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Introduction : Bon nombre de phénomènes physiques se décrivent par

l�évolution d�une ou de plusieurs grandeurs au cours du temps. À un instant donné, ces

grandeurs présentent souvent un caractère imprévisible, aléatoire, et il est alors naturel

de les représenter par une variable aléatoire. L�évolution du phénomène est alors décrite

par l�ensemble des variables aléatoires modélisant le phénomène à chaque instant. Cet

ensemble de variables aléatoires forme un processus stochastique ou aléatoire.

Un processus stochastique est donc une collection de variables aléatoires indexées

par un paramètre. Celui-ci peut représenter le temps, discret ou continu, ou une va-

riable d�espace. Présenté comme ceci, cet objet mathématique ne présente que peu

d�intérêt et est di¤cilement exploitable. En revanche, la connaissance des relations

entre ces variables aléatoires lorsque le paramètre varie permet d�obtenir des proprié-

tés intéressantes qui caractérisent l�évolution du phénomène.

Les applications des processus stochastiques sont trés nombreuses. Ceux-ci sont

notamment utilisés par l�ingénieur pour la construction de modèles mathématiques de

nombreux phénomènes. On peut par exemple citer :

� La théorie économique et l�économétrie dont l�objectif est de rendre compte des

mécanismes qui régissent les faits économiques (souvent aléatoires). La théorie

de la prévision, qui regroupe l�ensemble des méthodes permettant de donner

une estimation (probabiliste) de l�évolution d�une variable économique à partir

de données sur ses valeurs passées, utilise les processus stochastiques. On parle

dans ce cas de statistique des processus stochastiques.

� Les transports et le tra�c, qu�il s�agisse de transport de personnes, de biens, ou de

tra�c dans les réseaux (téléphoniques, mobiles, Internet, etc.).

� La �abilité des systèmes ou d�un matériel, c�est- a-dire l�évolution dans le temps de

ses défaillances.

� L�ingénierie �nancière, où les modèles �nanciers font intervenir des notions com-

plexes de processus et de calcul stochastique.
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� La théorie de l�information et du �ltrage.

� Les sciences de l�environnement.



Chapitre 1

Rappels de probabilités

1.1 Loi binomiale et loi de Poisson

Nous commençons par rappeler quelques lois de probabilités usuelles qui joueront

un rôle important dans la suite. Une expérience de Bernoulli de longueur n et pro-

babilité de succés p 2 [0; 1] consiste à répéter n fois, de manière indépendante, une

expérience élémentaire qui n�admet que deux issues possibles : le succés, qui se produit

avec probabilité p, et l�échec, qui se produit avec probabilité 1 � p. Si par exemple l�

expérience consiste à jeter un dé équilibré, et que l�on considère comme succés unique-

ment l�obtention de 6 points; on aura p = 1
6
:

SoitX la variable aléatoire donnant le nombre de succés de l�expérience de longueur

n. Elle pourra prendre les valeurs 0; 1; :::; n , la valeur k étant obtenue avec probabilité :

P(X = k) = bn;p (k) = C
k
np
k (1� p)n�k : (1.1.1)

avec Ckn =
n!

k!(n�k)! . En e¤et, il y a C
k
n manières de choisir les k succées et n � k

échecs parmi les n expériences, et chacun de ces choix se produit avec probabilité

pk(1� p)n�k .

Singnalons que lors-que�on parle de variable aléatoire on sousentend qu�elle est

4
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de�nie sur un espace probabilisé (
;F ; p), dans le cas ou 
 est �nie ou dénombrable

on prend F = P(
) l�ensemble de toutes les parties de 


Dé�nition 1.1.1. (Loi binomiale). Soit X une variable aléatoire prenant ses va-

leurs dans f0; 1; :::; ng et satisfaisant (1.1.1). On dit alors que X suit une loi binomiale

de paramètres (n; p) et on note X v bn;p.
On peut représenter X comme somme de n variables aléatoires Yi indépendantes

et identiquement distribuées(i.i.d), de loi de Bernoulli de paramètres p, c�est-à-dire

telles que P(Yi = 1) = p = 1� P(Yi = 0). Alors comme l�espérance de chaque Yi vaut

E(Yi) = 0:P(Yi = 0) + 1:P(Yi = 1) = p, on obtient pour l�espérance de X

E(X) =
nX
k=0

kP fX = kg =
nX
i=1

E(Yi) = np.

De plus, comme la variance de chaque Yi vaut var(Yi) = E(Yi2)� E(Yi)2 = p(1� p) ,

on voit que la variance de X est donnée par :

var(X) = E(X2)� E(X)2 = np(1� p)

Dé�nition 1.1.2. (Loi de Poisson). On dit que la variable aléatoire X suit une loi

de Poisson de paramètre � > 0, et noterons X � �� si elle prend des valeurs entières

non-négatives, avec probabilités

P(X = k) = e��
�k

k!
= ��(k):

Avant de discuter sa signi�cation, mentionnons quelques propriétés de base de cette

loi.

Proposition 1.1.3.
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1. Si X suit une loi de Poisson de paramètre �, alors :

E(X) = var(X) = �:

2. Si Xet Y sont indépendantes, et suivent des lois de Poisson de paramètres �et �

respectivement,alors X + Y suit une loi de Poisson de paramètre �+ �:

L�importance de la loi de Poisson ��vient du fait qu0elle donne une bonne approxi-

mation de la loi binomiale bn;p lorsque la longueur n de l�experience est grande et que

la probabilité de succès p est faible, avec np = �:

En e¤et, nous avons le résultat de la convergence suivant :

Proposition 1.1.4. Soit fpngn�0une suite telle que limn!1npn = � > 0. Alors, pour

tout k 2 N ,

lim
n!1

bn;pn(k) = ��(k) (1.1.2)

Démonstration. On a pour tout k = 0; 1; :::; n

bnpn(k) = C
k
np
k
n(1� pn)n�k

= n!
k!(n�k)!p

k
n(1� pn)n�k

En posant �n = npn: On obtient

bnpn(k) =
n(n�p):::(n�k+1)

k!(1��n
n
)k

: (�n)
k

nk
:(1� �n

n
)n

= (�n)k

k!
(1� 1

n
)(1� 2

n
):::(1� k�1

n
) 1

(1��n
n
)k
(1� �n

n
)n:

On a :

i) lim
n!1

(1� j
n
) = 1;8j = 1; :::; k � 1:

ii) lim
n!1

�n
n
= limn

npn
n
= lim

n!1
pn = 0 .

iii) lim
n!1

�
1� �n

n

�n
= lim

n!1

��
1� 1

n
�n

� n
�n

��n
= lim

n!1

��
1� 1

n
�n

� n
�n

� lim
n!1

�n

= (e�1)� = e��:
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On déduit que lim
n!1

bn;pn(k) = ��(k)

Nous donnons maintenant un résultat bien plus fort, à savoir la convergence dans

L1 de la loi de Bernoulli vers la loi de Poisson.

Théorème 1.1.5. On a

1X
k=0

jbn;p(k)� �n:p(k)j � 2np2: (1.1.3)

Démonstration. Nous començons par introduire les espaces probabilisés (
i;P(
i); pi);

pour i = 1; :::; n, donnés par 
i = f�1; 0; 1; 2; :::g et

pi (k) =

8>>><>>>:
e�p � (1� p) si k = �1;

1� p si k = 0;

e�p p
k

k!
si k � 1:

On véri�era que les pi dé�nissent bien une distribution de probabilité. Sur chaque


i nous introduisons les deux variables aléatoires

Xi(wi) =

8<: 0 si wi = 0;

1 sinon,
Yi(wi) =

8<: wi si wi � 1;

0 sinon.

De cette manière, on a PfXi = 0g = 1� p;PfXi = 1g = p; et PfYi = kg = �p(k)

pour tout k � 0. De plus,

P(Xi = Yi) = P(Xi = 0; Yi = 0) + P(Xi = 1; Yi = 1)

= pi(0) + pi(1) = 1� p+ pe�p;

donc

PfXi 6= Yig = p(1� e�p) � p2: (1.1.4)



8

Soit (
; p) l�espace produit des (
i; pi). Alors

�X = X1 + :::+Xn suit la loi binomiale PfX = kg = bn;p(k);

� Y = Y1 + ::: + Yn suit la loi de Poisson PfY=kg = �np(k); en vertu de la

proposition(1.1.3).

Comme X 6= Y implique que Xi 6= Yi pour un i au moins, il suit de 1.1.4 que

P(X 6= Y ) �
nX
i=1

P(Xi 6= Yi) � np2:

Montrons maintenant que :

1X
k=0

jbn;p(k)� �np(k)j � 2P(X 6= Y ):

Nous posons, pour abréger l�écriture, f(k) = PfX = kg, g(k) = PfY = kg et

A = fk : f(k) > g(k)g: Alors
1P
k=0

jbn;p(k)� �np(k)j =
1P
k=0

jf(k)� g(k)j

=
P
k2A

(f(k)� g(k))�
P
k=2A

(f(k)� g(k))

= 2
P
k2A

(f(k)� g(k))�
X
k2N

(f(k)� g(k))| {z }
= 1� 1 = 0

Or nous pouvons écrireP
k2A

(f(k)� g(k)) = P(X 2 A)� P(Y 2 A)

= P(X 2 A; Y 2 A) + P(X 2 A; Y 6= X )� P(Y 2 A)

� P (X 2 A; Y 2 A) + P (X 6= Y )� P (Y 2 A)

� P (X 6= Y ) ;

ce quit conclut la démonstration. Si nous prenons par exemple p = �=n, la borne

(1.1.3) nous fournit
1X
k=0

��bn;�=n(k)� ��(k)�� � 2�2
n
:
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1.2 Loi normale et exponentielle

Nous aurons besoins de certaines variables aléatoires réelles continues. Pour les

dé�nir, le plus simple est de passer par la notion de fonction de répartition.

Dé�nition 1.2.6. (Fonction de répartition). Une fonction F : R ! [0; 1] est

une fonction de répartition si

� F est croissante : x � y =) F (x) � F (y):

� F est continue à droite : lim
y!x+

F (y) = F (x) 8x 2 R:

� lim
x!�1

F (x) = 0 et lim
x!+1

F (x) = 1:

Une fonction de répartition F est dite absolument continue s�il existe une fonction

mesurable non négatif f telle que :

F (x) =

xZ
�1

f(y) dy 8x 2 R:

f est appelée fonction densité de F:

Le lien entre la notion de fonction de répatition et les variables aléatoires vient du

fait que pour toute variable aléatoire réelle, P(X�t) est une fonction de répartition.

En e¤et :

� Si s � t, alors fX � sg � fX � tg, et donc P(X�s) � P(X�t) ;

� lim
s!t+

P (X � s)� P (X � t) = lim
s!t+

P (t < X � s) = 0 ;

� lim
t!�1

P (X � t) = 0 et lim
t!+1

P (X � t) = 1.

Ceci motive la dé�nition suivante.

Dé�nition 1.2.7. (Variable aléatoire à densité). Si X est une variable aléatoire,

FX(t) = P fX � tg

est appelée fonction de répartition de X. Si FX est absolument continue de densité
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f , on dit que X admet la densité f et on a les relations :

P fX � tg =

tZ
�1

f(s) ds:

P fa < X � bg = P fX � bg � P fX � ag =
bZ
a

f(s) ds:

Dans ce cas, on peut remplacer < par � et inversement.

Une première expérience importante de variable aléatoire réelle à densité est celle

des variables gaussiennes ou normales.

Dé�nition 1.2.8. (Loi normale).On dit que la variable aléatoire X suit une loi

normale de moyenne � et d�équart-type �, et on note X � N(�; �2) si elle admet la

densité

f(x) =
1p
2��2

e�(x��)
2=2�2 :

Si X � N(0; 1), on dit qu�elle suit une loi normale centrée réduite, ou standard.

Si X � N(�; �2), alors son espérance vaut E(X) = � et sa variance vaut var(X) =

�2.

Théorème 1.2.9. (Théorème de la limite centrale). Soit X1; X2; :::; Xn une suite

de variables aléatoires indépendantes, identiquement distribuées, d�ésperance �nie � et

de variance �nie �2alors la variable aléatoire Sn =
Pn

i=1Xi satisfait

lim
n!1

P
�
a � Sn � n�p

n�2
� b
�
=

bZ
a

e�x
2=2

p
2�

dx:

C�est-à-dire que (Sn � n�)=
p
n�2 converge en loi vers une variable normale stan-

dard.

Un second exemple de loi à densité, particulièrement important dans notre travaille,
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est celui des variables exponentielles.

Dé�nition 1.2.10. (Variable exponentielle). On dit que la variable aléatoire X

suit une loi exponentielle de paramètre � > 0, et on note X � exp(�), si elle satisfait

PfX > tg = e��t

pour tout t � 0: Sa fonction de répartition est donc FX(t) = 1� e��t pour t > 0,

et sa densité est �e��t, toujours pour t > 0.

On véri�e qu�une variable de loi exponentielle a espérance 1=� et variance 1=�2. Une

propriété remarquable de loi exponentielle est la propriété de Markov : pour t > s � 0;

PfX > t = X > sg = e��(t�s) = PfX > t� sg:

Nous aurons parfois a¤aire à des couples, ou des n-uplets de variables aléatoires à

densité, aussi appelés vecteurs aléatoires. Leur densité conjointe est dé�nie comme la

fonction de n variables f telle que

PfX1 � t1; X2 � t2; :::; Xn � tng =
t1Z

�1

t2Z
�1

:::

tnZ
�1

f(x1; x2; :::; xn) dxn:::dx2dx1

pour tout choix de (t1; t2; :::; tn). Autrement dit, on a

f(t1; t2; :::; tn) =
@n

@t1@t2:::@tn
PfX1 � t1; X2 � t2; :::; Xn � tng:

Les variables aleatoires X1; X2; :::; Xn sont dites indépendantes si on a

PfX1 � t1; X2 � t2; :::; Xn � tng = PfX1 � t1gPfX2 � t2g:::PfXn � tng

pour tout choix de t1; t2; :::; tn. On montre que c�est équivalent à ce que la densité
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conjointe s�écrive sous la forme

f(t1; t2; :::; tn) = f1(t1)f2(t2):::fn(tn)

pour des densités f1; f2; :::; fn (appelées densités marginales X1; X2; :::; Xn)



Chapitre 2

Chaînes de Markov sur un espace

�ni

2.1 Dé�nition et premières propriétés

Soit (Xn)n2N une suite de variables aléatoires à valeurs dans l�ensemble E des états,

supposé une partie de N. On dit que cette suite est une chaîne de Markov, si pour tout

n � 1 et toute suite (i0; :::; in�1; i; j) d�éléments de E; pour laquelle les probabilités

conditionnelles suivantes existent, on a :

P(Xn+1 = j j X0 = i0; :::; Xn�1 = in�1; Xn = i) = P(Xn+1 = j j Xn = i): (2.1.1)

Autrement dit, l�état du processus à l�instant (n + 1) ne dépend que de celui à

l�instant n précédent, mais non de ses états antérieurs. (On dit que le processus est

sans mémoire ou non héréditaire).

Dé�nition 2.1.11. La chaîne de Markov est dite homogène (dans le temps), si la

13
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probabilité précédente ne dépend pas de n. Soit

P(Xn+1 = j j Xn = i) = pi;j 8n 2 N

cette probabilité s�appelle la probabilité de passage ou de transition de l�état i à

l�état j en une étape.

