
1

Gestion de mémoire: objectifs

 Optimisation de l ‟utilisation de la mémoire

principale = RAM

 Les plus grand nombre possible de

processus actifs doit y être gardé, de façon

à optimiser le fonctionnement du système

en multiprogrammation

garder le système le plus occupé possible,

surtout l’UC

s’adapter aux besoins de mémoire de l ’usager

allocation dynamique au besoin

2

Gestion de la mémoire

Dans ce chapitre nous verrons que, pour optimiser

l’utilisation de la mémoire, les programmes sont

éparpillés en mémoire selon des méthodes différentes:

Pagination, segmentation

3

Gestion de la mémoire: concepts dans ce chapitre

 Adresse physique et adresse logique

mémoire physique et mémoire logique

 Remplacement

 Allocation contiguë

Partitions fixes

Partitions variables

 Pagination

 Segmentation

 Segmentation et pagination combinées

4

Application de ces concepts

 Pas tous les concepts de ce chapitre sont

effectivement utilisés tels quels

aujourd‟hui dans la gestion de mémoire

centrale

 Cependant plusieurs se retrouvent dans le

domaine de la gestion de mémoires

auxiliaires, surtout disques

5

Mémoire/Adresses physiques et logiques

 Mémoire physique:
 la mémoire principale RAM de la machine

 Adresses physiques: les adresses de cette
mémoire

 Mémoire logique: l‟espace d‟adressage
d‟un programme

 Adresses logiques: les adresses dans cet
espace

 Il faut séparer ces concepts car
normalement, les programmes sont à
chaque fois chargés à des positions
différentes dans la mémoire
Donc adresse physique ≠ adresse logique

6

Traduction adresses logiques adr. physiques

MMU: unité de gestion de mémoire
 unité de traduction adresses
 (Memory Management Unit)

7

Définition des adresses logiques

une adresse logique est une adresse à une

location de programme

par rapport au programme lui-même seulement

 indépendante de la position du programme en

mémoire physique

8

Vue de l’usager

 Normalement, nous avons plusieurs types

d‟adressages p.ex.

 les adresses du programmeur (noms

symboliques) sont traduites au moment de la

compilation dans des adresses logiques

ces adresses sont traduites en adresses

physiques, après chargement du programme

en mémoire, par l’unité de traduction adresses

(MMU)

9

Aspects du chargement

 Pour un module de chargement c‟est de

trouver de l‟éspace libre en mémoire soit:

 1- contiguë ou

 2- non contiguë

 Traduire les adresses du programme et

effectuer les liaisons par rapport aux

adresses où le module est chargé.

