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Premiére partie

Introduction



Introduction : Bon nombre de phénomenes physiques se décrivent par
I’évolution d’une ou de plusieurs grandeurs au cours du temps. A un instant donné, ces
grandeurs présentent souvent un caractére imprévisible, aléatoire, et il est alors naturel
de les représenter par une variable aléatoire. L’évolution du phénomeéne est alors décrite
par ’ensemble des variables aléatoires modélisant le phénomeéne a chaque instant. Cet
ensemble de variables aléatoires forme un processus stochastique ou aléatoire.

Un processus stochastique est donc une collection de variables aléatoires indexées
par un paramétre. Celui-ci peut représenter le temps, discret ou continu, ou une va-
riable d’espace. Présenté comme ceci, cet objet mathématique ne présente que peu
d’intérét et est diffcilement exploitable. En revanche, la connaissance des relations
entre ces variables aléatoires lorsque le paramétre varie permet d’obtenir des proprié-
tés intéressantes qui caractérisent 1’évolution du phénomeéne.

Les applications des processus stochastiques sont trés nombreuses. Ceux-ci sont
notamment utilisés par I'ingénieur pour la construction de modéles mathématiques de

nombreux phénomeénes. On peut par exemple citer :

o La théorie économique et [’économétrie dont I'objectif est de rendre compte des
mécanismes qui régissent les faits économiques (souvent aléatoires). La théorie
de la prévision, qui regroupe ’ensemble des méthodes permettant de donner
une estimation (probabiliste) de I’évolution d’une variable économique a partir
de données sur ses valeurs passées, utilise les processus stochastiques. On parle

dans ce cas de statistique des processus stochastiques.

o Les transports et le trafic, qu’il s’agisse de transport de personnes, de biens, ou de

trafic dans les réseaux (téléphoniques, mobiles, Internet, etc.).

e La fiabilité des systémes ou d'un matériel, c’est- a~dire ’évolution dans le temps de

ses défaillances.

e L’ingénierie financiére, ou les modeéles financiers font intervenir des notions com-

plexes de processus et de calcul stochastique.



e La théorie de l'information et du filtrage.

e Les sciences de 'environnement.



Chapitre 1

Rappels de probabilités

1.1 Loi binomiale et loi de Poisson

Nous commengons par rappeler quelques lois de probabilités usuelles qui joueront
un role important dans la suite. Une expérience de Bernoulli de longueur n et pro-
babilité de succés p € [0,1] consiste & répéter n fois, de maniére indépendante, une
expérience élémentaire qui n’admet que deux issues possibles : le succés, qui se produit
avec probabilité p, et I’échec, qui se produit avec probabilité 1 — p. Si par exemple I’
expérience consiste a jeter un dé équilibré, et que ’on considére comme succés unique-
ment 'obtention de 6 points, on aura p = %.

Soit X la variable aléatoire donnant le nombre de succés de 1’ expérience de longueur

n. Elle pourra prendre les valeurs 0, 1, ..., n , la valeur k£ étant obtenue avec probabilité :

P(X = k) = by, (k) = CFpF (1 — p)" " (1.1.1)

| . .« o . . 2
avec CF = #—k)' En effet, il y a C* maniéres de choisir les k succées et n — k
échecs parmi les n expériences, et chacun de ces choix se produit avec probabilité

pra—p)*.

Singnalons que lors-que’on parle de variable aléatoire on sousentend qu’elle est



definie sur un espace probabilisé (€2, F,p), dans le cas ou € est finie ou dénombrable

on prend F = P(Q2) 'ensemble de toutes les parties de 2

Définition 1.1.1. (Loi binomiale). Soit X une variable aléatoire prenant ses va-
leurs dans {0, 1, ...,n} et satisfaisant (1.1.1). On dit alors que X suit une loi binomiale
de paramétres (n,p) et on note X « by, .

On peut représenter X comme somme de n variables aléatoires Y; indépendantes
et identiquement distribuées(i.i.d), de loi de Bernoulli de paramétres p, c’est-a-dire
telles que P(Y; = 1) =p=1—P(Y; = 0). Alors comme l’espérance de chaque Y; vaut
E(Y;) =0.P(Y; =0) + 1.P(Y; = 1) = p, on obtient pour l’espérance de X

B(X) =) kP{X =k} = ZE(Y,-) = np.

De plus, comme la variance de chaque Y; vaut var(Y;) = B(Y;?) — E(Y;)? = p(1 —p) ,

on voit que la variance de X est donnée par :
var(X) = B(X?) — E(X)* = np(1 - p)

Définition 1.1.2. (Loi de Poisson). On dit que la variable aléatoire X suit une loi
de Poisson de paramétre A > 0, et noterons X ~ wy st elle prend des valeurs entiéres
non-négatives, avec probabilités

A
= € _—

P(X = k) i

= 7T)\(k’).

Avant de discuter sa signification, mentionnons quelques propriétés de base de cette

loi.

Proposition 1.1.3.



1. St X suit une lot de Poisson de paramétre X\, alors :
E(X) = var(X) = A

2. Si Xet Y sont indépendantes, et suivent des lois de Poisson de paramétres \et j

respectivement,alors X +Y suit une loi de Poisson de paramétre X + L.

L’ importance de la loi de Poisson myvient du fait qu’elle donne une bonne approxi-
mation de la loi binomiale b, , lorsque la longueur n de I’experience est grande et que
la probabilité de succes p est faible, avec np = A.

En effet, nous avons le résultat de la convergence suivant :

Proposition 1.1.4. Soit {p,},-,une suite telle que lim np, = A > 0. Alors, pour
- n—oo

tout k € N,
lim b, ,, (k) = m\(k) (1.1.2)
Démonstration. On a pour tout £k =0,1,....,n

bupn (k) = Crk;pn(l - pn)n_k
:k!(:ik)!p?]z(l —pa)" "

En posant A\, = np,. On obtient

bupa (k) = MR Bl (1 7”)

k
=01 - L1 -2)..(1- 1> L (1= Ry
On a :

i) lim(1-2)=1,Vj=1,..k—1

n—oo

ii) lim %”:limn%: lim p, =0 .

n—oo n—oo

iii) lim (1— )" = lim ((1_71)%) . ((1_%>M>
n—00 n—00 n N 00 v




On déduit que lim b, ,, (k) = m\(k) [

Nous donnons maintenant un résultat bien plus fort, & savoir la convergence dans

L' de 1a loi de Bernoulli vers la loi de Poisson.

Théoréme 1.1.5. On a
Z b p (k) — Tp (k)| < 2np°. (1.1.3)
k=0

Démonstration. Nous comencons par introduire les espaces probabilisés (€2;, P(2;), pi),

pour i = 1,...,n, donnés par Q; = {—1,0,1,2,...} et

e?—(1—-p) sik=-1,

pi (k) = 1—p si k=0,
ePL si k> 1.

On vérifiera que les p; définissent bien une distribution de probabilité. Sur chaque

(); nous introduisons les deux variables aléatoires

0 siw; =0, w;  siw; > 1,
Xi(w;) = Yi(w;) =
1 sinon, 0 sinon.

De cette maniére, on a P{X; =0} =1 —p,P{X, = 1} = p, et P{Y, = k} = 7, (k)
pour tout k£ > 0. De plus,

donc

P{X; #Y;} =p(l —e?) <p° (1.1.4)



Soit (€2, p) 'espace produit des (2;, p;). Alors

- X =X, +...+ X, suit laloi binomiale P{X = k} = b, ,(k);

-Y =Y, +..+Y, suit laloi de Poisson P{Y=k} = m,,(k), en vertu de la
proposition(1.1.3).

Comme X # Y implique que X; # Y; pour un ¢ au moins, il suit de 1.1.4 que

POX #Y) < S P(X, £¥) <.

Montrons maintenant que :

Z |bnp(k) — Tnp(k)| < 2P(X #Y).

Nous posons, pour abréger U'écriture, f(k) = P{X = k}, g(k) = P{Y = k} et
A={k: f(k) > g(k)}. Alors
3 [bnp(k) = mapl)] = 3 1F(8) — g(0)
= 2 (f(k) = g(k)) = > (f(k) — g(k))

keA kg A

Or nous pouvons écrire
k;A (f(k) = g(k)) = P(X € A) = P(Y € A)
=P(XeAYecA)+PXecAY #X)-PY €A
<PXeAYecA+PX#Y)-P(Y €A
<SPX#Y),
ce quit conclut la démonstration. Si nous prenons par exemple p = A/n, la borne

(1.1.3) nous fournit

D bam(k) = ma(k)] < S
k=0



1.2 Loi normale et exponentielle

Nous aurons besoins de certaines variables aléatoires réelles continues. Pour les

définir, le plus simple est de passer par la notion de fonction de répartition.

Définition 1.2.6. (Fonction de répartition). Une fonction F': R — [0,1] est
une fonction de répartition si

— Fest croissante : x <y = F(z) < F(y).

— F est continue a droite : lim+ F(y) = F(x) Vo € R.
y—a
— lim F(zx)=0 et hrf F(z) =1.

Une fonction de répartition F' est dite absolument continue s’il existe une fonction

mesurable non négatif f telle que :
F(z) = /f(y) dy Ve € R.

f est appelée fonction densité de F.

Le lien entre la notion de fonction de répatition et les variables aléatoires vient du
fait que pour toute variable aléatoire réelle, P(X <t) est une fonction de répartition.

En effet :

— Sis <t,alors {X < s} C{X <t}, et donc P(X<s) <P(X<t);

- lim]P(Xgs)—]P’(th):SliIgP(t<XSs):O;

s—tt
- tlim P(X <t) zoettliin P(X <t)=1.

Cecl motive la définition suivante.

Définition 1.2.7. (Variable aléatoire & densité). Si X est une variable aléatoire,

Fx(t) =P{X <t}

est appelée fonction de répartition de X. Si Fx est absolument continue de densité
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f, on dit que X admet la densité f et on a les relations :
t
P{X <} — / F(s) ds.
b
P{a <X <b} = ]P’{ng}—]P’{Xga}:/f(s) ds.

Dans ce cas, on peut remplacer < par < et inversement.
Une premiéere expérience importante de variable aléatoire réelle a densité est celle

des variables gaussiennes ou normales.

Définition 1.2.8. (Loi normale).On dit que la variable aléatoire X suit une loi
normale de moyenne u et d’équart-type o, et on note X ~ N(u,c?) si elle admet la

densité
1

vV2mo?

Si X ~ N(0,1), on dit qu’elle suit une loi normale centrée réduite, ou standard.

o~ (@—)?/20%

fz) =

Si X ~ N(u,0?), alors son espérance vaut B(X) = p et sa variance vaut var(X) =

Théoréme 1.2.9. (Théoréme de la limite centrale). Soit X1, X, ..., X,, une suite
de variables aléatoires indépendantes, identiquement distribuées, d’ésperance finie p et

de variance finie o*alors la variable aléatoire S, =Y, | X; satisfait

b
Sy — np } e~7/2
Iim P{a< — <by = | —— dx.
n—00 { v no? /2
C’est-a-dire que (S, — nu)/vVno? converge en loi vers une variable normale stan-

dard.

Un second exemple de loi & densité, particuliérement important dans notre travaille,
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est celui des variables exponentielles.

Définition 1.2.10. (Variable exponentielle). On dit que la variable aléatoire X

suit une loi exponentielle de paramétre A > 0, et on note X ~ exp(A), si elle satisfait
P{X >t} =e™

pour tout t > 0. Sa fonction de répartition est donc Fx(t) =1 — e pour t > 0,

et sa densité est A\e™™, toujours pour t > 0.

On vérifie qu'une variable de loi exponentielle a espérance 1/ et variance 1/A%. Une

propriété remarquable de loi exponentielle est la propriété de Markov : pour ¢t > s > 0,
P{X>t/X>st=e N9 =P{X >t s}

Nous aurons parfois affaire & des couples, ou des n-uplets de variables aléatoires &
densité, aussi appelés vecteurs aléatoires. Leur densité conjointe est définie comme la

fonction de n variables f telle que

tl 12 tn
P{Xl < tl,Xg < tg, ,Xn < tn} = / / / f(a:l,a:2, ,.Yln) dll,’ndalgdl’l

pour tout choix de (1, ts, ..., t,). Autrement dit, on a

871

= ——P{X; <t1,X5 <ts,... X, <t}
atlatgatn { 1 =0, A2 =02y < }

f(tl, to, ..., tn)
Les variables aleatoires X1, X5, ..., X, sont dites indépendantes si on a

P{X, < t1, Xo < by, oy Xo < b} = P{X; < 1}P{X5 < 5} P{X,, < t,}

pour tout choix de tq,ts, ..., %,. On montre que c’est équivalent & ce que la densité



conjointe s’écrive sous la forme

f(t1, ta, ...

pour des densités fi, fa, ..., fn

vtn) = fi(ty) fa(t2)- fu(tn)

(appelées densités marginales X, X, ...

, Xn)

12



Chapitre 2

Chaines de Markov sur un espace

fini

2.1 Définition et premiéres propriétés

Soit (X, )nen une suite de variables aléatoires a valeurs dans ’ensemble E des états,
supposé une partie de N. On dit que cette suite est une chaine de Markov, si pour tout
n > 1 et toute suite (ig, ..., %,-1,%,j) d’éléments de E, pour laquelle les probabilités

conditionnelles suivantes existent, on a :

P(Xpi1=7 | Xo =0, Xp-1 =tn1,Xpn=1) =P(Xpp1=J | Xo=4). (2.1.1)

Autrement dit, I’état du processus a l'instant (n + 1) ne dépend que de celui &
I'instant n précédent, mais non de ses états antérieurs. (On dit que le processus est

sans mémoire ou non héréditaire).