Dé�nition 2.1.12. La matrice

P =

0BBB@
p0;0 p0;1 p0;2 � � �

p1;0 p1;1 p1;2 � � �
...

...
...

...
...
...

1CCCA
dont les coe¢ cients sont les probabilités de transition pi;j est appelée matrice de

passage (ou matrice de transition)de la chaîne. C�est une matrice �nie ou dénombrable,

selon que l�ensemble des états est �ni ou dénombrable.

Proposition 2.1.13. Toute matrice de transition P = (pi;j) ((i; j) 2 E2) véri�e les

propriétés suivantes :

(1) pour tout couple (i; j), on a : pi;j � 0;

(2) pour tout i 2 E, on a
P
j2E

pi;j = 1:

Démonstration.

1. Les nombres pi;j sont des probabilités, donc des nombres non négatifs.

2. Pour chaque i 2 E, l�appliqation B 7�!
X
j2B

pi;j dé�nit une mesure de probabilité

sur E (B � E):

Remarque 2.1.14. Une matrice P qui véri�e les conditions 1) et 2) de la proposition

précédente, est appelée stochastique.
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Proposition 2.1.15. Soit P une matrice de transition. Alors :

(1) P admet la valeur propre 1:

(2) Le vecteur V ayant toutes ses composantes égales à 1 est un vecteur propre associe

à la valeur propre 1 :

Démonstration. En e¤et, en considérant V comme un vecteur -colonne, on a :

PV = V si et seulement si, pour tout i 2 E, la relation suivante est satisfaite :P
j2E

pi;jvj = vi. Il su¢ t donc, pour tout i 2 E, de prendre vi = 1:

Dé�nition 2.1.16. (graphe associé à une matrice de transition). A toute

matrice de transition,on peut associer son graphe. Il y a une �èche, itiquetée pi;j,

entre le sommet étiquité i et le sommet étiquité j si et suelement si la probabilité de

transition de l�état i à l�état j est strictement positive : pi;j > 0:

Lorsque l�ensemble des états est �ni, cette présentation de la matrice de transition

par son graphe est particulièrement utile et parlante.

2.2 Exemples de chaîne de Markov

Il y a des exemples classiques de chaîne de Markov homogène.

2.2.1 La chaîne à deux états

En excluent le cas trivial de la matrice-unité, la matrice de transition correspon-

dante est de la forme :

P =

0@1� � �

� 1� �

1A (0 < �; � < 1):

Les calcules sont explicites. Pour tout n� 0, on peut évaluer la ni�eme puissance P n,

ainsi que la valeur limites limn P
n .
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Le graphe associé est trés simple :

2.2.2 Jeu de pile ou face

Deux joueurs A et B jouent à la variante suivante de Pile ou Face. Ils jettent une

pièce de monnaie(parfaitement équilibrée) de manière répétée. A gagne dés que la pièce

tombe trois fois de suite sur Face, alors que B gagne dés que la suite Pile-Face-Pile

apparaît.

On ce pose les question suivante :

1. avec quelle probabilité est-ce A qui gagne le jeu ?

2. Au bout de combien de jets de la pièce l�un de deux joueurs gagne-t-il ?

On peut alors décrire le jeu par une chaîne de Markov sur l�ensemble

E = fpp ; pf ; fp ; ff ; A gagne,B gagneg;

où par exemple pp signi�e que la pièce est tombée sur Piles lors des deux derniers

jets. La matrice de transition vaut
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pp

pf

fp

ff

A

B

0BBBBBBBBBBBBBBB@

pp

1=2

pf

1=2

fp

0

ff

0

A

0

B

0

0 0 0 1=2 0 1=2

1=2 1=2 0 0 0 0

0 0 1=2 0 1=2 0

0 0 0 0 1 0

0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
2.2.3 Modèle d�Ehrenfest

C�est un système motivé par la physique, qui a été introduit pour modéliser de

manière simple la répartition d�un gaz entre deux récipients.

N boules, numérotées de 1 à N , sont réparties sur deux urnes. De manière répétée,

on tire au hasard, de façon équiprobable un numéro entre 1 et N , et on change d�urne

la boule correspondante.

On peut décrire le système par une chaîne de Markov, sur l�espace des états E =

f0; 1; ::; Ng, où le numéro d�état correspond au nombre de boules dans l�urne de gauche,

par exemple.

La matrice vaut

0

1

2

3

4
...

N

0BBBBBBBBBBBBBBBBBB@

0 1 2 3 4 5 : : : N � 1 N

0 1 0 0 0 0 0 0 0

1
N

0 N�1
N

0 0 0 0 0 0

0 2
N

0 N�2
N

0 0 0 0 0

0 0 3
N

0 N�3
N

0 0 0 0

0 0 0 4
N

0 N�4
N

0 0 0

0 0 0 0 0 0 0 1 0

1CCCCCCCCCCCCCCCCCCA
Dé�nition 2.2.17. Soit (Xn)n2N une chaîne de Markov. La loi de la variable aléatoire

X0 s�appelle la loi initiale de la chaîne.
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Remarque 2.2.18. La loi d�une chaîne de Markov est de�nie à partir de sa loi initial

et sa matrice de transition. Comme il est indiqué dans le résultat suivant.

Théorème 2.2.19. Soient (Xn) une suite de variables aléatoires à valeurs dans

E, � une mesure de probabilité sur E et P une matrice stochastique. Alors (Xn) est

une chaîne de Markov de matrice de transition P et de distribution initiale � si et

seulement si pour tout n � 0 , et pour tout choix de i0; i1; :::; in d�élement de E, on a

P(X[0;n] = i[o;n]) = �i0pi0i1pi1i2 :::pin�1in : (2.2.2)

Démonstration.

1. Supposons que (Xn) est une chaîne de Markov de matrice de transution P et de

loi initiale �: Procédons par récurrence :

1) Pour n = 0 on a par dé�nition

P(X0 = i) = �i;8i 2 E (2.2.3)

2) Supposons que léxpression (2.2.2)est véri�ée pour n.

On a pour n+ 1, P(Xn+1 = in+1; Xn = in; :::; X0 = i0) =

P(Xn+1 = in+1jXn = in; :::; X0 = i0):P(Xn = in; :::; X0 = i0)

= P(Xn+1 = in+1jXn = in)�i0Pi0i1Pi1i2 :::Pin�1in

= �i0Pi0i1Pi1i2 :::Pin�1in :Pinin+1

2. Inversement : Supposons que l�expression (2.2.2) est satisfaite pour la suite de

variables aléatoire (Xn) montrons que la (Xn) est chaine de Markov. Soit n 2 N,

et i0; i1; :::; in 2 E:

P(Xn+1 = in+1jXn = in; :::; X0 = i0) =
P(Xn+1 = in+1; Xn = in; :::; X0 = i0)

P(Xn = in; :::; X0 = i0)

=
�i0Pi0i1Pi1i2 :::Pin�1in :Pinin+1

�i0Pi0i1Pi1i2 :::Pin�1in
= Pinin+1 = P(Xn+1 = in+1jXn = in):
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2.3 La relation de Chapman-Kolmogorov

Pour n > 0 et i; j 2 E, on désigne par p(n)i;j la probabilité, partant de l�état i à

l�instant 0, d�être dans l�état j à l�instant n. En d�autre termes, on pose :

p
(n)
i;j = P(Xn = jjX0 = i): (2.3.4)

On désigne également par P (n) la matrice dont les éléments sont p(n)i;j ((i; j) 2 E2:

Théorème 2.3.20. (Relation de Chapman-Kolmogorov). Pour tout n � 0,

la matrice de transition en n étapes est égale à la puissance ni�eme de la matrice de

transition en une étape :

P (n) = (P )n (2.3.5)

Démonstration. Procédons par recurrence. Le résultat est vrai pour n = 0; puisque

P 0 = I (la matrice identité) et pour n = 1, puisque P (1) = P: Prenons n � 2; on a,

P n = P n�1P = P (n�1)P (1): Par conséquent, si l�on désigne par pni;j le coe¢ cient en

(i; j) de la matrice P n, on a :

P ni;j =
X
k2E

p
(n�1)
i;k pk;j

=
X
k2E

P(Xn�1 = kjX0 = i) P(X1 = jjX0 = k)

=
X
k2E

P(Xn�1 = kjX0 = i) P(Xn = jjXn�1 = k) [car la chaîne est homogène]

Considérons l�évènement A(i1; :::; in�2) = fX1 = i1; :::; Xn�2 = in�2g:

Alors

P(Xn = jjXn�1 = k) = P(Xn = jjXn�1 = k;A(i1; :::; in�2); X0 = i0); car la chaîne

est de Markov et on a :

P(Xn�1 = kjX0 = i) =
P

i1;:::;in�2

P(Xn�1 = k;A(i1; :::; in�2)jX0 = i);

puisque les évenement A(i1; :::; in�2) forment un système complet d�évenements.On

en tire :
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pni;j =
X
k2E

X
i1;:::;in�2

P(Xn�1 = k;A(i1; :::; in�2)jX0 = i)P(Xn = jjXn�1 = k)

=
X
k2E

X
i1;:::;in�2

P(Xn�1 = k;A(i1; :::; in�2)jX0 = i)P(Xn = jjXn�1 = k;A(i1; :::; in�2); X0 =

i)

=
X
k2E

X
i1;:::;in�2

P(Xn = j;Xn�1 = k;A(i1; :::; in�2)jX0 = i)

= P(Xn = jjX0 = i) = p
(n)
i;j :

Corollaire 2.3.21. Pour tout n � 0; la matrice P (n) est une matrice stochastique.

Démonstration. En e¤et, pour tout i 2 E, on a :X
j2E

p
(n)
i;j =

X
j2E

P(Xn = jjX0 = i) = 1:

Corollaire 2.3.22. Pour tout (i; j) 2 E2 et tout couple (m;n) d�entiers positifs, on

a l�identité :

P(Xm+n = j=X0 = i) =
X
k2E

P(Xm = kjX0 = i)P(Xn = jjX0 = k) (2.3.6)

ou encore

p
(m+n)
i;j =

X
k2E

p
(m)
i;k p

(n)
k;j

Démonstration. Cette identité résulte immédiatement de l�associativité du produit

matriciel :P (m+n) = Pm+n = PmP n = P (m)P (n):

Proposition 2.3.23. Soient n � 0, r � 1 deux entier. Alors

P(Xn+1 = jn+1; :::; Xn+r = jn+rjX0 = i0; :::; Xn = in) (2.3.7)

= pin jn+1pjn+1jn+2 :::pjn+r�1jn+r :

Démonstration. Lorsque r = 1, l�identité (2.3.7) se réduit à (2.1.1) .Il su¢ t donc
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de procéder par récurrence sur r: Pour r � 2, posons :

A1 = fX0 = i0; :::; Xn = ing;

A2 = fXn+1 = jn+1; :::; Xn+r�1 = jn+r�1g;

A3 = fXn+r = jn+rg:

D�après (2.1.1) on a :P(A3jA2\A1) = pjn+r�1jn+r .De plus ,P(A2jA1) = pinjn+1pjn+1jn+2 :::pjn+r�2jn+r�1,

par récurence sur r. On conclut alors, en utilisant l�identité :P(A3\A2jA1) = P(A3jA2\

A1)P(A2jA1):

2.4 Chaînes de Markov absorbantes

Dé�nition 2.4.24. Soit (Xn) une chaîne de Markov de matrice de transition P: On

dit que l�état j est accessible ou atteignable à partir de l�état i; s�il existe un entier

n � 0 tel que p(n)i;j > 0. On écrit :

i  j

Proposition 2.4.25. La relation d�accessibilité entre états est ré�exive et transitive.

Démonstration. Comme p(0)i;i = P(X0 = ijX0 = i) = 1 pour tout état i;on a bien

i  i: Ensuite, si i  l et l  j; alors p(m)i;l > 0 et p
(n)
l;j > 0 pour certains entier

m;n � 0. D�aprés ce qui précède, on en tire :

p
(m+n)
i;j =

P
k2E

p
(m)
i;k p

(n)
k;j � p

(m)
i;l p

(n)
l;j > 0; d�où i j

Dé�nition 2.4.26. On dit que deux états i et j communiquent et l�on écrit i! j;

si on a à la fois :i j et j  i:

Proposition 2.4.27. La relation de communication entre états est une relation
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d�équivalence.

Démonstration. Les propriétés de re�exivité et de transivité déjà véri�ées pour la

relation d�accessibilité restent naturellement encore valable pour la relation de com-

munication. En�n, cette dernière relation est symétrique par dé�nition-même.

Dé�nition 2.4.28. Soit (Xn)une chaîne de Markov sur E. On dit d�un état i 2 E

qu�il est absorbant si pi;i = 1 (i.e 8j 6= i pi;j = 0)

Dé�nition 2.4.29. On dit qu�une chaîne de Markov (Xn) est absorbante si 8i 2 E,

il existe un état absorbant j 2 E telle que j est atteignable partant de i

Dans le cas où (Xn)n2N est chaîne de Markov absorbante. On ordonne les états de

façon que les éléments non absorbants soient classés les premiers et les absorbants les

derniers,

En désignons les non absorbants par f1; 2; :::; qg et les absorbants par fq+1; :::;Mg;on

obtient la matrice de transition

P =

0@Q R

0 I

1A :
appelée la forme canonique. Avec

Q : matrice carré d�ordre q: Les élélments Qi:j sont dé�nis par Qi;j = pi;j pour

1 � i; j � q

R : une matrice de q lignes et r colonnes(r = M � q):Ri:k = pi:k avec 1 � i � q et

q + 1 � k �M:

I : la matrice identité d�ordre r

0 : la matrice nulle de taille r � q

Proposition 2.4.30. On a P n =

0@Qn (I +Q+ :::+Qn�1)R

0 Ir

1A , 8n 2 N:
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Démonstration. On procède par réccurence :

a) Pour n = 1; on a P =

0@Q Iq:R

0 Ir

1A :
b) Supposons que la proposition est véri�ée pour n: On a

P n+1 =

0@Qn (Iq +Q+ :::+Q
n�1)R

0 Ir

1A�
0@Q R

0 Ir

1A
=

0@Qn+1 QnR + (Iq +Q+ :::+Q
n�1)R

0 Ir

1A
=

0@Qn+1 (Iq +Q+ :::+Q
n)R

0 Ir

1A
Théorème 2.4.31. Soit (Xn) une chaîne de Markov absorbante. En considèrent les

mêmes notations précédentes. On a :

1. lim
n
Qn = 0 (la matrice nulle).

2. La matrice [I �Q] est inversible, son inverse est [I �Q]�1 =
P

n�0Q
n:

Démonstration.

1) le nombre Q(n)i;j est la probabilité pour que la chaîne ce trouve dans j en n pas

partant de i avec i; j � q . Cette valeur est inférieure à la probabilité de ne pas

atteindre un état absorbant en n pas partant de i . C�est à dire on a :

Q
(n)
i;j = P(Xn = j j X0 = i) = Pi(Xn = j ) � Pi(Xn � q):

Pour tout i 2 f1; :::; qg; posons mi = minfn 2 N�jk > q; p(n)i;k > 0g: mi est le nombre

de pas minimal pour atteindre un absorbant partant de i avec une probabilité

non nulle.

