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1.2 Méthode de Trapèze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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Introduction

Les ingénieurs rencontrent sans cesse des problèmes concrets qui surgissent dans

leurs domaines. La plupart de ces problèmes peuvent être formulés comme des problèmes

de mathématiques (tel que la résolution d’une équation, calcule intégrale, etc.), et la plus

part de ces problèmes ne sont pas résolvables par les méthodes analytiques traditionnels

connues, ou bien on est convaincu qu’on passera un temps énorme pour les résoudre

analytiquement si ce n’est pas possible, c’est à cause on a alors recours aux méthodes

numériques.

Prenons par exemple l’intégrale suivant :

∫ 3

−2
e−x

2

dx,

cette intégrale ne peut pas être calculée avec les méthodes classiques connues comme

intégration par parties, changement de variable, etc.. En utilisant l’une des méthodes

numériques, ce type d’intégration on peut l’approximer numériquement avec une précision

donnée.

Au cours de ces dernières décennies, de nombreux algorithmes basés sur une étude

théorique ont été développés pour résoudre des problèmes mathématiques très divers. Due

au fait que, ce cours s’adresse particulièrement aux étudiants 2-ème année physique et

chimie, qui ne sont pas des spécialistes en mathématiques, avec un volume horaire 1h30

de cours et 1h30 de TP par semaine, cela ne permettent pas de donner plus des détails sur
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le côté théorique des méthodes présentés. Dans ce polycopié de cours, nous avons décrit

les méthodes numériques les plus connues et les plus utilisées pour résoudre pas mal de

problèmes rencontrés au cours de leur formation, en se basant sur la simplicité dans la

présentation de ces méthodes.

Dans ce fascicule, chaque section est suivie d’exemples détaillée et dans chaque fin

de chapitre, les étudiants sont invités à résoudre les exercices supplémentaires donnés.

Le cours est structuré en cinq grands chapitres : Le premier chapitre est consacré à

l’intégration numérique. Dans le second chapitre, on traite deux méthodes d’interpolation

polynomiale. Le troisième chapitre est consacré à la résolution numérique des équations

non-linéaires. Le chapitre suivant, mis en lumière les techniques de résolution numériques

d’équations différentielles ordinaires. Enfin, le dernier chapitre est dédié aux méthodes de

résolution des systèmes d’équations linéaires.
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Chapitre 1

Intégration Numérique

Très souvent le calcul explicite de l’intégrale, d’une fonction f continue sur un inter-

valle [a, b] dans R, définie par I(f) =

∫ b

a

f(x)dx peut être très couteux, ou tout simple-

ment impossible à atteindre. Donc, on fait appel à des méthodes numériques, afin de cal-

culer une approximation de I(f). Dans ce chapitre, nous allons présenter trois méthodes

d’intégration usuelles qui sont : Méthode des points milieux, Méthode des trapèzes et

Méthode de Simpson. Ces méthodes permettent le calcul des intégrales qui n’ont pas de

solutions directes ou analytiques. On peut aussi calculer l’intégrale d’une fonction donnée

sous forme tabulaire ou discrète.

L’idée consiste à approcher I(f) par une combinaison linéaire finie :

I(f) =

∫ b

a

f(x)dx =
n∑
i=0

λni f(xi),

où : xi ∈ [a, b], λi ∈ R (indépendantes de f), et l’erreur de calcul de cette approche :

Rn(f) =

∫ b

a

f(x)dx−
n∑
i=0

λni f(xi)

Définition 1.1. On dit qu’une méthode d’intégration numérique est exacte sur l’ensemble
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E, si et seulement si : Rn(f) = 0, ∀f ∈ E.

1.1 Méthode du point milieu

La formule classique de la méthode du point milieu (ou du rectangle) est obtenue

en remplaçant f par sa valeur au milieu de l’intervalle [a, b] (Voir Figure 1.1).