10

Traduction d’adresses logique  physique

 Dans les premiers systèmes, un programme était toujours

chargé aux mêmes adresses de mémoire

 La multiprogrammation et l‟allocation dynamique ont

engendré le besoin de lire un programme dans de

différentes positions

 Au début, ceci était fait par le chargeur (loader) qui

changeait les adresses avant de lancer l ‟exécution

 Aujourd‟hui, ceci est fait par le MMU au fur et à mesure que

le programme est exécuté

 Ceci ne cause pas d‟hausse de temps d‟exécution, car le

MMU agit en parallèle avec autres fonctions d‟UCT

 P.ex. l’MMU peut préparer l’adresse d’une instruction en

même temps que l’UCT exécute l’instruction précédente

11

1- Affectation contiguë de mémoire

Affectation de tout le processus en un seul morceau

en mémoire

 Nous avons plusieurs programmes à exécuter

 Nous pouvons les charger en mémoire les uns

après les autres

 le lieu où un programme est chargé n’est connu que au

moment du chargement

 Besoins de matériel: registres translation et

registres limites

12

Affectation contiguë de mémoire

Nous avons ici 4 partitions pour des programmes -

chacun est lu dans une seule zone de mémoire

SE

programme 1

disponible

programme 2

programme 3

13

Registres limites et translation dans MMU

adresse de base de
la partition où le
programme en
exécution se trouve

adresse limite de la

partition où se trouve

le programme en

exécution

14

Partitions fixes

Première organisation de

l‟allocation contiguë

 Mémoire principale

subdivisée en régions

distinctes: partitions

 Les partitions sont soit de

même taille ou de tailles

inégales

 N‟importe quel programme

peut être affecté à une

partition qui soit

suffisamment grande

15

Algorithme de placement pour
partitions fixes

 Partitions de tailles

inégales: utilisation de

plusieurs queues

 assigner chaque

processus à la partition de

la plus petite taille pouvant

le contenir

 1 file par taille de partition

 tente de minimiser la

fragmentation interne

 Problème: certaines files

seront vides s’il n’y a pas

de processus de cette

taille (fragemantation

externe)

16

Algorithme de placement pour
partitions fixes

 Partitions de tailles

inégales: utilisation

d‟une seule file

 On choisit la plus petite

partition libre pouvant

contenir le prochain

processus

 le niveau de

multiprogrammation

augmente au profit de la

fragmentation interne

17

Partitions fixes

 Simple, mais...

 Inefficacité de l‟utilisation de la mémoire:

tout programme, si petit soit-il, doit

occuper une partition entière. Il y a

fragmentation interne.

 Les partitions à tailles inégales atténue ces

problèmes mais ils y demeurent...

18

Partitions dynamiques

 Partitions en nombre et tailles variables

 Chaque processus est alloué exactement la

taille de mémoire requise

 Probablement des trous inutilisables se

formeront dans la mémoire: c‟est la

fragmentation externe

19

Partitions dynamiques: exemple

 (d) Il y a un trou de 64K après avoir chargé 3 processus: pas

assez d‟espace pour autre processus

 Si tous les processus se bloquent (p.ex. attente d‟un événement),

P2 peut être permuté et P4=128K peut être chargé.

Swapped out

20

Partitions dynamiques: exemple

 (e-f) P2 est suspendu, P4 est chargé. Un trou de 224-128=96K est créé (fragmentation

externe)

 (g-h) P1 se termine ou il est suspendu, P2 est chargé à sa place: produisant un autre

trou de 320-224=96K...

 Nous avons 3 trous petits et probablement inutiles. 96+96+64=256K de fragmentation

externe

 COMPRESSION pour en faire un seul trou de 256K

21

Technique d’allocation de la mémoire

 Avant d‟implanter une technique de gestion de

la mémoire centrale par va-et-vient, il est

nécessaire de connaître son état : les zones

libres et occupées; de disposer d‟une

stratégie d‟allocation et enfin de procédures

de libération. Les techniques que nous allons

décrire servent de base au va-et-vient; on les

met aussi en œuvre dans le cas de la

multiprogrammation simple où plusieurs

processus sont chargés en mémoire et

conservés jusqu‟à la fin de leur exécution.

22

État de la mémoire

 Le système garde la trace des

emplacements occupés de la mémoire par

l‟intermédiaire :

D’une table de bits ou bien

D’une liste chaînée.

La mémoire étant découpée en unités, en

blocs, d‟allocation

23

Tables de bits

0

0

1

1

0

0

On peut conserver l’état des blocs de mémoire grâce à une

table de bits. Les unités libres étant notées par 0 et ceux

occupées par un 1. (ou l’inverse).

La technique des tables de bits est simple à implanter, mais

elle est peu utilisée. On peut faire la remarque suivante : plus

l’unité d’allocation est petite, moins on a de pertes lors des

allocations, mais en revanche, plus cette table occupe de

place en mémoire.

24

Listes chaînées
On peut représenter la mémoire par une liste

chaînée de structures dont les membres sont :

 le type (libre ou occupé),

 l’adresse de début,

 la longueur, et

un pointeur sur l’élément suivant.

L P P

0

5

5

3

8

2

0 5 8 10 15 20

On peut légèrement modifier ce schéma en prenant deux

listes : l’une pour les processus et l’autre pour les zones libres.