Posons pi = P(Xmi
� q); pi est la probabilité de ne pas atteindre un état absorbant

partant de i en mi pas. On a pi < 1 car P(Xmi
> q) > 0:
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Posons M = max
1�i�q

fmig et p = max
1�i�q

fpig: La probabilité de ne pas atteindre un état

absorbant enM pas partant de i est inférieure à p : En e¤et, fw 2 W=Xmi
(w) >

qg � fw 2 W=XM(w) > qg et mi � M; donc P(Xmi
> q) > P(XM > q)) D�où

Pi(XM � q) � Pi(Xmi
� q):

Or Pi(Xmi
� q) = pi � p .Donc la probabilité de ne pas atteindre un etat absorbant

partant de i en nM; pas est inférieure à pn: Or la probabilité d�atteindre j en

M pas partant de i; est inferieure à la probabilité d�atteindre un état absorbant

en M pas partant de i; c�est à dire Q(M)
i;j � Pi(XM � q) � p (1� i; j � q): On

en déduit que Q(nM)
i;j � Pi(XnM � q) � pn:

Or lim
n
Q
(nM)
i;j = lim

n
pn = 0 (car p <1).

Maintenant, montrons que lim
n
Q
(n)
i;j = 0 :

La suite de terme générale Un = Pi(Xn � q) est décroissante. En e¤et ; Un+1 =

Pi(Xn+1 � q) � Un = Pi(Xn � q)(car Pi(Xn > q) � Pi(Xn+1 > q)): On a

lim
n
UnM � lim

n
P n = 0(une suite extraite qui converge vers 0) et (Un) décroissante

donc lim
n
Un = 0):

D�autre part on a :Q(n)i;j = Pi(Xn = j) � Pi(Xn � q): Donc lim
n
Qn = 0

2) Supposons qu�il existe x 2 RN tele que : Qx = x; donc Q2x = Qx = x d�où

8n 2 N , Qnx = x. Or lim
n
Qn = 0 donc x = 0:

En posant f(x) = (I �Q)x: On a ker f = f0g : En e¤et ; ker f = fx 2 RN jf(x) = 0g

d�où f est injective, or dimRN = dim Im f +dimker f donc dim Im f = dimRN

d�où f est surjective.Par conséquent f est bijective

On déduit donc que la matrice (I �Q) est inversible.

On a 8n 2 N , (I �Q)
nP
k=0

Qk =
nP
k=0

Qk �
n+1P
k=0

Qk = I �Qn+1:

Par suite (I �Q)
1P
k=0

Qk = lim
n
[(I �Q)

nP
k=0

Qk] = I � lim
n
Qn+1 = I:

Dé�nition 2.4.32. La matrice F =
P
n�0

Qn = [I �Q]�1 s�appelle la matrice fonda-
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mentale de la chaîne de Markov.

On a :

lim
n�!1

P n =

0@0 FR

0 Ir

1A
L�expression lim

n
Qn = 0 signi�e qu�à l�in�ni la probabilité d�atteindre un état

absorbant partant d�un état non absorbant est égale à 1. Donc la matrice B = F:R

devrait représenter à la limites des temps à l�in�ni les probabilités de transition entre

états non absorbants et états absorbants.

Théorème 2.4.33. Soit F une matrice fondamental d�une chaîne de Markov absor-

bante.

1. L�élément fi;j de la matrice F est l�esperance du nombre de passages en j partant

de i :

Ei(
1X
n=0

1fXn=jg) = fi;j = (F )i;j =
X
n�0
(Qn)i;j 1 � i; j � q

2. Soit � = minfn 2 N�,Xn > qg; donnant le temps jusqu�a l�absorption de la

chaîne. Alors

Ei(�) =
qX
j=1

fi;j:

3. Posons B = F:R. Alors pour tout état non absorbant et tout état absorbant la

probabilité que la chaîne soit absorbée par k partant de i est :

Pi(X� = k) = bi;k:

où bi;k est l�élément de la matrice B:

Démonstration.

1. On a d�aprés le théorème de Beppo-Liville :
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Ei(
1P
n=0

1fXn=jg) =
1P
n=0

Ei(1fXn=jg) =
1P
n=0

[0:Pi(Xn 6= j) + 1:Pi(Xn = j)]

=
1P
n=0

Pi(Xn = j) =
1P
n=0

P
(n)
i;j =

1P
n=0

Q
(n)
i;j = fi;j = (F )i;j

2.
qP
j=1

fi;j =
qP
j=1

(
P
n�0

Qni;j) =
P
n�0
(
qP
j=1

Pi(Xn = j) =
P
n�0

Pi(Xn � q) =
P
n�0

Pi(� > n)

= Pi(� > 1) + Pi(� > 2) + Pi(� > 3) + :::

= Pi(� = 1) + Pi(� = 2) + Pi(� = 3) + :::

+ Pi(� = 2) + Pi(� = 3) + :::

+ Pi(� = 3) + :::
= Pi(� = 1) + 2Pi(� = 2) + 3Pi(� = 3) + :::+ nPi(� = n) + :::

=
P
n�1

nPi(� = n) = Ei(�)

3. Soit k 2 fq + 1; :::;Mg: On a pour i = f1; :::; qg

Pi(X� = k) =
1P
n=0

Pi(Xn+1 = k;Xn � q) =
1P
n=0

qP
j=1

Pi(Xn+1 = k;Xn = j)

=
1P
n=0

qP
j=1

P(Xn+1 = kjXn = j)Pi(Xn = j)

=
1P
n=0

1P
j=1

Q
(n)
i;j Pj;k =

qP
j=1

1P
n=0

(Q
(n)
i;j ):Rj;k =

qP
j=1

fi;jRj;k = (B)i;k

= (FR)i;k

2.5 Chaînes de Markov irréductibles

Dé�nition 2.5.34. Soit (Xn) une chaîne de Markov de matrice de transition P .

On dit que la chaîne (Xn)n2N est irréductible si 8i; j 2 E, j est atteignable partant

de i, et inversement.

Dé�nition 2.5.35. Soit (Xn) une chaîne de Markov, sur un espace �ni E =

f1; 2; :::; N), de matrice de transition P = p(i;j): On dit que la chaîne est régulière

s�il existe m 2 N� tel que la matrice Pm a tous ses éléments non nuls (i.e P (m)i;j > 0

8i; j = 1; :::;M)
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Remarque 2.5.36. Si P est une matrice stochastique telle que 9m 2 N� pour le

quel P (m)i;j > 0, 8i; j = 1; :::;M . Alors pour tout n � m on a P ni;j > 0; 8i; j = 1; :::;M

Remarque 2.5.37. Toute chaîne régulière est irréductible

En e¤et : Si (Xn) est régulier, alors 9m 2 N� tq : Pmi;j > 0; 8i; j = 1; :::;M: Donc

tout état est atteignable en m pas partant d�un autre état.

Remarque 2.5.38. On peu avoir une chaîne qui est irréductible mais non régulière.

En e¤et : si P est une matrice qui contient des z�eros, en élevent P par des puissance

en peut avoir des z�eros qui change de position ce qui rend la chaîne irréductible mais

non régulière puisque toutes les puissances de P contiennent des z�eros:

Exemple 2.5.39. P =

0@1 0

1
2

1
2

1A (8m 2 N�, 9i; j tels que p(m)ij = 0)

Remarque 2.5.40. La chaîne décrivant le modèle d�Ehrenfest est irréductible. En

e¤et, quelque soit le nombre de boules dans l�urne de gauche, on peut atteindre tout

autre état en déplaçant au plus N boules d�une urne à l�autre. Cependant, la chaîne

n�est pas régulière. En e¤et, comme à chaque pas de temps on déplace exactement une

boule, le nombre de boules dans l�urne de gauche sera alternativement pair et impair.

Par conséquent, chaque élément de matrice des puissances P n sera nul pour un n sur

deux.

Proposition 2.5.41. Soit (Xn) une chaîne de Markov irréductible sur un espace �ni

E = f1; 2; :::; Ng et P sa matrice de transition et soit A � E. On pose

�A = inffn 2 N�; Xn 2 Ag: (2.5.8)

Alors :

P (�A <1) = 1 (2.5.9)
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Remarque 2.5.42. �A est une variable aléatoire qui représente le temps du premier

passage de la chaîne par A (on dit aussi le temps d�entrée dans A)

Démonstration. Soit (Xn) une chaîne irréductible de matrice de transition P =

(pij)1�i;j�M : Considérons la chaîne (Yn) dé�nie à partir de sa matrice de transition ~P

donnée par ~pi;j =

8<: pij si i =2 A

�ij si i 2 A

avec �i;j =

8<: 1 si i = j

0 si i 6= j
La chaîne (Yn) est une chaîne absorbante car : pour tout i 2 A ,~pii = 1 et ~pij = 0

si i 6= j:

Les deux chaînes (Xn) et (Yn) ont le même comportement jusqu�au temps du pre-

mier passage par A. En e¤et : 8i; j =2 A ~pij = Pi(Y = j) = pij = Pi(X = j):

La matrice de la chaîne absorbante (Yn) s�ecrit sous la forme canonique

~P =

0@Q R

0 Ir

1A
:

Le temps du premier passage par A de la chaîne (Xn); représente le temps jusqu�à

absorption pour la chaîne (Yn): Or la probabilité de ne pas atteindre un état absorbant

partant de i =2 A est Pi(Yn � q) =
qP
j=1

Pi(Yn = j) =
qP
j=1

Qnij:

Cependant lim
n
Qnij = 0; donc lim

n

qP
j=1

Qnij = 0: Par conséquent, lim
n
Pi(Yn � q) = 0:

Par ailleurs, Pi(Yn < q) = Pi(Xn < q) = Pi(�A > n) = 0:

Donc lim
n
Pi(�A > n) = 0; par conséquent lim

n
Pi(�A � n) = 1

d�où P(�A <1) = 1:

Remarque 2.5.43. Ce résultat n�est pas vrai lorsque l�espace des états E est in�ni

comme nous allons voir par la suite.
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Théorème 2.5.44. Soit (Xn) une chaîne de Markov régulière de matrice de transition

P d�ordre N . Alors il existe une matrice stochastique dont toutes les lignes sont égales

� =

0BBBBBB@
�1 �2 : : : �N

�1 �2 : : : �N
... : : :

...

�1 �2 : : : �N

1CCCCCCA (2.5.10)

telle que lim
n
P n = �:

En plus, 0 < �j < 1 8j = 1; :::; N:

Démonstration. Puisque (Xn) est une chaîne de Markov régulière, 9m 2 N� telle

que : P (m)i;j > 0; 8i; j = 1:::N .

a) Pour s�impli�er la preuve nous supposons que m = 1. On a donc Pij > 0; 8i; j =

1; :::; N . Posons d = min
1�i;j�N

pij .

Le résultat du théorème est evidamment vrai pour n = 1. La preuve sera faite pour

n � 2: On a Nd � 1; car la somme des éléments d�une ligne quelconque est égale à 1:

Donc :d � 1
N
� 1

2
:

Dans le cas où N = 2; on peut avoir d = 1
2
; dans ce cas la matrice de transition est

P =

0@1=2 1=2

1=2 1=2

1A ; par conséquent P (n) =
0@1=2 1=2

1=2 1=2

1A ; 8n 2 N�: D�où lim
n
P (n) =0@1=2 1=2

1=2 1=2

1A = �:

Il nous reste à considérer les cas avec d < 1
2
; et N � 3 et par conséquent d < 1

2
:

Soit y = (y1; :::; yn) un vecteur quelconque de RN et soit m0 et M0 telle que

m0 � yi �M0;8i = 1; :::; N:

Posons z = P:y = (Pi;j):
�
y1 ::: yN

�T
=
�
z1 ::: zN

�T
:

La plus grande valeur que les composantes de z = (z1; :::; zN) peuvent prendre est
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celle pour la quelle toutes les composantes de y prennent la valeur M0 sauf un qui

prend la valeur m0. On a alors zi � Pi1m0 + Pi2M0 + :::+ PiNM0; d�où

zi � Pi1m0 + (1� Pi1)M0 � dm0 + (1� d)M0:

La dernière inégalité est vraie car la fonction g(x) = xm0 + (1 � x)M0 = (m0 �

M0)x+M0 est décroissante,( �g(x) = (m0 �M0) � 0)

On a Pi;j � d, 8i; j = 1; :::; N: Donc g(Pi;j) � g(d):

De la même façon on a Pi1M0+Pi2m0+:::+PiNm0 � zi =) Pi1M0+(1�Pi1)m0 �

zi: Or dM0+(1�d)m0 � Pi1M0+(1�Pi1)m0; car la fonction h(x) = xM0+(1�x)m0 =

(M0 �m0)x+m0 > 0 est croissante d�où h(d) � h(Pi;j) 8i; j = 1; :::; N:

On a ainsi,

dM0 + (1� d)m0 � zi � dm0 + (1� d)M0

Notons m1 = dM0 + (1� d)m0 et M1 = dm0 + (1� d)M0:

On a donc m1 � zi �M1;8i = 1; :::; N:

En plus

8<: m0 = dm0 + (1� d)m0 � dM0 + (1� d)m0 = m1

M0 = dM0 + (1� d)M0 � dm0 + (1� d)M0 =M1

D�autre part M1 �m1 = (M0 �m0)(1� 2d). Maintenant, en posons h = P:z , on

trouve de la même façon :

m2 = dM1 + (1� d)m1 � hi � dm1 + (1� d)M1 =M2

avec hi les composantes du vecteure h:

On montre facilement que m0 � m1 � m2; M2 � M1 � M0 et (M2 � m2) =

(M1 �m1)(1� 2d) = (M0 �m0)(1� 2d)2:

En poursuivant ce processus on trouve deux suites adjacentes (mn) et (Mn) telles

que mn � (Pmy )i �Mn 8i = 1; :::; N et 8n 2 N�; avecMn�mn = (M0�m0)(1�2d)n:

Puisque d < 1
2
alors lim

n
(Mn�mn) = 0: On déduit que les deux suites sont conver-

gentes et tendent vers la même limite u. Donc lim
n
P ny = (u; :::; u)T :

Cherchons maintenant la limite de chaque colonne de la matrice P:
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Considérons la base canonique (e1; :::; en) c�est-à-dire e1 = (1; 0; :::; 0)
T ; e2 = (0; 1; :::; 0)

T ; :::; eN =

(0; 0; :::; 1)T ; le produit P:ej nous donne la colonne j de la matrice P .

On a lim
n
(P nej) = lim

n

�
P
(n)
1;j ::: P

(n)
N;j

�T
=
�
�j ::: �j

�T
: Donc pour j = 1; :::; N

, on obtient limn P
n =

0BBBBBB@
�1 �2 : : : �N

�1 �2 : : : �N
...

...

�1 �2 : : : �N

1CCCCCCA :

b) Montrons que �j > 0; 8j = 1; :::; N:

On a p(m)ij > 0; 8i; j = 1; :::; N: Posons d = minfp(m)ij ; i; j = 1; :::; Ng. Evidament

on a d > 0: Puisque Pm+1 = P:Pm

alors P (m+1)ij =
NP
k=1

pikp
(m)
kj �

NP
k=1

pikd = d:

On déduit que p(m+n)ij � d 8n 2 N�: Donc lim
n
p
(n)
ij = �j > 0:

Corollaire 2.5.45. On a :

�:P = � (2.5.11)

avec � = (�1; �2; :::; �N); la première ligne de la matrice �:

Démonstration. On a P n+1 = P n:P donc lim
n
P n+1 = lim

n
P n:P

=) � = �:P:

On particulier en considérant la première ligne de la matrice � on obtient :

(�1; �2; :::; �N) = (�1; �2; :::; �N)P

Dé�nition 2.5.46. Soit (Xn) une chaîne de Markov irréductible de matrice de

transition P et � une loi de probabilité sur E: On dit que � est une loi stationnaire

ou invariante de (Xn) si �P = �:
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Remarque 2.5.47.

