Dérivation en plusieurs étapes) : Une forme v peut étre dérivée d’une forme u
en plusieurs étapes :

—uBvsiv peut étre obtenue de u par une succession de 1 ou plusieurs dérivations en une étape,
-u = v : si v peut étre obtenue de u par une succession de 0, 1 ou plusieurs dérivations en une
étape.

Définition (Langage généré par une grammaire) : Le langage généré par une grammaire
G = (T, N, S, R) est ’ensemble des mots sur T' qui peuvent étre dérivés a partir de S :

LG)={veT /SE v}

Remarques :
- Une grammaire définit un seul langage.
- Par contre, un méme langage peut étre engendré par plusieurs grammaires différentes.

Exercice : On considére la grammaire G = (T, N, Ph, R) ou

T = { wun,une,le,la, enfant, garcon, fille, cerise, haricot, cueille, mange }
N= { Ph,Gn,Gv,Df,Dm,Nf,Nm,V }
R= { Ph—GnGvu

Gn—Df Nf | Dm Nm

Gv—=V Gn

Df — une | la

Dm — un | le

Nf — fille | cerise

Nm — enfant | garcon | haricot

V — cueille | mange }

- La phrase “une cerise cueille un enfant” appartient-elle au langage £(G)?
- Déterminer le nombre de phrases du langage décrit par G.

Correction :

— Pour montrer qu'une phrase appartient au langage, on construit une dérivation de ’axiome Ph
jusqu’a la phrase. On souligne & chaque fois le symbole non terminal qui est remplacé par la

dérivation.

Ph= GnGuv= Df Nf Gu= Df NfVGn= Df Nf V. Dm Nm

= une ﬁ V. Dm Nm = une cerise V. Dm Nm = une cerise cueille Dm Nm

= une cerise cueille un Nm = une cerise cueille un enfant

Notons qu’il existe plusieurs dérivations possibles.

Partant de ’axiome, on ne peut appliquer qu'une régle, qui dérive « Ph » en « Gn Gv », et on
ne peut appliquer qu’une seule régle pour ré-écrire Gv. Ainsi, 'ensemble des phrases que 1’on
peut générer & partir de Ph est égal & ’ensemble des phrases que l'on peut dériver & partir de
« Gn V Gn ». Chaque groupe nominal Gn peut étre ré-écrit soit en « Df N f » soit en « Dm
Nm », et comme chaque non terminal Df, N f, Dm, et Nm peut se ré-écrire en 2 terminaux
différents, on peut générer 2 x 2 4+ 2 « 2 = 8 suites de symboles terminaux différentes & partir de
Gn. On peut par ailleurs ré-écrire V' en 2 symboles terminaux, de sorte que le nombre total de
phrases différentes que ’on peut générer a partir de Ph est égal &4 8 * 2 x 8 = 128.

Exercice : On considére la grammaire G = (T, N, S, R) ou

T= { bec}
N= { S}
R= { S—=0bS|c}

Déterminer L(G).
Correction : L(G) = {b™ce/n € N}

En effet, partant de ’axiome S, toute dérivation commencera nécessairement par appliquer 0, 1 ou
plusieurs fois la premiére régle puis se terminera en appliquant la deuxiéme régle. On représentera

cela en écrivant le schéma de dérivation suivant :

10

()

n foi
L@ b"S == b"cc avecn €N

S

Exercice : On considére la grammaire G = (T, N, S, R) ou

T= { 01}
N= { 5}
R= { §508|1S8|0}

Déterminer L(G).
Correction : L(G) = {u0/u € {0,1}*}

En effet, partant de 'axiome S, toute dérivation commencera nécessairement par appliquer 0, 1 ou
plusieurs fois la premiére ou la deuxiéme régle puis se terminera en appliquant la troisiéme régle.
On représentera cela en écrivant le schéma de dérivation suivant :

3)

nfols a oup uS = u0 avecn e N,ue{0,1}" et [u]=n

S

Exercice : On considére la grammaire G = (T, N, S, R) ou

T= { ab0}

N= { SU}

R= { S—aSa | bSb | U
U—=0U | e}

Déterminer L(G).
Correction : L(G) = {u0™v/u € {a,b}*,v = inverse(u), m € N}

ou inverse(u) est le mot inverse de u, défini récursivement par :
— inverse(e) = {¢}
— pour tout mot u € AT commencant par un symbole a € A et se terminant par une suite de
symboles u’ € A* (tel que u = a.u’), inverse(u) = inverse(u').a
En effet, partant de 'axiome S, toute dérivation partant de .S suivra nécessairement le schéma
suivant :
(3) (5)

S uwSv = ulv w0™Uv = u0™v
avec u € {a,b}*,v = inverse(u),n € N, |u| =n,m e N

n fois (1 ou 2) m fois (4)
> =

Exercice : Construire une grammaire pour le langage £ = {ab"a/n € N}.

Correction : On définit la grammaire G = (T, N, S, R) ou

T= { ab}

N= { SU}

R= { S—aUa
U—=bU | €}

11

Exercice : Construire une grammaire pour le langage £ = {0?"1"/n > 0}.
Correction : On définit la grammaire G = (T, N, S, R) ou

T= { 01}
N= { S}
R= { S—00S1|c¢}

2.4 Types de grammaires

En introduisant des critéres plus ou moins restrictifs sur la forme des régles de grammaire, on ob-
tient des classes de grammaires hiérarchisées, ordonnées par inclusion. La classification des gram-
maires, définie en 1957 par Noam CHOMSKY, distingue les quatre classes suivantes :

Type 0 : pas de restriction sur les régles.

Type 1 : grammaires sensibles au contexte ou contextuelles. Les régles de R sont de la forme :
wAv — uwv avec A € N, u,v € (NUT)* etw € (NUT)"

Autrement dit, le symbole non terminal A est remplacé par w si on a les contextes u a gauche
et v a droite.