25

Algorithmes de Placement

 pour décider de

l‟emplacement du

prochain processus

 But: réduire l‟utilisation

de la compression

(prend du temps...)

 Choix possibles:

 “Best-fit”: choisir

l’emplacement dont la

taille est la plus proche

 “First-fit”: choisir le 1er

emplacement à partir du

début

 “Worst-fit”: choisir

l’emplacement dont la

taille est la plus loin

Worst Fit

26

Algorithmes de placement: commentaires

 Quel est le meilleur?

 critère principal: diminuer la probabilité de situations où un

processus ne peut pas être servi, même s’il y a assez de

mémoire...

 La simulation montre qu‟il ne vaut pas la peine d‟utiliser les

algorithmes les plus complexes... donc first fit

 “Best-fit”: cherche le plus petit bloc possible: l‟espace

restant est le plus petit possible

 la mémoire se remplit de trous trop petits pour contenir un

programme

 “Worst-fit”: les allocations se feront souvent à la fin de

la mémoire

27

Fragmentation: mémoire non utilisée

 Un problème majeur dans l‟affectation

contiguë:

 Il y a assez d’espace pour exécuter un

programme, mais il est fragmenté de façon non

contiguë

externe: l’espace inutilisé est entre partitions

 interne: l’espace inutilisé est dans les partitions

28

Compaction

 Une solution pour la fragmentation externe

 Les programmes sont déplacés en mémoire de

façon à réduire à 1 seul grand trou plusieurs petits

trous disponibles

 Effectuée quand un programme qui demande

d‟être exécuté ne trouve pas une partition assez

grande, mais sa taille est plus petite que la somme

des fragmentations externes existantes

 Désavantages:

 temps de transfert programmes

 besoin de rétablir tous les liens entre adresses de

différents programmes

29

Allocation non contiguë

 A fin réduire le besoin de compression, le prochain pas est
d`utiliser l‟allocation non contiguë

 diviser un programme en morceaux et permettre l`allocation
séparée de chaque morceau

 les morceaux sont beaucoup plus petits que le programme
entier et donc permettent une utilisation plus efficace de la
mémoire

 les petits trous peuvent être utilisés plus facilement

 Il y a deux techniques de base pour faire ceci: la pagination
et la segmentation

 la segmentation utilise des parties de programme qui ont une
valeur logique (des modules)

 la pagination utilise des parties de programme arbitraires
(division du programmes en pages de longueur fixe).

 elles peuvent être combinées

30

Les segments comme unités d’alloc mémoire

0

2

1

3

0

3

1

2

espace usager mémoire physique

Étant donné que les segments sont plus petits que les programmes entiers,

cette technique implique moins de fragmentation (qui est externe dans ce cas)

31

Mécanisme pour la segmentation
 Un tableau contient l‟adresse de début de tous les segments dans un

processus

 Chaque adresse dans un segment est ajoutée à l ‟adresse de début du

segment par la MMU

tableau de segments

0

3

1

2

mémoire physique

Adr de 2

Adr de 1

Adr de 0

Adr de 3

segment courant

32

Détails

 L‟adresse logique consiste d ‟une paire:

 <No de segm, décalage>

 où décalage est l ’adresse dans le segment

 le tableau des segments contient: descripteurs de
segments

 adresse de base

 longueur du segment

 Infos de protection

 Dans le PCB du processus il y aura un pointeur à
l‟adresse en mémoire du tableau des segments

 Il y aura aussi là dedans le nombre de segments
dans le processus

 Au moment de la commutation de contexte, ces
infos seront chargées dans les registres
appropriés d‟UC

33

emacs

VI

72773

34

Traduction d`adresses dans la segmentation

Aussi, si d > longueur: erreur!