Figure 1.1 – Formule du point milieu

La formule de point milieu simple est obtenue en utilisant la formule suivante sur

l’intervalle [a, b] :

I(f) = (b− a)f

(
b− a

2

)

1.1.1 Généralisation de la méthode du point milieu

La méthode du point milieu composite est obtenue en subdivisant l’intervalle [a, b]

en n sous-intervalles Ik = [xk−1, xk], k = 1, ..., n, avec xk = a + k × h, k = 0, . . . , n et

h = (b− a)/n.

En répétant pour chaque sous intervalle la formule du point milieu précédente, en

posant x̃k = xk−1+xk
2

, l’intégrale de la fonction est alors la somme des intégrales obtenus,

alors on a :

I(f) = h× f(x̃1) + h× f(x̃2) + · · ·+ h× f(x̃n)
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On obtient alors la formule générale suivante :

I(f) = h×
n∑
k=1

f(x̃k)

Figure 1.2 – Formule du point milieu composite

Exemple Soit à intégrer la fonction f(x) = 3x2+2x dans l’intervalle [1, 2]. Cette fonction

est très simple à intégrer analytiquement

∫ 2

1

f(x)dx = 10.

En utilisant la méthode des points milieux avec n = 4, on a :

h = 2−1
4

= 0.25, et x̃1 = 1+1.25
2

= 1.1250, x̃2 = 1.3750, x̃3 = 1.6250, x̃4 = 1.8750.

Donc,

I(f) = 0.25[f(1.1250) + f(1.3750) + f(1.6250) + f(1.8750)] = 9.9844

On augmentant n à 8 on va avoir h = 1/8 = 0.125 on obtient le nouveau intégrale :

I(f) = 0.125[f(1.0625) + f(1.1875) + f(1.3125) + f(1.4375) + f(1.5625)+

+ f(1.6875) + f(1.8125) + f(1.9375)] = 9.9961
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et avec n = 100 on obtient I(f) = 9.999975

Théorème 1.1. Soit f ∈ C2([a, b]). Alors, il existe ξ ∈ [a, b] tel que :

Rn(f) = −(b− a)3

24n2
f ′′(ξ) = − h2

24n2
(b− a)f ′′(ξ),

où f ′′ désigne la dérivée seconde de la fonction f . On peut écrire la borne supérieure de

l’erreur commise comme suit :

Rn(f) ≤ (b− a)3

24n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣

Remarque 1.1. Etant donnée une précision ε, on peut déterminer le nombre minimal n

de sous intervalles suivant cette formule :

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

24 ε
.

1.2 Méthode de Trapèze

Cette formule est très simple, elle permet de remplacer la courbe f(x) de la fonction

à intégrer par une ligne droite qui relie les points
(
a, f(a)

)
et
(
b, f(b)

)
ce qui donne un

trapèze (voir Figure 1.3 au dessous).

L’intégrale est donc remplacée par la surface du trapèze :

I(f) ' S =
b− a

2
[f(a) + f(b)] .

On peut remarquer qu’il y a une différence importante entre la courbe de la fonction et

la ligne droite, cela veut qu’on commı̂t une erreur de calcul. Pour minimiser cette erreur,

on utilise une autre forme plus adaptée de cette formule.
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Figure 1.3 – Méthode du trapèze

1.2.1 Généralisation de la méthode de Trapèze

Pour obtenir de meilleur résultats, on découpe l’intervalle [a, b] en n sous-intervalles,

et on applique la méthode de trapèze sur chacun d’entre eux [a = x0, x1], [x1, x2], . . . , [xn−1, b =

xn]. L’application de la formule du trapèze donne :

I(f) ' h

2

(
f(x0) + f(x1)

)
+
h

2

(
f(x1) + f(x2)

)
+ · · ·+ h

2

(
f(xn−1) + f(xn)

)
' h

2

[
f(x0) + 2

n−1∑
i=1

(f(xi)) + f(xn)

]

D’où

I(f) ' h

2

[
f(x0) + f(xn) + 2

n−1∑
i=1

(f(xi))

]
(1.1)

Par exemple, dans Figure 1.4, pour ces quatre trapèzes on écrira :

I1(f) =
h

2

(
f(x1) + f(a)

)
,

I2(f) =
h

2

(
f(x1) + f(x2)

)
,

I3(f) =
h

2

(
f(x2) + f(x3)

)
,

I4(f) =
h

2

(
f(x3) + f(b)

)
.
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Figure 1.4 – Formule du Trapèze composite représentée sur 4 sous-intervalles

Donc, I(f) ' I1(f) + I2(f) + I3(f) + I4(f).