Type 2 : grammaires hors-contexte. Les régles de R sont de la forme
A—w avecAe Netwe (NUT)*

Autrement dit, le membre de gauche de chaque régle est constitué d’un seul symbole non
terminal.

Type 3 : grammaires réguliéres
— a droite. Les régles de R sont de la forme

A—aB ou A—a avecA,Be NetaecT
— a gauche. Les régles de R sont de la forme

A— Ba ou A—a avecA,BE NetaeT

Autrement dit, le membre de gauche de chaque régle est constitué d’un seul symbole non
terminal, et le membre de droite est constitué d’un symbole terminal et éventuellement d’un
symbole non terminal. Pour les grammaires réguliéres a droite, le symbole non terminal doit
toujours se trouver a droite du symbole terminal tandis que pour les grammaires réguliéres
a gauche il doit se trouver a gauche.

A chaque type de grammaire est associé un type de langage :

— les grammaires de type 3 générent les langages réguliers,

— les grammaires de type 2 générent les langages hors-contexte,

— les grammaires de type 1 générent les langages contextuels,

— les grammaires de type 0 permettent de générer tous les langages “décidables”, autrement dit,
tous les langages qui peuvent étre reconnus en un temps fini par une machine. Les langages qui
ne peuvent pas étre générés par une grammaire de type 0 sont dits “indécidables”.

12

Ces langages sont ordonnés par inclusion : I’ensemble des langages générés par les grammaires de
type n est strictement inclus dans celui des grammaires de type n — 1 (pour n € {1, 2, 3}).

Enfin, a chaque type de grammaire est associé un type d’automate qui permet de reconnaitre
les langages de sa classe (c’est-a-dire de déterminer si un mot donné appartient au langage) : les
langages réguliers sont reconnus par des automates finis, les langages hors-contexte sont reconnus
par des automates a pile, et les autres langages, décrits par des grammaires de type 1 ou 0, sont
reconnus par des machines de Turing. Ainsi, la machine de Turing peut étre considérée comme le
modéle de machine le plus puissant qu’il soit, dans la mesure ot tout langage (ou plus généralement,
tout probléme) qui ne peut pas étre traité par une machine de Turing, ne pourra pas étre traité
par une autre machine.

Exercice : On considére la grammaire G = (T, N, S, R) ou

T= { abecd}

N= { SU}

R= { S—aU | ¢
U—Sb|d}

Donner le type de G et déterminer £(G).

Correction : G est hors-contexte (car la partie gauche de chaque régle est un symbole non terminal).
G n’est pas réguliére car la régle (1) est réguliére a droite tandis que la régle (3) est réguliére a
gauche. Notons qu’il n’existe pas de grammaire réguliére permettant de générer L(G).

L(G) = {a™cb",a""rdb™ /n € N}

En effet, partant de ’axiome S, toute dérivation partant de S suivra nécessairement un des deux
schémas suivants :

n fois (1 suivie de 3) (2)
_

S a”Sh" = a"cb"
g " fois (1 suivie de 3) ashr L gnaubr A gradbn
avec n € N

Exercice : On consideére le langage £ des mots sur {a, b, c} qui contiennent au moins une fois la
chaine bac. Définir formellement £ et construire une grammaire hors-contexte puis une grammaire
réguliére décrivant L.

Correction : £ = {u.bac.v/u € {a,b,c}*,v € {a,b,c}*}
On définit la grammaire hors-contexte G = (T, N, S, R) ou

T= { abec}

N= { SU}

R= { S — UbacU
U—Ua | Ub | Uc|e}

et la grammaire réguliére a droite G = (T, N, S, R) ou

13

T= { abec}
N= { SUV,W}
R= { S—aS | bS | cS | U
U—aV
Vol | e
W —=aW | bW | ¢cW | a]| b]| c}

ainsi que la grammaire réguliére a gauche G = (T, N, S, R) ou

T= { abec}

N= { SUV,W}

R= { S—Sa| Sb| Sc| Uec
U—=Va
VWb | b
W—oWa | Wb | Welalb]c}

Exercice : On considére le langage £ des mots sur {0, 1} qui représentent des entiers pairs non
signés en base 2 (les mots de ce langage se terminent tous par 0 et ne commencent pas par 0, sauf
pour Uentier nul). Définir formellement £ et construire une grammaire réguliére décrivant L.

Correction : £ = {0,1u0/u € {0,1}*}
On définit la grammaire réguliére a droite G = (T, N, S, R) ou

T= { ab,c}

N= { S5U}

R= { S=0]| 10
U—1U | oU | 0}

ainsi que la grammaire réguliére a gauche G = (T, N, S, R) ou

T= { abc}

N= { SU‘}

R= { S—=0]| U0
U—-Ul1]|U0U0]|1}

Exercice : On considére la grammaire G = (T, N, S, R) ou

T= { abec}

N= { SDE}
R= { S—aSDE | ¢
aD — ab
bE — bc
cD - DE
bD — bb
cE — cc }

— Quel est le type de G 7
— Ecrire la dérivation qui, partant de ’axiome, applique deux fois la premiére régle et une fois la
seconde, et poursuivre la dérivation jusqu’a obtenir une chaine de terminaux.

14

— En raisonnant par récurrence, déterminer £(QG).

Correction :

— G n’est pas hors-contexte car plusieurs régles comportent plusieurs symboles en partie gauche.
G n’est pas contextuelle non plus car dans la régle cD — DFE, on ne retrouve pas le contexte
gauche (c) de D en partie droite de la régle. Ainsi, G est de type 0.