VI

} d

Segment 0

35

Partage de segments: le segment 0 est partagé

36

Segmentation et protection

 Chaque entrée dans la table des segments

peut contenir des infos de protection:

 longueur du segment

privilèges de l`usager sur le segment: lecture,

écriture, exécution

Si au moment du calcul de l’adresse on trouve

que l’usager n’a pas droit d’accèsinterruption

ces infos peuvent donc varier d’un usager à

autre, par rapport au même segment!

limite base read, write, execute?

37

Évaluation de la segmentation simple

 Avantages: l‟unité d‟allocation de mémoire (segment) est

 plus petite que le programme entier

 une entité logique connue par le programmeur

 les segments peuvent changer de place en mémoire

 la protection et le partage de segments sont faciles (en

principe)

 Désavantage: le problème des partitions dynamiques:

 La fragmentation externe n’est pas éliminée:

 trous en mémoire, compression?

 Une autre solution est d‟essayer à simplifier le mécanisme

en utilisant unités d‟allocation mémoire de tailles égales

 PAGINATION

38

Segmentation contre pagination

 Le problème avec la segmentation est que

l‟unité d‟allocation de mémoire (le

segment) est de longueur variable

 La pagination utilise des unités

d‟allocation de mémoire fixe, éliminant

donc ce problème

39

Pagination simple

 La mémoire est partitionnée en petits morceaux de

même taille: les pages physiques ou „cadres‟ ou

„frames‟

 Chaque processus est aussi partitionné en petits

morceaux de même taille appelés pages (logiques)

 Les pages logiques d‟un processus peuvent donc être

assignés aux cadres disponibles n‟importe où en

mémoire principale

 Conséquences:

 un processus peut être éparpillé n’importe où dans la

mémoire physique.

 la fragmentation externe est éliminée

40

Exemple de chargement de processus

 Supposons que le processus B se termine ou

est suspendu

41

Exemple de chargement de processus

 Nous pouvons maintenant

transférer en mémoire un

processus D, qui demande

5 cadres

 bien qu`il n’y ait pas 5

cadres contigus

disponibles

 La fragmentation externe

est limitée au cas que le

nombre de pages

disponibles n‟est pas

suffisant pour exécuter un

programme en attente

 Seule la dernière page d‟un

processus peut souffrir de

fragmentation interne

42

Tableaux de pages

43

Tableaux de pages

 Le SE doit maintenir une table de pages pour chaque

processus

 Chaque entrée d‟une table de pages contient le numéro de

cadre où la page correspondante est physiquement

localisée

 Une table de pages est indexée par le numéro de la page

afin d‟obtenir le numéro du cadre

 Une liste de cadres disponibles est également maintenue
(free frame list)

44

Adresse logique
(pagination)

 L‟adresse logique est facilement

traduite en adresse physique car

la taille des pages est une

puissance de 2

 L‟adresse logique (n,d) est

traduite à l ‟adresse physique

(k,d) en utilisant n comme index

sur la table des pages et en le

remplaçant par l‟adresse k

trouvée

 d ne change pas

45

Adresse logique (pagination)

 Donc les pages sont invisibles au programmeur,

compilateur ou assembleur (seule les adresses

relatives sont employées)

 La traduction d‟adresses au moment d‟exécution est

facilement réalisable par le matériel:

 l’adresse logique (n,d) est traduite en une adresse

physique (k,d) en indexant la table de pages et en

annexant le même décalage d au numéro du cadre k

 Un programme peut être exécuté sur différents matériels

employant dimensions de pages différentes

46

Traduction d’adresses: segmentation et pagination

Tant dans le cas de la segmentation, que dans le cas de la

pagination, nous ajoutons le décalage à l’adresse du segment

ou page.

Mécanisme: matériel

47

Deux petits problèmes

A) Considérez un système de 4 cadres ou pages physiques, chacune de 4 bytes.
Les adresses sont de 4 bits, deux pour le numéro de page, et 2 pour le

décalage. Le tableau de pages du processus en exécution est:

Numéro de

page

Numéro de

cadre

00 11

01 10

10 01

11 00

.
Considérez l'adresse logique 1010. Quelle sera l'adresse physique

correspondante?

