
École CIMPA – MADAGASCAR
Exercices sur les automates

I Exercice 1 J On considère l’alphabet A =
{a, b, c}. Soit le mot u = abbc.

(a) Écrire une expression rationnelle pour le lan-
gage de tous les mots qui commencent par u (par
exemple, abbcbabbcc commence par u).

(b) Écrire une expression rationnelle pour le lan-
gage de tous les mots qui terminent par u (par ex-
emple, babbababcabbc termine par u).

(c) Écrire une expression rationnelle pour le lan-
gage de tous les mots qui commencent qui contien-
nent u (par exemple, bbabcabbcbcc contient u).

Correction :

(a) abbc ·A∗

(b) A∗ · abbc

(c) A∗ · abbc ·A∗

I Exercice 2 J On considère l’automate A suiv-
ant qui reconnâıt L(A) :
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(a) Est-il déterministe ? Est-il complet ?

(b) Donnez un mot de longueur 4 qui est reconnu
par A et un qui n’est pas reconnu.

(c) A quoi sert l’état 4 ?

(d) Proposez un automate qui reconnâıt le
complémentaire de L(A).

Correction :

(a) A est déterministe : un seul état initial, et ja-
mais deux transitions partant d’un même sommet
et étiquetées par la même lettre. Il n’est en re-
vanche pas complet, on ne peut pas lire la lettre b
depuis l’état 3.

(b) abaa ∈ L(A) et abbb /∈ L(A).

(c) L’état 4 ne sert à rien car on ne peut pas
l’atteindre depuis l’état initial.

(d) Il faut procéder en deux temps : compléter
l’automate, puis échanger terminaux et non-
terminaux. Cela donne :
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I Exercice 3 J On se place sur A = {0, 1}.

(a) Donnez un automate déterministe et complet
A2 qui reconnâıt les mots qui sont la représentation
binaire d’un nombre pair.

(b) Donnez un automate déterministe et complet
A3 qui reconnâıt les mots qui sont la représentation
binaire divisible par 3.

(c) Calculez l’automate produit de A2 et A3. Quel
langage reconnâıt-il ?

Correction :

(a) On a juste besoin de tester si le mot se termine
par 0 ou non. Deux états suffisent :

0 1

1

0

0 1

(b) Cet exemple a été traité dans le cours de Mar-
ion. Il suffit de garder en mémoire le reste mod-
ulo 3, et remarquer que (i) ajouter un 0 à la fin
d’une écriture binaire revient à le multiplier par 2
(comme ajouter un 0 en fin d’écriture décimale re-
vient à multiplier par 10) et (ii) ajouter un 1 à la
fin d’une écriture binaire revient à le multiplier par
2 et ajouter 1. Cela donne :
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(c) On calcule l’automate produit A2 ×A3 :
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Il reconnâıt les nombres divisibles à la fois par 2
et 3, c’est-à-dire les nombres divisibles par 6.

I Exercice 4 J Déterminisez l’automate suivant :
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Correction :
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I Exercice 5 J On travaille sur A = {a, b, c}.

(a) Donnez un automate non-déterministe qui re-
connâıt tous les mots qui terminent par aabc.

(b) Déterminisez l’automate.

Correction :

(a) Le plus simple est surement l’automate suivant :

0 1 2 3 4
a a b c

a, b, c

(b) On obtient :

α β γ δ λ
a a b c

b, c

b, c
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a

I Exercice 6 J On considère l’automate suivant :
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(a) Ecrire le système d’équations sur les langages
L1, L2 et L3 (on rappelle que ce sont les langages
reconnus si on place l’état initial en 1, 2 ou 3, re-
spectivement).

(b) En utilisant le Lemme d’Arden sur le système,
donnez une expression rationnelle pour le langage
reconnu par l’automate.

Correction :

(a) En lisant directement sur l’automate :
L1 = a · L2 ∪ b · L3

L2 = ε ∪ b · L1

L3 = a · L3 ∪ b · L2

(b) Il y a plusieurs façons de faire, selon l’ordre
dans lequel on traite les équations. On va com-
mencer par appliquer le Lemme d’Arden à la
dernière équation, ce qui nous donne :

L3 = a∗b · L2.
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Ensuite on injecte cette expression de L3 dans la
première équation :

L1 = a · L2 ∪ ba∗b · L2 = (a ∪ ba∗b)L2.