-5 2 wspr Y wspEDE 2 wpEDE 2 wawbEDE L aabeDE

BL wabDEE 2L aabEE 2 qabbeE < aabbec

- L(G) = {a™b"c"/n € N}.
En effet, toute dérivation partant de S suivra nécessairement le schéma suivant :

S a"S(DE)" 2 a"(DE)" avecn €N
On vérifie facilement que a”(DE)" = a" 'aDE(DE)""! se dérive en a" tabe(DE)"~!. Mon-
trons maintenant par récurrence sur k que b*c*DE se dérive en b* T P+ vk > 0 :
— Montrons cela pour k=1 :

beDE 2% vpEE ‘L wEE L wweE 2 bbee

n fois (1)
>

— Supposons que cela est vrai jusqu’au rang k :
becFDE HE g1kt
— Montrons que cela est vrai au rang k + 1 :
vricctipp B pkkpEE BR ppkricig L ppkl okl o pher2 ok

Par conséquent, en répétant ces dérivations n — 1 fois de suite, on dérivera a" labc(DE)"~! en
anbncn-

3 Langages réguliers et Automates finis

3.1 Grammaires réguliéres et langages réguliers

Définition (Grammaire réguliére) : On rappelle qu'une grammaire G = (T, N, S, R) est
réguliére
— a droite si les régles de R sont de la forme

A—aB ou A—a avecA,BE NetaeT

— & gauche si les régles de R sont de la forme

A— Ba ou A—a avecA,BeE NetaeT

Ezemple de grammaire régulicre a droite : G1 = (T, N1, 51, R1) avec
Tl = { a,b }
Ni= { 5,01}
Ry = { S1 — aS ‘ als
U —bUp | b}

15

Ezemple de grammaire régulicre a gauche : G2 = (Ty, Na, S, Ra) avec

T2 = { C(,,b }
No= { 82,0 }
R2 = { SQ — SQb | Ugb

Uy —>Usa | a }

G1 et Gy engendrent le méme langage : L(G1) = L(G2) = {a™b/n > 0,p > 0}

Définition (Langage régulier) : Un langage est régulier si et seulement s’il existe une gram-
maire réguliére générant ce langage.

Les grammaires et langages réguliers sont la base de la lexicographie. L’ensemble des mots-clés,
identificateurs, constantes numeériques, ... d’'un langage de programmation tel que le C+-+ est un
langage régulier et peut étre décrit par une grammaire réguliére.

L’intérét de distinguer grammaires réguliéres a droite ou & gauche apparait lors de ’analyse : si on

lit les symboles du mot a analyser de la gauche vers la droite, alors

- une grammaire réguliére & droite sera utilisée pour une analyse descendante, de ’axiome vers le

mot;

- une grammaire réguliére a gauche sera utilisée pour une analyse ascendante, du mot vers ’axiome.
Par exemple, pour analyser le mot aaabb avec la grammaire Gy, on construira la déri-
vation

S1 = aS1 = aaS1 = aaal; = aaabU; = aaabb

tandis que pour analyser ce mot avec la grammaire Go, on construira la dérivation

aaabb <= Usaabb <= Usabb <= Usbb <= Sob < So

3.2 Automates Finis Indéterministes

Un automate est une procédure effective (un algorithme) permettant de déterminer si un mot
donné appartient & un langage. A la classe des langages réguliers correspond une classe particuliére
d’automates (reconnaissant les langages réguliers et seulement ceux-ci) : la classe des automates
finis.

Définition (Automate Fini Indéterministe = AFI) : Un automate fini indéterministe est

défini par un quintuplet (K, T, M, I, F) tel que

— K est un ensemble fini d’états.

— T est le vocabulaire terminal (correspondant a 1’alphabet sur lequel est défini le langage).

— M est une relation dans K x T x K, appelée relation de transition (autrement dit, M est un
ensemble de triplets de la forme (S;,a,S;) ou S; et S; sont des états de K et a est un symbole
du vocabulaire terminal T'). Intuitivement, un triplet (S;,a,S;) € M signifie que si automate
se trouve dans I’état S; et le mot & analyser commence par le symbole a, alors 'automate peut
aller dans I'état S;.

— I C K est ’ensemble des états initiaux.

— F C K est ’ensemble des états finaux.

16

Représentation graphique d’un automate fini : On représente généralement un automate
fini par un graphe orienté dont les arcs sont étiquetés. Chaque état de 'automate est représenté
par un sommet du graphe. A chaque transition (S;,a,S;) € M on associe un arc du sommet .S;
vers le sommet S; étiqueté par a. Les sommets du graphe correspondant & des états initiaux de
I'automate sont repérés par une pointe de fléche. Les sommets du graphe correspondant & des états
finaux sont entourés de deux cercles.

Par exemple, VAFI (K, T,M,1,F) tel que

-K = {vava}’

-T ={a,b},
-M={(S,a,95),(S,a,V),(V,b,V),(V,b,U)},
-1 = {S}7

-F=A{U}

sera représenté graphiquement par le graphe :

Fonctionnement d’un AFI : De fagon informelle, un mot u est accepté par un AFI g’il existe
un chemin d’un sommet initial vers un sommet final tel que la concaténation des étiquettes des
arcs empruntés par le chemin soit égale & u. Sur 'exemple précédent, le langage des mots acceptés
par lautomate est £ = {a"b?/n > 0,p > 0}.

De facon plus formelle, le fonctionnement d'un AFI A = (K,T,M,I,F) est défini de la facon

suivante :

— Une configuration de 'automate est caractérisée par un couple (S, u) tel que S € K est I'état
courant et u € T* correspond a la fin du mot & analyser.

— La configuration (S’,u’) est dérivable en une étape de la configuration (S,u) (noté (S,u) =
(S u)) siu=a.u et (S,5a,8) € M.

— La configuration (S, u/) est dérivable en plusieurs étapes de la configuration (S,u) (noté (S, u) =
(S',u”)) si (S, u) peut étre obtenu de (S, u) par une succession de dérivations en une étape.

