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Intégrales multiples

Intégrales multiples sur un pavé

On appelle pavé de R”, (n € IN), une partie D de R" définie par

D = il;Il [a,-, b,'] = [al,bl] X [32,b2] X ... X [a,,,b,,]

Si n = 2, I'ensemble

D = [a b] x|c,d]
= {(x,y)E]R2:a§x§b,c§y§d},(a,b,cetdE]R)

est un rectangle.
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Intégrales multiples

Intégrales multiples sur un pavé

On définit les fonctions suivantes :

f @ Jablx[c,d] =R, (x,y)—f(x,y)

d
g [l = Rx—g(x) = [f(xy)dy
b

ho [c,d]—>]R,y|—>h(y):/f(x,y)dx

a
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Intégrales multiples

Intégrales multiples sur un pavé

Si f(x,y) est continue sur D, alors
(i) g(x) est continue sur |a, b].
(ii) h(y) est continue sur |c, d].

A,

Theorem (de Fubini)

Sif(x,y) est continue sur D, alors

b d

/ /df(x,y)dy dx:/ /bf(x,y)dx dy Q)

a C

5\
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Intégrales multiples

Intégrales multiples sur un pavé

Dans le théoréme précédent, le nombre dans la formule (/) s'appelle
b d

intégrale double de f sur D et on note / f ou //f (x,y) dxdy et par
D
a ¢

convention, on peut écrire

b d b [ d
/dx/f(x,y)dy au lieu de/ /f(x,y)dy dx
a Cc a Cc
et
d b d [ b
/dy/f (x,y) dx au lieu / /f (x,y)dx | dy
C a C a
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Intégrales multiples

Intégrales multiples sur un pavé

Example (1)

Calculer I'intégrale // (2x +3y?) dxdy. On a

3 2 3
/ /(2x+3y2) dy | dx = / 2xy—|—y ‘y 2> dx
1 1

1
= /(2x+7)dx:22
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Intégrales multiples

Intégrales multiples sur un pavé

Example (1 suite)

De méme

2 3
/ /2x+3y Yo | dy = [ ((+392) [1=3) dy
1 1

(8+6y?) dy =22

N

D’aprés cet exemple, on voit bien que I'ordre dans lequel on effectue les
intégrations n'a pas d'importance.
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Intégrales multiples

Intégrales multiples sur un pavé

Example (2)

Dans cet exemple, on va constater qu'un ordre d'intégration sera plus

avantageux que |'autre.
2T 2

Calculer I'intégrale // cos (x — €”) dxdy.
01

2
» |l est plus diffcile de commencer par le calcul de /cos (x —¢&¥)dy.

1
» Par contre il est plus facile de commencer par le calcul de
27

/cos (x — &) dx.

0
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Intégrales multiples

Intégrales multiples sur un pavé

Example (2 suite)

En effet :
27 2 27
//cos(x—ey)dxdy = /cos(x—ey)dx dy
01 0

(sin (x — &) Kz%”) dy

(sin(2mr —¢&”) —sin(0—¢€”)) dy

(—sine’ +sine’)dy =0
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Intégrales multiples

Intégrales multiples sur un pavé

L’interprétation géométrique de l'intégrale double
On suppose que f (x,y) > 0 pour tout (x,y) € D =[a, b] X [c,d]. On a

/ f ou //f x, y) dxdy est le volume (dans IR®) de I'ensemble

{(xyz):(x,y)EDetOSzgf(x,y)}.

Z b

z=1f(xy)

P
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Intégrales multiples

Intégrales multiples sur un pavé

» En particulier, si f (x,y) =1, alors

/ldxdy = //dxdy
D

(b—a)(d—c)

= airede D

» Si f est négative sur D, | f sera négative, sa valeur absolue représentera

D
le volume de I'ensemble {(x,y,z) : (x,y) € D et f (x,y) <z <0}
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Intégrales multiples

Intégrales multiples sur un pavé

Propriétés
© Si f et g sont continues sur D et si &, B € IR, alors af + Bg est

continue sur D et
af + :a/f+ /
A( Bg) P&

@ Si f est continue sur D, alors |f| est continue sur D et

Afg%ﬂﬂ

@ Si f est continue sur D et si f > 0, alors

[fzoe [f=0er=0
D D

@ Si f et g sont continues sur D, alors

ngé/fS/g
D D
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Intégrales multiples

Intégrales multiples sur un pavé

Un cas particulier : Si D = [a, b] X [c,d] et f (x,y) = g (x) h(y),
V(x,y) € D, alors

b d b b
//f (x,y) dxdy = /g (x) dx /h (y)dy |, (variables séparables)

» Pourn=3, D= [al,bl] X [az,bz] X [33,b3], (a,-,b,- €R, a; < b,
1 < i < 3), on parle dans ce cas d'intégrale triple et on note

by by b3

/Df (x,y,z) dxdydz = ///f (x,y, z) dxdydz

ap az as
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Intégrales multiples

Intégrales multiples sur un pavé

Et si f est continue sur D, le théoréme de Fubini fournit

by by b3 by
///fxyz)dxdydz—/dx /dy /fxyz
a; a» a3
by by b1b3
—//dxdy /fxyz —//dxdz /fxy,
ai a2 ap as
bo b3 by b3
—//dydz /f(x V., Z :/dx //f(x,y,z)dydz
ay a3 a2 a3
by b3 by by
:/dy //f(x,y,z)dxdz —/dz //f X, ¥, z) dxdy
a2 a1 a3 a a
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Intégrales multiples

Intégrales multiples sur un borné quelconque de Rn

D n’est pas un pavé

On considére le cas n = 2 et D un borné (fermé) de IR? définie par I'une
des deux formes suivantes :
lére forme :

D={(xy)ER*:a<x<betg(x)<y<g(x)}

ol g1 et g» sont deux fonctions continues sur [a, b] telles que : g1 < g et
0<a<b.