Théorème 1.2. Soit f ∈ C2([a, b]). Alors, il existe ξ ∈ [a, b] tel que :

Rn(f) = −(b− a)3

12n2
f ′′(ξ) = − h2

12n2
(b− a)f ′′(ξ),

où f ′′ désigne la dérivée seconde de la fonction f . On peut écrire la borne supérieure de

l’erreur commise comme suit :

Rn(f) ≤ (b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣

Remarque 1.2. Etant donnée une précision ε, on peut déterminer le nombre minimal n

de sous intervalles suivant cette formule :

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

12 ε
. (1.2)

Il existe une version améliorée de la méthode des trapèzes, dite méthode de Poncelet
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dont le schéma numérique est donné par :

I(f) ' h

4

(
f(x0) + f(x2n) + 7

(
f(x1) + f(x2n−1)

)
+ 8

n−2∑
i=1

f(x2i+1)
)

Exemple 1 : On donne la fonction f(x) =
√
x+ 1 avec x ∈ [0, 1] et n = 10. En utilisant

la méthode des trapèzes, calculer l’intégrale

∫ 1

0

√
x+ 1dx et évaluer l’erreur de

calcul.

Solution : On calcule le pas h = b−a
n

= 0.1.

xi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f(xi) 1 1.0481 1.0954 1.1401 1.1832 1.2247 1.2649 1.3038 1.3416 1.3784 1.4142

I(f) =
h

2

[
f(a) + f(b) + 2

(
9∑
i=1

f(xi)

)]

=
0.1

2
[1 + 1.4142 + 2 (1.0488 + 1.0954 + 1.1402 + 1.1832 + 1.2247 + 1.2649+

+1.3038 + 1.3416 + 1.3784)]

= 1.2188.

D’où,

∫ 1

0

√
x+ 1dx ' 1.2188.

Rn(f) ≤ 1
12×102 max

x∈[0,1]

∣∣f ′′(x)
∣∣, d’autre part, on a

f ′(x) =
1

2
(x+ 1)−

1
2 ,

f ′′(x) = −1

4
(x+ 1)−

3
2 ,

f (3)(x) =
3

8
(x+ 1)−

5
2 > 0,∀x ∈ [0, 1].

Donc, max
x∈[0,1]

|f ′′(x)| = |f ′′(0)| = 0.25, d’où : Rn(f) ≤ 0.25× 1
12×102 ' 2.08× 10−4.
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D’où, ∫ 1

0

√
x+ 1dx ' 1.2188± 2.08× 10−4

Exemple 2 : Calculer l’intégrale

∫ 1

0

e−x
2

dx avec une précision de 10−3 par la méthode

des trapèzes.

Solution : On doit d’abord déterminer le nombre de division n nécessaire pour obtenir

cette précision.

L’erreur d’intégration s’écrit :

Rn(f) ≤ (b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣ =

b− a
12

h2 max
x∈[a,b]

∣∣f ′′(x)
∣∣ ≤ 10−3.

D’autre part, on a : f ′′(x) = (4x2 − 2) exp(−x2), cette fonction est strictement

croissante dans l’intervalle [0, 1] et max
x∈[0,1]

|f ′′(x)| = |f ′′(0)| = 2.

Donc, Rn(f) ≤ b−a
12
h2 max

x∈[a,b]

∣∣f ′′(x)
∣∣ ≤ 10−3, d’où, h ≤

√
12×0.001
(1−0)×2 = 0.0774, donc

n ≥ 1
0.0774

= 12.91. On prend 13 divisions, en utilisant la même technique que dans

l’exemple 1, on obtient :

∫ 1

0

e−x
2

dx ' 0.74646± 10−3.