B) Considérez maintenant un système de segmentation, pas de pagination. Le

tableau des segments du processus en exécution est comme suit:

Segment
number

Base

00 110

01 100

10 000

Considérez l'adresse logique (no de seg, décalage)= (01, 01) , quelle est
l'adresse physique?

48

Segmentation simple vs Pagination simple

 La pagination se préoccupe seulement du problème du

chargement, tandis que

 La segmentation est visible au programmeur mais la

pagination ne l‟est pas

 Le segment est une unité logique de protection et partage,

tandis que la page ne l‟est pas

 Donc la protection et le partage sont plus aisés dans la

segmentation

 La segmentation requiert un matériel plus complexe pour la

traduction d‟adresses (addition au lieu d`enchaînement)

 La segmentation souffre de fragmentation externe (partitions

dynamiques)

 La pagination produit de fragmentation interne, mais pas

beaucoup (1/2 cadre par programme)

 Heureusement, la segmentation et la pagination peuvent être

combinées

49

Récapitulation sur la fragmentation

 Partition fixes: fragmentation interne car les
partitions ne peuvent pas être complètement
utilisées + fragm. externe s`il y a des partitions
non utilisées

 Partitions dynamiques: fragmentation externe qui
conduit au besoin de compression.

 Segmentation sans pagination: pas de
fragmentation interne, mais fragmentation externe
à cause de segments de longueur différentes,
stockés de façon contiguë (comme dans les partitions

dynamiques)

 Pagination: en moyenne, 1/2 cadre de
fragmentation interne par processus

50

Mémoire Virtuelle

 Pagination sur demande

 Problèmes de performance

 Algorithmes de remplacement de pages

 Allocation de cadres de mémoire

51

Concepts importants

 Localité des références

 Mémoire virtuelle implémentée par va-et-vient des pages,
mécanismes, défauts de pages

 Adresses physiques et adresses logiques

 Temps moyen d‟accès à la mémoire

 Récriture ou non de pages sur mém secondaire

 Algorithmes de remplacement pages:

 OPT, LRU, FIFO, Horloge

 Fonctionnement, comparaison

 Écroulement, causes

 Relation entre la dimension de pages et le nombre
d‟interruptions

 Prépagination, post-nettoyage

 Effets de l‟organisation d‟un programme sur l‟efficacité de la
pagination

52

La mémoire virtuelle est une application du concept de
hiérarchie de mémoire

 C‟est intéressant de savoir que des

concepts très semblables s‟appliquent

aux mécanismes de la mémoire cache

Cependant dans ce cas les mécanismes sont

surtout de matériel

Mécanismes cache

Mécanisme

mémoire virtuelle

RAM

(flash)

53

La mémoire virtuelle

 À fin qu‟un programme soit exécuté, il ne doit pas

nécessairement être tout en mémoire centrale!

 Seulement les parties qui sont en exécution ont

besoin d‟être en mémoire centrale

 Les autres parties peuvent être sur mémoire

secondaire (p.ex. disque), prêtes à être amenées

en mémoire centrale sur demande

 Mécanisme de va-et-vient ou swapping

 Ceci rend possible l‟exécution de programmes

beaucoup plus grands que la mémoire physique

 Réalisant une mémoire virtuelle qui est plus grande que

la mémoire physique

54

De la pagination et segmentation à la mémoire virtuelle

 Un processus est constitué de morceaux (pages ou segments) ne

nécessitant pas d‟occuper une région contiguë de la mémoire

principale

 Références à la mémoire sont traduites en adresses physiques au

moment d‟exécution

 Un processus peut être déplacé à différentes régions de la mémoire,

aussi mémoire secondaire!

