Gestion de mémoire: objectifs

= Optimisation de | utilisation de la mémoire
principale = RAM

« Les plus grand nombre possible de
processus actifs doit y étre gardé, de facon
a optimiser le fonctionnement du systeme
en multiprogrammation
¢ garder le systeme le plus occupé possible,

surtout 'UC
¢ s’adapter aux besoins de mémoire de | 'usager
allocation dynamique au besoin

Gestion de la mémoire

Dans ce chapitre nous verrons que, pour optimiser
I'utilisation de la memoire, les programmes sont
eparpillés en mémoire selon des méthodes différentes:

Pagination, segmentation

Gestion de la mémoire: concepts dans ce chapitre

Adresse physique et adresse logique
¢ mémoire physique et mémoire logique
Remplacement
Allocation contigue
+ Partitions fixes
¢ Partitions variables

Pagination
Segmentation
Segmentation et pagination combinées

Application de ces concepts

« Pas tous les concepts de ce chapitre sont
effectivement utilisés tels quels
aujourd’hui dans la gestion de mémoire
centrale

= Cependant plusieurs se retrouvent dans le
domaine de la gestion de mémoires
auxiliaires, surtout disques

Mémoire/Adresses physiques et logiques

Mémoire physique:

¢ |la memoire principale RAM de la machine
Adresses physiques: les adresses de cette
meémoire

Mémoire logique: I’espace d’adressage
d’un programme

Adresses logiques: les adresses dans cet
espace

Il faut séparer ces concepts car
normalement, les programmes sont a
chaque fois chargés a des positions
difféerentes dans la mémoire

¢ Donc adresse physique # adresse logique

Traduction adresses logiques —>adr. physiques

relocation
register
14000
logical physical
address address
CPU + > memory
346 14346
MMU
MMU: unité de gestion de mémoire

unite de traduction adresses
(Memory Management Unit)

Définition des adresses logiques

¢ une adresse logique est une adresse a une
location de programme

par rapport au programme lui-méme seulement

Independante de la position du programme en
memoire physique

Vue de 'usager

« Normalement, nous avons plusieurs types
d’adressages p.ex.

¢ les adresses du programmeur (noms
symboliques) sont traduites au moment de la
compilation dans des adresses logiques

¢ ces adresses sont traduites en adresses
physiques, apres chargement du programme
en memoire, par l'unité de traduction adresses
(MMU)

Aspects du chargement

« Pour un module de chargement c’est de
trouver de I’éspace libre en mémoire soit:

1- contigue ou
2- non contigue

« Traduire les adresses du programme et
effectuer les liaisons par rapport aux
adresses ou le module est charge.

Traduction d’adresses logique = physique

Dans les premiers systémes, un programme était toujours
chargé aux mémes adresses de mémoire

La multiprogrammation et [Pallocation dynamique ont
engendré le besoin de lire un programme dans de
différentes positions

Au début, ceci était fait par le chargeur (loader) qui
changeait les adresses avant de lancer | ’exécution

Aujourd’hui, ceci est fait par le MMU au fur et a mesure que
le programme est exécuté

Ceci ne cause pas d’hausse de temps d’exécution, car le
MMU agit en parallele avec autres fonctions d’UCT

¢ P.ex. 'TMMU peut préparer I'adresse d’'une instruction en
méme temps que 'UCT exécute l'instruction préecédente

1- Affectation contigue de memoire

Affectation de tout le processus en un seul morceau
en mémoire

= Nous avons plusieurs programmes a exécuter

= Nous pouvons les charger en mémoire les uns
apres les autres

¢ le lieu ou un programme est chargé n'est connu que au
moment du chargement

=« Besoins de matériel: registres translation et
registres limites

Affectation contigue de mémoire

SE

programme 1

programme 2

disponible

programme 3

Nous avons ici 4 partitions pour des programmes -
chacun est lu dans une seule zone de memoire

Registres limites et translation dans MMU

adresse limite de la limit relocation
partition ou se trouv&— [register register
le programme en

exécution

logical
address

physical
address

CPU memory

no

adresse de base de
la partition ou le
programme en
exécution se trouve

\J
trap; addressing error

Operating System Operating System

Partitions fixes o .