Définition 2.1.11. La chaine de Markov est dite homogéne (dans le temps), si la

13
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probabilité précédente ne dépend pas de n. Soit
]P)(Xn—H :j | Xn = Z) :pi,j VTL - N

cette probabilité s’appelle la probabilité de passage ou de transition de l’état i a

[’état j en une étape.
Définition 2.1.12. La matrice

Po,o Poa Do
P = Pio P11 P12

dont les coefficients sont les probabilités de transition p;; est appelée matrice de
passage (ou matrice de transition)de la chaine. C’est une matrice finie ou dénombrable,

selon que l’ensemble des états est fini ou dénombrable.

Proposition 2.1.13. Toute matrice de transition P = (p; ;) ((i,j) € E?) vérifie les
propriétés sutvantes :
(1) pour tout couple (i,j), on a : p;; > 0;

(2) pourtoutie€ E, ona ) p;; =1
jeE

Démonstration.
1. Les nombres p; ; sont des probabilités, donc des nombres non négatifs.
2. Pour chaque i € F, ’appliqation B —— Z pi,; définit une mesure de probabilité
jEB
sur £ (B C E).

Remarque 2.1.14. Une matrice P qui vérifie les conditions 1) et 2) de la proposition

précédente, est appelée stochastique.
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Proposition 2.1.15. Soit P une matrice de transition. Alors :

(1) P admet la valeur propre 1.

(2) Le vecteur V ayant toutes ses composantes égales a 1 est un vecteur propre associe

a la valeur propre 1 .

Démonstration. En effet, en considérant V' comme un vecteur -colonne, on a :
PV =V si et seulement si, pour tout ¢ € F, la relation suivante est satisfaite :

> pijv; = v;. 1l suffit donc, pour tout ¢ € E, de prendre v; = 1. [ |
jEE

Définition 2.1.16. (graphe associé a une matrice de transition). A toute
matrice de transition,on peut associer son graphe. Il y a une fléche, itiquetée p;;,
entre le sommet étiquité 1 et le sommet étiquité j si et suelement si la probabilité de
transition de l’état i a l’état j est strictement positive : p; ; > 0.

Lorsque l’ensemble des états est fini, cette présentation de la matrice de transition

par son graphe est particuliérement utile et parlante.

2.2 Exemples de chaine de Markov
Il y a des exemples classiques de chaine de Markov homogéne.

2.2.1 La chaine a deux états
En excluent le cas trivial de la matrice-unité, la matrice de transition correspon-
dante est de la forme :

l1—« a

P = 0<a,pB<1).
g 1-p

Les calcules sont explicites. Pour tout n> 0, on peut évaluer la n*™¢ puissance P",

ainsi que la valeur limites lim,, P" .



16

Le graphe associé est trés simple :

1 ,\‘"P'—'_—‘ o
&y

o
1- a 1-3

2.2.2 Jeu de pile ou face

Deux joueurs A et B jouent a la variante suivante de Pile ou Face. Ils jettent une
piece de monnaie(parfaitement équilibrée) de maniére répétée. A gagne dés que la piéce
tombe trois fois de suite sur Face, alors que B gagne dés que la suite Pile-Face-Pile

apparait.

On ce pose les question suivante :

1. avec quelle probabilité est-ce A qui gagne le jeu?

2. Au bout de combien de jets de la piéce I'un de deux joueurs gagne-t-il 7

On peut alors décrire le jeu par une chaine de Markov sur ’ensemble

E={pp.,pf . fp,ff A gagneB gagne},

ou par exemple pp signifie que la piéce est tombée sur Piles lors des deux derniers

jets. La matrice de transition vaut



pp
pf
Ip

rf
A

B

pp
1/2

1/2

pf
1/2

1/2

2.2.3 Modéle d’Ehrenfest

o o o O

17

C’est un systéme motivé par la physique, qui a été introduit pour modéliser de

maniére simple la répartition d'un gaz entre deux récipients.

N boules, numérotées de 1 & N, sont réparties sur deux urnes. De maniére répétée,

on tire au hasard, de fagcon équiprobable un numéro entre 1 et IV, et on change d’urne

la boule correspondante.

On peut décrire le systéme par une chaine de Markov, sur ’espace des états £ =

{0,1,.., N}, ot le numéro d’état correspond au nombre de boules dans I'urne de gauche,

par exemple.

La matrice vaut

= w N o= O

N

o O

o o o Z=

[ T e

o O zZwv

ozmozﬁow

‘Zoow
[\

Ze o z‘

OZ‘%OOO%
w

o O o O ot

=h
S

o O o o O

o o o o o =2

Définition 2.2.17. Soit (X,,)nen une chaine de Markov. La loi de la variable aléatoire

Xo s’appelle la loi initiale de la chaine.
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Remarque 2.2.18. La loi d’une chaine de Markov est definie & partir de sa loi initial

et sa matrice de transition. Comme il est indiqué dans le résultat suivant.

Théoréme 2.2.19. Soient (X,,) une suite de variables aléatoires a valeurs dans
E, v une mesure de probabilité sur E et P une matrice stochastique. Alors (X,,) est
une chaine de Markov de matrice de transition P et de distribution initiale v si et

seulement st pour tout n > 0 , et pour tout choix de ig, 11, ...,1, d’élement de E, on a

P(X[O,n] = i[o,n]) = VigPigi1 Pivia+-Pip_1in - (2-2-2)

Démonstration.
1. Supposons que (X,,) est une chaine de Markov de matrice de transution P et de

loi initiale v. Procédons par récurrence :

1) Pour n = 0 on a par définition
P(Xo=i)=uv;,¥i € E (2.2.3)

2) Supposons que léxpression (2.2.2)est vérifiée pour n.
On a pour n + 1, P(X, 11 = i1, Xpn = i, oo, Xo = Gp) =
P(Xi1 = tn1|Xn = in, oo, Xo = 10) P(X,, = i, ..., Xo = p)
= P(Xy11 = int1|Xn = 0n)Vig Pigiy Piyig - P

n—1%n

= Viq Pioh ]Dillé = 'Pin—lin 'Pinin-H

2. Inversement : Supposons que l'expression (2.2.2) est satisfaite pour la suite de
variables aléatoire (X,,) montrons que la (X,,) est chaine de Markov. Soit n € N,

et i, i1, ...,0n € E.
]P)(XnJrl — in+1; Xn — ina ceey XO — Zo)
]P)(Xn = Z.na (XY XO = Z0)

= IP)()(n+1 = in+1’Xn = Zn)

P(Xn-l—l = in—i—lan = ina ) Xo = ZO) =

o Vi Pigir Piyig--- P P;
Vio Pigir Pivig - b

n—1in"*

nin+1 . P
- 1

n—1in

nin+1
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2.3 La relation de Chapman-Kolmogorov

Pour n > 0 et 4,5 € E, on désigne par pgz) la probabilité, partant de ’état ¢ a

I'instant 0, d’étre dans 1’état j & l'instant n. En d’autre termes, on pose :
p) = P(X, = j|Xo = i). (2.3.4)

On désigne également par P™ la matrice dont les éléments sont pgz) ((i,7) € E2

Théoréme 2.3.20. (Relation de Chapman-Kolmogorov). Pour tout n > 0,
la matrice de transition en n étapes est égale o la puissance n'*™¢ de la matrice de

transition en une étape :

P™ — (p)" (2.3.5)

Démonstration. Procédons par recurrence. Le résultat est vrai pour n = 0, puisque
PY = I (la matrice identité) et pour n = 1, puisque P®M) = P. Prenons n > 2; on a,
pr = prlp = p-H) P Par conséquent, si I'on désigne par pit; le coefficient en

(1,7) de la matrice P", on a :
n n—1
P = Zpgk )pk,j

keE
= P(X,1 = k[ Xo =) P(X; = j|Xo = k)
keE
= ZP(Xn_l =k|Xo =1) P(X,, = j| X1 =k) [car la chaine est homogene]
keE

Considérons I’événement A(iq,...,in—2) = {X1 =01, ..., X2 = in_2}.

Alors

P(X, = j|Xn 1 =k) =P(X,, = j| X1 =k, A(i1, ..., in_2), Xo = ig), car la chaine
est de Markov et on a :

I[D(Xn,1 - k‘XO = ’L) - ‘ Z ]P)(Xn,1 - k, A(il, ceey Z'n,2)|X0 - Z),
11 yeensin—2
puisque les évenement A(iy, ..., 1, o) forment un systéme complet d’évenements.On

en tire :
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pr= 0 > P(Xyoy =k, A(i, oy in2)| Xo = D)P(X, = j| X, = k)

kEE 11,...,tn—

2
= Z Z ]P) n—1— k A(h, ...,in_g)’Xo = Z)]P)(Xn = j|Xn_1 = k,A(il, ...,in_2>,X0 =

kEE 11,...,in—2

keFE i1,..., in—2

= P(X, = j|Xo = i) = p{"). n

i)

Corollaire 2.3.21. Pour tout n > 0, la matrice P est une matrice stochastique.

Démonstration. En effet, pour tout : € E, on a :

S =S P(X, = jiXo =) = L. .

JEE JEE

Corollaire 2.3.22. Pour tout (i,j) € E? et tout couple (m,n) d’entiers positifs, on

a lidentité :

P(Xpin = j/Xo = 1) = 3 P(X,, = k| Xo = i)P(X,, = j|Xo = k) (2.3.6)

keE

ou encore

(m4n) _ (n)
Pi.; szk Prj
keE

Démonstration. Cette identité résulte immédiatement de 1’associativité du produit

matriciel : P(m+n) — pm+n — pmpn _ p(m) p(n), -

Proposition 2.3.23. Soient n > 0, r > 1 deux entier. Alors

P(Xn_;’_l - jn+1, ceey Xn_;’_r - jn+7’|X0 - Z.O, ceey Xn - Zn) (237)

pzn jn+lpjn+1jn+2"'pjn+'r71jn+'r'

Démonstration. Lorsque r = 1, I'identité (2.3.7) se réduit & (2.1.1) .II suffit donc
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de procéder par récurrence sur r. Pour r > 2, posons :

Al = {X() = io, ,Xn = ’Ln},
A2 - {Xn+1 - jn—i—l; -~-7Xn+r—1 - jn—l—r—l};

AS = {Xn+7" = jn+r}-
D’apres (2.1.1) on a :IP(A3|A2NA1) = D)\, 1jner -Deplus P(As| A1) = PivjniiDinsrings
par récurence sur 7. On conclut alors, en utilisant I'identité :P(A3NAg| A1) = P(A3]|A2N

A)P(Az]Ay). [

2.4 Chaines de Markov absorbantes

Définition 2.4.24. Soit (X,,) une chaine de Markov de matrice de transition P. On

dit que [’état j est accessible ou atteignable a partir de l’état i, s’il existe un entier

n > 0 tel que p(-n)

i > 0. On écrit :

Proposition 2.4.25. La relation d’accessibilité entre états est réflexive et transitive.

Démonstration. Comme p\)) = P(Xy = i|Xo = i) = 1 pour tout état 7,on a bien

(m) (n)

@ ~ 4. Ensuite, si ¢ ~ [ et [ ~ j, alors p;;” > 0 et p;;/ > 0 pour certains entier

m,n > 0. D’aprés ce qui précéde, on en tire :
(m+n) (m), (n)

pz,] szk-pk]_p” pl] >0,d,01\1i«»—>j [
kerE

Définition 2.4.26. On dit que deux états i et j communiquent et [’on écrit i «~ j,

st on a a la fois ;1 ~~ j et j ~ 1.

Proposition 2.4.27. La relation de communication entre états est une relation

'pjn+7"72jn+7"7 1
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d’équivalence.

Démonstration. Les propriétés de reflexivité et de transivité déja vérifiées pour la
relation d’accessibilité restent naturellement encore valable pour la relation de com-

munication. Enfin, cette derniére relation est symétrique par définition-méme. [ |

Définition 2.4.28. Soit (X,,)une chaine de Markov sur E. On dit d’un état i € E

qu’il est absorbant si p;; =1 (i.e Vj # i p;; =0)

Définition 2.4.29. On dit qu’une chaine de Markov (X,,) est absorbante si Vi € E,

il existe un état absorbant j € E  telle que j est atteignable partant de 1

Dans le cas ot (X,,)nen est chaine de Markov absorbante. On ordonne les états de
facon que les éléments non absorbants soient classés les premiers et les absorbants les
derniers,

En désignons les non absorbants par {1, 2, ..., ¢} et les absorbants par {g+1, ..., M },on

obtient la matrice de transition

Q R
0 1

appelée la forme canonique. Avec

() : matrice carré d’ordre ¢. Les élélments ();; sont définis par Q);; = p;; pour
1<14,j7<4q

R : une matrice de ¢ lignes et r colonnes(r = M — q).R;; = p;y avec 1 < i < q et
q+1<k<M.

I : la matrice identité d’ordre r

0 : la matrice nulle de taille r x ¢

" (I+Q+ ..+ Q" HR
Proposition 2.4.30. On a P" = Q" @ Q") , Vn € N.

0 I,
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Démonstration. On procede par réccurence :
Q IR
0 I

a) Pourn=1ona P =

b) Supposons que la proposition est vérifiee pour n. On a

Q" (I,+Q+..+Q"HR y Q R

Pn+1 —
0 I, 0 I,
B Qn+1 QnR+(Iq+Q+...+Qn71)R
0 I,
(et (L+Q+ ..+ QMR =
0 I,

Théoréme 2.4.31. Soit (X,,) une chaine de Markov absorbante. En considérent les

mémes notations précédentes. On a :

1. imQ" =0 (la matrice nulle).

2. La matrice [I — Q] est inversible, son inverse est [[ — Q™" =3 . Q"

Démonstration.

1) le nombre QEZ) est la probabilité pour que la chaine ce trouve dans j en n pas
partant de i avec i, j < g . Cette valeur est inférieure a la probabilité de ne pas
atteindre un état absorbant en n pas partant de ¢ . C’est & dire on a :

Q) =P(X, =j | Xo=1i) =PiX, =) <Pi(X, < g).
Pour tout i € {1, ..., ¢}, posons m; = min{n € N*|k > q,pg,? > 0}. m; est le nombre

de pas minimal pour atteindre un absorbant partant de ¢ avec une probabilité

non nulle.