1. Le corollaire précédant montre que la chaîne de Markov régulière possède toujour

une loi stationnaire.

2. L�équation (2.5.11) implique qu�a chaque instant n; on a

P�(Xn = j) =
X
i2E

�i(P
n)i;j = (�P

n)j = �j; 8j = 1; :::; N (2.5.12)

Cela signi�e que si la loi initiale de la chaîne est sa loi stationnaire, alors la loi

de la chaîne à n�importe quel intant est la même (égale à la loi stationnaire)

3. Par (2.5.10) on a, 8i; j 2 E;

lim
n!1

Pi(Xn = j) = lim
n!1

(P n)i;j = �j (2.5.13)

� décrit donc la loi de probabilité asymptotique de la chaîne, qui est indépendante

de l�état initial.

Théorème 2.5.48. Pour toute loi initiale � d�une chaîne de Markov régulière on a :

lim
n
�P n = � = (�1; �2; :::; �N): (2.5.14)

Ce qui est équivalent à lim
n
P�(Xn = j) = �j; 8j = 1; :::; N:

Démonstration. La preuve trés simple :

lim
n
�P n = ��: Or �:� = (�1; �2; :::; �N):

0BBBBBB@
�1 �2 : : : �N

�1 �2 : : : �N
... : : :

...

�1 �2 : : : �N

1CCCCCCA =

((�1 + �2 + :::+ �N)| {z }
=1

�1; :::; (�1 + �2 + :::+ �N)| {z }
=1

�N) = (�1; :::; �N) d�où la preuve.

Il est plus intéressant de présenter une autre preuve, due à Doeblin.
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Considérons une autre Chaîne de Markov, dé�nie sur l�éspace E �E: Ses probabi-

litées de transition P � sont données par

p�((i;j);(k;l) = pikpjl (2.5.15)

Nous supposons que la loi initiale de cette chaîne est une mesure produit � = �
�;

c�est-à-dire que

�((i; j)) = �i:�j; 8(i; j) 2 E � E (2.5.16)

Nous dénotons cette chaîne par ((Xn; Yn))n�0: Par construction les variables aléa-

toires X0 et Y0 sont indépendantes. Il suit donc de la dé�nition(2.5.15)des probabilités

de transition que (Xn)n�0 et (Yn)n�0 sont en fait deux chaînes de markov sur E de

matrice de transition P , et de distributions initiales respectivement données par � et

�:

La matrice de transition P � est régulière car les éléments de la matrice puissance

(P �)n sont donnés par les produits p(n)ik p
(n)
jl :

Considérons alors l�ensemble A = f(i; i) : i 2 Eg � E � E: Le temps de premier

passage �A peut s�écrire

�A = inffn > 0; Xn = Yng: (2.5.17)

Alors les deux chaînes ont la même loi pour n � �A: Plus présisément

P�(Xn = j; �A � n) = P�(Yn = j; �A � n); 8j 2 E; 8n � 0: (2.5.18)

Pour montrer cela, nous introduisons un nouveau processus fZngn2N dé�nie par

Zn =

8<: Xn pour n � �A;

Yn pour n > �A:
(2.5.19)

Donc on a bient P�(Z[0;n] = i[0;n]) = �i0
Qn
m=1 pim�1im pour tout n � 0 et tout

choix de i[0;n] 2 En+1: Par le théorème (2.2.19), il suit que fZngn2N est une chaîne de
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Markov de loi initiale � et matrice de transition P; et donc égale en loi à fXngn2N:

Ceci prouve (2.5.18).

Cependant, on a

P�(Xn = j) = P�(Xn = j; �A � n) + P�(Xn = j; �A > n); (2.5.20)

�j = P�(Yn = j) = P�(Yn = j; �A � n) + P�(Yn = j; �A > n):

Donc d�aprés(2.5.18), on a :

jP�(Xn = j)� �jj � jP�(Xn = j; �A > n)� P�(Yn = j; �A > n)j (2.5.21)

� 2P�(�A > n):

Or cette derniere quantité tend vers zéro lorsque n ! 1; car �A est �ni presque

sûrement.

Théorème 2.5.49. Toute chaîne de Markov regulière possède une loi stationnaire

unique.

Démonstration. On a dejà montrer l�existance. Montrons maintenant l�unicité.

Supposons qu�il existe une loi � = (�1; :::; �N) telle que �:P = �: On a alors 8n 2 N�

�:P n = �:

Donc lim
n
�:P n = �: par conséquent, �� = �:

On a ainsi, (�1; :::; �N)

0BBBBBB@
�1 �2 ... �N

�1 �2 ... �N
...

...
...

�1 �2 ... �N

1CCCCCCA = ((�1+ :::+�N)�1; :::; (�1+ :::+�N)�N) =

(�1; :::; �N):

D�où (�1; :::; �N) = (�1; :::; �N):

Remarque 2.5.50. Si la chaîne est irréductible la loi de (Xn) ne converge pas
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nécessairement vers une loi �: Mais elle possède une loi stationnaire

Proposition 2.5.51. Soit P la matrice de transition d�une chaîne de Markov irré-

ductible. Alors il existe une mesure de probabilité unique � = (�1; :::; �N) sur E telle

que �:P = �:

Démonstration. Considérons la matrice stochastique Q = 1
2
[P + I]: Soit

m = max
i;j2E

fminfn � 1 : p(n)ij > 0gg:

Considérons la matrice

Qm = (I + C1mP + C
2
mP

2 + :::+ Cm�1m Pm�1 + Pm)=2m:

Pour tout couple (i; j), il existe un terme de cette somme dont l�élément de la

matrice se trouvant dans la i-ième ligne et la j-ième colonne soit strictement positif.

Comme tous les autres éléments de la même matrice sont non-négatifs, on conclut que

(Qm)ij > 0: Par conséquent, Q est la matrice de transition d�une chaîne régulière.

Donc il existe une unique mesure de probabilité � telle que �:Q = �, ce qui implique
1
2
[� + �P ] =�; donc �P = �:

Exemple 2.5.52. On a déjà noté que le modèle d�Erenfest est une chaîne de Markov

irréductible. Elle a comme distribution stationnaire la loi binomiale de paramètre

p = 1=2 : �i = C
i
N

�
1
2

�N
pour i = 1; :::; N:

L�interprétation de la distribution stationnaire nous indique que si la variable aléa-

toire Xn suit la loi � à un temps n , alors Xm suivra la même loi � à tous les temps

ultérieurs m > n. Cependant, les théorèmes (2.5.44) et (2.5.48) ne sont plus nécessai-

rement vrais dans le cas d�une chaîne irréductible : Il su¢ t de considérer l�exemple du

modèle d�Ehrenfest. Toutefois, on a encore convergence vers la distribution stationnaire

dans le sens de la moyenne ergodique (ou moyenne de Cesaro)
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Théorème 2.5.53. Pour une chaîne de Markov irréductible, et pour toute distribution

initiale �, la fréquence moyenne de passage en tout état j converge vers �j :

lim
n!1

1

n
E�(

n�1X
m=0

1fXm=jg) = �j 8j 2 E: (2.5.22)

Démonstration. Soit � la matrice carrée dont toutes les lignes sont égales à �.

Alors on a �P = �; du fait que P:1 = 1 on a P� = �. Donc :

(I + P + :::+ P n�1)(I � P +�) = I � P n + n�: (2.5.23)

Montrons que la matrice I � P + � est inversible. Soit x un vecteur colonne tel que

(I � P +�)x = 0. Alors on a

0 = �(I � P +�)x = �(I � P )x| {z }
=0

+ ��x = �x: (2.5.24)

Il suit que �x = 0. Or tous les �i sont strictement positifs donc x = 0: On déduit que

la matrice I�P +� est inversible. Soit Z = (I�P +�)�1: Comme �(I�P +�) = �;

on a aussi � = �Z et � = �Z. En mulipliant (3.5.24) à droite par Z, il vient

I + P + :::+ P n�1 = (I � P n)Z + n�Z = (I � P n)Z + n�:

Or nous avons, pour tout état initial i;

1

n
Ei(

n�1X
m=0

1fXm=jg) =
1

n

n�1X
m=0

(Pm)ij = [
1

n
(I � P n)Z +�]ij:

Comme les éléments de la matrice P n sont bornés par 1; cette quantité converge vers

(�)ij = �j ; lorsque n!1 .

Théorème 2.5.54. Soit (Xn) une chaîne de Markov irréductible de distribution
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stationnaire �. Alors le temps de récurrence moyen en un état i 2 E est :

Ei(� i) =
1

�i
: (2.5.25)

Démonstration. Pour i; j 2 E, on a

Ei(� j) = Pi(� j = 1) +
X
n�2

nPi(� j = n)

= Pij +
X
n�2

n
X
k 6=j

Pi(� j = n;X1 = k)

= Pij +
X
n�2

n
X
k 6=j

pikPk(� j = n� 1)

= Pij +
X
k 6=j

pik
X
m�1

(m+ 1)Pk(� j = m)

= Pij +
X
k 6=j

pik[Ek(� j) +
X
m�1

Pk(� j = m)| {z }
=1

]

= 1 +
X
k 6=j

pikEk(� j):

Par conséquent,

1� Ei(�j) = �
X
k 6=j

pikEk(� j) = �
X
k2E

(1� �kj)pikEk(� j):
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Il suit que

1� �jEj(�j) =
X
i2E

�i[1� �ijEi(� j)]

=
X
i2E

�i[1� Ei(� j) + (1� �ij)Ei(� j)]

=
X
i2E

�i
X
k2E

(�kj � 1)pikEk(� j) + (1� �ij)Ei(� j)

=
X
k2E

X
i2E

�i(�ik � pik)(1� �kj)Ek(� j) = 0

La somme sur i s�annule, car �k =
P

i �ipik.

Exemple 2.5.55. Dans le cas du modèle d�Ehrenfest avec N boules, le temps de

récurrence moyen vers l�état à i boules est donné par

Ei(� i) =
1

�i
= 2N

i!(N � i)!
N !

:

En particulier, le temps moyen entre con�gurations où toutes les boules sont dans

l�urne de gauche est de 2N . Ce temps devient gigantesque pour des nombres de boules

de l�ordre du nombre d�Avogadro, c�est-a-dire du nombre de molécules dans un echan-

tillon d�une mol de gaz. Ce modèle simple peut donc justifer pourquoi, lorsque deux

récipients contenant des gaz sont mis en contact, on n�observe jamais toutes les molé-

cules dans le même récipient.

2.6 Etats récurrents et transients

On se donne une chaîne de Markov (Xn) à valeurs dans E, dé�nie sur l�espace de

probabilité (
;F ; P ): On notera Fn la tribu engendrée par (X0; X1; :::; Xn) c�est-à-
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dire :

Fn = ffw 2 
 : (X0(w); X1(w); :::; Xn(w)) 2 Bng; Bn 2 P(En+1)g

= �(X�1
0 (P(E)) [X�1

1 (P(E)) [ ::: [X�1
n (P(E)):

c�est l�ensemble des événements se produisant jusqu�à l�instant n:

Remarque 2.6.56. (Fn)n2N est famille croissante au sens de l�inclusion

Dé�nition 2.6.57. (temps d�arrêt).Une variable aléatoire T à valeurs dans N[+1

est appelée temps d�arrêt pour la chaîne de Markov si pour tout n 2 N

fT = ng 2 Fn

ou de manière équivalentefT � ng 2 Fn:

Cela signi�e qu�en observant la chaîne jusqu�à l�instant n, on peut décider si

fT = ng a lieu ou non.

Autrement dit, cet évènement ne dépend que des variables aléatoires X0; X1; :::; Xn:

Exemple 2.6.58. On dé�nit la variable Sx par :

Sx = inffn 2 N : Xn = xg

avec la convention inf � = +1 .

Sx représente le temps de premier passage à l�état x de la chaîne. Il est clair que

Sx est un temps d�arrêt :

fSx = ng = fX0 6= xg \ fX1 6= xg \ ::: \ fXn�1 6= xg \ fXn = xg 2 Fn

Exemple 2.6.59. On dé�nit la variable Tx par :
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Tx = inffn > Sx : Xn = xg:

Tx représente le temps du premier retour à l�état x de la chaîne. Alors Tx est un

temps d�arrêt.

Exemple 2.6.60. On dé�nit la variable Lx par :

Lx = supfn 2 N : Xn = xg:

Lx représente le temps du dernier passage à l�état x de la chaîne. Lx n�est pas un

temps d�arrêt.

Désignons par � j le temps d�atteindre l�état j de la chaîne à partir de l�instant 1:

Autrement dit :

� j = inffn � 1 : Xn = jg:

Ce temps d�atteinte est un temps d�arrêt de la chaîne. Rappelons que cela signi�e

que pour tout n � 1; l�événementf� j = ng; qui est égal à fX1 6= j; :::; Xn�1 6= j;Xn =

jg; ne dépend que de X1; :::; Xn:

Formules de conditionnement
Dans les énoncés suivants, A désigne un évènement appartennant à la tribu

Fn(n � 0), une tribu qui est engendrée par le vecteur (X0; :::; Xn): L�évènement

A est une réunion dénombrable d�évènements, disjoints deux à deux, de la forme

fX0 = i0; :::; Xn = ing:

L�événement fA;Xn = ig = A \ fXn = ig est alors un évènement de la tribu Fn .

Le présent fXn = ig est donc �xé.

Dé�nition 2.6.61. (loi de probabilité conditionnelle du temps d�atteindre)
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Pour tout couple (i; j) d�états et tout n � 1, on pose :

f
(n)
ij = P(� j = n j X0 = i): (2.6.26)

Ainsi, f (n)i;j (n � 1) est la probabilité pour que le processus, partant de l�état i; atteigne

l�état j, pour la première fois, à l�instant n: Pour tout couple d�états (i; j), on pose,

par convention, f (0)i;j = 0:

Théorème 2.6.62. Pour tout entier n � 1; on a l�identité :

p
(n)
ij =

nX
k=0

f
(k)
ij p

(n�k)
jj : (2.6.27)

Démonstration. Le processus passe de i à j en n étapes, si et seulement s�il passe

de i à j pour la première fois en k étapes (0 � k � n) et s�il passe ensuite de j à j

en les (n� k) étapes suivantes. Ces chemins, pour des k distincts, sont disjoints et la

probabilité pour un k �xé est f (k)ij p
(n�k)
jj :

Ce résonnement intuitif peut être rendu rigoureux de la façon suivante.