2M

4 M

6 M

Premiére organisation de
I’allocation contigue

= Mémoire principale
subdivisée en régions
distinctes:

=« Les partitions sont soit de
méme taille ou de tailles
inégales

« N’importe quel programme
peut étre affecté a une
partition qui soit
suffisamment grande

Equal-size partitions Unequal-size partitions

Algorithme de placement pour
partitions fixes

Partitions de tailles
inégales: utilisation de
plusieurs queues

¢ assigner chaque
processus a la partition de
la plus petite taille pouvant
le contenir New

¢ 1 file par taille de partition Processes

¢ tente de minimiser la
fragmentation interne

¢ Probleme: certaines files
seront vides s’il n'y a pas
de processus de cette
taille (

)

Operating
System

ENEEEEE Bay

Algorithme de placement pour
partitions fixes

Operating
= Partitions de tailles System

inégales: utilisation
d’une seule file

¢ On choisit la plus petite

partition libre pouvant

contenir le prochain
processus

¢ le niveau de

New o —TTTTTn

Processes

multiprogrammation
augmente au profit de la

Partitions fixes

« Simple, mais...

« Inefficacité de l'utilisation de la mémoire:
tout programme, si petit soit-il, doit
occuper une partition entiere. lly a

» Les partitions a tailles inégales atténue ces
problemes mais ils y demeurent...

Partitions dynamiques

= Partitions en nombre et tailles variables

« Chaque processus est alloué exactement la
taille de mémoire requise

= Probablement des trous inutilisables se
formeront dans la mémoire: c’est la

Partitions dynamiques: exemple

Operating Operating Operating Operating
System 128K System System System
Process 1 IMNK Process 1 320K Process 1 320K
kﬂgm{ Process 2 224K Process 2 224K
576K
157K Process 3 IREK
3 K

(a) (b) (c) (d)

(d) ll y a un trou de 64K apres avoir chargé 3 processus: pas
assez d’espace pour autre processus

Si tous les processus se bloquent (p.ex. attente d’un événement),
P2 peut étre et peut étre chargé.

Swapped out

Partitions dynamiques: exemple

Operating
System

Process 1

Process 3

(€)

INK

224K

288K

814

Operating
System

Process 1

Process 4

Process 3

(f)

IMNEK

128K
YHk

288K

814

Operating
System

Process 4

Process 3

(£)

pour en faire un seul trou de 256K

MK

125K
R1i.4

288K

514

Operating
System

Process 2

Process 4

Process 3

(h)

224K

YHk

128K
Y6k

288K

Bk

(e-f) P2 est suspendu, P4 est chargé. Un trou de 224-128=96K est créé (fragmentation
externe)

(g-h) P1 se termine ou il est suspendu, P2 est chargé a sa place: produisant un autre
trou de 320-224=96K...

Nous avons 3 trous petits et probablement inutiles. 96+96+64=256K de fragmentation
externe

Technique d’allocation de la mémoire

« Avant d’'implanter une technique de gestion de
la mémoire centrale par va-et-vient, il est
nécessaire de connaitre son état : les zones
libres et occupées; de disposer d’une
stratégie d’allocation et enfin de procédures
de libération. Les techniques que nous allons
décrire servent de base au va-et-vient; on les
met aussi en oeuvre dans le cas de la
multiprogrammation simple ou plusieurs
processus sont chargés en meémoire et
conserves jusqu’a la fin de leur exécution.

Etat de la mémoire

« Le systeme garde la trace des
emplacements occupés de la mémoire par
I'intermédiaire :
¢ D’'une table de bits ou bien
¢ D’une liste chainée.

La mémoire étant découpée en unités, en
blocs, d’allocation

Tables de bits

On peut conserver I’état des blocs de mémoire grace a une
table de bits. Les unités libres étant notées par 0 et ceux
occupées par un 1. (ou l'inverse).

La technique des tables de bits est simple a implanter, mais
elle est peu utilisée. On peut faire la remarque suivante : plus
I'unité d’allocation est petite, moins on a de pertes lors des
allocations, mais en revanche, plus cette table occupe de
place en mémoire.

23

Listes chainées
On peut représenter la mémoire par une liste
chainée de structures dont les membres sont :
le type (libre ou occupé),
I’adresse de début,
la longueur, et

un pointeur sur I’élément suivant.
0 5 3 10 15 20

. L . P L» P
0 5 8
5 3 2

On peut légerement modifier ce schéma en prenant deux

listes : 'une pour les processus et 'autre pour les zones libres.

Algorithmes de Placement

= pour décider de
I’'emplacement du
prochain processus

= But:

(prend du temps...)
= Choix possibles:
* . choisir
'emplacement dont la
taille est la plus proche

* . choisir le 1er
emplacement a partir du
debut

* . choisir

'emplacement dont la
taille est la plus loin

12K

22K

Last
allocated

18K

block (14K)

8K

6K

14K

36K

(a) Before

8K

First Fit 12K

S

oK
Best Fit

2K

3K

6K

I:‘ Allocated block
I:‘ Free block

Worst Fit

N

20K

14K

(b) After

Example Memory Configuration Before
and After Allocation of 16 Kbyte Block

Algorithmes de placement: commentaires

Quel est le meilleur?