 Donc: tous les morceaux d‟un processus ne nécessitent pas d‟être

en mémoire principale durant l‟exécution

 L’exécution peut continuer à condition que la prochaine instruction (ou

donnée) est dans un morceau se trouvant en mémoire principale

 La somme des mémoires logiques des processus en

exécution peut donc excéder la mémoire physique disponible

 Le concept de base de la mémoire virtuelle

 Une image de tout l‟espace d‟adressage du processus est gardée en

mémoire secondaire (normal. disque) d‟où les pages manquantes

pourront être prises au besoin

 Mécanisme de va-et-vient ou swapping

55

Mémoire virtuelle:
résultat d’un mécanisme qui combine
la mémoire principale et les mémoires secondaires

Tableau de pages

56

Localité et mémoire virtuelle

 Principe de localité des références: les

références à la mémoire dans un processus

tendent à se regrouper

 Donc: seule quelques pièces d‟un processus

seront utilisées durant une petite période de

temps (pièces: pages ou segments)

 Il y a une bonne chance de “deviner” quelles

seront les pièces demandées dans un avenir

rapproché

57

Pages en RAM ou sur disque

Page A en RAM et sur

disque

Page E seulement sur

disque

58

Nouveau format du tableau des pages (la même idée peut être
appliquée aux tableaux de segments)

Adresse de la

page

Bit

présent

bit présent

1 si en RAM.,

0 si sur Disque.
Si la page est en RAM, ceci

est une adr. de

mém. principale

sinon elle est une adresse de

mémoire secondaire

Au début, bit présent = 0 pour toutes les pages

59

Avantages du chargement partiel

 Plus de processus peuvent être maintenus en exécution en

mémoire

 Car seules quelques pièces sont chargées pour chaque processus

 L’usager est content, car il peut exécuter plusieurs processus et

faire référence à des gros données sans avoir peur de remplir la

mémoire centrale

 Avec plus de processus en mémoire principale, il est plus probable

d’avoir un processus dans l’état prêt, meilleure utilisation d’UCT

 Plusieurs pages ou segments rarement utilisés n‟auront peut être

pas besoin d`être chargés du tout

 Il est maintenant possible d‟exécuter un ensemble de processus

lorsque leur taille excède celle de la mémoire principale

 Il est possible d’utiliser plus de bits pour l’adresse logique que le

nombre de bits requis pour adresser la mémoire principale

 Espace d’adressage logique > > esp. d ’adressage physique

60

Mémoire Virtuelle

 La mémoire logique est donc appelée mémoire

virtuelle

 Est maintenue en mémoire secondaire

 Les pièces sont amenées en mémoire principale

seulement quand nécessaire, sur demande

 Pour une meilleure performance, la mémoire

virtuelle se trouve souvent dans une région du

disque qui est n‟est pas gérée par le système de

fichiers

 Mémoire va-et-vient, swap memory

 La mémoire physique est celle qui est référencée

par une adresse physique

 Se trouve dans le RAM et cache

61

Mémoire virtuelle: le mécanisme de va-et-vient

Tableau de pages

62

Exécution d’un Processus

 Le SE charge la mémoire principale de quelques

pièces (seulement) du programme (incluant le point

de départ)

 Chaque entrée de la table de pages (ou segments)

possède un bit présent qui indique si la page ou

segment se trouve en mémoire principale

 L‟ensemble résident (résident set) est la portion du

processus se trouvant en mémoire principale

 Une interruption est générée lorsque l‟adresse

logique réfère à une pièce qui n‟est pas dans

l‟ensemble résident

 défaut de pagination (page fault)

63

Exécution d’une défaut de page: va-et-vient plus en détail

64

Séquence d’événements pour défaut de page

 Trappe au SE: page demandée pas en RAM

 Sauvegarder le PCB

 Un autre processus peut maintenant avoir l‟UCT

 SE trouve la page sur disque

 lit la page du disque dans un cadre de mémoire libre
(supposons qu`il y en un!)

 exécuter les opérations disque nécessaires pour lire la page

 L‟unité disque a complété le transfert et interrompt l‟UCT

 sauvegarder le PCB du processus s’exécutant

 SE met à jour le contenu du tableau des pages du processus
qui a causé le défaut de page

 Ce processus devient prêt=ready

 la page désirée étant en mémoire, il pourra maintenant
continuer

65

Quand la RAM est pleine mais nous avons
besoin d`une page pas en RAM

66

La page victime...