Exemple 3 : En utilisant la méthode des trapèzes, calculer l’intégrale

∫ π

0

sinx2dx avec

5 intervalles.

- Sachant que la valeur exacte est 0.7726 ; comparer le résultat obtenu avec la valeur

exacte.

Solution : On a h = b−a
n

= π
5
.

xi 0 π/5 2π/5 3π/5 4π/5 π

f(xi) 0 0,3846 1,0000 - 0,3999 0,0333 - 0,4303
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On a aussi :

I(f) =
h

2

[
f(a) + f(b) + 2

(
9∑
i=1

f(xi)

)]

=
π

10
[0− 0, 4303 + 2(0, 3846 + 1− 0, 3999 + 0, 0333)]

= 0, 5044.

D’où

∫ π

0

sinx2dx ' 0, 5044.

- Comparaison :

On a

∫ π

0

sinx2dx = 0.7726, I(f) = 0, 5044 et
∣∣I(f)−

∫ π

0

sinx2dx
∣∣ = 0.2682.

Pour n = 5, l’erreur absolue est 0.2682 par rapport à la solution exacte.

Exemple 4 Considérant l’intégrale définie par

∫ 3

1

1 + log(x).

- Déterminer le nombre de sous-intervalles permettant d’atteindre une erreur d’intégration

inférieure à 10−3 .

Solution : Afin d’atteindre une erreur Rn(f) < 10−3 ⇐⇒ (3−1)
12n2 × 0.1111 < 10−3, donc

n2 > 18.5, d’où n > 4.30. Il en résulte qu’à partir de cinq sous-intervalles, on atteint

une erreur inférieure à 10−3.

1.3 Méthode de Simpson

Dans la formule de Simpson on ne remplace pas la fonction par une droite mais par

une parabole qui doit passer par trois points (x0, f(x0)), (x1, f(x1)), (x2, f(x2)), ce qui fait

que cette méthode n’est applicable que pour un nombre pair de tranches, voir Figure 1.5

au dessous.

La formule de Simpson s’écrit :

∫ b

a

f(x) dx ' b− a
6

(f(x0) + 4f(x1) + f(x2))

13



Figure 1.5 – Méthode de Simpson

1.3.1 Généralisation de la méthode de Simpson

On subdivise l’intervalle [a, b] par des points [x0 = a, x1, x2, . . . , xn = b], avec n pairs

(n = 2k |k ∈ N) et h = b−a
n

, et on applique la méthode de Simpson sur chaque intervalle

de la forme [a, x2], [x2, x4], . . . , [xn−2, b](voir Figure 1.6 au dessous). Le schéma numérique

de cette méthode est donné par :

I(f) =
h

3

[
f(a) + f(b) + 2

k−1∑
i=1

f(x2i) + 4
k∑
i=1

f(x2i−1)

]

Dans la figure ci-dessous, nous avons écrit la formule de Simpson sur quatre sous-intervalles.

Ainsi, chaque sous-intervalle est interpolé par son polynôme de Lagrange de degré deux

sur trois nœuds.
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Figure 1.6 – Formule de Simpson composite représentée sur 4 sous-intervalles

Par exemple pour les quatre premiers sous-intervalles on écrira :

I1(f) =
h

3
(f(x0) + 4f(x1) + f(x2))

I2(f) =
h

3
(f(x1) + 4f(x3) + f(x4))

I3(f) =
h

3
(f(x2) + 4f(x5) + f(x6))

I4(f) =
h

3
(f(x3) + 4f(x7) + f(x8))

Donc I(f) ' I1(f) + I2(f) + I3(f) + I4(f).