& critere principal: diminuer la probabilité de situations ou un
processus ne peut pas étre servi, méme s’il y a assez de
memoire...

La simulation montre qu’il ne vaut pas la peine d’utiliser les
algorithmes les plus complexes... donc

“Best-fit”: cherche le plus petit bloc possible: 'espace
restant est le plus petit possible

¢ la mémoire se remplit de trous trop petits pour contenir un
programme

“Worst-fit”’: les allocations se feront souvent a la fin de
la mémoire

Fragmentation: mémoire non utilisée

= Un probleme majeur dans I'affectation
contigue:
¢ |l y a assez d’espace pour executer un

programme, mais il est fragmenté de fagon non
contigue

. 'espace inutilisé est entre partitions
. 'espace inutilisé est dans les partitions

Compaction

Une solution pour la fragmentation externe

Les programmes sont déplacés en mémoire de
facon a réduire a 1 seul grand trou plusieurs petits
trous disponibles

Effectuée quand un programme qui demande
d’étre exécuté ne trouve pas une partition assez
grande, mais sa taille est plus petite que la somme
des fragmentations externes existantes

Désavantages:

¢ temps de transfert programmes

& besoin de rétablir tous les liens entre adresses de
différents programmes

Allocation non contigue

= A fin réduire le besoin de compression, le prochain pas est
d utiliser I’allocation non contigue

¢ diviser un programme en morceaux et permettre I'allocation
séparée de chague morceau

¢ les morceaux sont beaucoup plus petits que le programme
entier et donc permettent une utilisation plus efficace de la
memoire
les petits trous peuvent étre utilisés plus facilement
» |lly adeux techniques de base pour faire ceci: la pagination
et la segmentation

¢ |la segmentation utilise des parties de programme qui ont une
valeur logique (des modules)

¢ la pagination utilise des parties de programme arbitraires
(division du programmes en pages de longueur fixe).

¢ elles peuvent étre combinées

Les segments comme unités d’alloc mémoire

0
3
0
1
E 1
3
2
espace usager meémoire physique

Etant donné que les segments sont plus petits que les programmes entiers,
cette technique implique moins de fragmentation (qui est externe dans ce cas)

Mécanisme pour la segmentation

» Un tableau contient I’'adresse de début de tous les segments dans un
processus

» Chaque adresse dans un segment est ajoutée a | 'adresse de début du

segment par la MMU
0
3
Adr de 3 1
segment courant Adr de 2
> Adrdel 2
Adrde0 [

tableau de segments
meémoire physique

Détails
« L’adresse logique consiste d 'une paire:
<No de segm, décalage>

ou décalage est | ‘adresse dans le segment

» le tableau des segments contient: descripteurs de
segments
¢ adresse de base
¢ longueur du segment
¢ Infos de protection

= Dans le PCB du processus il y aura un pointeur a
I’adresse en mémoire du tableau des segments

« Il y aura aussi la dedans le nombre de segments
dans le processus

= Au moment de la commutation de contexte, ces
infos seront chargées dans les registres
appropriés d’'UC

segment 0
\

]

data 1

segment 1

logical memory
process P,

segment 0

data 2

segment 1

logical memory
process P,

limit

base

25286
4425

43062 1

68348

segment table
process P,

limit

base

25286
8850

72773
90003

segment table
process P,

43062

68348
7277

003

98553

editor

data 1

data 2

physical memory

Traduction d adresses dans la segmentation

1,

|
|

Vi Virtual Address !
I J—\

Seg # Offset =d 1 » + b Base +d
|
Segment 0 ‘ i T
|
. Register
1 Seg Table Ptr|
|
|
I Segment Table
|
|
I v |S#
| » +
|
1 | Length | Base
|
|
|
| \‘ =
1 lirmit base
Program 1 Segmentation 0| 25286 | 43062

] 8850 | 90003
1 segment table
) process F,

Aussi, si d > longueur: erreur!

="
n—
Segment

N

Main Memory

Partage de segments: le segment 0 est partage

editor

segment O

430

limit base
0| 25286 | 43062+~

data 1

segment 1 1 4425 | 68348 editor
segment table
process P,
logical memory —
process P,
itor
edito e 2

segment O

limit base |
o| 25286 | 4306217
1 8850 | 90003

segment table
process F,

data 2

physical memory

segment 1

logical memory
process P,

Segmentation et protection

« Chaque entrée dans la table des segments

peut contenir des infos de protection:

¢ longueur du segment
¢ privileges de |'usager sur le segment: lecture,
écriture, execution

Si au moment du calcul de I'adresse on trouve
que l'usager n’a pas droit d’'acces->interruption

ces infos peuvent donc varier d’'un usager a

autre, par rapport au méme segment!

limite

base

read, write, execute?