67

Remplacement de pages

 Quoi faire si un processus demande une nouvelle

page et il n‟y a pas de cadres libres en RAM?

 Il faudra choisir une page déjà en mémoire

principale, appartenant au même ou à un autre

processus, qu‟il est possible d‟enlever de la RAM

 la victime!

 Un cadre de mémoire sera donc rendu disponible

 Évidemment, plusieurs cadres de mémoire ne

peuvent pas être `victimisés`:

 p.ex. cadres contenant le noyau du SE, tampons

d ’E/S...

68

Bit de modification , dirty bit

 La „victime‟ doit-elle être récrite en
mémoire secondaire?

 Seulement si elle a été changée depuis
qu‟elle a été amenée en mémoire principale

sinon, sa copie sur disque est encore fidèle

 Bit de modif sur chaque descripteur de
page indique si la page a été changée

 Donc pour calculer le coût en temps d‟une
référence à la mémoire il faut aussi
considérer la probabilité qu‟une page soit
modifiée et le temps de récriture dans ce
cas

69

Algorithmes de remplacement pages

 Choisir la victime de façon à minimiser le
taux de défaut de pages

pas évident!!!

 Page dont nous n`aurons pas besoin dans
le futur? impossible à savoir!

 Page pas souvent utilisée?

 Page qui a déjà séjournée longtemps en
mémoire??

 etc.

70

Critères d’évaluation des algorithmes

 Les algorithmes de choix de pages à

remplacer doivent être conçus de façon à

minimiser le taux de défaut de pages à

long terme

 Mais il ne peuvent pas impliquer des temps

de système excessifs, p.ex. mise à jour de

tableaux en mémoire pour chaque accès

de mémoire

71

Explication et évaluation des algorithmes

 Nous allons expliquer et évaluer les algorithmes en
utilisant la chaîne de référence pages suivante :

 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2

 Attention: les séquences d‟utilisation pages ne

sont pas aléatoires...

 L‟évaluation sera faite sur la base de cet exemple,
évidemment pas suffisant pour en tirer des
conclusions générales

72

Algorithmes pour la politique de remplacement

 L‟algorithme optimal (OPT) choisit pour

page à remplacer celle qui sera référencée

le plus tardivement

produit le + petit nombre de défauts de page

 impossible à réaliser (car il faut connaître le

futur) mais sert de norme de comparaison pour

les autres algorithmes:

Ordre chronologique d’utilisation : la moins

récemment utilisé Least recently used (LRU)

Ordre chronologique de chargement (FIFO)

Deuxième chance ou Horloge (Clock)

73

 Ordre chronologique d‟utilisation (LRU)

 Remplace la page dont la dernière

référence remonte au temps le plus lointain

(le passé utilisé pour prédire le futur)

Il s’agit de la page qui a le moins de chance

d’être référencée

performance presque aussi bonne que

l’algorithme OPT

Algorithmes pour la politique de remplacement

74

Comparaison OPT-LRU

 Exemple: Un processus de 5 pages s‟ìl n`y

a que 3 pages physiques disponibles.

 Dans cet exemple, OPT occasionne 3+3

défauts, LRU 3+4.

Stallings

75

Note sur le comptage des défauts de page

 Lorsque la mémoire principale est vide,

chaque nouvelle page que nous ajoutons

est le résultat d‟un défaut de page

 Mais pour mieux comparer les algorithmes,

il est utile de garder séparés ces défauts

initiaux

car leur nombre est le même pour tous les

algorithmes

76

Premier arrivé, premier sorti (FIFO)

 Logique: une page qui a été longtemps en

mémoire a eu sa chance pour s‟exécuter

 Les cadres forment conceptuellement un tampon

circulaire, débutant à la plus vieille page

 Lorsque la mémoire est pleine, la plus vieille page est

remplacée. Donc: “first-in, first-out”

 Simple à mettre en application

 tampon consulté et mis à jour seulement aux défauts de

pages...