— Un mot w est accepté par 'automate s’il existe une dérivation

(So,w) = (S, €)

ou Sy € I est un état initial et S; € F' est un état final.
— Le langage L£(A) accepté par un automate fini A est ’ensemble des mots acceptés par A.

Non déterminisme : Un tel automate est dit indéterministe car d’une part il peut y avoir
plusieurs états initiaux, et d’autre part, étant donné un état S; € K et un symbole a € T, il peut
exister plusieurs transitions possibles (au niveau de la représentation graphique par un graphe,
ce non déterminisme correspond au cas oul il y a plusieurs arcs étiquetés par un méme symbole
terminal qui partent du méme sommet). Sur ’exemple précédent, quand "automate se trouve dans
Iétat S et que le mot & analyser commence par a, il a le choix entre rester dans 1’état .S ou aller
dans I’état T. Concrétement, dans ce cas, 'automate choisit “au hasard" une des possibilités, et
garde en mémoire le fait qu’il y a d’autres possibilités (on dit qu’il pose un point de choix). Si avec
la transition choisie il arrive a terminer la dérivation jusqu’a un état final, alors le mot est accepté

17

et on arréte l’exécution. En revanche, si 'automate n’arrive pas a terminer la dérivation, alors il
retourne jusqu’au dernier point de choix (on dit qu’il “backtrack") et recommence avec une autre
possibilité.

3.3 Automates Finis Déterministes

L’exécution d’un automate fini indéterministe peut s’avérer trés inefficace s’il comporte beaucoup
de points de choix : si & chaque état ’automate a le choix entre deux transitions, alors pour analyser
un mot de longueur n il faudra envisager, dans le pire des cas, de 'ordre de 2™ transitions (si on
a de la chance, et que 'on choisit toujours la “bonne" dérivation en premier, on pourra cependant
trouver une dérivation en n transitions). Pour éliminer ces points de choix, et rendre I’exécution
efficace, il faut que I'automate soit déterministe, c’est-a-dire qu’il ait un seul état initial et que,
étant donnés un état S; € K et un symbole a € T, il existe une seule transition possible.

Définition (Automate Fini Déterministe = AFD) : Un automate fini déterministe est

défini par un quintuplet (K,T, M, Sy, F') tel que

— K est un ensemble fini d’états.

— T est le vocabulaire terminal (correspondant a ’alphabet sur lequel est défini le langage).

— M est une fonction de K x T dans K, appelée fonction de transition (M (S;,a) donne 1’état
unique dans lequel 'automate doit aller quand il se trouve dans I’état S; et que le mot & analyser
commence par le symbole a).

— Sy € K est I’état initial.

F C K est 'ensemble des états finaux.

Par exemple, VAFD (K,T,M,S, F) tel que

K ={ S, V,UE)}

T ={ ab}

M ={ (Sa)—=V (S;b)=>E V,a)—>V
(U,a) = E (Ub)=-U (

Fo={ U}

est représenté graphiquement par le graphe :

SN
b

Oy ©

,@{@
O a,b

et accepte le langage L = {a™b?/n > 0,p > 0}.
L’état E de cet automate correspond a un état d’erreur : l'automate va dans cet état

dés lors qu’il reconnait que le mot ne fait pas partie du langage, et y reste jusque la fin
de l'analyse. Dans un souci de simplification, on ne représente généralement pas cet

18

état, et on représente l’automate par le graphe

()@
Un AFD fonctionne comme un AFI, et on définit de la méme maniére les notions de configuration,
dérivation entre configurations et acceptation d’un mot, la seule différence étant que la fonction
de transition M détermine de fagon unique le nouvel état dans lequel 'automate doit se placer au

moment de faire une dérivation. L’exécution d’un automate fini déterministe est résumée dans la
procédure “accepte" suivante :

procédure accepte
entrée : un AFD (K, T, M, Sy, F)
un tableau de caractéres v indicé de 1 & n
sortie : retourne vrai si u[l..n] appartient au langage, faux sinon
debut
etatCrt < Sy
141
tant que i < n faire
etatCrt < M (etatCrt, uli])
14—1+1
fin tant que
si etatCrt € F alors retourne vrai sinon retourne faux
fin

3.4 Equivalence entre AFI et AFD

Pour déterminer si un mot u de longueur n est accepté, un AFD effectue exactement n transitions,
tandis qu'un AFI en effectue de l'ordre de 2™. L’exécution d’'un AFD est donc nettement plus
efficace que celle d'un AFI. En contrepartie, on peut se demander si les AFI sont plus généraux,
c’est-a-dire s’ils acceptent plus de langages que les AFD. La réponse, négative, est donnée par le
théoréme suivant.

Théoréme (équivalence entre AFD et AFI) : La famille des langages acceptés par un AFD
est identique & la famille des langages acceptés par un AFI (autrement dit, s’il existe un AFI
reconnaissant un langage donné, alors il existe un AFD reconnaissant le méme langage).

La démonstration de ce théoréme est réalisée en donnant un algorithme permettant de construire
a partir d’'un AFI un AFD reconnaissant le méme langage. Chaque état de ’AFD correspond a un
ensemble d’états de 'AFI.