Comme, pour n � 1

fXn = jg =
n�1X
k=1

f� j = k;Xn = jg+ f� j = ng;

On en déduit

P(Xn = jjX0 = i) =

n�1X
k=1

P(� j = k;Xn = j=X0 = i) + f
(n)
ij

=
n�1X
k=1

P(� j = kjX0 = i)P(Xn = jj� j = k;X0 = i) + f
(n)
ij :

Or, pour 1 � k � n� 1, l�événement f� j = k;X0 = ig est de la forme fA;Xk = jg;
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où A appartient à Fn�1 � Fn . Par conséquent,

P(Xn = jj� j = k;X0 = i) = P(Xn = jjA;Xk = j) = p(n�k)jj ;

Comme PfXn = jjX0 = ig = p(n)ij et Pf� j = kjX0 = ig = f (k)ij ; il résulte

p
(n)
ij =

n�1X
k=1

f
(k)
ij p

(n�k)
jj + f

(n)
ij =

nX
k=0

f
(k)
ij p

(n�k)
jj :

D�aprés (3.6.27) on peut déterminer les f (n)ij par récurrence à partir des p(n)ij :

f
(1)
ij = p

(1)
ij ; (2.6.28)

f
(n)
ij = p

(n)
ij �

n�1X
k=1

f
(k)
ij p

(n�k)
jj (n � 2):

Posons

fij = Pf� j < +1jX0 = ig =
X
n�1

f
(n)
ij : (2.6.29)

C�est la probabilité pour que le processus, partant de i ; passe par j au moins une

fois au cours du temps ; si i = j, le nombre fj;j est la probabilité pour que le processus,

partant de j retourne en j, au moins une fois au cours du temps.

Dé�nition 2.6.63. On dit que l�état j est récurrent, si fjj = 1. On dit qu�il est

transient ou transitoire, si fj;j < 1.

Théorème 2.6.64. (Critère de récurence).Soit j 2 E Alors

j est recurrent()
X
n�0

p
(n)
jj = +1 (2.6.30)



43

et que :

j est transient()
X
n�0

p
(n)
jj < +1 (2.6.31)

Remarque 2.6.65. Ces formules ont une interprétation intuitive :

Notons Nj =
P
n�0

1fXn=jgle nombre de retours dans l�états j après l�instant 0: Alors

le nombre moyen E[Nj] =
P
n�0

p
(n)
jj est in�ni si et seulement si j est récurrent.

Il y a plusieurs techniques pour démontrer ce théorème. Nous utilisons le lemme

d�Abel.

Lemme 2.6.66. (Lemme d�Abel)

(1) Si la série de terme général �n converge et a pour somme � , alors

lim
s!
�
1

P
n�0 �ns

n = �:

(2) Si les �n sont positifs et si lim
s!
�
1

P
n�0 �ns

n = � � +1; alors la série de termes

général �n a pour somme �:

A�n de démontrer ce théorème, nous considérons les fonctions génératrices

Pi;j(s) =
X
n�0

p
(n)
ij s

n; Fi;j(s) =
X
n�0

f
(n)
ij s

n; (2.6.32)

et à l�aide de la relation de récurrence (3.6.28), établissons une relation fonctionnelle

entre elles.

On a :

Pjj(s) = 1 +
X
n�1

p
(n)
jj s

(n) = 1 +
X
n�1

sn
X
0�k�n

f
(k)
jj p

(n�k)
jj (2.6.33)

= 1 +
X
n�0

sn
X
0�k�n

f
(k)
jj p

(n�k)
jj (car f (0)jj = 0)

= 1 + Fjj(s)Pjj(s):
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Lorsque i 6= j, il vient de même : Pij(s) = Fij(s)Pjj(s): Se rappelant que p(0)ij = �ij:

Donc le lemme suivant est démontré.

Lemme 2.6.67. On a les identités

Pjj(s) =
1

1� Fjj(s)
; Pij(s) = Fij(s)Pjj(s) (i 6= j) (2.6.34)

Proposition 2.6.68. que l�on peut réunir en une seule formule :

Pij(s) = �i;j + Fij(s)Pjj(s) . (2.6.35)

Le théorème (2.6.64) se démontre alors ainsi : supposons que j est récurrent, doncP
n�0

f
(n)
jj = 1. D�après le Lemme d�Abel partie(1), lim

s!
�
1

P
n�0

f
(n)
jj s

n = 1 et donc

lim
s!
�
1
Fjj(s) = 1: Donc d�après (3.6.34), il en résulte lim

s!
�
1
Pjj(s) = +1 et donc

lim
s!
�
1

P
n�0

p
(n)
jj s

n = +1: On peut appliquer alors la partie (2) du Lemme d�Abel et

conclure que
P
n�0

p
(n)
jj = +1:

Réciproquement, en supposant que j est transient, on aura
P
n�0

f
(n)
jj < 1; Suivant

la même technique, on a lim
s!
�
1
Pjj(s) < +1; d�où , par le Lemme d�Abel partie(2),P

n�0
p
(n)
jj < +1:

Exemple 2.6.69. Considérons la chaîne de Markov, dont l�ensemble des états est

E = f0; 1; 2; 3g; et de matrice de transition

P =

0BBBBBB@
1=2 1=2 0 0

1=2 1=2 0 0

1=4 1=4 1=4 1=4

0 0 0 1

1CCCCCCA .

En calculons les coe¢ cients diagonaux des matrices P n pour tout n � 0, on trouve :
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p
(n)
00 = p

(n)
11 = 1=2; p

(n)
22 = (1=4)n et p(n)33 = 1: Les séries

P
p
(n)
00 ;
P
p
(n)
11 et

P
p
(n)
33 di-

vergent. Les états 0; 1; 3 sont récurrents. La série
P
p
(n)
22 converge, l�état 2 est transient.

Remarque 2.6.70. De tels états sont appelés états de non-retour s�il existe des

états i tels que pour tout n � 1 on ait p(n)ii = 0:

Exemple 2.6.71. L�état 1 dans la chaîne de Markov, telle que E = f0; 1g et

P =

0@1 0

1 0

1A est un état de non-retour.

Proposition 2.6.72. Tout état de non-retour est transient ; tout état absorbant

est récurrent

Démonstration. Pour un état j de non-retour, on a p(n)j;j = 1 si n = 0 et 0 autrement.

La série de terme général p(n)j;j est convergente. L�état est donc transient. Pour un état

absorbant, tout les termes pnj;j de la série vaut 1: La série est divergente et l�état est

récurrent.

Proposition 2.6.73. Si i! j et si i est récurrent, alors j est aussi récurrent.

Démonstration. Comme i! j: On a p(n1)i;j > 0 et p(n2)j;i > 0 pour certains entiers

n1; n2: De là,

X
n

p
(n2+n+n1)
jj �

X
n

p
(n2)
ji p

(n1)
ij p

(n)
ii = p

(n2)
ji p

(n1)
ij

X
n

p
(n)
ii = +1
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Proposition 2.6.74. Soit j un état transient. Alors, pour tout état i , on a :

X
n�0

p
(n)
ij = �i;j + fij

X
n�0

p
(n)
jj ; (2.6.36)

X
n�0

p
(n)
jj =

1

1� fjj
; (2.6.37)

X
n�1

p
(n)
ij =

fi;j
1� fjj

(i 6= j) (2.6.38)

En particulier, la série de terme général p(n)ij est convergente et p(n)ij ! 0; lorsque n

tend vers l�in�ni.

Démonstration. L�identité (2.6.36) découle de l�identité (2.6.35) appliquée pour

s
�! 1 et du théorème (2.6.64). Comme la série de terme général p(n)jj converge vers

� =
P
n�0

p
(n)
jj ; on a lim

s
�!1
Pjj(s) = �; par le Lemme d�Abel.

La série de terme général f (n)ij a pour somme fij � 1: On a donc aussi lim
s
�!1
Fij(s) =

fij: D�où lim
s
�!1
P
(s)
ij = �ij + fij� et

P
n�0

p
(n)
ij = �ij + fij� <1:

Les identités (2.6.37) et (2.6.38) sont des consequences de la première formule(3.6.36)

Proposition 2.6.75. Si une chaîne de Markov à un nombre �ni d�états, elle a au

moins un état récurrent.

Démonstration. Soit N le nombre d�états de la chaîne. Pour tout entier n � 0; on

a
P

1�i;j�N
p
(n)
ij = N; d�où

P
n�0

P
1�i;j�N

p
(n)
ij = +1; ce qui, d�aprés la proposition (2.6.73)

serait une contradiction, si tous les états étaient transients.

Proposition 2.6.76. Soit j un état récurrent et k 6= j tel que j  k; alors k  j;

de sorte que k est aussi récurrent et dans la même classe que j. En particulier, une
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chaîne de Markov ne peut aller d�un état récurrent vers un état transient.

Démonstration. Supposons que pour n � 1 on ait p(n)jk > 0 . Il s�agit de montrer

que l�on a p(m)kj > 0 pour un certain m � 1: Il su¢ t de montrer la proposition pour

n = 1; soit pjk > 0: Si l�on avait P(Xm = jjX0 = k) = p
(m)
k;j = 0 pour tout m � 1; on

aurait P(Nj = 1jX0 = k) �
P
m�1

p
(m)
kj = 0: De là P(Nj = 1jX0 = j) =

P
l 6=k
pjlP(Nj =

1jX0 = l) �
P
l 6=k
pjl = 1 � pjk < 1 et j ne serait pas réccurent, contradiction avec

l�hypothèse.

Proposition 2.6.77. Si i et j sont dans la même classe récurrente, alors

Pi(� j <1) = Pj(� i <1) = 1: (2.6.39)

Démonstration. Soit AM = [Mm=1fXm = jg l�évenement �la chaîne visite l�état j

lors des M premiers pas�. Alors

lim
M!1

Pj(AM) =
1X
m=1

Pj(� j = m) = 1: (2.6.40)

Soit n0 le plus petit entier tel que PjfXn0 = ig > 0: Alors pour tout M > n0,

Pj(AM \ fXn0 = ig) =
M�n0X
n=1

Pj(Xn0 = i; � j = n0 + n) (2.6.41)

=

M�n0X
n=1

Pj(Xn0 = i; j =2 X[1;n0])Pi(� j = n)

� Pj(Xn0 = i)

M�n0X
n=1

Pi(� j = n): (2.6.42)

La première égalité suit du fait que la chaîne ne peut pas retourner en j avant n0

et visiter i au temps n0; par dé�nition de n0. En tendant M vers l�in�nie des deux
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côtés de l�inégalité, on obtient

Pj(Xn0 = i) � Pj(Xn0 = i)Pi(� j <1): (2.6.43)

Comme PjfXn0 = ig 6= 0 et Pif� j <1g � 1; on a nécessairement Pif� j <1g = 1:

2.7 Périodicité

Il s�agit d�étudier dans quelles conditions le temps qui sépare deux retours au même

état j est ou n�est pas multiple d�un temps minimum. On introduit pour ce faire la

notion de période.

Dé�nition 2.7.78. Soit j un état de retour ; on appelle période de j; le p:g:c:d

de tous les entiers n � 1 pour lesquels p(n)j;j > 0: On note d(j) la période de j. Si

d(j) = d � 2; on dit que j est périodique de période d ; si d = 1; on dit que j est

apériodique. Si j est un état de non-retour, à savoir que, pour tout n � 1, on a p(n)j;j = 0;

on pose d(j) = +1:

Théorème 2.7.79. Si i est périodique de période d �nie et si i! j, j 6= i, alors

j est aussi périodique de période d: La propriété de périodicité est une propriété de

classe.

Démonstration. Si i! j; alors il existe deux entiers n et m tels que p(n)i;j > 0 et

p(m)j;i > 0: Comme i est de période d(i) = d; il existe aussi un entier s � 1 tel que

p(s)i;i > 0: On a donc p
(m+s+n)
j;j � p(m)j;i p

(s)
i;i p

(n)
i;j > 0: Comme p

(s)
i;i > 0 =) p

(2s)
i;i > 0; on

a aussi :p(m+2s+n)j;j > 0: La période d(j) divise donc à la fois m+ 2s+ n et m+ s+ n;

donc aussi leur di¤érence s, et en particulier la période d(i) de i: De la même façon,
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on montre que d(i) divise d(j). Ainsi d(j) = d(i) = d:

Remarque 2.7.80. toute chaîne régulière est apériodique. En e¤et, pour tout état

i; il existe un état j tel que pi;j > 0: Par dé�nition, il existe un temps n tel que

Pk(Xn = l) > 0 pour tout k; l 2 E: Par conséquent, on a PifXn = ig > 0 et aussi

Pi(Xn+1 = i) � Pi(X1 = j;Xn+1 = i) = pijPj(Xn = i) > 0

Ceci implique que di = p gcdfn; n+ 1g = 1:

Exemple 2.7.81. Considérons la chaîne de Markov, à trois états 0; 1; 2, dont le graphe

associé est donné dans la �gure ci-dessous, où toutes les �èches présentes correspondent

à des probabilités de transition strictement positives.

L�état 0 est de retour ; les lacets 0! 1! 0 et 0! 1! 2! 0 ont pour longueur 2

et 3; respectivement ; leur p,g.c.d est d = 1; l�état 0 est donc apériodique. Maintenant,

la chaîne est irréductible. Les deux autres états 1 et 2 sont aussi apériodiques, ce que

l�on peut aussi véri�er directement.

Exemple 2.7.82. Nous allons voir dans le chapitre qui va suivre que dans la

premenade sur Z; tous les états sont périodiques, de période 2:

Exemple 2.7.83. Considérons la chaîne de Markov, dont l�ensemble des états est
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E = f0; 1; 2; 3g et de matrice de transition :

P =

0BBBBBB@
0 0 1=2 1=2

1 0 0 0

0 1 0 0

0 1 0 0

1CCCCCCA on obtient le graphe

Tous les états communiquent. Il y a donc une seule classe(récurrente). Il y a exac-

tement deux lacets issus de 0 : 0 ! 2 ! 1 ! 0 et 0 ! 3 ! 1 ! 0, tous deux de

longueur 3: La classe est donc périodique de période 3.



Chapitre 3

Chaîne de Markov sur un ensemble

dénombrable

3.1 Marches aléatoires

Les marches aléatoires constutent un exemple relativement simple, et néanmoins

très important de chaîne de Markov sur un ensemble dénombrable in�ni. Dans ce cas

en e¤et, E = Zd est un réseau in�ni, de dimension d 2 N�. D�habitude, on considère

que la chaîne démarre en X0 = 0: Ensuite, elle choisit à chaque instant l�un des 2d

sites voisins, selon une loi �xée d�avance.

Dé�nition 3.1.84. Une marche aléatoire sur Zd est une chaîne de Markov à valeurs

dans Zd; de distribution initiale � = �0, et de probabilités de transition satisfaisant

pij = 0 si i = j ou ki� jk > 1 (3.1.1)

La marche est dite symétrique si

pij =
1

2d
pour ki� jk = 1 (3.1.2)

51
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Les trajectoires de la marche aléatoire sont des suites de points de Zd à distance 1.

Dans le cas symétrique, chaque trajectoires X[0;n]; qui est de longueur n; a pour

probabilité (2d)�n:

Nous allons d�abord déterminer quelques proprietés élémentaires de la loi de (Xn)

Proposition 3.1.85. Pour la marche aléatoire symétrique sur Zd, les variables aléa-

toires Xn satisfont :

1. E(Xn) = 0

2. COV (Xn) =
n
d
Id (avec Id la matrice unité d�ordre d )

On plus on a Xnp
n

L! N (0; 1
d
Id)

Démonstration.

(a) Considérons la suite de variables aléatoires Yn = Xn �Xn�1 pour n 2 N�:

D�après la dé�nition de la marche aléatoire (Xn), Yn 2 F = f�ej = j = 1; :::; dg;

avec ej le vecteur unité dont la j-ième composante est égale à 1 et toutes les autres

composantes soient nulles.