Posons p; = P(X,,, < ¢q), p; est la probabilité de ne pas atteindre un état absorbant

partant de 7 en m; pas. On a p; < 1 car P(X,,, > ¢) > 0.
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Posons M = max {m;} et p= max {p:}. La probabilité de ne pas atteindre un état
absorbant en M pas partant de i est inférieure & p . En effet, {w € W/ X, (w) >
q} D {w e W/ Xy (w) > q} et m; < M, donc P(X,,, > q) > P(Xy; > ¢q)) D’ou
Pi(Xy < q) < Pi(Xom, < ).

Or P;(X,n, < q) = p; < p .Donc la probabilité de ne pas atteindre un etat absorbant
partant de ¢ en nM, pas est inférieure a p"”. Or la probabilité d’atteindre j en
M pas partant de ¢, est inferieure a la probabilité d’atteindre un état absorbant
en M pas partant de i, c’est & dire ng) <Pi(Xy<q)<p (1<i,j <q). On
en déduit que QZ(ZM) < Pi(Xom < q) < p™.

Or lim QZ(Z.M) = limp" =0 (car p <1).

Maintenant, montrons que h,?l QE-Z-) =0:

La suite de terme générale U, = P;(X,, < ¢) est décroissante. En effet; U, 1 =
Pi( X1 < q) < U, = Pi(X,, < q)(car P;(X,, > q) < Pi(X,41 > ¢)). On a
ligln Unp < ligzn P™ = 0(une suite extraite qui converge vers 0) et (U,,) décroissante
donc li£n U, =0).

D’autre part on a :QZ(-Z.) =P;(X, =j) <P;y(X, <q). Donc lim Q"=0

2) Supposons qu’il existe z € RY tele que : Qz = z, donc Q*r = Qx = 2 dou
Vn e N, Q"x = x. Or li}ZnQ” = 0 donc z = 0.

En posant f(x) = (I — Q)z. On a ker f = {0} . En effet; ker f = {x € RY|f(x) = 0}
d’ott f est injective, or dim RY = dim Im f + dim ker f donc dim Im f = dim RY
d’ou f est surjective.Par conséquent f est bijective

On déduit donc que la matrice (I — () est inversible.
n n n+1
OnaVne N, (I-Q)>S Q=S Q"—- > QF=1-Q".
k=0 k=0 k=0
Par suite (1 — Q) >_ QF =1lim[(/ — Q) Y. Q¥] = I —limQ"** = 1.
k=0 " k=0 "

Définition 2.4.32. La matrice F = Y. Q" = [[ — Q]! s’appelle la matrice fonda-

n>0
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mentale de la chaine de Markov.

On a:
0 FR
lim P" =
n—->00 0 ]'r
L’expression lim Q" = 0 signifie qu’a l'infini la probabilité d’atteindre un état

absorbant partant d’un état non absorbant est égale a 1. Donc la matrice B = F.R
devrait représenter a la limites des temps a 'infini les probabilités de transition entre

états non absorbants et états absorbants.

Théoréme 2.4.33. Soit F' une matrice fondamental d’une chaine de Markov absor-

bante.

1. L’¢lément f; ; de la matrice F' est l’esperance du nombre de passages en j partant

de 1 :

Ei()  Lxamgy) = fig = (Flig = > _(Q")i 1< 4,j<q
n=0

n>0

2. Soit T = min{n € N*,X,, > q}, donnant le temps jusqu’a l’absorption de la

chaine. Alors .
Ei(7) =) fij
j=1

3. Posons B = F.R. Alors pour tout état non absorbant et tout état absorbant la

probabilité que la chaine soit absorbée par k partant de v est :

ot b; i, est l’élément de la matrice B.

Démonstration.

1. On a d’aprés le théoreme de Beppo-Liville :



26

B> pamy) = ;Ei(l{xnm zmmx £ 5) + LP(X, = j)]

= S R(X,=i) = X PP = T 0l = fiy = (P
2.3 fi= (X Qr )—Z(ZQJP-(X — )= Y P(X,<q) = X Pi(r > n)

j=1 j=1 n>0 n>0 j= n>0 n>0

P;(7 > 1)+IF’(T>2)+IP’(T>3)+
=Pi(r=1)+Pi(r=2)+Pi(r=3)+
+Pi(r=2)+Pi(r=3)+..
+Pi(r=3) +
=Pi(r=1)+2Pi(t=2)+3P;(1=3)+ ... + nPi(T =n) + ...

= > nPi(tr =n) =E;i(r)

n>1

3. Soit k€ {g+1,..., M}. On a pour i = {1, .. ,q}

Pi(XT:k): Zpi<Xn+1:k77XnSQ) ZZP( n+1:k7Xn:j)
=0

n=0j=

= 3% 3 P(Xun = KX, = )P(X0 = )

= Z Z QP = Z Z(Q(”)) Rjy = ifi,jRapk = (B)ix

=0j= j=1ln=

= (FR)Zﬁk

2.5 Chaines de Markov irréductibles

Définition 2.5.34. Soit (X,,) une chaine de Markov de matrice de transition P.
On dit que la chaine (X, )nen est irréductible si Vi, j € E, j est atteignable partant

de 1, et inversement.

Définition 2.5.35.  Soit (X,) une chaine de Markov, sur un espace fini E =

{1,2,...,N), de matrice de transition P = p(;;). On dit que la chaine est réguliére
plm)

P >0

s’il existe m € N* tel que la matrice P™ a tous ses éléments non nuls (i.e

Vi, j=1,.., M)
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Remarque 2.5.36. Si P est une matrice stochastique telle que dm € N* pour le

quel PZ(T) >0, Vi,j =1,..., M. Alors pour tout n > mon a P/, >0, Vi,j=1,..,.M

Remarque 2.5.37. Toute chaine réguliére est irréductible
En effet : Si (X,,) est régulier, alors 3m € N* tq : P/} > 0, Vi,j = 1,..., M. Donc

tout état est atteignable en m pas partant d’un autre état.

Remarque 2.5.38. On peu avoir une chaine qui est irréductible mais non réguliére.
En effet : si P est une matrice qui contient des zéros, en élevent P par des puissance
en peut avoir des zéros qui change de position ce qui rend la chaine irréductible mais

non réguliére puisque toutes les puissances de P contiennent des zéros.

10
Exemple 2.5.39. P = (Vm € N*, 3i, j tels que p7” = 0)

1j

N
[N

Remarque 2.5.40. La chaine décrivant le modeéle d’Ehrenfest est irréductible. En
effet, quelque soit le nombre de boules dans I'urne de gauche, on peut atteindre tout
autre état en déplacant au plus NV boules d’une urne a ’autre. Cependant, la chaine
n’est pas réguliere. En effet, comme a chaque pas de temps on déplace exactement une
boule, le nombre de boules dans I'urne de gauche sera alternativement pair et impair.
Par conséquent, chaque élément de matrice des puissances P" sera nul pour un n sur

deux.

Proposition 2.5.41. Soit (X,,) une chaine de Markov irréductible sur un espace fini

E={1,2,...,N} et P sa matrice de transition et soit A C E. On pose

T4 = inf{n € N*, X,, € A}. (2.5.8)

Alors :
Pty <o0)=1 (2.5.9)
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Remarque 2.5.42. 74 est une variable aléatoire qui représente le temps du premier

passage de la chaine par A (on dit aussi le temps d’entrée dans A)

Démonstration. Soit (X,,) une chaine irréductible de matrice de transition P =

(pij)1<ij<m. Considérons la chaine (V;,) définie & partir de sa matrice de transition P

N pij sl ¢ A
donnée par p; ; =
5ij sii € A
lsii=y
avec 0; j = /
Osii#j

La chaine (Y},) est une chaine absorbante car : pour tout i € A p; =1l et p;; =0
sii=# J.

Les deux chaines (X,,) et (Y},) ont le méme comportement jusqu’au temps du pre-
mier passage par A. En effet : Vi,j ¢ A p;; =P;(Y = j) = pi; = Pi(X = j).

La matrice de la chaine absorbante (Y;,) s’ecrit sous la forme canonique

QO R
0 I

P =

Le temps du premier passage par A de la chaine (X)), représente le temps jusqu’a

absorption pour la chaine (Y,,). Or la probabilité de ne pas atteindre un état absorbant

q q
partant de i ¢ A est P;i(Y, < q) =) Pi(Y, =j) = > QF.
= =1

q
Cependant lim Q7; = 0, donc lim ) @7, = 0. Par conséquent, lim P;(Y,, < ¢) = 0.
Par ailleurs, P;(Y,, < q¢) =Pi(X, < q) =Pi(t4 >n) =0.
Donc imP;(74 > n) = 0, par conséquent limP;(74 <n) =1

d’otu P(14 < o0) = 1. u

Remarque 2.5.43. Ce résultat n’est pas vrai lorsque 1’espace des états E est infini

comme nous allons voir par la suite.
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Théoréme 2.5.44. Soit (X,,) une chaine de Markov réguliére de matrice de transition

P d’ordre N. Alors il existe une matrice stochastique dont toutes les lignes sont égales

T T ... TN
™ ™ ... T

m= | "' " (2.5.10)
m™ T2 ... TN

telle que lim P™ = II.
En plus, 0 <m; <1Vj=1,..,N.

Démonstration. Puisque (X,,) est une chaine de Markov réguliere, Im € N* telle

que : PZ(T) >0, Vi,j=1..N.

a) Pour s’implifier la preuve nous supposons que m = 1. On a donc P;; > 0, Vi, j =

1,...,N.Posons d = min_ p;; .
1<i,j<N

Le résultat du théoréme est evidamment vrai pour n = 1. La preuve sera faite pour
n > 2. On a Nd < 1, car la somme des éléments d’une ligne quelconque est égale a 1.

) 1 1
Donc :d < < 3.

Dans le cas o N = 2, on peut avoir d = %, dans ce cas la matrice de transition est
1/2 1/2 1/2 1/2
P = / / , par conséquent P = / / ., ¥Yn € N*. D’ou lim P™ =
1/2 1/2 1/2 1/2 "
1/2 1/2
212\ o
1/2 1/2

Il nous reste & considérer les cas avec d < %, et N > 3 et par conséquent d < %
Soit ¥y = (y1,...,yn) un vecteur quelconque de RY et soit mg et M, telle que
Mo S Yi S Mo,Vi = 1, ,N
T T
Posons z = Py = (P;;). <y1 yN> = <21 ZN> :

La plus grande valeur que les composantes de z = (z1, ..., zy) peuvent prendre est
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celle pour la quelle toutes les composantes de y prennent la valeur M, sauf un qui
prend la valeur mg. On a alors z; < Pyymg + PoMy + ... + Pin Mg, d’ ot

zi < Pamo + (1 — Py) Mo < dmg + (1 — d) M.

La derniére inégalité est vraie car la fonction g(x) = zmg + (1 — z)My = (mg —
My)x + My est décroissante,( §(z) = (mg — My) < 0)

Ona P, ; >d, Vi,j=1,..,N. Donc g(P, ;) < g(d).

De la méme fagon on a Pj; Mo+ Piamo+...+P,ymg < z; = Py My+(1—P;)mg <
2. Or dMy+(1—d)mg < Py Mo+ (1— P;1)my, car la fonction h(z) = xMy+(1—x)my =
(Mo — mo)x + mg > 0 est croissante d’ou h(d) < h(P;;) Yi,j=1,...,N.

On a ainsi,

Notons my = dMy + (1 — d)mg et My = dmg + (1 — d)M,.
On a donc m; < z; < My,Vi=1,...,N.
mo = dmo + (1 - d)m() S dMO -+ (]_ — d)mo =my

Mg = dM() + (1 — d)Mo 2 dmo + (1 — d)Mg = Ml
D’autre part My — my = (Mo — mg)(1 — 2d). Maintenant, en posons h = P.z , on

En plus

trouve de la méme fagon :

avec h; les composantes du vecteure h.

On montre facilement que my < my; < mg, My < My < My et (My —mgy) =
(M; —my)(1 —2d) = (My — mg)(1 — 2d)%.

En poursuivant ce processus on trouve deux suites adjacentes (m,) et (M,,) telles
que m, < (P"); < M, Vi=1,..,N et ¥n € N*, avec M,, —m,, = (Mo —myg)(1—2d)".

Puisque d < 1 alors ligbn(Mn —my,) = 0. On déduit que les deux suites sont conver-
gentes et tendent vers la méme limite u. Donc hgn Py = (u,..., u)T

Cherchons maintenant la limite de chaque colonne de la matrice P.
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Considérons la base canonique (e, ..., €,) c’est-a~dire e; = (1,0, ..., O)T ,ea = (0,1, ..., O)T sy EN =

(0,0, ..., 1)T, le produit P.e; nous donne la colonne j de la matrice P.

T T
On a lim(P"e;) = lim (P(") P](an)> = (7rj 7Tj) - Donc pour j =1,..., N

17j
m™ T2 ... TN
. . m™ T ... TN
, on obtient lim, P" =
T Mo ... TN

b) Montrons que 7; > 0,Vj =1,...,N.

On a pg-n) >0, Vi,j =1,..,N. Posons d = min{pl(-;n), i,j =1,...,N}. Evidament
on a d > 0. Puisque P! = p.pm
(mtl) _ Sn () o
alors P = k;pikpkj > k;pikd =d.

On déduit que pZ(;nJrn) > d VYn € N*. Donc limpgl) =m; > 0. |

Corollaire 2.5.45. On a :
TP=nm (2.5.11)

avec ™ = (71, Ta, ..., TN ), la premiére ligne de la matrice I1.

Démonstration. On a P"t! = P* P donc lim P"*! = lim P".P
= [I=1I.P.