19

procédure rendDéterministe
entrée : un AF1 A= (K,T,M,I,F)
sortie : un AFD A" = (K", T, M', S}, F') tel que L(A) = L(A")
début
Sy 1
K' +{I}
vus +
tant que K’ # vus faire
soit U un état de K’ tel que U & vus
pour tout [€ T faire
Y+~ {SJ/HSZ eu, (Si,th) S M}
MU, «V
K+ K'U{V}
fin pour
vus < vus U {U}
fin tant que
Fl—{UeK/UNF =}
fin

Considérons par exemple UAFI (K, T, M, I, F)) suivant :

K= {51,5,853,54}

T= {a,b,c}

M = {(Sl,a, Sl), (51, a, 53), (52, b, Sg), (SQ, b, 53), (53, C, 53), (53,6, 54)}
I= {51,52}

F= {8}

correspondant au graphe suivant :

Pour plus de commodités, on représente la relation de transition M par la table suivante :

L [o [b [¢ |
Sy || {S1, S5} 0 0
So 0 {52, 53} [}
Sy [} [[}

On construit ensuite les états de I’AFD et leur fonction de transition. Au départ, 'AFD a un seul
état qui est composé de ’ensemble des états initiaux de ’AFI : sur notre exemple, I’état initial
de 'AFD est {S1,S52}. A chaque fois qu’on ajoute un nouvel état dans PAFD, on détermine sa

20

fonction de transition en faisant 'union des lignes correspondantes dans la table de transition de
PAFTI : sur notre exemple, pour I'état {S7, S2}, on fait 'union des lignes correspondant & Sy et Sa,
et on détermine la fonction de transition

M a b c
{51,852} | {51,853} | {52,583} [0

Autrement dit, quand on est dans I’état “S; ou S3" et qu’on lit un a, on va dans l’état “S7 ou
S3" (M ({51, S2},a) = {S1,S3}), quand on est dans 'état “S; ou S2" et qu’on lit un b, on va dans
Pétat “Sy ou S3" (M ({S1,S2},b) = {S2,53}) et quand on est dans I’état “S; ou Se" et qu’on lit un
¢, on va dans I'état “vide", correspondant a I'état d’erreur (M ({57, S2},¢) = 0. On rajoute ensuite
les états {S7,S3} et {S2,S3} & AFD et on détermine leur fonction de transition selon le méme
principe. De proche en proche, on construit la table de transition suivante pour I’AFD :

a b c
{81,852} | {51,953} | {S2, S5} 0
{51,583} | {51, 55} 0 {93,584}
{Sa, S5} 0 {82,535} | {S3, 54}
{53, 54} 1]] {53, 54}

L’ensemble des états de 'AFD est K’ = {{S1, 52}, {51, 53}, {S2, S35}, {53, S4}}. Les états de TAFD
contenant un état final de ’AFI sont des états finaux. Ici, 'AFT a un seul état final Sy et ’ensemble
des états finaux de PAFD est F' = {{S3,54}}. Cet AFD correspond au graphe suivant :

(0~
%

a
b*@
3.5 Equivalence entre automates finis et langages réguliers

On a défini au début de ce chapitre les langages réguliers comme étant les langages que 1’on
peut décrire par une grammaire réguliére. On a ensuite décrit les automates finis et on a montré
I’équivalence entre automates finis déterministes et indéterministes. On va montrer maintenant
I’équivalence entre langages réguliers et automates finis.

Théoréme : Tout langage accepté par un automate fini est régulier.

Pour démontrer ce théoréme, on montre que pour tout automate fini déterministe A = (K, T, M, Sy, F),
il existe une grammaire régulicre G telle que L(A) = L(G). En effet, on construit la grammaire
réguliére a droite G = (T, K, Sy, R) telle que

R={U+aV /UeK,aeTetV=MUa}lU{U<+a/UeK,aeT,V=MU,uaetV eF}

21

Théoréme : Tout langage régulier est accepté par un automate fini.

Pour démontrer ce théoréme, on montre que pour toute grammaire réguliére a droite G = (T, N, Sy, R
il existe un automate fini indéterministe A tel que L(A) = L(G). En effet, on construit PAFI
A= (K, T,M,I,F) tel que

- K =NU{Sf} (o Sy est un nouveau symbole n’apparaissant pas dans N)
-M={(A1,B)/“A—=1B” € R}U{(A,,S;)/”A—= 1" € R}

-1 ={S}

- F ={5;}

De la méme fagon, on montre que pour toute grammaire réguliére a gauche G = (T, N, Sy, R),
il existe un automate fini indéterministe A tel que L(A) = L(G). En effet, on construit ’AFI
A= (K,T,M,I,F) tel que

- K =NU{S;} (ou S; est un nouveau symbole n’apparaissant pas dans N)

-M={(B,l,A) /] “A— BlI” € R}U{(S;,l,A))”A—=1” € R}

-1 ={5}

- F={S}

3.6 Expressions réguliéres

Les expressions réguliéres permettent de décrire les langages réguliers, de fagon plus simple qu’en
utilisant des opérations ensemblistes.

Définition (expression réguliére) : Une expression E est une expression réguliére sur un
alphabet A si et seulement si

— E=0ou

- F=¢€ou

— E=aaveca€ Aou

— E=FE; | Ey et E; et E5 sont deux expressions réguliéres sur .4 ou

— E = FE1.Es et E; et Fy sont deux expressions réguliéres sur A ou

— E = E} et E; est une expression réguliére sur A

Les opérateurs , . et | ont une priorité décroissante. Si nécessaire, on peut ajouter des parenthéses.

Définition (langage décrit par une expression réguliére) : le langage £(F) décrit par une
expression réguliére F définie sur un alphabet A est défini par
- L(E)=0si E=10,

- L(E)={e} si E =k,
L(E)={a} si F = a,
C() == E(El) @] E(Eg) si b= E1 | Eg,
L(E) = [.:() (EQ) si B = E1 EQ,
L(E) = L(Ey)* si E = Ef ou E; est une expression réguliére sur A.

Par exemple, sur l’alphabet A = {a,b,c},
- E1 = a*bbc* décrit le langage L(E1) = {a™bbc? /n > 0,p > 0}
-E2={(a|b]|c)*(bb]| cc)a* décrit le langage L(E2) = {wbba™, weea™/w € A*,n > 0}

I’équivalence entre expressions réguliéres et langages réguliers est établie par les deux théorémes
suivants.

22

Théoréme : Toute expression réguliére décrit un langage régulier.