Puisque card F = 2d; la loi de Yn est PYn(y) = 1
2d
;8y 2 F:

On déduit que les variables aléatoires de Yn possèdent la même loi. Or toute chaîne

de Markov est à accroissement indépendants. Et puisque Yn sont des accroissements

de la chaîne (Xn); les Yn sont des variables indépendantes. On déduit que les Yn sont

i:i:d .

On a pour tout n 2 N� : E(Yn) = 1
d

dP
j=1

�ej = 0

Par conséquent E(Yn) = 0:

(b) La convariance de (Yn) est cov(Yn) = (E(Y in � E(Y in))(Y jn � E(Y jn )))1�i;j�d

avec Y 1n ; Y
2
n ; :::; Y

d
n les composantes de Yn:

Or on a E(Y in) = 0 8i = 1; :::; d:

D�où E(Y in:Y jn ) = 0 si i 6= j:
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Si i = j on a :E(Y in:Y in) = E((Y in)2) = 12 12d + (�1)
2 1
2d
+ 0(2d�2

2d
) = 1

d

On deduit que COV (Yn) = 1
d
:Id =

Calculons maintenant E(Xn):

On a Xn = Y1 + Y2 + :::+ Yn donc E(Xn) =
Pn

k=1 E(Yk) = 0:

D�autre part les Yn sont indépendantes donc

cov(Xn) = cov(Y1 + Y2 + :::+ Yn) =
Pn

k=1 cov(Yk) =
n
d
Id:

Le resultat Xnp
n

L! N (0; 1
d
Id) est le théorème de la limite centrale.

En e¤et Xn = Y1 + Y2 + ::: + Yn , et Y1; Y2; :::; Yn sont des variables aléatoires indé-

pendantes et de même loi d�esperance nulle et de covariance égale à 1
d
Id

alors Y1+:::+Ynp
n

L! N (0; 1
d
Id):

En conséquence, la position de la marche aléatoire au temps n se trouvera en

grande probabilité dans une boule de rayon d�ordre
p
n autour de l�origine. On dit que

la marche aléatoire a un comportement di¤usif(par opposition à ballistique, où la

distance à l�origine croîtrait proportionnellement à n):

Considérons le cas unidimentionnel, c�est à dire la marche aléatoire sur

Z.

Proposition 3.1.86. Soit (Xn)n2N une marche aléatoire sur Z. Alors pour tout

n 2 N , la loi de Xn est une loi binomiale centrée.C�est à dire dé�nie par

P(Xn = k) = C
n+k
2

n

�
1

2

�n
pour k = �n;�n+ 2; :::; n� 2; n (3.1.3)

Démonstration. Calculons P(Xn = k): Le fait que Xn = k, Xn aurait avancé p

pas et reculé n � p pas de façon à ce que (n � p)(�1) + p(1) = k. Or la probabilité

d�avancer p pas et de reculer (n� p) pas est :Cpn(12)
p(1
2
)n�p = Cpn(

1
2
)n:

On a (n� p)(�1) + p(1) = k =) �n+ p+ p = k =) 2p = k + n:
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On déduit que :P(Xn = k) =
�
n

k+n
2

�
(1
2
)n:

On a k = �n+ 2p et �n � k � n: Or p prend les valeurs 0; 1; :::; n , le nombre k

prend les valeurs �n;�n+ 2; :::; n� 2; n:

On a

E(Xn) =
nX
p=0

[(�n+ 2p)Cpn + (n� 2p)Cn�pn ] = 0:

Remarque 3.1.87. En particulier, la probabilité que le processus se trouve en 0 au

n�eme pas est donnée par :

P(Xn = 0) =

8<: 0 si n est impair
(2m)!

22m(m!)2
si n = 2m est pair.

(3.1.4)

En e¤et : on a k = �n;�n+2; :::; n� 2; n ; si n est impair k ne peut pas être égal

à 0 donc P(Xn = 0) = 0:

Dans le cas où n est pair, n = 2m, on a :

P(Xn = 0) =

�
n
n
2

��
1

2

�n
=

�
2m

m

��
1

2

�2m
=
(2m)!

(m!)2
:
1

22m

Pour n assez grand . En utilisant la formule de Stirling n! '
p
2�n(n

e
)n; on obtient

P(Xn= 0) '
p
4�m(

2m

e
)2m(

e

m
)2m

1
p
2�m

2

1

22m
' 1p

�m
'
r
2

�n
: (3.1.5)

En tout temps pair, L�origine est l�endroit le plus probable où trouver la marche

aléatoire, mais cette probabilité décroît avec le temps.

Dé�nition 3.1.88. Soit Xn une marche aléatoire sur Z. On pose

� o = inffn 2 N�; Xn = 0g (3.1.6)
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� 0 est le temps du premier retour au point 0 (on a X0 = 0):

Donc � 0 ne peut prendre que des valeurs paires, de plus, si � 0 = n alors Xn = 0,

donc P(� 0 = n) � P(Xn = 0): En e¤et, on a :

P(� 0 = n) = P(X1 6= 0; X2 6= 0; :::; Xn�1 6= 0; Xn = 0) (3.1.7)

Théorème 3.1.89. Soit (Xn) une marche aléatoire sur Z. Alors

Pf� 0 = ng =

8<: 1
n
P (Xn�2 = 0) si n est pair

0 si n est impair.
(3.1.8)

Démonstration. Supposons que n est pair :

On a P(� 0 = n) = P(X1 6= 0; X2 6= 0; :::; Xn�1 6= 0; Xn = 0)

=P(X1 > 0; :::; Xn�1 > 0; Xn = 0) + P(X1 < 0; :::; Xn�1 < 0; Xn = 0)

=2P(X1 > 0; X2 > 0; :::; Xn�1 > 0; Xn = 0)

=2P(Xn = 0=X1 = 1; X2 > 0; :::; Xn�2 > 0; Xn�1 = 1)P(X1 = 1; X2 > 0; :::; Xn�2 >

0; Xn�1 = 1)

=2P(Xn = 0=Xn�1 = 1):P(X1 = 1; X2 > 0; :::; Xn�2 > 0; Xn�1 = 1)

=2P(X1 = 0=X0 = 1):P(X1 = 1; X2 > 0; :::; Xn�2 > 0; Xn�1 = 1)

=2:1
2
P(X1 = 1; X2 > 0; :::; Xn�2 > 0; Xn�1 = 1)

=P(X1 = 1; X2 > 0; :::; Xn�2 > 0; Xn�1 = 1)

=P(X1 = 1; Xn�1 = 1)�P(X1 = 1; Xn�1 = 1;9m 2 f2; ::; n�2g telque Xm = 0)

=P(X1 = 1; Xn�1 = 1)� P(X1 = �1; Xn�1 = 1) (par le principe de re�exion).

=P(Xn�1 = 1=X1 = 1)P(X1 = 1)� P(Xn�1 = 1=X1 = �1)P(X1 = �1)

=1
2
[P(Xn�2 = 1=X0 = 1)� P(Xn�2 = 1=X0 = �1)]

=1
2
[P(Xn�2 = 0=X0 = 0)�P(Xn�2 = 2=X0 = 0)] =

1
2
[P(Xn�2 = 0)�P(Xn�2 = 2)]:

D�autre part on a :
P(Xn�2=2)
P(Xn�2=0) =

C
n�2+2

2
n�2 ( 1

2
)n�2

C
n�2
2
n�2 (

1
2
)n�2

=
((n
2
�1)!)2

(n
2
�2)!(n

2
)!
=

n
2
�1
n
2
= 1� 2

n
:

=) P(Xn�2=2)
P(Xn�2=0) = (1�

2
n
) =) P(Xn�2 = 2) = P(Xn�2 = 0)(1� 2

n
)
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Donc Pf� 0 = ng = 1
2
[P(Xn�2 = 0)� P(Xn�2 = 0)(1� 2

n
)] = 1

n
PfXn�2 = 0g=

C
n
2
n�2

C
n�2
2

n�2

:

Or on a dit que n est pair donc posons n = 2m: Il s�ensuit que :
Cm2m�2

C
2m�2
2

2m�2

= m�1
m
= 1� 1

m
= 1� 2

n

D�où :

Pf� 0 = ng = 1
2
PfXn�2 = 0g[1 � 1 + 2

n
] = 1

n
PfXn�2 = 0g ce qui conclut la

démonstration.

Corollaire 3.1.90. E(� 0) = +1

Démonstration. E(� 0) =
P
n2N

nP(� 0 = n) =
P
m2N

2mP(� 0 = 2m)

=
P
m2N

2m 1
2m
P(X2m�2 = 0) =

P
m2N

P(X2m�2 = 0) =
P
m2N

P(Xm = 0) (�)

Or pour m assez grand on a P(X2m = 0) ' 1p
�m
: Donc la série (�) est de même na-

ture que la série
P
m2N

1p
�m
= 1p

�

1P
m=1

1

(m)
1
2
qui est divergente, car c�est série de Riemann

avec � = 1=2 . Donc
P
m2N

1p
�m
=1:

En d�autres termes, la marche aléatoire �nit toujours par revenir en 0; mais la loi

de � 0 décroît trop lentement pour que son espérance soit �nie. Ceci est dû au fait que

si la marche aléatoire s�éloigne beaucoup de 0; elle met longtemps pour y revenir.

Corollaire 3.1.91. La marche aléatoire symétrique sur Zdest récurrente pour d = 1

et d = 2 et transiente pour d > 3.

3.2 Distributions stationnaires

Nous considérons une chaîne de Markov irréductible sur un ensemble dénombrable

E, de matrice de transition P = (pij)i;j2E:

Dé�nition 3.2.92. Une distribution de probabilité � sur E est dite stationnaire si
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elle satisfait

�j =
X
i2E

�ipij 8j 2 E (3.2.9)

Plus généralement, une mesure � sur E (qui n�est pas nécessairement une probabi-

lité) satisfaisant �j =
P
i2E
�ipij pour tout j 2 E est appelée une mesure invariante de

la chaîne.

Dans le cas où E est �ni nous avons vu qu�une chaîne irréductible admettait

toujours une distribution stationnaire. Dans le cas in�ni, ce n�est plus nécessairement

le cas .

Nous allons maintenant dériver une condition nécessaire et su¢ sante pour qu�une

chaîne de Markov irréductible admette une distribution stationnaire, qui sera toujours

unique dans ce cas . Un rôle important est joué par la quantité



(k)
i = Ek(

�kX
n=1

1fXn=ig); (3.2.10)

C�est-à-dire le nombre moyen de passage en i entre deux passages en k: Intuitive-

ment, si k est récurrent alors la chaîne revient in�niment souvent en k; et donc 
(k)i

devrait mesurer le temps moyen passé en i:

Proposition 3.2.93. Supposons que la chaîne est irréductible et récurrente. Alors on

a 8k 2 E :

1. 
(k)k = 1;

2. 
(k) est une mesure invariante ;

3. pour tout i 2 E, on a 0 < 
(k)i <1;

4. 
(k) est l�unique mesure invariante telle que 
(k)k = 1:

Démonstration.

1) Evidente, puisque X�k = k et Xn 6= k pour 1 � n < � k:
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2) Nous avons



(k)
i = Ek(

1X
n=1

1fXn=i;n��kg) =
1X
n=1

Pk(Xn = i; n � � k) (3.2.11)

=
X
j2E

1X
n=1

Pk(Xn�1 = j; n � � k)pji

=
X
j2E

pji

1X
m=0

Pk(Xm = j;m � � k � 1): (3.2.12)

Or la seconde somme dans cette expression peut s�écrireEk(
�k�1P
m=0

1fXm=ig) = Ek(
�kP
m=1

1fXm=ig) =



(k)
j ; vu que Pk(X0 = j) = �kj = Pk(X�k = j): Ceci prouve l�invariance de mesure


(k):

3) L�invariance de la mesure implique que pour tout n � 0;



(k)
i =

X
j2E



(k)
j PjfXn = ig: (3.2.13)

En particulier, 1 = 
(k)k � 
(k)j Pj(Xn = k) pour tout j. Comme par l�irréductibi-

lité, il existe un n tel que Pj(Xn = k) > 0. On déduit donc 

(k)
j <1 pour tout

j. D�autre part, on a aussi 
(k)i � Pk(Xn = i); qui est strictement positif pour au

moins un n:

4) Soit � une mesure invariante telle que�k = 1: Alors pour tout j on a

�j =
X
i6=k

�ipij + pkj � pkj: (3.2.14)

Il vient alors, en minorant �i par pki dans l�expression ci-dessus,

�j �
X
i6=k

pkipij + pkj (3.2.15)

= PkfX2 = j; � k � 2g+ PkfX1 = j; � k � 1g: (3.2.16)
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Par réccurence, on trouve donc pour tout n � 1 (a ^ b désigne le minimum de

a et b)

�j �
n+1X
m=1

PkfXm = j; � k � mg = Ek(
(n+1)^�kX
m=1

1fXm=jg)

Lorsque n tend vers l�in�ni, le membre de droite tend vers 
(k)j . On a donc

�j � 

(k)
j pour tout j: Par conséquent � = � � 
(k) est une mesure invariante,

satisfaisant �k = 0: Comme �k =
P
j

�jPjfXn = kg pour tout n; l�irréductibilité

implique �j = 0 8j; donc nécessairement � = 
(k):

Théorème 3.2.94. Pour une chaîne de Markov irréductible, les propriétés suivantes

sont équivalentes :

1. Il existe une distribution stationnaire.

2. Il existe un état k 2 E tel que

�k = Ek(� k) <1: (3.2.17)

3. La relation (3.2.17)est véri�ée pour tout k 2 E:

De plus, si ces propriétés sont véri�ées, alors la distribution stationnaire est

unique, et donnée par

�i =
1

�i
8i 2 E (3.2.18)

Démonstration.

2) 1) Si �k <1, alors k est récurrent, donc la chaîne, étant irréductible, est réccurente.

Par la proposition précédente, 
(k) est l�unique mesure invariante prenant la valeur
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1 en k: Or nous avons

X
j2E



(k)
j = Ek(

�kX
n=1

X
j2E

1fXn=jg| {z }
=1

) = Ek(� k) = �k <1 (3.2.19)

Par conséquent, La mesure � dé�nie par �j = 

(k)
j =�k < 1 est une mesure de

probabilité invariante, c�est-à-dire une loi stationnaire de la chaîne.

1) 3) Soit � une loi stationnaire, et k 2 E: Alors 
̂ = �j=�k est une mesure invariante

telle que 
̂k = 1: Par la proposition précédente, on a nécessairement 

(k) = 
̂: Il

suit par le même calcul que ci-dessus,

Ek(� k) =
X
j2E


̂j =

P
j �j

�k
=
1

�k
<1 (3.2.20)

3) 2) Evidente.

Dans ce cas, l�unicité de la mesure suit de celle de 
(k); et la relation (3.2.18)

suit de (3.4.20).

Dé�nition 3.2.95. On dit qu�un état i est récurrent positif si Ei(� i) <1. Sinon il

est dit récurrent nul. La chaîne est dite récurrente positive si tous ses états le sont.

Ainsi un état est récurrent positif lorsque le temps d�attente moyen pour un retour

en i est �ni.