On particulier en considérant la premiére ligne de la matrice II on obtient :

(7T1,7T2, ...,7TN) = (71'1,71'2, ...,WN)P
|

Définition 2.5.46. Soit (X,) une chaine de Markov irréductible de matrice de
transition P et m une loi de probabilité sur E. On dit que 7 est une loi stationnaire

ou invariante de (X,,) si 7P = .
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Remarque 2.5.47.

1. Le corollaire précédant montre que la chaine de Markov réguliére possede toujour

une loi stationnaire.

2. L’équation (2.5.11) implique qu’a chaque instant n, on a

Po(Xy=j)=> m(P")iy=@P");=m;, Vj=1,.,N (2512)

ieE

Cela signifie que si la loi initiale de la chaine est sa loi stationnaire, alors la loi

de la chaine a n’importe quel intant est la méme (égale a la loi stationnaire)

3. Par (2.5.10) on a, Vi, j € E,

n—oo n—oo

7 décrit donc la loi de probabilité asymptotique de la chaine, qui est indépendante

de I’état initial.
Théoréme 2.5.48. Pour toute loi initiale v d’une chaine de Markov régquliére on a :

limvP" =7 = (71, Tay ..., TN). (2.5.14)

Ce qui est équivalent a limP, (X, =j)=m;, Vj=1,...,N.

Démonstration. La preuve trés simple :

m™ T ... TN
m T ... TN
limyP" = VII. Or v.II = (v1,v4,...,UN). =
i i i
m Mo ... TN
(Syl + vyt .+ VNZm, ...,£y1 +vg+ ...+ I/NZWN) = (m1,...,my) d’ou la preuve.

~\~ ~\~
=1 =1

Il est plus intéressant de présenter une autre preuve, due & Doeblin.



33

Considérons une autre Chaine de Markov, définie sur ’éspace E x E. Ses probabi-

litées de transition P* sont données par

P{(ig). (ki) = PikPit (2.5.15)

Nous supposons que la loi initiale de cette chaine est une mesure produit p = v @,
c’est-a-dire que

p((i,j)) =vimj, V(i,j) € EXE (2.5.16)

Nous dénotons cette chaine par ((X,,Y,))n>0. Par construction les variables aléa-
toires Xy et Yy sont indépendantes. Il suit donc de la définition(2.5.15)des probabilités
de transition que (X, )n>0 et (Yn)n>0 sont en fait deux chaines de markov sur E de
matrice de transition P, et de distributions initiales respectivement données par v et
.

La matrice de transition P* est réguliére car les éléments de la matrice puissance
(P*)"™ sont donnés par les produits pgg)pg.?).

Considérons alors ’ensemble A = {(i,i) : i € E} C E x E. Le temps de premier

passage T4 peut s’écrire

T4 =inf{n >0, X, =Y, }. (2.5.17)

Alors les deux chaines ont la méme loi pour n > 74. Plus présisément
P, (X, =j,7a<n)=P,(Y,=j,74a<n), VjeE, Vn>0. (2.5.18)
Pour montrer cela, nous introduisons un nouveau processus {Z, },en définie par

X, pour n < Ty,
7, = o PO =TA (2.5.19)
Y, pourn > T,4.

Donc on a bient P,(Zjon = o)) = Vig [ L1 Pim_in. POUr tout n > 0 et tout

choix de iy ,,; € E"'. Par le théoréme (2.2.19), il suit que {Z, },en est une chaine de



34

Markov de loi initiale v et matrice de transition P, et donc égale en loi & {X,, },en.
Ceci prouve (2.5.18).

Cependant, on a

P (X, = j)=P,(Xp=j,7a<n)+P,(X,=j,7a>n), (2.5.20)

7 = P(Yoa=7)=P,(Yo=14,7a <n)+P,(Y,=j,74 >n).
Donc d’aprés(2.5.18), on a :

P, (X, =j)— 7Tj’

IA

IP,(X, = j.7a>n)—P,(Y,=j,74>n)| (2.5.21)

< 2P,(T4 > n).

Or cette derniere quantité tend vers zéro lorsque n — oo, car 74 est fini presque

stirement. ]

Théoréme 2.5.49. Toute chaine de Markov requliére posséde une loi stationnaire

UNIQUE.

Démonstration. On a deja montrer I'existance. Montrons maintenant 1'unicité.
Supposons qu'il existe une loi v = (vq, ..., vy) telle que v.P = v. On a alors Vn € N*
v.P"=v.
Donc lirrln v.P" = v. par conséquent, vII = v.
T, T ... TN
T T ... TN

On a ainsi, (v1,...,vn) | . | =it )T, (N TY) =

T T ... TN
(V1 .oy UN)-

D'ou (71, ...,7n) = (V1, ..., UN). [

Remarque 2.5.50. Si la chaine est irréductible la loi de (X)) ne converge pas
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nécessairement vers une loi 7. Mais elle posséde une loi stationnaire

Proposition 2.5.51. Soit P la matrice de transition d’une chaine de Markov irré-
ductible. Alors il existe une mesure de probabilité unique m = (7y,...,mn) sur E telle

que II.P = IL

Démonstration. Considérons la matrice stochastique @ = [P + I]. Soit

: (n)
— > T D .
m gl;lg:g{mm{n >1:p;” > 0}}

Considérons la matrice
Q" =(I+CL,P+CLP*+ .. +Cp P P™) /2™,

Pour tout couple (i, j), il existe un terme de cette somme dont ’élément de la
matrice se trouvant dans la i-iéme ligne et la j-iéme colonne soit strictement positif.
Comme tous les autres éléments de la méme matrice sont non-négatifs, on conclut que
(Q™)i; > 0. Par conséquent, ) est la matrice de transition d’une chaine réguliére.
Donc il existe une unique mesure de probabilité 7 telle que 7.() = 7, ce qui implique

t[m + wP] =m, donc P = . |

Exemple 2.5.52. On a déja noté que le modéle d’Erenfest est une chaine de Markov
irréductible. Elle a comme distribution stationnaire la loi binomiale de parameétre
p=1/2:v;,=C} (%)N pouri=1,...,N.

L’interprétation de la distribution stationnaire nous indique que si la variable aléa-
toire X, suit la loi 7 & un temps n , alors X,, suivra la méme loi 7 & tous les temps
ultérieurs m > n. Cependant, les théorémes (2.5.44) et (2.5.48) ne sont plus nécessai-
rement vrais dans le cas d’une chaine irréductible : Il suffit de considérer I’exemple du
modele d’Ehrenfest. Toutefois, on a encore convergence vers la distribution stationnaire

dans le sens de la moyenne ergodique (ou moyenne de Cesaro)
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Théoréme 2.5.53. Pour une chaine de Markov irréductible, et pour toute distribution

initiale v, la fréquence moyenne de passage en tout état j converge vers m; :

n—1
lim EE 201{)%]}) =7, VjEE. (2.5.22)

Démonstration. Soit II la matrice carrée dont toutes les lignes sont égales a .

Alors on a IIP =II, du fait que P.1 =1 on a PII = II. Donc :
(I+P+.+P"YHI—-P+1)=1—-P"+nll (2.5.23)

Montrons que la matrice I — P + II est inversible. Soit z un vecteur colonne tel que

(I = P+1I)z =0. Alors on a

O=n(l—-—P+1)x=n(l— P)x+ rlle = rmx. (2.5.24)
=0

Il suit que 7z = 0. Or tous les m; sont strictement positifs donc x = 0. On déduit que
la matrice [ — P +1I est inversible. Soit Z = (I — P+1I)~!. Comme 7(I — P+1I) = m,
on a aussi 7 =77 et I[I = [1Z. En mulipliant (3.5.24) a droite par Z, il vient

I+P+. +P"'=(-P"Z+nllZ = (I - P")Z +nll

Or nous avons, pour tout état initial 7,

ni - 1 P™Z +11);;.

m=0

3I>—‘

Z 1{Xm_]}

Comme les éléments de la matrice P™ sont bornés par 1, cette quantité converge vers

Il);; = m; , lorsque n — oo . |
(Iy; = m;

Théoréme 2.5.54. Soit (X,,) une chaine de Markov irréductible de distribution



stationnaire m. Alors le temps de récurrence moyen en un état i € E est :

Démonstration. Pour i,j € F, on a

Par conséquent,

1 —E;(ry) =

n>2
-Pij + ZHZIPZ(T] = n,X1 = k?)
n>2  kj
Pi+Y nY paPu(rj=n—1)
n>2  k#j
P+ pin Y (m+1)P(r; =m)
WA msl
Py+ Y palBi(r;) + > Pi(r; =m)]
oy m>1

=1

Py

- ZpikEk(Tj) == Z(l — Ok )pirBi (7).

k£j keE

37

(2.5.25)
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Il suit que

1 —m;Bi(r)) = Zﬂz — 6ijBi(75)]

el

— Zm[l —Ei(7;) + (1 — 045)Eq(7;)]

el

= Y ™Y (6k; — DpaBi(r)) + (1 — 6;5)Ei(7;)

S keE

= ZZﬂh(ézk —pik)(l — 6kj)Ek(7—j) -0

keE i€E

La somme sur ¢ s’annule, car m = Y . m;pik. [ |

Exemple 2.5.55. Dans le cas du modéle d’Ehrenfest avec N boules, le temps de
récurrence moyen vers 1’état a ¢ boules est donné par
1 /(N —1)!
g = L gV =t
V; N!

En particulier, le temps moyen entre configurations ou toutes les boules sont dans
I'urne de gauche est de 2V. Ce temps devient gigantesque pour des nombres de boules
de l'ordre du nombre d’Avogadro, c’est-a-dire du nombre de molécules dans un echan-
tillon d’'une mol de gaz. Ce modéle simple peut donc justifer pourquoi, lorsque deux

récipients contenant des gaz sont mis en contact, on n’observe jamais toutes les molé-

cules dans le méme récipient.

2.6 Etats récurrents et transients

On se donne une chaine de Markov (X,,) a valeurs dans F, définie sur 'espace de

probabilité (2, F, P). On notera F,, la tribu engendrée par (Xo, X1, ..., X,,) c’est-a-



39

dire :

Fo = {HweQ: (Xo(w), X1(w), ..., Xp(w)) € B}, B, € P(E™™)}
= (X, (P(E)UX;Y(PE)U..UX, Y (P(E)).

c’est ’ensemble des événements se produisant jusqu’a l'instant n.

Remarque 2.6.56. (F,),cn est famille croissante au sens de I'inclusion

Définition 2.6.57. (temps d’arrét). Une variable aléatoire T' a valeurs dans NU+o0o

est appelée temps d’arrét pour la chaine de Markov si pour tout n € N
{T'=n}eF,

ou de maniére équivalente{T < n} € F,.
Cela signifie qu’en observant la chaine jusqu’a l’instant n, on peut décider s
{T =n} a lieu ou non.

Autrement dit, cet événement ne dépend que des variables aléatoires X, X1, ..., X,.

Exemple 2.6.58. On définit la variable S, par :
Sy =inf{n e N: X,, =z}

avec la convention inf ¢ = +oo .
S, représente le temps de premier passage a 1’état = de la chaine. Il est clair que

S, est un temps d’arrét :
{Se=n}={Xo#£z}n{Xg#z}n..N{X, 1 #z}N{X, =2z} € F,

Exemple 2.6.59. On définit la variable T, par :



40

T, =inf{n > S, : X, =z}

T, représente le temps du premier retour a ’état x de la chaine. Alors T, est un

temps d’arrét.

Exemple 2.6.60. On définit la variable L, par :

L, =sup{n e N: X, =z}

L, représente le temps du dernier passage a 1’état x de la chaine. L, n’est pas un
temps d’arrét.
Désignons par 7; le temps d’atteindre I’état j de la chaine & partir de I'instant 1.

Autrement dit :

7, =inf{n > 1: X, = j}.

Ce temps d’atteinte est un temps d’arrét de la chaine. Rappelons que cela signifie
que pour tout n > 1, 'événement{r; = n}, qui est égal a {X; # j,..., X,_1 # J, X,, =
j}, ne dépend que de Xy, ..., X,,.

Formules de conditionnement,

Dans les énoncés suivants, A désigne un événement appartennant a la tribu

Fn(n > 0), une tribu qui est engendrée par le vecteur (X, ..., X,,). L’événement
A est une réunion dénombrable d’événements, disjoints deux a deux, de la forme
{Xo =10, ..., Xo = in}.

L’événement {A, X,, =i} = AN {X, =i} est alors un événement de la tribu F, .

Le présent {X,, =i} est donc fixé.

Définition 2.6.61. (loi de probabilité conditionnelle du temps d’atteindre)
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Pour tout couple (i, ) d’états et tout n > 1, on pose :
) =P(r; =n | Xo=1). (2.6.26)

Ainsi, fl(?) (n > 1) est la probabilité pour que le processus, partant de I’état i, atteigne
I'état j, pour la premiére fois, a l'instant n. Pour tout couple d’états (i, ), on pose,

par convention, fz-{(;) = 0.

Théoréme 2.6.62. Pour tout entier n > 1, on a l'identité :

(n—k)
o Z Fplnh. (2.6.27)

Démonstration. Le processus passe de ¢ & j en n étapes, si et seulement s’il passe
de i & j pour la premiére fois en k étapes (0 < k < n) et s’il passe ensuite de j a j
en les (n — k) étapes suivantes. Ces chemins, pour des k distincts, sont disjoints et la
probabilité pour un k fixé est f p]? m),

Ce résonnement intuitif peut étre rendu rigoureux de la fagon suivante.

Comme, pour n > 1

(X =) =S {r, = k. Xy = ) + {7, = n}.