Pour démontrer ce théoréme, on montre que étant donnée une expression réguliére E définie sur
un alphabet T', on peut construire un automate fini indéterministe A = (K, T, M, I, F) tel que
L(E)=L(A):

—si E=0alors K ={So,Ss}, M =0,1={Sy} et F={Sg}.

—si E=calors K ={So}, M =0, 1={So} et F={S}

— st E=aalors K = {5y, S¢}, M ={(So,a,S¢), I ={So} et F = {Sy}

—si E = E; | E5 alors on construit récursivement deux AFI Ay = (Ky,T, M, I, Fy) et Ay =
(Ky, T, My, I, F5) reconnaissant respectivement £(FE1) et L(FEs), et on construit A a partir de
A1 et A2 :

-K=K, UKQU{S»L',SJ"},

-M =M UM,U{(S;,e,5)/S € L UL}U{(S,¢,S¢)/S € F1 U F»}
-1 ={5i}

- F={S5}.

—si E = FEj.F5 alors on construit récursivement deux AFI Ay = (Ky,T, My, I, F;) et Ay =
(Ky, T, My, I5, F5) reconnaissant respectivement L£(FE7) et L(Es), et on construit A a partir de
A1 et A2 :

- K=K UK,

- M = M UMQU{(Sf,E,Si)/Sf e F,S; EIQ}
-I=1

-F=F,.

— si E = EY alors on construit récursivement un AFI Ay = (K3, T, My, I, F1) reconnaissant L(F),
et on construit A & partir de A; :

—K:KlU{So},

-M =M U {(5076,51‘)/51‘ S Il}U{(Sf,G,SQ)/Sf S Fl}
-1 ={5}

- F = {S,).

I’AFT ainsi construit contiendra des transitions sur e. Ces transitions peuvent toujours étre sup-
primées (mais on ne verra pas ici 'algorithme permettant de supprimer ces transitions sur €).

Théoréme : Tout langage régulier peut étre décrit par une expression réguliére.

Pour démontrer ce théoréme, on peut montrer comment construire une expression réguliére & partir
d’un automate fini déterministe. L’idée est de décrire tous les chemins entre ’état initial et un état
final, les boucles étant traitées par l'introduction de 'opérateur *. L’expression réguliére finale est
alors I'union des expressions réguliéres ainsi obtenues. On ne développera pas plus ici la fagon de
construire ces expressions réguliéres.

3.7 Quelques propriétés des langages réguliers

Théoréme : Soient £ et Lo deux langages réguliers. Les langages £1 ULy, L1 N Lo, L1.L2, ¢(L1)
et L3 sont des langages réguliers.

Pour démontrer ce théoréme, on peut montrer comment construire un AFD reconnaissant ces
langages a partir des AFD reconnaissant £; et L. Pour I'union, la concaténation et l'itéré, la
construction est évidente et a été vue au niveau des expressions réguliéres. Pour le complémentaire,
il suffit d’échanger les états finaux et les autres états de 'automate. Pour l'intersection, on peut

23

par exemple utiliser le fait que £1 N Lo = c(e(Ly) Uce(Ls)).

4 Langages hors-contexte et Automates a pile

Certains langages ne peuvent pas étre décrits par une grammaire réguliére, et ne peuvent donc
pas étre reconnus par un automate fini (par exemple le langage {a"d"/n > 0}). On étudie dans ce
chapitre une classe de langages plus générale que celle des langages réguliers : la classe des langages
hors-contexte, décrits par des grammaires hors-contexte et reconnus par des automates a pile.

Définition (Grammaire hors-contexte) : : G = (T, N, S, R) est une grammaire hors-contexte
si toutes les régles de R sont de la forme A — w avec A € N et w € (N UT)x.

Définition (Langage hors-contexte) : On appelle langage hors-contexte un langage généré
par une grammaire hors contexte.

4.1 Arbres syntaxiques

Dans le cas d’une grammaire hors-contexte GG, on peut représenter la dérivation d’une phrase de
L(G) a partir de I’axiome a ’aide d’un arbre syntaxique (ou arbre d’analyse ou arbre de dérivation).
Cette représentation fait abstraction de l'ordre d’application des régles de la grammaire et aide a
la compréhension de la syntaxe de la phrase considérée.

Définition (Arbre syntaxique) : L’arbre syntaxique d’une phrase relativement a la grammaire

hors-contexte G = (T, N, S, R) est un arbre tel que

— la racine est étiquetée par le symbole de départ S,

— chaque noeud interne est étiqueté par un symbole non terminal de IV,

— chaque feuille est étiquetée par un symbole terminal de T,

— pour tout noeud interne, si son étiquette est le symbole non terminal A, et si ses n fils ont
respectivement pour étiquettes X1, Xo, ..., X,, alors

A— X1X9..X,

doit étre une régle de R.

Remarques :

— La lecture de gauche a droite des feuilles de I'arbre reconstitue la phrase que I’arbre représente.

— Etant donnée une grammaire hors-contexte G, une phrase w est générée par G si et seulement
si il existe un arbre syntaxique pour G qui génére w.

Considérons par exemple la grammaire G définie en 1.3 et dont les régles sont :

PH— GN V GN N — fille
GN— DN N — jouet
D —le V — regarde
D —la

24

L’arbre syntaxique associé au mot la fille regarde le jouet est :

PH
GN v GN
D N D N

la fille regarde le jouet

Définition (Phrase ambigiie) : Une phrase, générée par une grammaire, est ambigiie si elle
admet plus d’un arbre syntaxique pour cette grammaire.

Définition (Grammaire ambigiie) : Une grammaire est ambigiie si elle génére au moins une
phrase ambigue.