Théorème 1.3. Soit f ∈ C4([a, b]). Alors, il existe ξ ∈ [a, b] tel que :

Rn(f) = −(b− a)5

180n4
f (4)(ξ) = − h4

12n2
(b− a)f (4)(ξ),

où f (4) désigne la quatrième dérivée de la fonction f . On peut écrire la borne supérieure

de l’erreur commise comme suit :

Rn(f) ≤ (b− a)5

180n4
max
x∈[a,b]

∣∣f (4)(x)
∣∣

15



Remarque 1.3. Soit ε la précision imposée, le nombre de sous intervalles n peut être

déterminé par :

n ≥
4

√√√√(b− a)5 max
x∈[a,b]

∣∣f (4)(x)
∣∣

180ε
.

Exemple 1 On donne la fonction f(x) = 1
2x+1

, x ∈ [0, 1] et n = 10. En utilisant la

méthode de Simpson, calculer l’intégrale

∫ 1

0

1

2x+ 1
dx et évaluer l’erreur.

Solution On calcule le pas h = b−a
n

= 0.1.

xi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f(xi) 1 0.8333 0.7142 0.625 0.5555 0.5 0.4545 0.4166 0.3846 0.3571 0.3333

I(f) =
0.1

3
[1 + 0.3333 + 4 (0.8333 + 0.625 + 0.5 + 0.4166 + 0.3571) + 2 (0.7142+

+0.5555 + 0.4545 + 0.3846)] = 0.5493

D’autre part, on a f (4)(x) = 384
(2x+1)5

est une fonction décroissante sur [0, 1]. Donc,

max
x∈[0,1]

∣∣f (4)(x)
∣∣ = f(0) = 384.

D’où,

Rn(f) ≤ 384

180× 104
= 2.116× 10−4.

Alors, ∫ 1

0

1

2x+ 1
dx ' 0.5493± 2.116× 10−4.

Exemple 2 Calculer l’intégrale

∫ 1

0

e−x
2

dx avec une précision de 10−3 par la méthode de

Simpson.

Solution On doit d’abord déterminer le nombre de division n nécessaire pour obtenir

cette précision.
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L’erreur d’intégration s’écrit :

Rn(f) ≤ (b− a)5

180n4
max
x∈[a,b]

∣∣f (4)(x)
∣∣ = h4

b− a
180

max
x∈[a,b]

∣∣f (4)(x)
∣∣ ≤ 10−3.

On a f (4)(x) = (16x4 − 48x2 + 12)e−x
2
, et max

x∈[0,1]

∣∣f (4)(x)
∣∣ = f(0) = 12. D’où

h ≤ 4

√
180× 0.001

(1− 0)× 12
= 0.35

Donc n = 2k ≥ 1
0.35

= 2.85, donc k = 2, on prend 4 devisions, le pas d’intégration

h = 1
4

= 0.25. On poursuit le même processus que dans l’exemple 1 précédant on

obtient : I(f) ' 0.7469. Donc,

∫ 1

0

e−x
2

dx ' 0.7469± 10−3.

1.4 Exercices supplémentaires

Exercice 1. On lance une fusée verticalement du sol et l’on mesure pendant les premières

80 secondes l’accélération γ

t(ens) 0 10 20 30 40 50 60 70 80

γenm/s2 30 31.63 33.44 35.47 37.75 40.33 43.29 46.70 50.67

- Calculer la vitesse V de la fusée à l’instant t = 80s, par la méthode des trapèzes

puis par la méthode de Simpson.

Solution .

On sait que l’accélération γ est la dérivée de la vitesse V , donc,

V (t) = V (0) +

∫ t

0

γ(t)dt = 0 +

∫ 80

0

γ(t)dt
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- Calculons V (80) par la méthode des trapèzes, d’après le tableau des valeurs, on a

h = 10 et n = 8. Alors

V (80) =
h

2
(γ(t0) + γ(t1) + · · ·+ γ(t7))

= 5(30 + 50.67 + 2(31.63 + 33.44 + 35.47 + 37.75 + 40.33 + 43.29 + 46.70))

= 3089m/s.