On en déduit

n—1
P(X, = jlXo=i)=Y P(r;=h X, =j/Xo=1i)+ [
k=1
n—1
= ZP(TJ = k[Xo = i)P(X,, = j|r; =k, Xo =14) + f(n)-
k=1

Or, pour 1 < k <n—1, Pévénement {7; = k, Xo = i} est de la forme {4, X}, = j},
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ou A appartient a F,,_y C F, . Par conséquent,
. . . . n—k
P(X, = jl7; =k, Xo = i) = P(X, = j|A, X = j) = plj; ",

Comme P{X,, = j|Xo =i} = pl(-?) et P{r; = k| Xy =1} = fi(f), il résulte

W) = S A0+ 1 = 30 1.
k=1 k=0
[ |
D’aprés (3.6.27) on peut déterminer les fi(f) par récurrence a partir des pl(?) :
= i (2.6.28)
n—1
A O N )
k=1
Posons
fy=P{rj < +oolXo =i} = fi. (2.6.29)

n>1
C’est la probabilité pour que le processus, partant de 7, passe par j au moins une
fois au cours du temps; si ¢ = j, le nombre f; ; est la probabilité pour que le processus,

partant de j retourne en j, au moins une fois au cours du temps.

Définition 2.6.63. On dit que I'é¢tat j est récurrent, si f;; = 1. On dit qu’il est

transient ou transitoire, si f;; < 1.

Théoréme 2.6.64. (Critére de récurence).Soit j € E Alors

J est recurrent <= Zp&?) = +o0 (2.6.30)

n>0
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et que :

J est transient <= Zpg-?) < 400 (2.6.31)
n>0

Remarque 2.6.65. Ces formules ont une interprétation intuitive :

Notons V; = Z 1;x,—jle nombre de retours dans 'états j apres I'instant 0. Alors

le nombre moyen E[ => p ) est infini si et seulement si j est récurrent.
n>0

Il y a plusieurs techniques pour démontrer ce théoréme. Nous utilisons le lemme

d’Abel.

Lemme 2.6.66. (Lemme d’Abel)

(1) Si la série de terme général «, converge et a pour somme « , alors

3 n __
lim ) oo ns™ = a.
s?l =

(2) Si les av, sont positifs et si lin% D 0 @ns" = a < 400, alors la série de termes
<

général o, a pour somme a.

Afin de démontrer ce théoréme, nous considérons les fonctions génératrices

$) =Y pis", )= fis, (2.6.32)
n>0 n>0

et a l’aide de la relation de récurrence (3.6.28), établissons une relation fonctionnelle

entre elles.

Pi(s) = 1+ pis™ =143 5" Y flplnh (2.6.33)

n>1 n>1 0<k<n

= 1+Z Z fjk) (n=F) (car f](?) =0)

n>0 0<k<n

= 1+ Fj(s)Pj;(s).
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Lorsque @ # j, il vient de méme : P,;(s) = Fj;(s)P;j;(s). Se rappelant que p(o) dij-

Donc le lemme suivant est démontré.

Lemme 2.6.67. On a les identités

) = Ty P = Fu@Bs) (4 (2631

Proposition 2.6.68. que ['on peut réunir en une seule formule :
Pij(s) = 0ij + Fj(s)Pj(s) - (2.6.35)

Le théoréme (2.6.64) se démontre alors ainsi : supposons que j est récurrent, donc

> fj(]”) = 1. D’apreés le Lemme d’Abel partie(1), lin% > fj(;l)s” =1 et donc
n>0 S; n>0
lim Fj;(s) = 1. Donc d’aprés (3.6.34), il en résulte lim Pj;(s) = +oo et donc

S~>1 s—1
<

lm} Z p( g = 4o00. On peut appliquer alors la partie (2) du Lemme d’Abel et
521530

conclure que > pg’;)

n>0

= —+00.

(n)

Réciproquement, en supposant que j est transient, on aura »_ f i

n>0
la méme technique, on a hmP j(s) < 400, d’'ott , par le Lemme d’Abel partie(2),

S

< 1, Suivant

> pj? < +o00.

n>0

Exemple 2.6.69. Considérons la chaine de Markov, dont ’ensemble des états est

E ={0,1,2,3}, et de matrice de transition

1/2 1/2 0 0
1/2 1/2 0 0
1/4 1/4 1/4 1/4
0o 0 0 1

En calculons les coefficients diagonaux des matrices P™ pour tout n > 0, on trouve :
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pse) = P\ = 1/2,p8%) = (1/4)" et p§y = 1. Les séries S po), S pi7 et S ply) di-

vergent. Les états 0, 1, 3 sont récurrents. La série ) pg) converge, I’état 2 est transient.

Remarque 2.6.70. De tels états sont appelés états de non-retour s’il existe des

états i tels que pour tout n > 1 on ait p@) =0.

K2

Exemple 2.6.71. L’état 1 dans la chaine de Markov, telle que E = {0,1} et

10
P = est un état de non-retour.

10

Proposition 2.6.72. Tout état de non-retour est transient ; tout état absorbant

est récurrent

Démonstration. Pour un état j de non-retour, on a p(.") =

i = 1sin = 0et 0autrement.

La série de terme général pg-? est convergente. [.’état est donc transient. Pour un état
absorbant, tout les termes p’'; de la série vaut 1. La série est divergente et I'état est

récurrent. |

Proposition 2.6.73. Si i «w j et si 1 est récurrent, alors j est aussi récurrent.

(n1)

2

(n2)

Démonstration. Comme ¢ ¢~ j. Onap; .’ >0 et p;; > 0 pour certains entiers

ni, No. De la,

+n+ ) (
Z ”2 ) >ijz pz;“ pzz _p]z pzyl szz -

n
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[
Proposition 2.6.74. Soit j un état transient. Alors, pour tout étati , on a :
Sopl = G+ B (2.6.36)
n>0 n>0
(n) 1
Pj; = ; (2.6.37)
nzzo R
n fig L,
sz(‘j) = # (i # J) (2.6.38)
n>1 Ji

(n)

En particulier, la série de terme général pgl) est convergente et p;;° — 0, lorsque n

tend vers linfini.

Démonstration. L’identité (2.6.36) découle de l'identité (2.6.35) appliquée pour

s 5 1 et du théoréme (2.6.64). Comme la série de terme général p(@ converge vers

j
=3 pg.?), on a lim Pj;(s) = 3, par le Lemme d’Abel.
<

n=0 s=1
- s 2 (n) c1s o
La série de terme général f;;” a pour somme f;; < 1. On a donc aussi h£n F;(s) =

8—)1
fz‘j- D’ou llin Pi(js) = (5,‘]‘ + f”ﬁ et 2;0]?5?) = (51']' + fzgﬁ < 0.
s=1 nz

Les identités (2.6.37) et (2.6.38) sont des consequences de la premiére formule(3.6.36)
|

Proposition 2.6.75. St une chaine de Markov a un nombre fini d’états, elle a au
moins un état récurrent.

Démonstration. Soit N le nombre d’états de la chaine. Pour tout entier n > 0, on
a Y. pgl) =N, dou >, > pﬁ?) = +o00, ce qui, d’aprés la proposition (2.6.73)

1<i,j<N n>0 1<ij<N
serait une contradiction, si tous les états étaient transients. |

Proposition 2.6.76. Soit j un état récurrent et k # j tel que j ~~ k, alors k ~> j,

de sorte que k est aussi récurrent et dans la méme classe que j. En particulier, une
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chaine de Markov ne peut aller d’un état récurrent vers un état transient.

Démonstration. Supposons que pour n > 1 on ait p(.z)

i > 0. I s’agit de montrer

que l'on a p,(gb) > 0 pour un certain m > 1. Il suffit de montrer la proposition pour
n =1, soit p;r > 0. Si Pon avait P(X,, = j|Xo = k) = p,(g;) = 0 pour tout m > 1, on
aurait P(N; = oo| X, = k) < glpgj) = 0. De 1a P(N; = oo| Xy = j) = gpij(Nj -
ol Xg=1) <> pi=1- p;r;:_< 1 et j ne serait pas réccurent, Contrailiction avec

17k
I’hypothése. |

Proposition 2.6.77. Sii et j sont dans la méme classe récurrente, alors
Pi(1; < 00) = Pj(1; < 00) = 1. (2.6.39)

Démonstration. Soit Ay = UM_ {X,, = j} I'évenement “la chaine visite 1'état j
lors des M premiers pas”. Alors
lim Pj(Ay) =Y Pi(r;=m)=1 (2.6.40)

M —o0
m=1

Soit ng le plus petit entier tel que P;{X,, =i} > 0. Alors pour tout M > ng,

M—ng
Pi(Ay N{Xy, = i})= > Pi(Xy, =i,7;=ng+n) (2.6.41)
n=1
M—ng
= Y Pi(Xny =i,j & Xppng)Pi(7; = 1)
n=1
M—ng
< Pi(Xoy=1) Y Pi(r;=n). (2.6.42)
n=1

La premiére égalité suit du fait que la chaine ne peut pas retourner en j avant ng

et visiter ¢ au temps ng, par définition de ng. En tendant M vers l'infinie des deux
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cOtés de I'inégalité, on obtient

Comme P;{X,, =i} # 0et P;{7; < oo} <1, on a nécessairement P;{7; < oo} = 1.

2.7 Périodicité

Il s’agit d’étudier dans quelles conditions le temps qui sépare deux retours au méme
état j est ou n’est pas multiple d’'un temps minimum. On introduit pour ce faire la

notion de période.

Définition 2.7.78. Soit j un état de retour; on appelle période de j, le p.g.c.d
de tous les entiers n > 1 pour lesquels pg-’r}) > 0. On note d(j) la période de j. Si
d(j) = d > 2, on dit que j est périodique de période d; si d = 1, on dit que j est

apériodique. Si j est un état de non-retour, a savoir que, pour tout n > 1, on a p%) =0,

on pose d(j) = +o0.

Théoréme 2.7.79. Sii est périodique de période d finie et si 1 «~ j, j # i, alors
J est ausst périodique de période d. La propriété de périodicité est une propriété de

classe.

(n)

Démonstration. Sii «~ j, alors il existe deux entiers n et m tels que p; / > 0 et

pg-?) > 0. Comme i est de période d(i) = d, il existe aussi un entier s > 1 tel que

pl(;) <~ 0. On a donc p(m+s+n) > pgj;z)pgi)pz(z) > 0. Comme p(s) S0 — p(gs)

]7] Z7Z 27Z

> 0, on

a aussi :p!" 2™ > 0. La période d(j) divise donc a la fois m + 2s +n et m + s + n,

J5J

donc aussi leur différence s, et en particulier la période d(i) de i. De la méme fagon,
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on montre que d(7) divise d(j). Ainsi d(j) = d(i) = d. [

Remarque 2.7.80. toute chaine réguliére est apériodique. En effet, pour tout état
i, il existe un état j tel que p;; > 0. Par définition, il existe un temps n tel que

Pr(X, =1) > 0 pour tout k,l € E. Par conséquent, on a P;{X,, =i} > 0 et aussi
Pi(Xn+1 = Z) Z ]P)z(Xl = j, Xn+1 = Z) = ng]P)j(Xn = Z) >0
Ceci implique que d; = pged{n,n+ 1} = 1.

Exemple 2.7.81. Considérons la chaine de Markov, a trois états 0, 1, 2, dont le graphe
associé est donné dans la figure ci-dessous, ot toutes les fleches présentes correspondent

a des probabilités de transition strictement positives.

0
N

L’état O est de retour; les lacets 0 - 1 — 0et 0 — 1 — 2 — 0 ont pour longueur 2
et 3, respectivement ; leur p,g.c.d est d = 1; I’état 0 est donc apériodique. Maintenant,
la chaine est irréductible. Les deux autres états 1 et 2 sont aussi apériodiques, ce que

I’on peut aussi vérifier directement.

Exemple 2.7.82. Nous allons voir dans le chapitre qui va suivre que dans la

premenade sur 7Z, tous les états sont périodiques, de période 2.

Exemple 2.7.83. Considérons la chaine de Markov, dont ’ensemble des états est
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E =10,1,2,3} et de matrice de transition :

00 1/2 1/2 o (1)
4
10 0 0 )
P= on obtient le graphe
01 O 0 .
01 O 0 6 e

Tous les états communiquent. Il y a donc une seule classe(récurrente). 1l y a exac-
tement deux lacets issusde 0 : 0 — 2 -1 —-0et 0 — 3 — 1 — 0, tous deux de

longueur 3. La classe est donc périodique de période 3.



Chapitre 3

Chaine de Markov sur un ensemble

dénombrable

3.1 Marches aléatoires

Les marches aléatoires constutent un exemple relativement simple, et néanmoins
trés important de chaine de Markov sur un ensemble dénombrable infini. Dans ce cas
en effet, £ = Z% est un réseau infini, de dimension d € N*. D’habitude, on consideére
que la chaine démarre en Xy = 0. Ensuite, elle choisit a chaque instant 1'un des 2d

sites voisins, selon une loi fixée d’avance.

Définition 3.1.84. Une marche aléatoire sur Z% est une chaine de Markov a valeurs

dans Z¢, de distribution initiale v = d,, et de probabilités de transition satisfaisant
pij =0 si i=j ou |i—j||>1 (3.1.1)
La marche est dite symétrique si

1 ) )
Dij = ¥ pour |i—j|l =1 (3.1.2)

51



02

Les trajectoires de la marche aléatoire sont des suites de points de Z¢ & distance 1.
Dans le cas symétrique, chaque trajectoires Xjy ,j, qui est de longueur n, a pour
probabilité (2d)~".

Nous allons d’abord déterminer quelques proprietés élémentaires de la loi de (X))

Proposition 3.1.85. Pour la marche aléatoire symétrique sur 7.2, les variables aléa-

toires X, satisfont :
1. B(X,) =0
2. COV(X,) =513 (avec Iy la matrice unité d’ordre d )

On plus on a )\5—% £ N(0, 114)

Démonstration.

(a) Considérons la suite de variables aléatoires Y,, = X,, — X,,_1 pour n € N*.
D’apres la définition de la marche aléatoire (X,,), Y, € F = {%e; / j =1,...,d},

avec e; le vecteur unité dont la j-iéme composante est égale a 1 et toutes les autres

composantes soient nulles.