Considérons par exemple la grammaire G = (T, N, E, R) avec :
T ={ 1Id,+,- % /,(,) } ou Id signifie identificateur
N ={ E,Op}
R ={ E—-IW|(E)|EOpE
Op—+[-1*]/}

et considérons les deux arbres suivants :

E E
E Op E E Op E
E Op E * Id d + E Op E
Id + Id Id * Id

Dans les deux cas, la phrase associée est “Id + Id * Id”. On a donc deux arbres de dérivation pour
une méme phrase, et la grammaire G est ambigilie. En 'occurrence, on ne peut pas savoir si ’on
commence par 'addition ((Id+Id)*Id) ou la multiplication (Id+(Id*Id)).

Remarques :

— Le terme "ambigu" est appliqué & la grammaire et non au langage : il est souvent possible de
transformer une grammaire ambigiie en une grammaire non ambigiie générant le méme langage.
Cependant, il existe des langages pour lesquels il n’existe pas de grammaire non ambigiie; de
tels langages sont dits intrinséquement ambigus.

— La propriété d’ambigiiité est indécidable : cela signifie qu’il n’existe pas — et ne peut pas exister
— d’algorithme général qui, étant donnée une grammaire hors-contexte, puisse déterminer en un
temps fini si la grammaire est ambigiie ou non. Seules peuvent étre déterminées des conditions
suffisantes assurant la non-ambigiiité.

25

4.2 La forme de BACKUS-NAUR d’une grammaire

La notation de Backus-Naur (en anglais Backus-Naur Form, ou BNF) a été utilisée dés 1960

pour décrire le langage ALGOL 60, et depuis est employée pour définir de nombreux langages de

programmation. L’écriture BNF des régles de grammaire est définie comme suit :

— Le symbole — des régles de réécriture est remplacé par ::=,

— Les symboles désignant les éléments non-terminaux sont inclus entre chevrons < et >, ceci afin
de les distinguer des terminaux,

— Un ensemble de régles dont les parties gauches sont identiques, telles que

Az=ul,A=u2,...A=up
peut étre écrit de maniére abrégée :

A = ul|u2|...lup

4.3 Propriétés de fermeture des langages hors-contexte

On rappelle qu'un ensemble est fermé relativement & une opération a n opérandes si tout résultat
de cette opération appliquée & n éléments de I’ensemble appartient encore & I’ensemble.

Théoréme : 1'union de deux langages hors-contexte est un langage hors-contexte,
le produit de deux langages hors-contexte est un langage hors-contexte,
et I'itéré d’un langage hors contexte est un langage hors contexte.

En effet, soient deux langages :
- L9 généré par la grammaire G; = (11, N1, 51, R1) et
- Lo généré par la grammaire Gy = (1o, Na, So, Ra),
tels que Ny N Ny = () (si tel n’est pas le cas, on renomme certains éléments non-terminaux) alors
— Le langage £1 U L5 est généré par la grammaire hors contexte G = (T, N, S, R) telle que
ST =T, UT,
- S est un nouveau symbole non terminal (S ¢ N1 U N3),
-N=N; UNQU{S},
-R=R, URQU{S—>51,5—>SQ}.
— Le langage £1L5 est généré par la grammaire hors contexte G = (T, N, S, R) telle que
ST =T,UT,
- S est un nouveau symbole non terminal (S ¢ Ny U N3),
-N=DN; UNQU{S},
-R=R, URQU{S%SPS’Q}.
— Le langage £1x est généré par la grammaire hors contexte G = (T3, N, S, R) telle que
- S est un nouveau symbole non terminal (S ¢ Ny U Na),
- N =N U{S},
-R:RlU{S—)5157S—>6}.
En revanche, I'intersection de deux langages hors-contexte et le complémentaire d’un langage hors-
contexte ne sont pas nécessairement des langages hors contexte.

26

4.4 Automates a pile

Les langages hors-contexte, décrits par des grammaires hors-contexte, sont reconnus (acceptés) par
des automates a pile. De facon informelle, un automate a pile est un automate fini auquel on a
ajouté une pile de capacité illimitée initialement vide. L’exécution d’un automate a pile sur un
mot donné est semblable & celle d'un automate fini. Toutefois, & chaque étape, 'automate & pile
consulte le sommet de sa pile et le remplace éventuellement par une suite de symboles.

Définition (Automate a pile) : Un automate a pile est un quintuplet A = (T, P,Q, M, Sy) tel
que

— T est le vocabulaire terminal,

— P est le vocabulaire de pile (contenant en particulier un symbole initial de pile vide, noté 1),
— @ est un ensemble fini d’états,

— M est un ensemble de transitions,

— 5o € @ est ’état initial.

Le vocabulaire de pile contient I’ensemble des symboles qui pourront apparaitre sur la pile, et n’est
pas nécessairement distinct du vocabulaire terminal (on peut avoir TN P # ().

Une transition de I'automate & pile est semblable & celle d’un automate fini, & part qu’elle spécifie
en plus la manipulation de la pile. Une transition de M est de la forme
(état, symbole_lu, sommet_pile) — (nouvel_état, action_sur_pile)
tel que
— état et nouvel_état sont des états de @,
— symbole_lu est soit un symbole terminal de T, soit €, signifiant que I'automate ne regarde pas
le mot,
— sommet_pile est soit un symbole de P, soit ¢, signifiant que ’automate ne regarde pas le sommet
de la pile, et
— action_sur_pile est soit :
“dépiler le symbole au sommet de la pile”, ou
“dépiler le symbole au sommet de la pile puis empiler une suite de symboles” ou
“empiler une suite de symboles”, ou
“ne rien faire”.

De facon informelle, la transition
(Si,u,v) = (Sg,action sur pile)

signifie que 'automate peut passer de 1'état S; a l’état Sy, pour autant que le mot & analyser
commence par le symbole u et que la pile ait en sommet le symbole v. Aprés la transition, ’automate
a consommé le symbole u du mot & analyser et a effectué 'action spécifiée dans action sur_pile.
Un triplet (S;,u,v) est appelé une situation.