Evaluation de la segmentation simple

= Avantages: 'unité d’allocation de mémoire (segment) est
¢ plus petite que le programme entier
¢ une entité logique connue par le programmeur
¢ les segments peuvent changer de place en méeémoire
¢ la protection et le partage de segments sont faciles (en
principe)
= Désavantage: le probleme des partitions dynamiques:

¢ La fragmentation externe n’est pas éliminée:
trous en mémoire, compression?

= Une autre solution est d’essayer a simplifier le mécanisme
en utilisant unités d’allocation mémoire de tailles égales

PAGINATION

Segmentation contre pagination

= Le probleme avec la segmentation est que
I’unité d’allocation de mémoire (le
segment) est de longueur variable

« La pagination utilise des unités
d’allocation de mémoire fixe, éliminant
donc ce probléeme

Pagination simple

= La mémoire est partitionnée en petits morceaux de
méme taille: les ou ‘cadres’ ou
‘frames’

= Chaque processus est aussi partitionné en petits
morceaux de méme taille appelés

» Les pages logiques d’un processus peuvent donc étre
assignés aux cadres disponibles n’importe ou en
meémoire principale

« Conséquences:

¢ un processus peut étre eparpillé n'importe ou dans la
memoire physique.
¢ la fragmentation externe est éliminée

Exemple de chargement de processus

Frame

Main memory Main memory
number
0 0 A
1 1 A.l
2 2 A2
3 3 A3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14

(a) Fifteen Available Pages

ib) Load Process A

o =1 = N K Lok =D

e e
[S I R ==

Main memory

A0
Al
A2
Al
B.0O
B.1
B.2

(b) Load Process B

e =1 N R G b = D

O
A N e

Main memory

A0
A.l
A2
Al
B.0
B.1
B.2
C.0
el
=l
C.3

id) Load Process C

= Supposons que le processus B se termine ou

est suspendu

Exemple de chargement de processus

Nous pouvons maintenant
transférer en mémoire un
processus D, qui demande
5 cadres
¢ bien qu’il n'y ait pas 5
cadres contigus
disponibles

La fragmentation externe
est limitée au cas que le
nombre de pages
disponibles n’est pas
suffisant pour exécuter un
programme en attente

Seule la derniére page d’un
processus peut souffrir de
fragmentation interne

= Ge =1 2 N R k= D

S
e e b =D

Main memory

A

Al

A2

AJ

C.0

C.1

C.2

L

(e) Swap out B

LT = A N

e e il —
N N

Main memory

A
Al
A2
A3
D.0
D.1
D.2
C.0
C.1
C2
=
D.3
D.4

() Load Process D

Tableaux de pages

page 0

page 1

page 2

page 3

logical
memory

N = O

N|w|s |-

page table

frame
number

0

1

page 0

page 2

page 1

page 3

physical
memory

Tableaux de pages

TV N

0 0| — 0| 7 0| 4 13
1 1| — 1| 8 1| 5 14
2 2 = 21 9 2| 6 Free frame
3 Process B 310 31 11 list
Process A page table Process C 4 12
page table page table Process D
page table
Le SE doit maintenir une pour chaque
processus

Chaque entrée d’une table de pages contient le numéro d
cadre ou la page correspondante est physiquement
localisée

Une table de pages est indexée par le numeéro de la page
afin d’obtenir le numéro du cadre

Une liste de cadres disponibles est également maintenu
(free frame list)

Logical address =
Page# =1, Offset = 478

Adresse Io%ique

(pagination (000001/0111011110]|
r
= L’adresse logique est facilement % %
traduite en adresse physique car ~
la taille des pages est une
puissance de 2 f "
= L’adresse logique (n,d) est - -
traduite a | ’adresse physique % 4
(k,d) en utilisant n comme index =
sur la table des pages et en le Y
remplacant par I’adresse k
trouvée ~
¢ d ne change pas E” 4 = E
H
! k= E.u

(page size = 1K)

Adresse logique (pagination)

« Donc les pages sont invisibles au programmeur,
compilateur ou assembleur (seule les adresses
relatives sont employées)

= La traduction d’adresses au moment d’exécution est
facilement réalisable par le matériel:

¢ 'adresse logique (n,d) est traduite en une adresse

physique (k,d) en indexant la table de pages et en
annexant le méme déecalage d au numéro du cadre k

= Un programme peut étre exécuté sur différents matériels
employant dimensions de pages différentes

Mécanisme: matériel

logical physical

address address
v .
CPU [p | d 1 d | Physical
i memory

|

|
11

page table

Traduction d’adresses: segmentation et pagination

Tant dans le cas de la segmentation, que dans le cas de la
pagination, nous ajoutons le décalage a I'adresse du segment
ou page.