Puisque card F = 2d, la loi de Y;, est Py, (y) = o,Vy € F.

On déduit que les variables aléatoires de Y,, possédent la méme loi. Or toute chaine
de Markov est & accroissement indépendants. Et puisque Y,, sont des accroissements
de la chaine (X)), les Y,, sont des variables indépendantes. On déduit que les Y;, sont
i.a.d .

d
On a pour tout n € N* : B(Y,) = 5 > +e; =

Par conséquent E(Y,,) = 0.
(b) La convariance de (Y;,) est cou(Y,,) = (E(Y, — E(Y,;")(Y? —E(Y?)))1<ij<a
avec Y1 Y2 ... Y% les composantes de Y.
OronaE(Y)=0 Vi=1,..,.d.

DouE(Y.Y)=0 si i+#j.
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Si i=jona:EYLY)=E((Y)? =12% + (—1)2% + 0(%) =1

On deduit que COV(Y,,) = .1, =

L
Calculons maintenant E(X,).
OnaX, =Y +Y,+...+Y, donc E(X,)=> 7 _E(Y;) =0.
D’autre part les Y,, sont indépendantes donc
cov(Xy,) = cov(Y1 + Yo+ .. +Y,) =30 cov(Yy) = 214

Le resultat % AN (0, 11,) est le théoréme de la limite centrale.

Eneffet X, =Y+ Yo+ ..4+Y,,et Y7,Y5,...,Y, sont des variables aléatoires indé-

pendantes et de méme loi d’esperance nulle et de covariance égale a é]d
c
alors % = N(0,11,).

En conséquence, la position de la marche aléatoire au temps n se trouvera en
grande probabilité dans une boule de rayon d’ordre \/n autour de lorigine. On dit que
la marche aléatoire a un comportement diffusif(par opposition a ballistique, ou la
distance a 'origine croitrait proportionnellement a n).

Considérons le cas unidimentionnel, c’est & dire la marche aléatoire sur

Z.

Proposition 3.1.86. Soit (X,).en une marche aléatoire sur Z. Alors pour tout
n € N, la loi de X,, est une loi binomiale centrée.C’est a dire définie par

ntk (T\"
P(X,=k)=C,? (5) pour k=-n,—n+2,...n—2,n (3.1.3)

Démonstration. Calculons P(X,, = k). Le fait que X,, = k, X,, aurait avancé p
pas et reculé n — p pas de fagon a ce que (n — p)(—1) + p(1) = k. Or la probabilité
d’avancer p pas et de reculer (n — p) pas est :C%(3)P(3)" 7 = CE(3)".

Ona(n—p)(-1)+p(l)=k = —n+p+p=k = 2p=Fk+n.
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2

On déduit que :P(X,, = k) = (xfa)(5)"™
2
Onak=-n+2pet —n <k <n. Or p prend les valeurs 0,1, ...,n , le nombre k

prend les valeurs —n, —n + 2,...,n — 2, n.

On a

Remarque 3.1.87. En particulier, la probabilité que le processus se trouve en 0 au
n®me pas est donnée par :
0 sin est impair

P(X, = 0) = (3.1.4)

% si n = 2m est pair.

Eneffet :onak=-—n,—n+2,....,n—2,n;sinest impair k ne peut pas étre égal
a 0 donc P(X,, =0) = 0.

Dans le cas ou n est pair, n = 2m, on a :

- () ) () -

Pour n assez grand . En utilisant la formule de Stirling n! ~ v/27n(%)", on obtient

2M 9, € o 1 1 1 2
P(X,=0) ~v4 — — ~ ~q ) —. 3.1.5
(Xum ) VB (2 () e [ (315)

En tout temps pair, L’origine est I’endroit le plus probable ot trouver la marche

aléatoire, mais cette probabilité décroit avec le temps.

Définition 3.1.88. Soit X,, une marche aléatoire sur Z. On pose

7, =inf{n € N*, X, =0} (3.1.6)
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To est le temps du premier retour au point 0 (on a Xy = 0).

Donc 79 ne peut prendre que des valeurs paires, de plus, si 79 = n alors X,, = 0,

donc P(1g = n) < P(X,, =0). En effet, on a :
P(To = n) = ]P)(Xl 7é O,XQ 7£ O, ceny anl # 0, Xn = 0) (317)
Théoréme 3.1.89. Soit (X,,) une marche aléatoire sur Z. Alors

P{ | LP(X,—2=0) sin est pair (3.18)
To =N = T
0 si n est impair.

Démonstration. Supposons que n est pair :
Ona P(rg=n)=P(X; #0,X5#0,....,X, 1 #0,X, =0)
=P(X; >0,..,X, 1>0,X,=0+P(X; <0,...X,1 <0,X, =0)
=2P(X; > 0,X5 >0,...,X,,.1 > 0,X,, =0)
=2P(X,=0/X;=1,X>0,....X,, >0, X, 1 =1)P(X;=1,X5>0,...., X;, o >
0,X,-1=1)
=2P(X,, =0/X, 1 =1)PX;=1,X2>0,...,X,, 2>0,X,, 1 =1)
=2P(X; =0/Xo=1)P(X;=1,X2>0,..,X, 2>0,X,,1=1)
=2iP(X; =1,X>0,..,X,20 >0, X, 1 =1)
PX;=1,X5>0,....,X, 2>0,X,1=1)
PX;=1,X,1=1)-P(X;=1,X,1=1,3Im €{2,..,n—2} telque X,, = 0)
(
(

PX;=1,X,1=1)—-P(X;=-1,X,.1=1) (par le principe de reflexion).
P(X, 1 =1/X; = 1)P(X, =1) - P(X, , =1/X; = ~1)P(X, = —1)

P(X, 0=1/Xy=1
P(X, 2 =0/Xy=0

=1 P(X,—2=1/Xo = —1)]
1 P(X,_s = 2/Xo = 0)] = L[P(X,_o = 0) ~ B(X, 5 = 2)]

2

)_
)_

D’autre part on a :

n—24+2
P(Xa2=2) _ Caly (" _ (3D _3-1_ | 2
BXu2=0) © 52 G2 % n
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bl
Donc P{ry = n} = L[P(X, 5 = 0) = P(X, » = 0)(1 - 2)] = LP{X, , = 0}=S2=.
2

Or on a dit que n est pair donc posons n = 2m. Il s’ensuit que : ’
Cm

g _mol g1 2
C2m272

‘ol :

P{ro = n} = iP{X,» = 0}[1 — 1+ 2] = 1P{X, 5 = 0} ce qui conclut la

démonstration. |
Corollaire 3.1.90. E(7g) = +o0

Démonstration. E(7¢) = > nP(ro=n)= > 2mP(ry = 2m)
neN meN
= 3 2m5P(Xppn 0 =0)= > P(Xp2=0)= > P(X,, =0) ()
meN meN meN

Or pour m assez grand on a P(Xs,, = 0) ~ ﬁ Donc la série (*) est de méme na-

o0
ture que la série > \/%—m = \/%7 S>> —L+ qui est divergente, car c’est série de Riemann
m=1

T
meN (m)2

avec « = 1/2 . Donc Y 2 00 |
meN

™ ’

En d’autres termes, la marche aléatoire finit toujours par revenir en 0, mais la loi
de 7o décroit trop lentement pour que son espérance soit finie. Ceci est di au fait que

si la marche aléatoire s’éloigne beaucoup de 0, elle met longtemps pour y revenir.
Corollaire 3.1.91. La marche aléatoire symétrique sur Zest récurrente pour d = 1

et d = 2 et transiente pour d > 3.

3.2 Distributions stationnaires

Nous considérons une chaine de Markov irréductible sur un ensemble dénombrable

E, de matrice de transition P = (p;;)i jep-

Définition 3.2.92. Une distribution de probabilité m sur E est dite stationnaire si
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elle satisfait

Ty = Z’/Tipij VJ S (329)

i€k
Plus généralement, une mesure p sur £ (qui n’est pas nécessairement une probabi-
lite) satisfaisant p; = > j;p;; pour tout j € E est appelée une mesure invariante de

1€l
la chaine.

Dans le cas ou E est fini nous avons vu qu’une chaine irréductible admettait
toujours une distribution stationnaire. Dans le cas infini, ce n’est plus nécessairement
le cas .

Nous allons maintenant dériver une condition nécessaire et suffisante pour qu’une
chaine de Markov irréductible admette une distribution stationnaire, qui sera toujours

unique dans ce cas . Un role important est joué par la quantité

Tk
W =B Lixmy). (3.2.10)
n=1

C’est-a-dire le nombre moyen de passage en i entre deux passages en k. Intuitive-
(k)

i

ment, si k est récurrent alors la chaine revient infiniment souvent en k, et donc ~

devrait mesurer le temps moyen passé en 1.

Proposition 3.2.93. Supposons que la chaine est irréductible et récurrente. Alors on

aVk e FE :

1. yl(f) =1;

2. fy(’“) est une mesure invariante ;

(k)

3. pour touti € E, on a0 <y; "’ < oo;

4. Y*) est lunique mesure invariante telle que y,gk) =1.

Démonstration.

1) Evidente, puisque X,, =k et X,, # k pour 1 < n < 7.
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2) Nous avons

W= B Lmineny) = 3 Pu(Xa =in <m)  (3.211)
n=1 n=1

= Zzpk(){ml = J,n < Tk)Dji

JEE n=1

= iji Z]P’k(Xm =j,m< 7 —1). (3.2.12)

JjEE m=0

Tr—1 Tk
Or la seconde somme dans cette expression peut s’écrirel;( Y 1x,,=i}) = Ex( D lix,.=i}) =
m=0 m=1

yg-k), vu que Py (Xo = j) = di; = Pr(X,, = j). Ceci prouve I'invariance de mesure

).

3) L’invariance de la mesure implique que pour tout n > 0,

/B =S WP X, = i), (3.2.13)

jEE

(k)

En particulier, 1 = v, > v(k)IP’j (X, = k) pour tout j. Comme par l'irréductibi-

J
lité, il existe un n tel que P;(X,, = k) > 0. On déduit donc ygk)

(k)

i

< 00 pour tout
j. D’autre part, on a aussi y; ~ > Pr(X,, = i), qui est strictement positif pour au

moins un n.
4) Soit A une mesure invariante telle queA; = 1. Alors pour tout j on a
A= Nipij + Drg = D (3.2.14)
itk
Il vient alors, en minorant \; par py; dans ’expression ci-dessus,
A2 Zpkipij + Dij (3.2.15)

i£k
= P{Xy=j, 7 >2}+ Pf{Xy = j, 7, > 1} (3.2.16)
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Par réccurence, on trouve donc pour tout 7 > 1 (a A b désigne le minimum de

a et b)
n+1 (nt1)ATy
N PN =gz ml =B D> px—p)
m=1 m=1

Lorsque n tend vers l'infini, le membre de droite tend vers 'yg-k) . On a donc

Aj > fyg.k) pour tout j. Par conséquent ;1 = A — () est une mesure invariante,

satisfaisant j;, = 0. Comme p, = p,; Pj{X,, = k} pour tout n, 'irréductibilité
J

implique p; =0 Vj, donc nécessairement \ = k)

Théoréme 3.2.94. Pour une chaine de Markov irréductible, les propriétés suivantes

sont équivalentes :

1. 1l existe une distribution stationnaire.

2. Il existe un état k € E tel que

3. La relation (3.2.17)est vérifiée pour tout k € E.

De plus, si ces propriétés sont vérifiées, alors la distribution stationnaire est
unique, et donnée par

M= — VieE (3.2.18)

Démonstration.

2 = 1) Sip, < oo, alors k est récurrent, donc la chaine, étant irréductible, est réccurente.

Par la proposition précédente, v*) est I'unique mesure invariante prenant la valeur
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1 en k. Or nous avons

Tk

Z 7§‘k) - Ek(z Z Lix,=j1) = Ex(Tr) = py < 00 (3.2.19)

jEE n=1 jeE
—_——
=1
Par conséquent, La mesure 7 définie par 7; = fyg- ) /1y, < oo est une mesure de

probabilité invariante, c’est-a-dire une loi stationnaire de la chaine.

1 = 3) Soit 7 une loi stationnaire, et k € E. Alors 4 = 7; /7, est une mesure invariante
telle que 4, = 1. Par la proposition précédente, on a nécessairement y*) = 4. 11

suit par le méme calcul que ci-dessus,

2T 1
Ei(Th) = > 4, = 7jk]:—<oo (3.2.20)

™
jEE k

3 = 2) Evidente.

Dans ce cas, I'unicité de la mesure suit de celle de 4*), et la relation (3.2.18)

suit de (3.4.20).

Définition 3.2.95. On dit qu'un état i est récurrent positif si E;(7;) < oo. Sinon il
est dit récurrent nul. La chaine est dite récurrente positive si tous ses états le sont.
Ainsi un état est récurrent positif lorsque le temps d’attente moyen pour un retour

en ¢ est fini.

Remarque 3.2.96. Une chaine irréductible admet donc une loi stationnaire si et
seulement si elle est récurrente positive.
Par conséquent, on distingue dans le cas d’une chaine irréductible récurrente, deux

cas de figures :

e Le cas récurrent positif : tous les états sont récurrents positifs et il existe une
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unique probabilité invariante.

e Le cas récurrent nul : tous les états sont récurrents nuls et toutes les mesures
invariantes sont de masse infinie.

Il est clair que lorsque card F < oo, le cas récurrent nul disparait et tout état i € F

récurrent est récurrent positif.

Remarque 3.2.97. Pour d > 3 on sait que tout état de Z? est un état transient.

Donc dans ce cas la promenade aléatoire ne posséde pas de loi stationnaire.