Remarque 3.2.96. Une chaîne irréductible admet donc une loi stationnaire si et

seulement si elle est récurrente positive.

Par conséquent, on distingue dans le cas d�une chaîne irréductible récurrente, deux

cas de �gures :

� Le cas récurrent positif : tous les états sont récurrents positifs et il existe une
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unique probabilité invariante.

� Le cas récurrent nul : tous les états sont récurrents nuls et toutes les mesures

invariantes sont de masse in�nie.

Il est clair que lorsque card E <1, le cas récurrent nul disparaît et tout état i 2 E

récurrent est récurrent positif.

Remarque 3.2.97. Pour d � 3 on sait que tout état de Zd est un état transient.

Donc dans ce cas la promenade aléatoire ne possède pas de loi stationnaire.

Dans le cas où n = 1; 2 on a le resultat suivant :

Théorème 3.2.98. La marche aléatoire symétrique est récurrente nulle en dimensions

d = 1 et d = 2.

Démonstration. Supposons que la chaîne est recurrente positive donc elle possède

une loi stationnaire unique.

Soit � cette loi. On a alors 8j 2 Z;
P
i2Z
�ipij = �j:

Notons Ts(�) le translaté de � avec s 2 Z:

On a 8j 2 Z :

Ts(�j) = �j+s:

Posons ~� = Ts(�): Montrons que �� est aussi une loi stationnaire.

On a 8j 2 Z X
i2Z

~�ipij =
X
i2Z

�i+spij

or pij = pi+sj+s; donc
P
i2Z
~�ipij =

P
i2Z
�i+spi+sj+s = �j+s = �j:

Or la chaîne possède une loi stationnaire unique et que

8j 2 Z; ~�j = �j:
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Donc �j+s = �j: On a alors

�j+s = �j 8s; j 2 Z.

On déduit que � est une loi uniforme sur Z: Ce qui est impossible, car Z est un

ensemble in�ni dénombrable.

On déduit que la chaîne ne peut pas être récurrente positive pour n = 1; 2:

3.3 Convergence vers la distribution stationnaire

Dans le cas �ni, nous avons montré que si la chaîne était régulière, alors la loi

de Xn convergeait vers la distribution stationnaire. Dans le cas d�un espace infni,

une chaîne de Markov ne peut jamais être régulière : les probabilités de transition

étant sommables, elles ne peuvent être minorées par une quantité strictement positive.

Il s�avère toutefois que la récurrence positive et l�apériodicité su¢ sent à garantir la

convergence vers la distribution stationnaire.

Théorème 3.3.99. Soit (Xn)n�0 une chaîne de Markov irréductible, apériodique et

récurrente positive, et soit � son unique distribution stationnaire. Alors pour toute

distribution � initiale , on a

lim
n!1

P�(Xn = j) = �j , 8j 2 E:

Démonstration. Nous allons généraliser la preuve de Doeblin, déjà vue dans le cas

�ni.

Nous introduisons une chaîne de Markov (Xn; Yn)n�0 sur E�E, de probabilités de

transition

p�(i;j);(k;l) = pikpjl , (3.3.21)
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et de distribution initiale � = � 
 � . Dans ce cas, (Xn) et (Yn) sont deux chaînes

indépendantes de matrice de transition P, et de distributions initiales � et � .

Le seul point non trivial de la généralisation est de montrer que P � est irréductible

et apériodique. Pour cela, �xons un état k 2 E. Considérons d�abord l�ensemble

�k = fn 2 N : Pk(Xn = k) > 0g (3.3.22)

La propriété de Markov implique que si n;m 2 �k; alors n + m 2 �k: D�autre

part, par dé�nition d�apériodicité, p gcd �k = 1: Alors il existe un n0 tel que pour tout

t � n0 appartienne à �k. En e¤et pour cela, supposons d�abord qu�il existe n;m 2 �k
premiers entre eux. Par le théorème de Bezout, il existe des entiers p; q � 1 tels que

pm � qn = �1: Quitte à intervertir n et m, on peut supposer que pn � qm = 1: Soit

n0 = qnm: Alors pour 1 � r � n; on a n0+r = qnm+r(pn�qm) = qm(n�r)+rpn 2

�k: Il su¢ t alors d�écrire tout t > n0 comme t = n0 + r + ns avec 1 � r � n pour

conclure que t 2 �k .

Il se pourrait que p gcd �k = 1 sans que cet ensemble ne contienne deux entiers

premiers entre eux. Mais par le théorème de Bezout, il existe forcément un ensemble

d�éléments de �k dont une combinaison linéaire vaut 1, et le raisonnement ci-dessus

s�adapte facilement à ce cas.

Fixons des états i; j; k; l 2 E: P étant supposée irréductible, il existe r 2 N tel que

Pi(Xn = k) > 0. Comme pour tout n � n0,

Pi(Xr+n = k) � Pi(Xr = k)Pk(Xn = k) > 0; (3.3.23)

il suit que PifXn = kg > 0 pour tous les n � n0 + r. Pour des raisons similaires, il

existe m0; s 2 N tels que Pj(Xm = l) > 0 pour tous les m > m0 + s. Par conséquent,

il existe un temps M tel que P�(i;j)((Xt; Yt) = (k; l)) > 0 pour tous les t � M . Ceci

implique que la chaîne composée est irréductible et apériodique.

Comme la chaîne composée admet manifestement la loi stationnaire �
�, le Théo-
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rème (3.2.93) implique qu�elle est récurrente positive.

Le reste de la preuve est identique au cas �ni. On introduit le temps �A de premier

passage sur la diagonale A = f(i; j) : i 2 Eg, et on montre comme dans le cas �ni que

jP�fXn = jg � �jj � 2P�f�A > ng: (3.3.24)

La Proposition (2.6.76) implique que A est �ni presque sûrement, et donc que la

di¤érence ci-dessus tend vers zéro pour n!1.

3.4 Chaînes de Markov réversibles

Dé�nition 3.4.100. Soit P une matrice stochastique. Un vecteur � = f�igi2E 2

[0;1)E; � 6= 0, est dit réversible par rapport à P si

�ipij = �jpji (3.4.25)

Une chaîne de Markov est dite réversible si sa matrice admet un vecteur réversible.

La condition (3.4.25) est appelée condition d�équilibre détaillé en physique. Elle

signi�e que si les états i et j sont occupés avec probabilités proportionnelles i et j

respectivement, alors les taux de transition de i à j et de j à i sont égaux.

Théorème 3.4.101. Soit P une matrice stochastique et � 2 [0;1)E un vecteur non

nul.

1. Si � est réversible par rapport P , alors � est une mesure invariante.

2. Si � est réversible par rapport P , et
P
j2E

�j < 1, alors la mesure � dé�nie par

�i = �i=
P
j2E

�j est une distribution stationnaire.
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3. Si � est une distribution stationnaire, alors

P�(X0 = i0; X1 = i1; :::; Xn = in) = P�(X0 = in; X1 = in�1; :::; Xn = i0)

(3.4.26)

pour tout n 2 N et tout choix de i0; :::; in 2 E:

Démonstration.

1. On a X
i2E

�ipij = �j
X
i2E

pji = �j

2. Suit immédiatement de 1:

3. Par le théorème (2.2.19)

P�(X0 = i0; X1 = i1; :::; Xn = in) = �i0pi0i1pi1i2 :::pin�1in

= pi1i0�i1pi1i2 :::pin�1in
... (3.4.27)

= pi1i0pi2i1 :::pinin�1�in (3.4.28)

La relation (3.4.26) signi�e qu�une trajectoire a la même probabilité que la trajec-

toire renversée dans le temps. C�est ce qui justi�e le terme de réversibilité.

Remarque 3.4.102. Il est clair que si (3.4.25) a lieu, alors � est une mesure

invariante. Par contre, la réciproque est fausse. En e¤et, considérons une chaîne irré-

ductible récurrente positive de mesure invariante �. Alors s�il existe i; j 2 E tels que

Pij > 0 et Pji = 0, la relation (3.4.25) n�est pas véri�ée. Alors P n�est pas réversible

par rapport à �.



Chapitre 4

Le processus ponctuel de Poisson

Le processus de Poisson sur la droite est un processus à temps continu et à valeurs

entières positives. On dit encore que c�est un processus de comptage, que l�on note

fN(t) : t � 0g. Il s�agit d�étudier le nombre aléatoire N(t) de certains évènements

qui se produisent dans un intervalle de temps [0; t] donné. Sa grande popularité dans

les applications vient notamment du fait que beaucoup de calculs le concernant sont

explicites.

4.1 Dé�nition et premières propriétés

On se propose d�étudier la répartition dans le temps d�instants aléatoires, appelés

instants d�arrivée. Dans les applications, ce sont les instants où se produisent certains

évènements spéci�ques, comme, par exemple : les arrivées de clients devant un guichet,

les émissions de particules radioactives, les appels dans un centrale téléphonique, etc.

Par analogie avec le premier exemple cité, on appelle ces évènements des tops, qui se

produisent donc aux dits instants d�arrivée.

Le processus peut être caractérisé de plusieurs manières di¤érentes. Une réalisation

66
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peut être spéci�ée par une suite croissante de nombres réels positifs

X0 = 0 < X1 < X2 < X3 < :::;

désignant les points dans R+. Alternativement, on peut décrire une réalisation en

donnant le nombre de pointsNI(!) contenus dans chaque intevalle I de la forme : I =

]t; t+ s]. Si nous abrégeonsN]0:t] parNt (communément appelé fonction de comptage),

nous aurons N]t;t+s] = N]0;t+s] �N ]0;t], et les Nt sont donnés en fonction des Xn par

Nt(!) = supfn � 0 : Xn(!) � tg:

Inversement, les Xn se déduisent des Nt par la relation

Xn(!) = infft � 0 : Nt(!) � ng:

Nous allons voir deux constructions équivalentes du processus de Poisson. La pre-

mière construction part de la distribution des Nt:

4.2 Construction par la fonction de comptage

Dé�nition 4.2.103. (processus de poisson). Le processus ponctuel de Poisson

satisfait les conditions suivantes :

a) NI ne dépond que de la longueur de I, i.e N]t;t+s] a la même loi que Ns:

b) Si I1; :::; Ik sont deux à deux disjoints, NI1 ; :::; NIk sont indépendants.

c) E(NI) existe pour tout I (de longueur �ni).

d) Il existe un intervalle I tel que P(NI > 0) > 0:

e) Absence de points doubles : lim
"!0

1
"
P (N" � 2) = 0:

Supposant qu�un tel processus existe, nous pouvons dériver quelques-unes de ses

propriétés
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Proposition 4.2.104.

1. Pour tout intervalle borné I � R+, on a P(NI > 0) � E(Nt):

2. Soit �(t) = E(Nt). Alors il existe � > 0 tel que �(t) = �t:

Démonstration.

1) Soit I intervalle de R+. E(NI) =
P1

j=0 jP(NI = j) =
P1

j=1 jP(NI = j) �P1
j=1 P(NI = j) = P(NI � 1):

2) Posons f(x) = E(Ns) pour s 2 R+: f est une application linéaire. En e¤et :

a) 8s; t 2 R+ f(s+ t) = E(Ns+t) = E(N]0;s+t]) = E(N]0;s] +N]s;s+t])

= E(N]0;s]) + E(N]s;s+t]) = f(s) + f(t):

b) 8a 2 R+ et 8s 2 R+ ona :

f(as) = E(Nas) = E(N]0;as]) = E(aN]0;s]) = a E(N]0;s]) = a f(s):

On déduit que f est linéaire sur R+. Donc 9� � 0 telle que 8t 2 R+ f(t) = �t:

La propriété remarquable du processus de Poisson est alors que les variables aléa-

toires N]s;s+t] suivent nécessairement une loi de Poisson de paramètre �s:

Théorème 4.2.105. Si le processus satisfait les 5 conditions de la dé�nition (4.2.102),

alors les variables aléatoires N]s;s+t] suivent des lois de Poisson de paramètre �s :

P(N]s;s+t] = k) = ��s(k) = e��s
(�s)k

k!
:

Démonstration. Par la propriété a), il su¢ t de montrer le résultat pour t = 0,

c�est-à-dire pour Ns. Partageons ]0; s] en k intervalles de longueur égale, de la forme

]sj�1; sj] où s0 = 0 et sj=
js

k
pour 1 � j � k:
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L�idée de la preuve est que pour k su¢ samment grand, il est peu probable d�avoir

plus d�un point par intervalle, donc la loi de Y (k)j = N]sj�1;sj ] est à peu près une loi de

Bernouli.

La loi de Ns est donc proche d�une loi binomiale, que l�on peut approximer par la

loi de Poisson pour k grand.

Il suit donc des conditions que les Y (k)j sont i.i.d, de mêmes loi que Ns1 = Ns=k et

on a

Ns =
kX
j=1

Y
(k)
j :

Introduisons alors des variables aléatoires

Y
(k)
j =

8<: 0 si Y (k)j = 0;

1 si Y (k)j � 1:

les Y (k)j sont également i.i.d, et suivent une loi de Bernoulli. La variable aléatoire

N
(k)
s =

kX
j=1

Y
(k)
j

satisfaisant N
(k)

s � Ns, pour tout k, on a

PfN (k)
s � mg � PfNs � mg

pour tout k et tout m. De plus, N (k)
s suit une loi binomiale de paramètre

pk = P(Y (k)j = 1) = P(Y (k)j � 1) = P(Ns=k � 1):
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Estimons maintenant la di¤érence entre les lois de N (k)
s et Ns: Nous avons

P

P(N (k)
s 6= Ns) = P(9j 2 f1; :::; kg : Y (k)j � 2)

�
kX
j=1

P(Y (k)j � 2)

= kP(Y (k)1 � 2) = kP(Ns=k � 2):

La condition 5 avec "=s=k implique alors

lim
k!1

P(N (k)
s 6= Ns) = 0:

Comme on a d�une part la minoration

P(Ns = m) = P(Ns = N (k)
s = m) � P(N (k)

s = m)� P(N (k)
s 6= Ns);

et d�autre part la majoration

P(Ns = m) = P(Ns = N (k)
s = m) + P(N (k)

s 6= Ns = m)

� P(N (k)
s = m) + P(N (k)

s 6= Ns);

il suit que

lim
k!1

P(N (k)
s = m) = P(Ns = m):

Il reste à montrer que kPk tend vers �s pour k ! 1. Si c�est le cas, alors la

proposition 1.1.4 montre que Ns suit une loi de Poisson de parmètre �s: Or nous
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avons

kpk = E(N (k)
s ) =

1X
j=1

jP(N (k)
s = j) = P(N (k)

s = 1) + 2P(N (k)
s = 2) + 3P(N (k)

s = 3) + :::

=
1X
l=1

X
j�l

P(N (k)
s = j) =

1X
l=1

P(N (k)
s � j):

Or

�s = E(Ns) =
1X
j=0

jPfNs = jg =
1X
l=1

P (Ns � l):

On a

lim
k!1

kpk = lim
k!1

1X
l=1

P (N
(k)
s � l) =

1X
l=1

lim
k!1

P (N
(k)
s � l) =

1X
l=1

PfNs � lg = �s

(4.2.1)

Puisque limk!1 kpk = �s et kpk sont des paramètres d�une loi binomiale, d�aprés

la proposition (1.1.4), les lois de N (k)
s convergent vers la loi de Poisson de paramètre

�s. On déduit aussi que la loi de Ns est de Poisson de paramètre �s (car N
(k)
s converge

en loi vers Ns)

Montrons l�égalité suivante :

lim
k!1

1X
l=1

P(N (k)
s � l) =

1X
l=1

lim
k!1

P(N (k)
s � l):

En e¤et :

On aN (k)
s � Ns 8k 2 N , par conséquent : f ! 2 
nN (k)

s � lg � f ! 2 
nN (k)
s � lg:

Donc

�
fN(k)s �lg

� �
fNs�lg

; avec � fonction indicatrice.