 Mais: Une page fréquemment utilisée est souvent

la plus vielle, elle sera remplacée par FIFO!

77

Comparaison de FIFO avec LRU

 Contrairement à FIFO, LRU reconnaît que les

pages 2 et 5 sont utilisées fréquemment

 La performance de FIFO est moins bonne:

dans ce cas, LRU = 3+4, FIFO = 3+6

78

Problème conceptuel avec FIFO

 Les premières pages amenées en mémoire

sont souvent utiles pendant toute

l‟exécution d‟un processus!

variables globales, programme principal, etc.

 Ce qui montre un problème avec notre

façon de comparer les méthodes sur la

base d‟une séquence aléatoire:

 les références aux pages dans un programme

réel ne seront pas vraiment aléatoires

79

L’algorithme de l’horloge (deuxième chance)

 Semblable à FIFO, mais les cadres qui viennent d‟être

utilisés (bit=1) ne sont pas remplacées (deuxième

chance)

 Les cadres forment conceptuellement un tampon circulaire

 Lorsqu’une page est chargée dans un cadre, un pointeur pointe

sur le prochain cadre du tampon

 Pour chaque cadre du tampon, un bit “utilisé” est mis à 1 (par

le matériel) lorsque:

 une page y est nouvellement chargée

 sa page est utilisée

 Le prochain cadre du tampon à être remplacé sera le premier

rencontré qui aura son bit “utilisé” = 0.

 Durant cette recherche, tout bit “utilisé” = 1 rencontré sera mis à

0

80

Algorithme de l’horloge: un exemple

La page 727 est chargée dans le cadre 4.

La prochaine victime est 5, puis 8.

81

Comparaison: Horloge, FIFO et LRU

 Astérisque indique que le bit utilisé est 1

 L‟horloge protège du remplacement les pages

fréquemment utilisées en mettant à 1 le bit “utilisé” à

chaque référence

 LRU = 3+4, FIFO = 3+6, Horloge = 3+5

82

Matériel additionnel pour l’algorithme CLOCK

 Chaque bloc de mémoire a

un bit „touché‟ (use)

 Quand le contenu du bloc

est utilisé, le bit est mis à 1

par le matériel

 Le SE regarde le bit

 S’il est 0, la page peut être

remplacée

 S’il est 1, il le met à 0

1

Mémoire

0

0

0

1

83

Comparaison: Horloge, FIFO et LRU
 Les simulations montrent que l‟horloge est presque aussi

performant que LRU

 variantes de l`horloge ont été implantées dans des systèmes

réels

 Lorsque les pages candidates au remplacement sont locales

au processus souffrant du défaut de page et que le nombre

de cadres alloué est fixe, les expériences montrent que:

 Si peu (6 à 8) de cadres sont alloués, le nombre de défaut de

pages produit par FIFO est presque double de celui produit

par LRU, et celui de CLOCK est entre les deux

 Ce facteur s’approche de 1 lorsque plusieurs (plus de 12)

cadres sont alloués.

 Cependant le cas réel est de milliers et millions de

pages et cadres, donc la différence n`est pas trop

importante en pratique...

 On peut tranquillement utiliser LRU

84

Algorithmes compteurs

 Garder un compteur pour les références à

chaque page

 LFU: Least Frequently Used: remplacer la

pages avec le plus petit compteur

 MFU: Most Frequently Used: remplacer les

pages bien usées pour donner une chance

aux nouvelles

 Ces algorithmes sont d‟implantation

couteuse et ne sont pas très utilisés

85

Anomalie de Belady

 Pour quelques algorithmes, dans quelques

cas il pourrait avoir plus de défauts avec

plus de mémoire!

p. ex. FIFO, mais pas LRU, OPT, CLOCK