Deux petits problemes

A) Considérez un systéme de 4 cadres ou pages physiques, chacune de 4 bytes.
Les adresses sont de 4 bits, deux pour le numéro de page, et 2 pour le
décalage. Le tableau de pages du processus en exécution est:

Numéro de Numéro de
page cadre

00 11

01 10

10 01

11 00

Considérez I'adresse logique 1010. Quelle sera 'adresse physique
correspondante?

B) Considérez maintenant un systéme de segmentation, pas de pagination. Le
tableau des segments du processus en exécution est comme suit:

Segment Base
number

00 110
01 100
10 000

Considérez I'adresse logique (no de seg, décalage)= (01, 01) , quelle est
I'adresse physique?

Segmentation simple vs Pagination simple

» La pagination se préoccupe seulement du probléme du
chargement, tandis que

» La segmentation est visible au programmeur mais la
pagination ne I’est pas

= Le segment est une unité logique de protection et partage,
tandis que la page ne I'est pas

¢ Donc la protection et le partage sont plus aisés dans la
segmentation

= La segmentation requiert un matériel plus complexe pour la
traduction d’adresses (addition au lieu d enchainement)

» La segmentation souffre de fragmentation externe (partitions
dynamiques)

= La pagination produit de fragmentation interne, mais pas
beaucoup (1/2 cadre par programme)

= Heureusement, la segmentation et la pagination peuvent étre
combinées

Récapitulation sur la fragmentation

Partition fixes: fragmentation interne car les
partitions ne peuvent pas étre compléetement
utilisées + fragm. externe s’il y a des partitions
non utilisées

Partitions dynamiques: fragmentation externe qui
conduit au besoin de compression.

Segmentation sans pagination: pas de
fragmentation interne, mais fragmentation externe
a cause de segments de longueur différentes,
stockés de fagon contigué (comme dans les partitions
dynamiques)

Pagination: en moyenne, 1/2 cadre de
fragmentation interne par processus

Mémoire Virtuelle

« Pagination sur demande

= Problemes de performance

« Algorithmes de remplacement de pages
= Allocation de cadres de mémoire

Concepts importants

Localité des références

Mémoire virtuelle implémentée par va-et-vient des pages,
meécanismes, défauts de pages

Adresses physiques et adresses logiques
Temps moyen d’accés a la mémoire

¢ Reécriture ou non de pages sur mém secondaire
Algorithmes de remplacement pages:

¢ OPT, LRU, FIFO, Horloge

¢ Fonctionnement, comparaison
Ecroulement, causes

Relation entre la dimension de pages et le nombre
d’interruptions

Prépagination, post-nettoyage
Effets de I'organisation d’un programme sur I’efficacité de la
pagination

La mémoire virtuelle est une application du concept de
hiérarchie de mémoire

» C’est intéressant de savoir que des
concepts tres semblables s’appliquent
aux mécanismes de la mémoire cache

¢ Cependant dans ce cas les mécanismes sont
surtout de materiel

M¢écanismes cache

Mécanisme ey p (flash)
mémoire virtuelle ﬁ

La mémoire virtuelle

= A fin qu’un programme soit exécuté, il ne doit pas
nécessairement étre tout en mémoire centrale!

= Seulement les parties qui sont en exécution ont
besoin d’étre en mémoire centrale

= Les autres parties peuvent étre sur mémoire
secondaire (p.ex. disque), prétes a étre amenées
en mémoire centrale sur demande

¢ Mécanisme de va-et-vient ou swapping

=« Cecirend possible I'exécution de programmes
beaucoup plus grands que la mémoire physique

¢ Reéalisant une mémoire virtuelle qui est plus grande que
la mémoire physique

53

De la pagination et segmentation a la mémoire virtuelle

Un processus est constitué de (pages ou segments) ne
nécessitant pas d’occuper une région contiguée de la mémoire
principale

Références a la mémoire sont traduites en adresses physiques au
moment d’exécution

¢ Un processus peut étre déplaceé a différentes régions de la mémoire,
aussi mémoire secondaire!