Posons fk =
1P
l=1

�
fN(k)

s �lg
et f =

1P
l=1

�fNs�lg:
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On a
R
f dp =

1P
l=1

PfNs � lg = �s et fk � f 8k 2 N

D�où
R
f k dp <1 8k 2 N . Par conséquent lim

k

R
f k dp =

R
lim
k
fkdp; d�apré le

théorème de la convergence domminée de Lebesgue.

On en déduit lim
k

1P
l=1

P (N
(k)
s � l)) =

1P
l=1

lim
k
P (N

(k)
s � l)

4.3 Construction par les temps d�attente

La seconde construction du processus ponctuel de Poisson se base sur la distribution

des di¤érences de position Zn = Xn � Xn�1. Celles-ci caractérisent également de

manière univoque le processus, via la relation

Xn(!) =
nX
j=1

Zj(!):

Le résultat remarquable est alors que les Zj sont i.i.d et suivent une loi bien parti-

culière, à savoire une loi exponentielle de paramètre �:

Théorème 4.3.106. Pour tout n, les variables aléatoires Z1; :::; Zn sont indépen-

dantes, et suivent la même loi exponentielle exp(�):

Démonstration. Fixons des instants

t0 = 0 < s1 < t1 < s2 < t2 < ::: < sn < tn:

P(X1 2 ]s1; t1] ; X2 2 ]s2; t2] ; :::; Xn 2 ]sn; tn])

= P(N]0;s1] = 0; N]s1;t1]
= 1; N]t1;s2] = 0; :::; N]tn�1;sn] = 0; N]sn;tn] � 1)

=
nY
k=1

P(N]tk�1;sk] = 0)
n�1Y
k=1

P(N]sk;tk] = 1)P(N]sn;tn] � 1)

=

nY
k=1

e��(sk�tk�1)
n�1Y
k=1

�(tk � sk)e��(tk�sk)[1� e��(tn�sn)]

= �n�1
n�1Y
k=1

(tk � sk)[e��sn � e��tn ]
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=
t1R
s1

t2R
s2

:::
tnR
sn

�ne��xn dxndxn�1:::dx2dx1:

La loi conjointe de (X1; :::; Xn) admet donc la densité

f(x1; :::; xn) =

8<: �ne��xn si 0 < x1 < ::: < xn

0 sinon.

Déterminons maintenant la loi de Zk ; k 2 N�

Posons Z1 = X1 �X0, Z2 = X2 �X1; :::, Zn = Xn �Xn�1:

La fonction de répartition de Z1; Z2; :::; Zn est :

8z1; :::; zn 2 R+; F (z1; z2; :::; zn) = PfZ1 � z1; Z2 � z2; :::; Zn � zng

= PfX1 � z1; X2 �X1 � z2; :::; Xn �Xn�1 � zng

=
z1R
0

z2+x1R
0

z3+x2R
0

:::
zn+xn�1R

0

f(x1; x2; :::; xn) dxndxn�1:::dx2dx1

On a :
@F (z1; :::; zn)

@z1
=

z1+z2R
0

z3+x2R
0

:::
zn+xn�1R

0

f(z1; x2; :::; xn) dxn:::dx2

et par conséquent :
@2F (z1; z2; :::; zn)

@z2@z1
=

z1+z2+z3R
0

:::
zn+xn�1R

0

f(z1; z2 + z1; x3; :::; xn) dxn:::dx3

Ainsi de suite...

On obtient �nalement :

@nF (z1; z2; :::; zn)

@zn:::@z1
= f(z1; z1 + z2; z1 + z2 + z3; :::; z1 + z2 + :::+ zn)

= �ne��(z1+:::+zn)

= (�e��z1)(�e��z2):::(�e��zn):

Or cette densité f représente la densité d�une famille de variables aléatoires indé-

pendantes et idéntiquement distribuées gouvernées par la loi �e��x:

Proposition 4.3.107. (Superposition de deux processus de Poison indépendants).
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Soient fN i
tgt2R ; i = 1; 2 deux processus de Poisson indépendants de taux

respectivement�1; �2: Alors le processus N = N1
t + N

2
t est encore un processus de

Poisson de taux � = �1 + �2:

Démonstration. Nt est la variable aléatoire représentant le nombre d�arrivées dans

l�intervalle ]0; t]:

On a pour k 2 N,

P(Nt = k) =
kX
j=0

P(N1
t = j et N

2
t = k � j)

=
kX
j=1

P(N1
t = j):P (N

2
j = k � j)

=
kX
j=1

(t�1)
j

j!
e��1t:

(t�2)
k�j

(k � j)! e
��2t

=
tk

k!
e�(�1+�2)t

kX
j=0

k!�j1�
k�j
2

j!(k � j)!

=
1

k!
((�1 + �2)t)

ke�(�1+�2)t:

On déduit que 8t > 0; Nt est une variable aléatoire gouvernée par la loi de Poisson

de paramètre (�+ �)t:

On véri�er facilement que (Nt) est à accroissement indépendants et stationnaire

par rapport au temps.

On en deduit que (Nt) est un processus de Poisson

Proposition 4.3.108. Soient fX(t) : t � 0g et fY (t) : t � 0g deux processus de

Poisson indépendants, de taux d�arrivées respectifs �X et �Y . Alors le nombre d�arrives

du processus fY (t) : t � 0g se produisant entre deux arrivées successives du processus

fX(t) : t � 0g suit une distribution géométrique modi�ée de paramètre �X
�X+�Y

:
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Remarque 4.3.109. une varriable aléatoire Z suit une loi géometrique modi�ée de

paramètre p (0 < p < 1) si 8i 2 N; P (Z = i) = p(1� p)i:

Démonstration. Soit �X la variable aléatoire qui représente le temp d�attente entre

deux arrivées de X. Calculons P (NY
�X
= k) pour k 2 N.

C�est la loi du nombre d�arrivées de Y entre deux arrivées de X.

P(NY
�X
= k) =

+1Z
0

P(NY
t = k)�X e

��X t dt =
�X�

k
Y

k!

+1Z
0

tk e�(�X+�Y )t dt

=
�X�

k
Y

k!
1

(�X+�Y )k+1

+1Z
0

ske�s ds avec s = (�1 + �2)t:

=
�X�

k
Y

k!
1

(�X+�Y )k+1
�(k + 1) (avec �(�) est fonction d�Euler)

=
�X�

k
Y

k!
k!

(�X+�Y )k+1
= �X

(�X+�Y )

�
�Y

�X+�Y

�k
= p(1� p)k avec p = �X

�Y +�Y
:

Proposition 4.3.110. Soit fTngn2N; T0 = 0; les temps d�arrivée associés à un

processus de Poisson fNtgt2R de paramètre �: et soit B un borélien borné de R. On

introduit la variable aléatoire :

NB =
+1X
n=1

1Tn2B:

Alors NB suit une loi de Poisson de paramètre � m(B); où m(B) est la mesure de

Lebesgue de B

Démonstration. B est une reunion de ses composantes connexes

B =
[
j2I
Ij; I � N.

Les composantes connexes de B sont des intervalles. Donc Ij est un intrvalle de R

8j 2 I:
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a) Supposons que I est �nie, donc B =
n[
j=1

Ij; on a m(B) =
nX
j=1

l(Ij):

D�autre par NIj suit la loi de Poisson de paramètre � l(Ij) 8j 2 I donc
nX
j=1

NIj suit

la loi Poisson de paramètre �
nX
j=1

l(Ij):

Or NB =
nX
j=1

NIj : Donc NB suit la loi Poisson de paramètre �
nX
j=1

l(Ij)

mais m(B) =
nX
j=1

l(Ij) donc NB suit la loi de Poisson de paramètre � m(B):

4.4 Exemples de processus de Poisson

Exemple 4.4.111. (Décomposition d�un processus de Poison).

Le nombre de chocs N(t) a¤ectant une composante d�un système au cours de

l�intervalle de temps (0; t) est gouverné par un processus de Poison de taux �: Lorsque la

composante subit un choc, elle continue néanmoins à fonctionner avec une probabilité

p ; le choc sera par contre fatal avec une probabilité q = 1�p; auquel cas la composante

est instantanément remplacée par une nouvelle composante identique. Soit NF (t) le

nombre de chocs fatals survenus au cours de l�intervalle (0; t): Alors NF = fNF (t); t �

0g est un processus de Poison de taux �q:

Démonstration. Il est clair que le support de NF (t) est N

Pour k 2 N on a :

P(NF (t) = k) =
1X
l=0

P(fNF (t) = k;N(t) = lg) =
1X
l=k

P(fNF (t) = k;N(t) = lg)

=
1X
l=k

P(NF (t) = kjN(t) = l)P(N(t) = l) =
1X
l=k

Ckl q
k(1� q)l�k

�
(�t)l

l!
e��t

�
= (�t)k qk

1X
l=k

l!
k!(l�k)!

(1�q)l�k(�t)l�k e��t
l!

= (�tq)k

k!
e��t

X
l�k

((1�q) �t)l�k
l�k!
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= (�tq)k

k!
e��t

X
j�0

((1�q) �t)j
j!

= (�tq)k

k!
e��t e(1�q)�t = (�tq)k

k!
e�q�t:

Puisque N(t) est à accroissements indépendants et stationnaire par rapport au

temps on mentre facilement que NF (t) l�est aussi.

Exemple 4.4.112. On considère une suite de variables aléatoires positives Xi;

i 2 N�; dé�nies sur un même espace (
;A;P), identiquement distribuées selon une loi

de fonction de répartition continue F:

Les résultats de l�exemple pourront être interprétés, par exemple, du point de vue

d�un auto-stoppeur qui, placé en un point d�une route, observe qu�il s�écoule un temps

Xi entre le passage de la (i � 1)i�eme voiture et de la ii�eme: Si la circulation est �uide,

on peut considérer en première approximation que les fXigi2N� sont indépendantes et

de loi exponentielle.

1) On pose :

T0 = 0; Tn =
nX
t=1

Xt; Nt =
+1X
n=1

1fTn�tg:

L�interprétation de ces variables indique que :

a) Tn : est la variable aléatoire qui représente le temp de la ni�eme arrivée.

b) Nt : est la variable aléatoire qui représente le nombre d�arrivées avant l�instant

t:

c)

Nt � n, Tn � t:

Nt � n) le nombre d�arrivées avant l�instant t a dépassé n donc Tn � t: (c�est

à dire le n arrivée est realise avant t)

Tn � t) le n arrivée est réalisé avant t; donc le nombre d�arrivée avant l�instant

t est surement plus grand que n:

2) Considerons les variables aléatoires Wt = TNt+1 � t et Zt = t � TNT : Wt est le

temps que l�auto-stoppeur doit attendre à partir de l�instant t pour voir passer
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une voiture et Zt est le temps écoulé entre le dernier passage d�une voiture et

l�instant d�arrivée de l�auto-stoppeur qui est t:

a) Wt + Zt = (TNt+1 � t) + (t� TNt) = TNt+1 � TNt :

Wt + Zt est le temp d�attente entre deux arrivées. C�est une variable aléatoire

qui possède la même loi que X1:

Donc Wt + Zt est gouvernée par la loi exponentielle de paramètre �: C�est à

dire de densité f(x) = �e��x:

b) Donnons la loi du couple (Wt; Zt):

1. Montrons d�abord que Wt et Zt sont indépendant :

La fonction de repartition de Wt est:

1ere cas : s > t

FZt(s) = P(Zt � s)

= P(t� TNt � s) = 1

D�autre part la fonction de répartitin de Zt est :

2�eme cas : s � t

FZt(s) = P(Zt � s)

= P(t� TNt � s)

= P(N]t�s; t] � 1)

Or N]t�s; t] et N]t; t+s] sont des variables aléatoires indépendantes donc

Wt et Zt sont indépendantes.

2. Déterminons la loi de Wt :

FWt(s) = P(Wt � s) = P(TNt+1 � t � s)

= P(TNt+1 � t+ s) = P(N]t; t+s] � 1)
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= 1� P(N]t; t+s] = 0) = 1� P(Ns = 0)

= 1� e��s:

Donc la densité de la loi de Wt est
dFWt (s)

ds
= � e��s = f(s):

3. Déterminons la loi de Zt : On a pour s � 0

1ere cas : s > t

FZt(s) = P(Zt � s)

= P(t� TNt � s) = 1

= P(min(X1; t) � s):

2�eme cas : s � t

FZt(s) = P(Zt � s)

= P(t� TNt � s)

= P(N]t�s; t] � 1)

= P(Ns � 1) = 1� e��s

= P(X1 � s) = P(min(X1; t) � s)

On déduit que dans les deux cas, on a :

P(Zt � s) = P(min(X1; t) � s)

Donc Zt possède la même loi que min(X1; t):

Puisque Wt; Zt sont indépendantes alors 8A;B 2 B(R+) on a :

P((Wt; Zt) 2 A�B) = P((Wt 2 A) \ (Zt 2 B))

= P(Wt 2 A) P(Zt 2 B):

= PWt 
 PZt(A�B):



80

c) Montrons que Zt converge en loi vers X1 quand t tend vers l�in�ni.

En e¤et, soit s 2 R+

lim
t!+1

P(Zt � s) = lim
t!+1

P(min(X1; t) � s) = P(X1 � s):

car t tend vers +1 donc t > s donc

P(min(X1; t) � s) = P(X1 � s):

4.5 Généralisations

Il existe plusieurs généralisations du processus ponctuel de Poisson discuté précé-

demment :

1. Le processus de Poisson inhomogène : Dans ce cas le nombre de points

N ]t; t+ s]suit une loi de Poisson de paramètre

t+sZ
t

�(u)du

où �(u) est une fonction positive, donnant le taux au temps u. Ce processus

permet de décrire des situations où les points apparaissent avec une intensité

variable, par exemple si l�on veut tenir compte des variations journalières du

tra�c in�uençant les horaires de passage de bus. On retrouve le processus de

Poisson homogène si �(u) est constant.

2. Le processus de Poisson de dimension n � 2 : Ce processus peut être

dé�ni par sa fonction de comptage, en remplaçant les intervalles I par des sous-

ensembles (mesurables) de Rn. Les nombres de points dans deux ensembles dis-

joints sont à nouveau indépendants, et le nombre de points dans un ensemble
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est proportionnel à son volume. Ce processus peut par exemple modéliser la

distribution des étoiles dans une région de l�espace ou du ciel.

3. Le processus de naissance et de mort : Le processus ponctuel de Poisson

peut être considéré comme un processus de naissance pur : Si Nt est interprété

comme le nombre d�individus dans une population au temps t, ce nombre aug-

mente avec un taux constant �. Plus généralement, dans un processus de nais-

sance et de mort, de nouveaux individus naissent avec un taux � et meurent

avec un taux � ; éventuellement, � = �(Nt) et � = �(Nt) peuvent dépendre de

la taille actuelle de la population.
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