- Calculons V (80) par la méthode de Simpson

V (80) =
h

3

[
γ(t0) + γ(tk) + 2

k−1∑
i=1

γ(t2i) + 4
k∑
i=1

γ(t2i−1)

]

=
10

3
(30 + 50.67 + 2(33.44 + 37.75 + 43.29) + 4(31.63 + 35.47 + 40.33 + 46.70))

= 3087m/s

Exercice 2. Soit l’intégrale I =

∫ π

0

sin(x)dx.

1. Calculer la valeur exacte de I.

2. En utilisant la méthode des trapèzes et la méthode de simpson pour h = π
4

:

a- Calculer I

b- Majorer l’erreur

c- Evaluer l’erreur

3. Donner la valeur du pas h et le nombre de subdivisions de l’intervalle [0, π] pour

que l’erreur obtenue par la méthode de trapèzes (resp. de Simpson) soit plus petite

que 5× 10−4.

Solution .

1. I =

∫ π

0

sin(x)dx = 2.
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2.I- La méthode des trapèzes :

a-

I(f) =
h

2

[
f(x0) + f(xn) + 2

n−1∑
i=1

(f(xi))

]

=
π

8
(f(0) + f(π) + 2(f(π/4) + f(π/2) + f(3π/4)))

' 1.896.

b- On a

Rn(f) ≤ (b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣ =

b− a
12

h2 max
x∈[a,b]

∣∣f ′′(x)
∣∣

≤ π3

192
max
x∈[0,π]

∣∣ sin(x)
∣∣ ≤ π3

192
' 0.16149.

c-
∣∣I(f)−

∫ π

0

sin(x)dx
∣∣ = 0.1038

2.II- La méthode de Simpson :

a-

I(f) =
h

3

[
f(a) + f(b) + 2

k−1∑
i=1

f(x2i) + 4
k∑
i=1

f(x2i−1)

]

=
π

12
(f(0) + f(π) + 2f(

π

2
) + 4(f(

π

4
) + f(

3π

4
))) ' 2.04

b- On a

Rn(f) ≤ (b− a)5

180n4
max
x∈[a,b]

∣∣f (4)(x)
∣∣

≤ π5

180× 44
max
x∈[0,π]

∣∣ sin(x)
∣∣ ≤ π5

180× 44
' 0.0066

c- |I(f)−
∫ π

0

sin(x)dx| = 0.004
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3. Calculons la valeur du pas h et le nombre de subdivisions n de l’intervalle[0, π]

pour que l’erreur obtenue est plus petit que ε = 5× 10−4.

3.I- La méthode des trapèze :

On a

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

12 ε

≥

√√√√π3 max
x∈[0,π]

∣∣ sin(x)
∣∣

12× 5× 10−4
' 71.8

Donc le nombre de subdivisions de l’intervalle [0, π] est n ≥ 72.

3.II- La méthode de Simpson :

On a

n ≥
4

√√√√(b− a)5 max
x∈[a,b]

∣∣f (4)(x)
∣∣

180ε

≥
4

√√√√π5 max
x∈[0,π]

∣∣ sin(x)
∣∣

180× 5× 10−4
' 7.64116

Donc le nombre de subdivisions de d’intervalle [0, π] avec la méthode de Simpson

est n ≥ 8.

Exercice 3.

a- Déterminer par la méthode des trapèzes puis par la méthode de Simpson une valeur

approximative de

∫ 2

0

f(x)dx suivant les valeurs de ce tableau :

xi 0 1/2 1 1.5 2

yi = f(xi) = ex
2

1 1.284 2.718 9.487 54.598

b- Evaluer l’erreur dans chaque cas en prenant n = 10.
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c- Quel est le nombre de points nécessaires pour atteindre une precision ε(I) = 10−2 pour

chaque méthode.

Solution .

a.1- Déterminons par la méthode des trapèzes une valeur approximative de

∫ 2

0

f(x)dx.

∫ 2

0

f(x)dx ' I(f) =
h

2

[
f(x0) + f(xn) + 2

n−1∑
i=1

(f(xi))

]

=
0.5

2
[1 + 54.598 + 2(1.284 + 2.718 + 9.487)]

= 20.644

a.2-Déterminons par la méthode de Simpson une valeur approximative de

∫ 2

0

f(x)dx.