Donc:

¢ L'exécution peut continuer a condition que la prochaine instruction (ou
donnée) est dans un morceau se trouvant en mémoire principale

La somme des mémoires logiques des processus en
exécution peut donc excéder la mémoire physique disponible
¢ Le concept de base de la mémoire virtuelle

Une image de tout I’espace d’adressage du processus est gardée en
mémoire secondaire (normal. disque) d’ou les pages manquantes
pourront étre prises au besoin

¢ Mécanisme de va-et-vient ou swapping

Memoire virtuelle:
resultat d’'un mecanisme qui combine _
la mémoire principale et les mémoires secondaires

page O
page 1
page 2
=
'::l-------.-
memory
map

page n physical

memory
virtual

memory

Localitée et mémoire virtuelle

= Principe de localité des références: les
reférences a la mémoire dans un processus
tendent a se regrouper

= Donc: seule quelques pieces d’un processus
seront utilisées durant une petite période de
temps (piéces: pages ou segments)

» lly aune bonne chance de “deviner” quelles
seront les pieces demandées dans un avenir
rapproché

Pages en RAM ou sur disque

Page A en RAM et sur
disque

Page E seulement sur
disque

0
1
AN ~ o 2
=<1 =~ =valid-invalid ,
2 =~ < frame “bit ~
S o =7
C = M e | == = 4 = ‘A\
0| 4 = -
D 1 i S
— g - __ 2%V 6| C
E 3 f— I_ D B a=——p— I
= 4 i 7
51 9 |v 8
G ,
6 | 9 F
H 7 i
10
logical page table
memory 1
12
13
14
15

physical memory

Nouveau format du tableau des pages (1a méme idée peut étre
appliquée aux tableaux de segments)

bit présent
Sila page esten RAM, ceci __ | Adresse de la Bit «— 1sienRAM,
est une adr. de page présent 0 si sur Disque.

mém. principale
sinon elle est une adresse de
mémoire secondaire

Au début, bit present = 0 pour toutes les pages

Avantages du chargement partiel

» Plus de processus peuvent étre maintenus en exécution en
mémoire
¢ Car seules quelques piéces sont chargées pour chaque processus

¢ L'usager est content, car il peut exécuter plusieurs processus et
faire référence a des gros données sans avoir peur de remplir la
memoire centrale

¢ Avec plus de processus en mémoire principale, il est plus probable
d’avoir un processus dans I'état prét, meilleure utilisation d’'UCT

» Plusieurs pages ou segments rarement utilisés n’auront peut étre
pas besoin d'étre chargés du tout

¢ |l est possible d'utiliser plus de bits pour 'adresse logique que le
nombre de bits requis pour adresser la mémoire principale

¢ Espace d’adressage logique > > esp. d 'adressage physique

Mémoire Virtuelle

& Est maintenue en mémoire secondaire

¢ Les piéces sont amenées en memoire principale
seulement quand nécessaire, sur demande

= Pour une meilleure performance, la mémoire
virtuelle se trouve souvent dans une région du
disque qui est n’est pas gérée par le systeme de
fichiers
¢ Mémoire va-et-vient, swap memory
= La mémoire physique est celle qui est référencée
par une adresse physique

¢ Se trouve dans le RAM et cache

Mémoire virtuelle: le mécanisme de va-et-vient

page O
page 1
page 2
=
e —
memory
map

page n physical

memory
virtual

memory

Exécution d’un Processus

Le SE charge la mémoire principale de quelques
pieces (seulement) du programme (incluant le point
de départ)

Chaque entrée de la table de pages (ou segments)
possede un qui indique si la page ou
segment se trouve en mémoire principale

est la portion du
processus se trouvant en mémoire principale

Une interruption est générée lorsque l'adresse
logique réfere a une piece qui n’est pas dans
I’ensemble résident

¢ défaut de pagination (page fault)

Exécution d’une défaut de Page. va-et-vient plus en détail

page is on
backing store

operating
system

(2)

reference trap

O

load M |et— ‘ i

restart page table
instruction

free frame |

© @

reset page bring in
table missing page

physical
memory

Séquence d’événements pour défaut de page

Trappe au SE: page demandée pas en RAM
Sauvegarder le PCB
Un autre processus peut maintenant avoir ’'lUCT
SE trouve la page sur disque
lit la page du disque dans un cadre de mémoire libre
(supposons qu’il y en un!)
¢ executer les opérations disque nécessaires pour lire la page
L’unité disque a complété le transfert et interrompt 'UCT
¢ sauvegarder le PCB du processus s’exécutant

SE met a jour le contenu du tableau des pages du processus
qui a cause le déefaut de page

Ce processus devient prét=ready

la page désirée étant en mémoire, il pourra maintenant
continuer

Quand la RAM est pleine mais nous avons
besoin d une page pas en RAM

valid—invalid
0 H frame \ 5’“ 0 | monitor
1 load M 1 l
PC ——b 3|V
p) J 4|V 2 D
51|v
3 M i 3 H
logical memory page table 4 load M
for user 1 for user 1
5 J
6 A
valid—invalid 7 E
0 A frame bit
\ J physical
1 B 6| v memory
p) D !
2| v
3 E 71 v
logical memory page table

for user 2 for user 2

La page victime...

frame\' */ valid—invalid bit

0 |
f v
page table

®

change
to invalid

reset page
table for
new page

swap out
victim

O

victim
swap
desired
page in
physical

memory

Remplacement de pages

Quoi faire si un processus demande une nouvelle
page et il n’y a pas de cadres libres en RAM?