Dans le cas ot n = 1,2 on a le resultat suivant :

Théoréme 3.2.98. La marche aléatoire symétrique est récurrente nulle en dimensions

d=1cetd=2.

Démonstration. Supposons que la chaine est recurrente positive donc elle posséde
une loi stationnaire unique.

Soit 7 cette loi. On a alors Vj € Z; Y mip;; = 7j.

Notons T() le translaté de 7 avec lEZE Z.

OnaVvjeZ:

TS(T(—]) = 7Tj+5.

Posons © = Ty(7). Montrons que 7 est aussi une loi stationnaire.

OnaVjeZ

Z ﬁ'ipij = Z Tit-sDij

i€Z i€Z
O Pij = Pitsj+s, donc Z TiDij = Z TitsPitsj+s = Tjt+s = Tj-
i€Z i€Z
Or la chaine posséde une loi stationnaire unique et que

VjGZ, ﬁj:ﬂ'j.
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Donc 745 = m;. On a alors
Tjys = T ‘v’s,j € 7.

On déduit que 7 est une loi uniforme sur Z. Ce qui est impossible, car Z est un
ensemble infini dénombrable.

On déduit que la chaine ne peut pas étre récurrente positive pour n = 1, 2. |

3.3 Convergence vers la distribution stationnaire

Dans le cas fini, nous avons montré que si la chaine était régulieére, alors la loi
de X, convergeait vers la distribution stationnaire. Dans le cas d’un espace infni,
une chaine de Markov ne peut jamais étre réguliere : les probabilités de transition
étant sommables, elles ne peuvent étre minorées par une quantité strictement positive.
Il s’avére toutefois que la récurrence positive et 'apériodicité suffisent & garantir la

convergence vers la distribution stationnaire.

Théoréme 3.3.99. Soit (X,,),>0 une chaine de Markov irréductible, apériodique et
récurrente positive, et soit w son unique distribution stationnaire. Alors pour toute
distribution v initiale , on a

lim P, (X, =j) =m; VjeE.

n—oo

Démonstration. Nous allons généraliser la preuve de Doeblin, déja vue dans le cas
fini.
Nous introduisons une chaine de Markov (X,,, Y;,),>0 sur E x E, de probabilités de

transition

Plij) (k) = PikPjl s (3.3.21)
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et de distribution initiale p = v ® w . Dans ce cas, (X,,) et (Y},) sont deux chaines
indépendantes de matrice de transition P, et de distributions initiales v et 7 .
Le seul point non trivial de la généralisation est de montrer que P* est irréductible

et apériodique. Pour cela, fixons un état k € E. Considérons d’abord ’ensemble

T, ={neN:P(X, =k) >0} (3.3.22)

La propriété de Markov implique que si n,m € I'y, alors n +m € T',. D’autre
part, par définition d’apériodicité, pged I'y, = 1. Alors il existe un ng tel que pour tout
t > ng appartienne a I',. En effet pour cela, supposons d’abord qu’il existe n,m € I'y,
premiers entre eux. Par le théoréme de Bezout, il existe des entiers p,q > 1 tels que
pm — qn = £1. Quitte a intervertir n et m, on peut supposer que pn — gm = 1. Soit
no = gnm. Alors pour 1 <7 < n,onang+r = gnm+r(pn—qm) = gm(n—r)+rpn €
I'y.. 11 suffit alors d’écrire tout t > ng comme t = ng +r + ns avec 1 < r < n pour
conclure que t € I'y, .

Il se pourrait que pged I'y, = 1 sans que cet ensemble ne contienne deux entiers
premiers entre eux. Mais par le théoréme de Bezout, il existe forcément un ensemble
d’éléments de I'y, dont une combinaison linéaire vaut 1, et le raisonnement ci-dessus
s’adapte facilement & ce cas.

Fixons des états ¢, 7, k,l € E. P étant supposée irréductible, il existe » € N tel que

P;(X,, = k) > 0. Comme pour tout n > n,

Pi(Xyin = k) > Py(X, = k)Pp(X, = k) > 0, (3.3.23)

il suit que P;{X,, = k} > 0 pour tous les n > ng + r. Pour des raisons similaires, il
existe myg, s € N tels que P;(X,, =) > 0 pour tous les m > mg + s. Par conséquent,
il existe un temps M tel que P{; (X, Y;) = (k,1)) > 0 pour tous les ¢ > M. Ceci
implique que la chaine composée est irréductible et apériodique.

Comme la chaine composée admet manifestement la loi stationnaire 7 @ 7, le Théo-
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réme (3.2.93) implique qu’elle est récurrente positive.
Le reste de la preuve est identique au cas fini. On introduit le temps 74 de premier

passage sur la diagonale A = {(4,j) : i € E}, et on montre comme dans le cas fini que

P {X, = j} — ;| < 2P, {74 > n}. (3.3.24)

La Proposition (2.6.76) implique que A est fini presque strement, et donc que la

différence ci-dessus tend vers zéro pour n — oo. |

3.4 Chaines de Markov réversibles

Définition 3.4.100. Soit P une matrice stochastique. Un vecteur a = {«a;}icp €

[0,00)F, a # 0, est dit réversible par rapport a P si

Une chaine de Markov est dite réversible si sa matrice admet un vecteur réversible.

La condition (3.4.25) est appelée condition d’équilibre détaillé en physique. Elle
signifie que si les états i et j sont occupés avec probabilités proportionnelles i et j

respectivement, alors les taux de transition de 7 & j et de j a ¢ sont égaux.

Théoréme 3.4.101. Soit P une matrice stochastique et a € [0,00)F un vecteur non

nul.

1. Si « est réversible par rapport P, alors o est une mesure invariante.

2. Si «v est réversible par rapport P, et Y «; < 0o, alors la mesure m définie par
JEE
T =a;/ Y «o; est une distribution stationnaire.
jEE
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3. Si m est une distribution stationnaire, alors

P, (Xo = do, X1 =1, ..., Xpy = 1) = Pr(Xo =1, X1 = ipp1, ..., Xpn = 0)

(3.4.26)
pour tout n € N et tout choix de ig, ..., 1, € E.
Démonstration.
1. On a
Zaipij = Q5 iji = Q5
i€E i€cE
2. Suit immédiatement de 1.
3. Par le théoreme (2.2.19)
PW(XO = iOa X, = ila ) Xn = 'Ln) = ﬂ-iopioilphiz'“pin—ﬂn
DirigTiyPivio - -Pip_1in
(3.4.27)
DivigPisiy -+ -Pinin_1Tin (3428)
[ |

La relation (3.4.26) signifie qu'une trajectoire a la méme probabilité que la trajec-

toire renversée dans le temps. C’est ce qui justifie le terme de réversibilité.

Remarque 3.4.102. 1l est clair que si (3.4.25) a lieu, alors « est une mesure
invariante. Par contre, la réciproque est fausse. En effet, considérons une chaine irré-
ductible récurrente positive de mesure invariante «. Alors s’il existe 7, j € E tels que
P > 0 et P; =0, la relation (3.4.25) n’est pas vérifiée. Alors P n’est pas réversible

par rapport a a.



Chapitre 4

Le processus ponctuel de Poisson

Le processus de Poisson sur la droite est un processus a temps continu et a valeurs
entieres positives. On dit encore que c’est un processus de comptage, que ’on note
{N(t) : t > 0}. Il s’agit d’étudier le nombre aléatoire N(t) de certains événements
qui se produisent dans un intervalle de temps [0, ¢] donné. Sa grande popularité dans
les applications vient notamment du fait que beaucoup de calculs le concernant sont

explicites.

4.1 Deéfinition et premiéres propriétés

On se propose d’étudier la répartition dans le temps d’instants aléatoires, appelés
instants d’arrivée. Dans les applications, ce sont les instants ot se produisent certains
éveénements spécifiques, comme, par exemple : les arrivées de clients devant un guichet,
les émissions de particules radioactives, les appels dans un centrale téléphonique, etc.
Par analogie avec le premier exemple cité, on appelle ces événements des tops, qui se
produisent donc aux dits instants d’arrivée.

Le processus peut étre caractérisé de plusieurs maniéres différentes. Une réalisation

66
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peut étre spécifiée par une suite croissante de nombres réels positifs
X0:0<X1<X2<X3<...,

désignant les points dans R, . Alternativement, on peut décrire une réalisation en
donnant le nombre de points N;(w) contenus dans chaque intevalle I de la forme: [ =
Jt,t + s]. Sinous abrégeons Njg4 par N; (communément appelé fonction de comptage),

nous aurons Ny ¢s = Nosts) — N]oy], et les N; sont donnés en fonction des X, par
Ni(w) =sup{n > 0: X, (w) < t}.
Inversement, les X,, se déduisent des IV; par la relation
X, (w) =inf{t > 0: Ny(w) > n}.

Nous allons voir deux constructions équivalentes du processus de Poisson. La pre-

miére construction part de la distribution des V.

4.2 Construction par la fonction de comptage

Définition 4.2.103. (processus de poisson). Le processus ponctuel de Poisson
satisfait les conditions suivantes :

a) Nr ne dépond que de la longueur de I, i.e Nyiiq a la méme loi que Nj.

b) Si Iy, ..., Iy sont deuzx o deux disjoints, Ny, ..., Ny, sont indépendants.

c) E(Nyp) existe pour tout I (de longueur fini).

d) Il existe un intervalle I tel que P(N; > 0) > 0.

e) Absence de points doubles : ll_r% IP(N.>2)=0.

Supposant qu’'un tel processus existe, nous pouvons dériver quelques-unes de ses

propriétés
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Proposition 4.2.104.

1. Pour tout intervalle borné I C R., on a P(N; > 0) < E(N).

2. Soit a(t) = E(N;). Alors il existe X > 0 tel que a(t) = M.

Démonstration.

v

1) Soit I intervalle de Ry. B(N;) = > 72 jP(N; = j) = Y72, jB(N; = j)
> o P(Nr =j) =P(N; > 1).
2) Posons f(r) = E(N,) pour s € R,. f est une application linéaire. En effet :
a) Vs, t € Ry f(s+1) = B(Nyys) = E(Njgsts) = E(Njo,g) + Niss4))
= E(No,s) + E(Nssiq) = f(s) + f(2).
b) Va € R, et Vs € R, ona:

flas) = B(Nqs) = ]E(*N]O,aS]) = ]E(CLJV}O,S]) =a E(]V}O,s]) =a f(s).
On déduit que f est linéaire sur R,. Donc 3A\ > 0 telle que Vi € R, f(t) = At.
|

La propriété remarquable du processus de Poisson est alors que les variables aléa-

toires IV}, 54 suivent nécessairement une loi de Poisson de parametre As.

Théoréme 4.2.105. Sile processus satisfait les 5 conditions de la définition (4.2.102),

alors les variables aléatoires Ny, .4y suivent des lois de Poisson de parameétre As :

P(]V]s,s-l-t} - k) = ﬂ-)\S(k) = 67)\8 Ll

Démonstration. Par la propriété a), il suffit de montrer le résultat pour ¢ = 0,

c’est-a-dire pour N;. Partageons |0, s] en k intervalles de longueur égale, de la forme

E
181, 5;] ou 59 = 0 et sj:%pour 1<j<k.
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L’idée de la preuve est que pour k suffisamment grand, il est peu probable d’avoir

)

plus d’un point par intervalle, donc la loi de Yj(k = Nis;_,,5;) €st & peu pres une loi de

Bernouli.
La loi de N, est donc proche d’une loi binomiale, que ’on peut approximer par la
loi de Poisson pour k grand.

)

Il suit donc des conditions que les Y;-(k sont i.i.d, de mémes loi que Ny, = N,/ et

on a

Introduisons alors des variables aléatoires

- Y S
v® 0 st Y™ =0,
1osi vV >1

J

les Yj(k) sont également i.i.d, et suivent une loi de Bernoulli. La variable aléatoire

k

N =3 v ®

J=1

(k)

satisfaisant N,

< N, pour tout k, on a

P{N¥ > m} <P{N, > m}

pour tout k et tout m. De plus, N™ suit une loi binomiale de parameétre

pe =P = 1) =PVY 2 1) = B(N,p5, > 1).
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Estimons maintenant la différence entre les lois de Ns(k) et N,. Nous avons

P

(k) _ : .y (k)
PNG £ N =P@Ej € {1,...k}: VP > 2)
k
< YRz
7j=1

= WP\ > 2) = kP(N,/x > 2),

La condition 5 avec e=s/k implique alors

lim P(N® £ N,) = 0.

k—o0

Comme on a d’une part la minoration
P(N, =m) =P(N, = NP =m) > P(NP = m) — PV £ N,),
et d’autre part la majoration

P(N, = m)=P(N, =N =m) +P(NP £ N, = m)

P(N® = m) + P(N® #£ N,),

IA

il suit que

lim P(NY = m) = P(N, = m).

k—oo

Il reste & montrer que kP, tend vers As pour k& — oo. Si c’est le cas, alors la

proposition 1.1.4 montre que N, suit une loi de Poisson de parmétre As. Or nous
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avons
kpe = BVY) =3 jP(NE = j) = P(NP = 1) + 2P(NY = 2) + 3P(NS) = 3) + ..
j=1
= Y S PNE =) =Y PV > )
=1 j>I =1
Or
As = E(N,) = ZjP{NS =j}= ZP(NS > 1).
j=0 =1
On a
k
lim kpy = 113.10213 N > lim P(N® ZP{N > 1} = \s

(4.2.1)

Puisque lim_. kpr = As et kp, sont des paramétres d’une loi binomiale, d’aprés

la, proposition (1.1.4), les lois de W convergent vers la loi de Poisson de parametre
As. On déduit aussi que la loi de Ny est de Poisson de parameétre As (car W converge

en loi vers Nj)

Montrons 1’égalité suivante :

m SO BN® > 1) = S lim (N
lim y PN > 1) = Z,}LI?O P(N™ > 1).
=1 I=1
En effet :
OnaN® < N, Vk € N, par conséquent : {we Q\Ng(k) >} c{we Q\ngk) > 1},
Donc

B S Xpa,ap § AVECX fonction indicatrice.
(NP>

Posons f;, = Z X{N(k>>l} et f= Z X{N>1}+
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Ona [fdp=)Y P{Ny>1}=Xset fr, < f Vk e N
=1
Dou [ fdp <oo VEk € N.Par conséquent lilgn [ frdp= flilgn frdp, d’apré le
théoréeme de la convergence domminée de Lebesgue.