∫ 2

0

f(x)dx ' I(f) =
h

3

[
f(a) + f(b) + 2

k−1∑
i=1

f(x2i) + 4
k∑
i=1

f(x2i−1)

]

=
h

3
[f(0) + f(2) + 2f(1) + 4(f(0.5) + f(1.5))]

=
0.5

3
(1 + 54.598 + 2× 2.718 + 4× (1.284 + 9.487))

= 26.0295

b.1-Evaluons l’erreur par la méthode des trapèzes en prenant n = 10.

On a f ′′(x) = 2ex
2

+ 4x2ex
2

et max
x∈[0,2]

∣∣f ′′(x)
∣∣ = 982.766, donc

Rn(f) ≤ (b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣

≤ 8

12× 102
982.766 = 6.551

b.2-Evaluons l’erreur par la méthode de Simpson en prenant n = 10.
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On a f (4)(x) = 12ex
2
+48x2ex

2
+16x4ex

2
= ex

2
(16x4 +48x2 +12) et max

x∈[0,2]

∣∣f (4)(x)
∣∣ =∣∣f (4)(2)

∣∣ = 39092.275, donc

Rn(f) ≤ (b− a)5

180n4
max
x∈[a,b]

∣∣f (4)(x)
∣∣

≤ 2

180× 104
39092.275 = 0.6950

c.2- Calculons le nombre de points nécessaires pour atteindre une precision ε(I) =

10−2 avec la méthode des trapèzes.

On a

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

12 ε

≥
√

982.766
23

12× 102
' 256

Donc le nombre de subdivisions de l’intervalle [0, 2] est n ≥ 256.

c.1- Calculons le nombre de points nécessaires pour atteindre une precision ε(I) =

10−2 avec la méthode de Simpson.

On a

n ≥
4

√√√√(b− a)5 max
x∈[a,b]

∣∣f (4)(x)
∣∣

180ε

≥ 4

√
39092.275

25

180× 10−2
' 51.344

Donc le nombre de subdivisions de l’intervalle [0, 2] est n ≥ 52.

Exercice 4.

a- En prenant 4 sous-intervalles, déterminer par l’algorithme des trapèzes une valeur
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approximative de

∫ 2

0

sin2(x)dx, en évaluant l’erreur commise.

b- Quel est le nombre de points nécessaires pour atteindre une precision ε(I) = 10−2 par

la méthode des trapèzes.

Solution .

a- Déterminons par la méthode des trapèzes une valeur approximative de

∫ 2

0

sin2(x)dx :

∫ 2

0

f(x)dx ' I(f) =
h

2

[
f(x0) + f(xn) + 2

n−1∑
i=1

(f(xi))

]

=
0.5

2
[f(0) + f(2) + 2(f(0.5) + f(1) + f(1.5))]

= 1.173

- Evaluons l’erreur par la méthode des trapèzes en prenant n = 4 :

On a f ′′(x) = 2(cos2(x) − sin2(x)) = 2(1 − 2 sin2(x)) et max
x∈[0,2]

∣∣f ′′(x)
∣∣ = f ′′(0) =

f ′′(
π

2
) = 2, donc

Rn(f) ≤ (b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣

≤ 8

12× 42
2 = 0.0833

b- Calculons le nombre de points nécessaires pour atteindre une precision ε(I) =

10−3 avec la méthode des trapèzes.

On a

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

12 ε

≥
√

2
23

12× 10−3
' 36.51
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Donc le nombre de subdivisions de l’intervalle [0, 2] est n ≥ 37.

Exercice 5. On considère l’intégrale suivante

I =

∫ 1

0

dx

1 + x2

1. Calculer la valeur exacte de cette intégrale.

2. Evaluer numériquement cette intégrale en utilisant :

- la méthode des points milieux avec 5 intervalles.

- la méthode des trapèzes avec 4 intervalles

- la méthode de Simpson avec 2 intervalles.

Solution abrégée .