Il faudra choisir une page déja en mémoire
principale, appartenant au méme ou a un autre
processus, qu’il est possible d’enlever de la RAM

¢ la victime!
Un cadre de mémoire sera donc rendu disponible

Evidemment, plusieurs cadres de mémoire ne
peuvent pas étre victimisés :

¢ p.ex. cadres contenant le noyau du SE, tampons
d 'E/S...

Bit de modification , dirty bit

La ‘victime’ doit-elle étre récrite en
mémoire secondaire?

Seulement si elle a été changée depuis
qu’elle a été amenée en mémoire principale

sinon, sa copie sur disque est encore fidele

Bit de modif sur chaque descripteur de
page indique si la page a été changée
Donc pour calculer le colit en temps d’une
reférence a la mémoire il faut aussi
considérer la probabilité qu’une page soit
modifiée et le temps de récriture dans ce
cas

Algorithmes de remplacement pages

¢ pas évident!!!

Page dont nous n aurons pas besoin dans
le futur? impossible a savoir!

Page pas souvent utilisée?

Page qui a déja séjournée longtemps en
meémoire??

etc.

Criteres d’evaluation des algorithmes

« Les algorithmes de choix de pages a
remplacer doivent étre congus de facon a
minimiser le taux de déefaut de pages a
long terme

« Mais il ne peuvent pas impliquer des temps
de systeme excessifs, p.ex. mise a jour de
tableaux en mémoire pour chaque acces
de mémoire

Explication et évaluation des algorithmes

= Nous allons expliquer et évaluer les algorithmes en
utilisant la chaine de référence pages suivante :

2,3,2,1,5,2,4,5,3,2,5, 2

« Attention: les séquences d’utilisation pages ne
sont pas aléatoires...

=« L’évaluation sera faite sur la base de cet exemple,
évidemment pas suffisant pour en tirer des
conclusions générales

Algorithmes pour la politique de remplacement

s L’ choisit pour
page a remplacer celle qui sera référencée
le plus tardivement

< produit le + petit nombre de défauts de page

¢ impossible a réaliser (car il faut connaitre le
futur) mais sert de norme de comparaison pour
les autres algorithmes:

Ordre chronologique d’utilisation : la moins
recemment utilisé Least recently used (LRU)

Ordre chronologique de chargement (FIFO)
Deuxieme chance ou Horloge (Clock)

Algorithmes pour la politique de remplacement

« Ordre chronologique d’utilisation (LRU)

= Remplace la page dont la derniere
reférence remonte au temps le plus lointain
(le passée utilisé pour prédire le futur)

¢ |l s'agit de la page qui a le moins de chance
d’'étre réferencee

¢ performance presque aussi bonne que
I'algorithme OPT

Comparaison OPT-LRU

» Exemple: Un processus de 5 pages s’iln'y
a que 3 pages physiques disponibles.
= Dans cet exemple, OPT occasionne 3+3

Page ad dregsefauts, LRU 3+4.

dream 2 3 2 1 5 2 4 5 3 2 5

e o R R B B EE EE) B
OPT g B3| 5 g 3 5 3 Eg bz [
| 5 5 5 = 5 5 = 5

F F F
E B B T T T R B B
LRU g By B By 5 Bm s BuE En ERE| S
E BE B B R EE B B

F F F F

Stallings

Note sur le comptage des défauts de page

» Lorsque la mémoire principale est vide,
chaque nouvelle page que nous ajoutons
est le résultat d’un défaut de page

« Mais pour mieux comparer les algorithmes,
il est utile de garder séparés ces défauts
initiaux

¢ car leur nombre est le méme pour tous les
algorithmes

Premier arrive, premier sorti (FIFO)

Logique: une page qui a été longtemps en
meémoire a eu sa chance pour s’exécuter

Les cadres forment conceptuellement un tampon
circulaire, débutant a la plus vieille page

¢ Lorsque la mémoire est pleine, la plus vieille page est
remplacée. Donc: “first-in, first-out”

Simple a mettre en application

¢ tampon consulté et mis a jour seulement aux défauts de
pages...

Mais: Une page frequemment utilisée est souvent
la plus vielle, elle sera remplacée par FIFO!