On en déduit lim - PIN® >y =% lim P(N® > 1) m
=1 =1

4.3 Construction par les temps d’attente

La seconde construction du processus ponctuel de Poisson se base sur la distribution
des différences de position 7, = X,, — X,,_1. Celles-ci caractérisent également de

maniére univoque le processus, via la relation
n
Xa(w) =) Zj(w).
J=1

Le résultat remarquable est alors que les Z; sont i.i.d et suivent une loi bien parti-

culiére, & savoire une loi exponentielle de paramétre \.

Théoréme 4.3.106. Pour tout n, les variables aléatoires Z, ..., Z, sont indépen-
dantes, et suivent la méme loi exponentielle exp(\).

Démonstration. Fizons des instants
to=0<s1 <t <SS <ty <...<8s, <t,

I[D(Xl € ]Sl,tl] ,Xg c ]SQ,tQ] s ,Xn € ]Sn,tn])

= ]P)(]V}O,Sﬂ = 07 ]V] = 17 ]V]tl,sz} = 07 [EEE) ]V]tn_l,sn] = O) ]V]Sn,tn] > ]-)

s1:t1]

n n—1
= HP(]\[]tk—lvsk] - O) H ]P)(]\ﬁskvtk] = I)P(Msnatn] Z 1)
k=1 k=1

n n—1
f— H e_A(Sk_tk—l) H )\(tk _ Sk)e_)\(tk_Sk)[l _ 6_)\(tn_5n)]
k=1 k=1
n—1

=\t H(tk — 8p)[e7 M — 7]

k=1
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t1 t2 tn
= [ [..[ XNe ™ dr,du, 1...dvedz:.
S1 89 Sn
La loi conjointe de (X1, ..., X,,) admet donc la densité

ANe ™M g 0<x; < ... < Tp
flzy, .z, =

0 sinon.

Déterminons maintenant la loi de Zy ,k € N*

Posons Z1=X1—Xo, o=Xo—X1,..., Z, = X,, — Xp_1.

La fonction de répartition de Zy, Zs, ..., Z, est :

V21; e 2n € Ry, F21, 20,0 2n) = P{Z1 < 20,725 < 29, ..., Zy < 2}
=P{X; <2, Xo0—X;1 < 29,.., X, — X_1 < 2z,}

21 22+x1 23+T2 Zn+tTn—1

=[ [ | o [ [flz,22,.,2,) depde,_q...deods
0 0 0 0

Ona:

8F(zl, . Zn) 21422 z3+x2 Zn+Tp—1

5 = [ [ [ [flz2e,.2) de,..des
Z1 0 0 0

et par conséquent :

aQF(Z]_, z2’ ey ZTL) z21+22+23 Zn+Tn—1

822821 = ‘({‘ g‘ f(Zl,Z2+Zl,Qf3,...,ZL'n) dl’ndllﬁ'g

Ainsi de suite...

On obtient finalement :

O"F(z1, 22y ..y Zn)
02p...021

= f(z1,21+ 20,21+ 204+ 23,21+ 20+ o + 2)

_ )\ne—)\(z1+...+zn)

= (Ae ) (Ne 2. (e ).

Or cette densité [ représente la densité d’une famille de variables aléatoires indé-

pendantes et idéntiquement distribuées gouvernées par la loi \e™7. |

Proposition 4.3.107. (Superposition de deuz processus de Poison indépendants).
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Sotent {N/}er ,i = 1,2 deux processus de Poisson indépendants de taur
respectivementAy, Ay. Alors le processus N = N} + N? est encore un processus de

Poisson de taux A = A\ + .

Démonstration. N, est la variable aléatoire représentant le nombre d’arrivées dans
'intervalle |0, ¢].

On a pour k£ € N,

P(N, = k)=> P(N/=jet N) =k—j)

k ki
_ t_e—(/\1+)\2)tz k!)‘jl)‘2 !
— j!(k —j)!

= —(()\1 + )\Q)t)ke_()\1+)\2)t.

On déduit que V¢ > 0, N, est une variable aléatoire gouvernée par la loi de Poisson
de parameétre (A + \)t.

On vérifier facilement que (N;) est & accroissement indépendants et stationnaire
par rapport au temps.

On en deduit que (V;) est un processus de Poisson |

Proposition 4.3.108. Soient {X(t) : t > 0} et {Y(¢) : t > 0} deuz processus de
Poisson indépendants, de taux d’arrivées respectifs Ax et Ay . Alors le nombre d’arrives

du processus {Y (t) : t > 0} se produisant entre deuz arrivées successives du processus

{X(t) : t > 0} suit une distribution géométrique modifiée de paramétre /\X)‘f/\y.
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Remarque 4.3.109. une varriable aléatoire Z suit une loi géometrique modifiée de

paramétre p (0 <p<1)siVi €N, P(Z =1) = p(1 — p)".

Démonstration. Soit 7x la variable aléatoire qui représente le temp d’attente entre
deux arrivées de X. Calculons P(N)_ = k) pour k € N.

C’est la loi du nombre d’arrivées de Y entre deux arrivées de X.

400 400
MNg:kp:/Pmyzkuxe%dm:égifﬁe%Wdet
0 0

—+o00

= Ay 1 ske=s ds avec s = (A; + A\p)?
- Tk (x+Ay)FHT - 1 2) -

0
k:
’\’Z‘Y (Ax+){y)k+1 I'(k+ 1) (avec I'(«) est fonction d’Euler)

k
_ AxAb K! Ax < Ay )

K Ox AR = Oxtay) \Ax+Hhy
= p(1 —p)* avec p = /\Y/\f)\y. |
Proposition 4.3.110. Soit {T,,}nen, To = 0, les temps d’arrivée associés a un

processus de Poisson {N;}ier de paramétre \. et soit B un borélien borné de R. On

mtroduit la variable aléatoire :
“+oo
NB = Z ]-TnGB-
n=1

Alors Ng suit une loi de Poisson de paramétre A m(B), ou m(B) est la mesure de

Lebesgque de B

Démonstration. B est une reunion de ses composantes connexes

B=|JI;, IcN.

jel

Les composantes connexes de I sont des intervalles. Donc /; est un intrvalle de R

vVjel
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a) Supposons que [ est finie, donc B = U I;,on am(B) = Zl(lj).
=1

j=1
D’autre par Ny, suit la loi de Poisson de parametre A [(I;) Vj € I donc Z Ny, suit
j=1
la loi Poisson de parameétre A Z I(1;).

j=1

Or Np = Z Ni,. Donc Np suit la loi Poisson de paramétre A Z [(I;)

j=1 7=1

mais m(B) = Z [(I;) donc Np suit la loi de Poisson de parameétre A m(B).
j=1

4.4 Exemples de processus de Poisson

Exemple 4.4.111. (Décomposition d’un processus de Poison).

Le nombre de chocs N(t) affectant une composante d’un systéme au cours de
'intervalle de temps (0, t) est gouverné par un processus de Poison de taux A. Lorsque la
composante subit un choc, elle continue néanmoins & fonctionner avec une probabilité
p; le choc sera par contre fatal avec une probabilité ¢ = 1—p, auquel cas la composante
est instantanément remplacée par une nouvelle composante identique. Soit Ng(t) le
nombre de chocs fatals survenus au cours de U'intervalle (0, t). Alors Np = {Np(t);t >

0} est un processus de Poison de taux Ag.

Démonstration. Il est clair que le support de Np(t) est N

Pour k€ Nona:

P(Np(t) =k) =) P{Np(t) =k N(t) =1}) = Y P({Ne(t) = k,N(t) = 1})

hE

P(NF(t) = KIN(H) = DP(N(t) = 1) = > CF g*(1 =)'+ (8 e )
l =k

- n 1—q)l—k(At)l—F e=At Mo)® 1—q) ) *
= ()‘t)k qu K(—k)! o) (1!) = ¢ k({) e N Z %
=k >k

Il
B
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51 k!

_ (/\:{)k’ oM Z (=g MY _ (t)* Xt ,(1-g)rt — (/\fj)k oM

j=0
Puisque N(t) est a accroissements indépendants et stationnaire par rapport au

temps on mentre facilement que Np(t) 'est aussi. |

Exemple 4.4.112. On considére une suite de variables aléatoires positives X;,
i € N*, définies sur un méme espace (€2, .4, P), identiquement distribuées selon une loi
de fonction de répartition continue F.

Les résultats de I'exemple pourront étre interprétés, par exemple, du point de vue
d’un auto-stoppeur qui, placé en un point d’une route, observe qu’il s’écoule un temps
X; entre le passage de la (i — 1)%™¢ voiture et de la i®™¢. Si la circulation est fluide,
on peut considérer en premiére approximation que les {X;};cn+ sont indépendantes et

de loi exponentielle.
1) On pose :

n +o0o
To=0, T,=Y X; Ny=Y lz,<p.
n=1

t=1
L’interprétation de ces variables indique que :
ieme

a) T, : est la variable aléatoire qui représente le temp de la n arrivée.

b) N, : est la variable aléatoire qui représente le nombre d’arrivées avant 'instant

t.

c)

Ny > n = le nombre d’arrivées avant I'instant ¢ a dépassé n donc T, < t. (c’est

a dire le n arrivée est realise avant t)
T, <t = len arrivée est réalisé avant ¢, donc le nombre d’arrivée avant 'instant

t est surement plus grand que n.

2) Considerons les variables aléatoires W, = Ty, 41 —t et Z; =t — Tiy,. Wy est le

temps que 'auto-stoppeur doit attendre a partir de l'instant ¢ pour voir passer
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une voiture et Z; est le temps écoulé entre le dernier passage d’une voiture et

I'instant d’arrivée de I"auto-stoppeur qui est .

a) Wy +Zy = (Tny1 —t) + (t = Tw,) = Ty — Ty,
Wi + Z; est le temp d’attente entre deux arrivées. C’est une variable aléatoire
qui possede la méme loi que X;.
Donc W; + Z, est gouvernée par la loi exponentielle de paramétre \. Cest a
dire de densité f(z) = \e ?*.

b) Donnons la loi du couple (W, Z;).

1. Montrons d’abord que W; et Z; sont indépendant :
La fonction de repartition de W; est:

1¢"¢ cas : s >t

D’autre part la fonction de répartitin de Z; est :

28me gg s <t

Fz(s) = P(Z <)

Or Nji_s, 4 et Nji, 144 sont des variables aléatoires indépendantes donc

W, et Z, sont indépendantes.

2. Déterminons la loi de W, :
Fw,(s) =P(W; <s) =P(Tn,41 —t <)
=P(Tn41 <t 45) =P(Nyg, 149 > 1)
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- ]_ - P(-Zv]t,t+s] = O) = ]_ —]P)(NS - 0)
=1—e.
Donc la densité de la loi de W; est dFWt( D= = f(s).

3. Déterminons la loi de Z; : On a pour s > 0

1¢"¢ cas : s >t
Fz,(s) = P(Z; <5s)
= ]P(t — TNt < S) =
= P(min(Xi,t) < s)
26me cas s < t

S
=
|
'@

I
=

t—

| /\

(Zi
( 5)
(]V]tstZ)
(
(

|
=~

= P(N,>1)=1—¢"

= P(X; <s)=P(min(Xy,t) <s)

On déduit que dans les deux cas, on a :

Donc Z; posséde la méme loi que min(Xy, ).

Puisque W;, Z; sont indépendantes alors VA, B € B(R,) on a :

P(Wy,Z;) € AxB)=P(W,e€ A)nN(Z € B))
= P(W, € A) P(Z; € B).
= ]P)Wt ®Pzt(A X B)
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¢) Montrons que Z; converge en loi vers X; quand ¢ tend vers l'infini.
En effet, soit s € R,

lim P(Z; <s)= lim P(min(Xy,?) <s)=P(X; <s).

t——+o00 t—+o00

car t tend vers +oo donc t > s donc

P(min(X;,t) < s) =P(X; < s).

4.5 Généralisations

Il existe plusieurs généralisations du processus ponctuel de Poisson discuté précé-

demment :

1. Le processus de Poisson inhomogéne : Dans ce cas le nombre de points

N]t, t 4 s]suit une loi de Poisson de parameétre

t+s

/ Aw)du

t

ou A(u) est une fonction positive, donnant le taux au temps u. Ce processus
permet de décrire des situations ot les points apparaissent avec une intensité
variable, par exemple si I'on veut tenir compte des variations journalieres du

trafic influengant les horaires de passage de bus. On retrouve le processus de

Poisson homogene si A(u) est constant.

2. Le processus de Poisson de dimension n > 2 : Ce processus peut étre
défini par sa fonction de comptage, en remplacant les intervalles I par des sous-
ensembles (mesurables) de R™. Les nombres de points dans deux ensembles dis-

joints sont & nouveau indépendants, et le nombre de points dans un ensemble
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est proportionnel a son volume. Ce processus peut par exemple modéliser la

distribution des étoiles dans une région de 1’espace ou du ciel.

. Le processus de naissance et de mort : Le processus ponctuel de Poisson
peut étre considéré comme un processus de naissance pur : Si V; est interprété
comme le nombre d’individus dans une population au temps ¢, ce nombre aug-
mente avec un taux constant \. Plus généralement, dans un processus de nais-
sance et de mort, de nouveaux individus naissent avec un taux A et meurent
avec un taux g ; éventuellement, A = A\(N;) et u = u(N;) peuvent dépendre de

la taille actuelle de la population.
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