Comme la deuxième équation exprime L2 en fonc-
tion de L1 on en déduit que :

L1 = (a∪ba∗b)(ε∪b·L1) = (ab∪ba∗bb)L1∪(a∪ba∗b)

On applique une dernière fois le Lemme d’Arden :

L(A) = L1 = (ab ∪ ba∗bb)∗(a ∪ ba∗b).

F Exercice 7 F Dans cet exercice on veut
démontrer le Lemme d’Arden, dont on rappelle
l’énoncé : On considère l’équation sur les langages

X = E ·X ∪ F, (1)

où E et F sont donnés (avec ε /∈ E) et X est
l’inconnue. L’équation (1) admet une unique so-
lution qui est X = E∗F .

(a) Montrez que E∗F est solution de l’équation (1).

(b) Soit L une solution de l’équation, montrez que
EnF ⊂ L pour tout n ≥ 0. En déduire qu’on a
E∗F ⊂ L.

(c) Soit L une solution de l’équation et u un mot
de longueur n de L. Montrez que u ∈ E∗F . En
déduire que L ⊂ E∗F .

Correction :

(a) On a

E · E∗F ∪ F = (E · E∗ ∪ ε)F = E∗F,

Donc E∗F est bien solution de l’équation.

(b) Comme L est solution on a

L = E · L ∪ F
= E(E · L ∪ F ) ∪ F = E2L ∪ EF ∪ F
= E3L ∪ E2F ∪ EF ∪ F
...

= En+1L ∪ EnF ∪ · · · ∪ EF ∪ F

Et donc, on a bien EnF ⊂ L. Comme c’est vrai
pour tout n et par définition de l’étoile, on a E∗F ⊂
L.

(c) On repart de l’équation

L = En+1L ∪ EnF ∪ · · · ∪ EF ∪ F.

Comme ε /∈ E, les mots de En+1L sont de longueur
au moins n + 1. Donc u ∈ EnF ∪ · · · ∪ EF ∪ F ⊂
E∗F . Par suite E∗F contient tous les mots de L et
donc L ⊂ E∗F .

F Exercice 8 F Soit A = (A,Q, δ) une structure
de transition déterministe, c’est-à-dire un automate
déterministe sans état initial, ni états terminaux.
Pour tout couple d’état p, q ∈ Q, on note Lp,q le
langage reconnu en plaçant l’état initial en p et un
unique état terminal en q.

(a) Montrez que Lp,q est un langage rationnel.

(b) Soit K un langage, on note
√
K le langage :√

K = {u ∈ A∗ | uu ∈ K}. Montrez que si K est
rationnel, alors

√
K aussi. On pourra utiliser les

Lp,q d’un automate reconnaissant K.

Correction :

(a) Par définition, Lp,q est reconnu par l’automate
(A,Q, δ, p, {q}), il est donc rationnel.

(b) Soit A = (A,Q, δ, q0, F ) un automate
déterministe qui reconnait K. On note L le lan-
gage défini par

L =
⋃
f∈F

⋃
p∈Q

(Lq0,q ∩ Lq,f )

Comme L est une union d’intersections de Lp,q, il

est rationnel. On va montrer que L =
√
K par

double inclusion :
•
√
K ⊂ L : pour tout u ∈

√
K, on a uu ∈ L,

donc uu étiquette un chemin de l’état initial q0 à
un certain état terminal que l’on va noter f . Le
long de ce chemin, après avoir lu le préfixe u de
uu, on arrive dans un certain état que l’on note q.
Schématiquement :

q0
u−−−−→ q

u−−−−→ f

On en déduit que u ∈ Lq0,q et u ∈ Lq,f , et donc
que u ∈ L.
• L ⊂

√
K : soit u ∈ L. Il existe donc q ∈ Q et

f ∈ F tels que u ∈ Lq0,q ∩Lq,f . Cela signifie que u
étiquette un chemin de q0 à q et de q à f . Par suite
uu est reconnu par A, et est donc dans K. Ce qui
prouve que u ∈

√
K.
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