Comparaison de FIFO avec LRU

Page address
stream

LRU

FIFO

2

2 2 2 2 2 5 a2 5) 3
D 5 5 = = -] D =
1 1 4 4 4 2 2 2
F F F F

2 =) 3 3 = 4 = L) 3
3 2 2 2 2 2 2 3
1 1 4 4 4 4 4 2
F F F F F F

= Contrairement a FIFO, LRU reconnait que les

pages 2 et 5 sont utilisées frequemment
= La performance de FIFO est moins bonne:

¢ dans ce cas, LRU = 3+4, FIFO = 3+6

Probleme conceptuel avec FIFO

= Les premiéres pages amenées en mémoire
sont souvent utiles pendant toute
I’exécution d’un processus!

¢ variables globales, programme principal, etc.

= Ce qui montre un probleme avec notre
facon de comparer les méthodes sur la
base d’une séquence aléatoire:

¢ les reférences aux pages dans un programme
reel ne seront pas vraiment aléatoires

L’algorithme de I’horloge (deuxiéme chance)

Semblable a FIFO, mais les cadres qui viennent d’étre
utilisés (bit=1) ne sont pas remplacées (deuxieme
chance)

¢ Les cadres forment conceptuellement un tampon circulaire

¢ Lorsqu’une page est chargée dans un cadre, un pointeur pointe
sur le prochain cadre du tampon

Pour chaque cadre du tampon, un bit “utilisé” est mis a 1 (par
le matériel) lorsque:

¢ une page y est nouvellement chargée
¢ sa page est utilisée

Le prochain cadre du tampon a étre remplacé sera le premier
rencontré qui aura son bit “utilisé” = 0.

¢ Durant cette recherche, tout bit “utilisé” = 1 rencontré sera mis a
0

Algorithme de I’horloge: un exemple

next frame
pointer

page 222

use = ()

(a) State of buffer just prior to a page replacement (b) State of buffer just after the next page replacement

La page 727 est chargée dans le cadre 4.
La prochaine victime est 5, puis 8.

Comparaison: Horloge, FIFO et LRU

Page address
stream 2 3 2 1 5 2 4 5 3 2 5 2
B 2 7] 7] D 2 7]] 3 b 3 3
LRU 3 3 3 5 5 5 3 5 35 5 5
1 1 1 4 4 4 2] B 2
F F F F

v P 3 7] 5 5 5 5 3 7] 3 3
FIFO 3 3 3 3 2 2 7] 7) 5 5
1 1 1 4 4 4 4 4 2
F F F F F F
2 2 2% | 2% 5% 5 5 5% 3% 3% | p[3% 3%
CLOCK —» R R 3% 3 2 2 2% o 2%] 2%
1# 1 1 4 4 4 4 5% 1

F F F F F

=« Astérisque indique que le bit utilisé est 1

« L’horloge protége du remplacement les pages
fréequemment utilisées en mettant a 1 le bit “utilisé” a
chaque référence

« LRU = 3+4, FIFO = 3+6, Horloge = 3+5

Matériel additionnel pour I'algorithme CLOCK

Chaque bloc de mémoire a

un bit ‘touché’ (use)
Quand le contenu du bloc

est utilisé, le bit est mis a 1
par le matériel

Le SE regarde le bit :
¢ S’il est O, la page peut étre
remplacée 0

¢ S’ilest1,illemeta0

Mémoire

Comparaison: Horloge, FIFO et LRU

Les simulations montrent que I’horloge est presque aussi
performant que LRU

¢ variantes de |'horloge ont été implantées dans des systemes
reels

Lorsque les pages candidates au remplacement sont locales
au processus souffrant du défaut de page et que le nombre
de cadres alloué est fixe, les expériences montrent que:

¢ Sipeu (6 a 8) de cadres sont alloues, le nombre de défaut de
pages produit par FIFO est presque double de celui produit
par LRU, et celui de CLOCK est entre les deux

¢ Ce facteur s’approche de 1 lorsque plusieurs (plus de 12)
cadres sont alloués.

Cependant le cas réel est de milliers et millions de
pages et cadres, donc la difféerence n est pas trop
importante en pratique...

¢ On peut tranquillement utiliser LRU

Algorithmes compteurs

Garder un compteur pour les références a
chaque page

LFU: Least Frequently Used: remplacer la
pages avec le plus petit compteur

MFU: Most Frequently Used: remplacer les
pages bien usées pour donner une chance
aux nouvelles

Ces algorithmes sont d’'implantation
couteuse et ne sont pas tres utilisés

Anomalie de Belady

« Pour quelques algorithmes, dans quelques
cas il pourrait avoir plus de défauts avec
plus de mémoire!

¢ p. ex. FIFO, mais pas LRU, OPT, CLOCK