De facon plus formelle, le fonctionnement de 'automate A = (T, P, Q, M, Sy) est défini de la facon
suivante :
— Une configuration de 'automate est caractérisée par un triplet :

(S,m,p) avec S € Q,meT" et pe P*
c’est & dire, un état courant S, une suite m de symboles terminaux (correspondant a la fin du

mot a analyser) et une suite p de symboles de pile (correspondant a I’état courant de la pile).

27

— La configuration (S’,m’,p’) est dérivable en une étape de la configuration (.S, m,p)
(noté (S,m,p) = (S',m’,p')) si
— (S,u,v) — (5',action_sur pile) est une transition de M,

— m =u.m’ (le mot m & analyser commence par le symbole u),
— le symbole au sommet de la pile p est v.
— p est la pile obtenue aprés avoir effectué Paction de action_sur_pile sur la pile p.

— La configuration (S’,m/,p’) est dérivable en plusieurs étapes de la configuration (S, m,p)
(noté (S, m,p) =* (S',m/,p")) si (S',m/,p’) peut étre obtenu de (S, m,p) par une succession de
dérivations en une étape.

— Un mot w est accepté par 1’automate a pile A si

(So,w, L) =" (S,e, 1)

ou L est le symbole de pile vide.
Autrement dit, un mot est accepté par 'automate s’il existe une suite de transitions & partir de
I’état initial et pile vide, conduisant & la lecture entiére du mot et a la pile & nouveau vide.

— Le langage £(A) accepté par 'automate a pile A est ’ensemble des mots acceptés par A.

Les automates & pile que nous avons définis acceptent un mot lorsqu’il existe une dérivation menant
& une configuration ou la pile est vide et le mot entiérement lu. Pour cette raison, ils sont appelés
automates a pile acceptant sur pile vide. Une autre définition des automates a pile est celle des
automates a pile acceptant sur état final. Un tel automate spécifie en plus un ensemble F' C @
d’états finaux. Un mot est accepté s’il existe une dérivation menant & une configuration ot ’état
est final (la pile n’étant pas nécessairement vide) :

(So,w, L) =" (S,e,p) avec S€F

Exemple

Soit 'automate a pile reconnaissant le langage des mots formés sur {a,b}* et contenant le méme
nombre de a et de b: A = (T, P,Q, M, q) tel que

-T ={a,b}

-P= {a7 b}

-Q={q}
Etat | Symbole | Sommet || Nouvel | Action

lu de pile || etat sur pile

q a L q empiler(a)
q b L q empiler(b)

-M = -
q a a q empiler(a)
q b b q empiler(b)
q a b q depiler(b)
q b a q depiler(a)

28

Le fonctionnement de cet automate sur le mot w = aabbabba est :

Etat Mot | Pile
q aabbabba il
q abbabba | al
q bbabba | aaL
q babba | al
q abba il
q bba | al
q ba il
q a| bl
q € 1

Comme pour les automates finis, on peut donner des automates & pile une représentation par
graphe.

4.5 Automates a pile déterministes

Définition (Automate & pile déterministe) : Un automate a pile est dit déterministe si a
toute situation ou configuration donnée ne correspond au plus qu’une transition.

Dans le cas d’un automate déterministe, si un mot est accepté par le langage, alors il existe une
seule dérivation possible pour ce mot. En revanche, si un automate n’est pas déterministe, il peut
y avoir des configurations pour lesquelles plusieurs transitions différentes sont possibles. Certaines
de ces transitions peuvent amener a des échecs (I’automate est bloqué dans une configuration qui
n’est pas d’acceptation) tandis que d’autres peuvent amener a une dérivation succés. Dans ce cas,
il est nécessaire d’examiner toutes les transitions possibles jusqu’a en trouver une qui réussisse.
Par conséquent, le temps nécessaire a un automate non déterministe pour reconnaitre un mot est
généralement bien plus long que pour un automate déterministe.

Une question naturelle est de se demander si tout langage hors-contexte peut-étre accepté par un
automate a pile déterministe. La réponse a cette question est malheureusement non : il existe des
langages hors-contexte qui ne sont acceptés par aucun automate a pile déterministe. Les langages
acceptés par les automates a piles déterministes forment donc une sous-classe des langages hors-
contexte : la classe des langages hors-contexte déterministes.

L’application principale des langages hors-contexte est la description de la syntaxe des langages
de programmation. Pour obtenir des compilateurs efficaces (pouvant étre appliqués a de trés longs
programmes), il est intéressant de se limiter a des grammaires décrivant des langages hors-contexte
déterministes.

4.6 Automates a pile et langages hors-contexte

Théoréme : Un langage est hors-contexte si et seulement si il est accepté par un automate a pile.

En effet, a partir d’'une grammaire hors-contexte G = (T, N, S, R), on construit 'automate a pile
A= (TP, Q' , M, S") reconnaissant le méme langage de la facon suivante :

29

=T
- P'=TUNU{L}
Q" = {p, q} tel que p et ¢ ne sont pas des symboles de T'U N
M= {(pe, 1) = (g, [empiler(S))
U {(g,¢, B) = (g, [depiler(B), empiler(S,), . .., empiler(Sz), empiler(S;)])/
(B*) SlSQSn) ER}
U {(ga,0) - (g, [depiler(a))/a € T}
S =p

Intuitivement, ’automate fonctionne de la facon suivante :

— Si le symbole en sommet de pile est un symbole non terminal B, on le remplace par une forme
u telle qu’il existe une régle B — u dans R.

— Si le symbole en sommet de pile est un symbole terminal a, et le symbole en téte de la chaine a
analyser est a, alors on dépile a de la pile, et on enléve a du mot a analyser.

Il est & noter qu'un automate construit de cette facon sera généralement non déterministe : dés

qu’il existe plusieurs régles ayant un méme symbole B en partie gauche, il y a plusieurs transitions
dont la partie gauche est (g, €, B).

30