Dans ce cas si f est continue sur D le théoréme de Fubini fournit

b &2(x)

/Df:/ /f(x,y)dy dx

a 1(x)
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Intégrales multiples

Intégrales multiples sur un borné quelconque de Rn

2éme forme :

D={(x,y) ER?:h(y) <x<hy(y) etc<y<d}

ol g1 et g sont deux fonctions continues sur [a, b| telles que : g1 < g et
0<c<d.

Dans ce cas si f est continue sur D le théoreme de Fubini fournit

d [ h(y)
/f:/ /f(x,y)dx dy
D
¢ \m(y)
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Intégrales multiples

Intégrales multiples sur un borné quelconque de Rn

rHixy) e~ 21
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Intégrales multiples

Calculer / (x* + y?) dxdy ou D est le triangle de sommets (0, 1),
D
(0, —1) et (1,0).

lére étape : Représenter graphiquement D.

(o.1)

(1,0)

(O, -1
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Intégrales multiples

Solution (suite)

2éme étape : Analytiquement D est défini par
D:{(x,y)€]R2:0§X§1etx—1§y§1—x}

3eme étape : calcul de I'intégrale.

1—x

/ (x2 —l—y2) dy | dx
-1

/
0
- 3
= /((X2y+);> ‘izi_i{) dx
0
/
0

2 1
(—8 3+4x2—2x+3> dx =

/D (x2 +y2) dxdy =

3

w
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Intégrales multiples

Changements de variables dans les intégrales multiples
On cherche a calculer / f par changement de variables ot D est un

domaine de R” (pavé ou non).
Posons x = ¢ (u) ol ¢ est une application définie sur () a valeurs dans R”
telle que ¢ () C D.
On a
p:Q—R"etf:D—R doufogp: O—R
u—¢(u)=x x—f(x) u—fogp(u)

Six=(x1,x2,....%p), u=(ur, t,...,up) et ¢ = (¢py,¢,,....¢,), on a

x=¢(u) & { x1=¢; (U, up, ..., ), xo =y (U, to, ..., Up) ..., }

Xp = 4)n (ulv u, ..., Un)
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Intégrales multiples

0
On suppose que les dérivées partielles 8;?’ (u), 1 <i,j < nde ¢, existent
uj
pour tout u € Q).
Rappelons que le jacobien de ¢ est

3 3 o
det J, (q>) — det <g¢/ (U)) — Tuf (U) Tu; (U) aui (U)
u; 1<ij<n ) } )
0 d ]
aﬁf (1) ai () .. aﬁ (u)
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Intégrales multiples

Dans le cas n=2, on note ¢ (u,v) = (x,y) et on a

det Jo, ) (¢) = | 94 9y
- D2 (1) D2 (uv)
¢ ¢ op op
0. 22 0.0 - B2 1) B

Theorem (de changement de variable)

Si ¢ : Q) — R? est une bijection de classe Ctsur Q C R? telle que :
det Ji, ) (¢) #0 et f: D — R est intégrable sur D (avec

¢ (Q) € D CR?) alors (fog). ‘det Juw) (4))’ est intégrable sur () et on
a

/Df(x,y) dxdy:/Q(fogb)(u, V). |det J) (9)] duc
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Intégrales multiples

Calculer | = / (x —1)? dxdy sur le domaine
D

D={(x,y) ER*: -1<x+y<1-2<x-y<2}

v

Posons u=x+y et v=x—y. Le domaine Q) est donc le rectangle

Q = {(u,v)G]RQ:—lgugl,—2§v§2}
[—1,1] x [-2,2]
Le changement de variables est donné par

+ v u—v
ety =

¢ (u,v)=(x,y) o x= -
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Intégrales multiples

Solution (suite)

Le jacobien de ce changement de variables est

el 0 =| 3y Iy |=|1 3| =-770
du Jv

D'ou (d’aprés le théoréme)

dudv

1
2

12
1 ) 136
= = +v—2) dudv = —
8//(” 3
1-2
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Intégrales multiples

Example (Changement de variable en coordonnées polaires)

1
Calculer I = / ———5dxdy sur le domaine
DX°+y

D:{(X,y)€]R2:1§X2+y2§4,x20,y20}

Solution

D représente le quart de la partie (anneau) comprise entre les deux cercles
centrés a l'origine et de rayons 1 et 2. Posons x = rcos6 et y = rsin6
tels que r > 0 et 6 € [0,27t[. Dans le plan (r,0), le domaine ) est le

rectangle Q= {(r,0) :1<r<20<60<7%} =[12]x [0%] _
Le changement de variables en coordonnées polaires est donné par

¢ (r,0) =(x,y) oux=rcosb ety =rsinf
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Intégrales multiples

Solution (suite)

Le jacobien de ce changement de variables est

ox
| 9r 90 |_|cos® —rsinf |
det Ji, g) (¢) = g)r/ gy “ | sin@ rcos@ =r>0
5 5

D'ou (d'aprés le théoréme)

| = /DX2+y // = |r] drde
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