1. I =

∫ 1

0

dx

1 + x2
= 0.7854.

2.

- Par la méthode des points milieux, on obtient : I(f) = 0.8387

- Par la méthode des trapèzes, on obtient : I(f) = 0.7828

- Par la méthode de Simpson, on obtient : I(f) = 0.7854

Exercice 6. Combien faut-il de subdivisions de [0, 1] pour évaluer

∫ 1

0

xe−xdx à 10−8 près

en utilisant :

1. la méthode des trapèzes.

2. la méthode de Simpson.

Solution abrégée .

1. n ≥ 4083

2. n ≥ 40
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Exercice 7. Trouver le nombre de subdivisions nécessaires de l’intervalle d’intégration

[−π, π], pour évaluer à 5 × 10−4 près, grâce à la méthode de Simpson, l’intégrale∫ π

π

cos(x)dx.

Solution abrégée .

- n ≥ 20

25



Chapitre 2

Interpolation polynomiale

Dans la pratique on rencontre souvent des problèmes où la fonction f est inconnue

explicitement mais connue seulement en certains points x0, x1, ..., xn, ou évaluable unique-

ment au moyen de l’appel à un code couteux. Mais dans de nombreux cas, on a besoin

d’effectuer des opérations (dérivation, intégration, minimisation, etc...) sur la fonction f .

On cherche donc à reconstruire f par une autre fonction fr simple et facile à évaluer à

partir des données discrètes de f . On espère que le modèle fr ne sera pas trop éloigné de

la fonction f aux autres points.

On s’intéresse dans ce cours à la reconstruction de f par des polynômes. Plus

précisément, étant donnés n+ 1 points d’abscisses distinctes mi(xi, f(xi)), i = 0, 1, . . . , n

dans le plan, le problème de l’interpolation polynomiale consiste à trouver un polynôme

P (x) dont le graphe passe par les n+ 1 points mi, c’est-à-dire

P (xi) = f(xi),∀i = 0, 1, . . . , n (2.1)

Dans ce chapitre, on va considérer l’approximation de f par une forme polynômiale, c’est-

à-dire :

P (x) = anx
n + · · ·+ a2x

2 + a1x+ a0
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avec ai, i = 1, 2, . . . , n sont des coefficients à déterminer.

Les polynômes que nous allons étudier différent seulement par la façon de déterminer

les coefficients ai, i = 1, 2, . . . , n, car pour un tableau de valeurs données le polynôme

d’interpolation est unique.

2.1 Interpolation de Lagrange

Soient (n + 1) points distincts x0, x1, x2, . . . , xn et f une fonction dont les valeurs

sont f(x0), f(x1), . . . , f(xn). Alors, il existe un seul polynôme de degré inférieur ou égal

à n et qui cöıncide avec les points d’interpolation, i.e. :

f(xi) = P (xi), i = 0, 1, . . . , n.

Ce polynôme est donné par :

P (x) =
n∑
i=0

f(xi)Li(x) = f(x0)L0(x) + f(x1)L1(x) + · · ·+ f(xn)Ln(x)

avec

Li(x) =
n∏

j=0,j 6=i

x− xj
xi − xj

, i = 0, . . . , n.

Le polynôme P (x) est appelé polynôme d’interpolation de Lagrange de la fonction f aux

points x0, x1, . . . , xn, et les polynômes Li(x) sont appelés polynômes de base de Lagrange

associés à ces points.

Théorème 2.1. (Erreur de l’interpolation de Lagrange).

Soit f ∈ Cn+1[a, b],et soit P (x) le polynôme d’interpolation de f sur les points mi(xi, f(xi)),

pour i = 1, . . . , n. Alors pour tout x ∈ [a, b], il existe ξx ∈] min
1,...,n
{xi},max

1,...,n
{xi}[tel que l’er-
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reur f(x)− P (x) soit

E(x) =
γn+1(x)

(n+ 1)!
f (n+1)(ξx),

où : γn+1(x) =
n∏
i=0

(x− xi). Si on pose Mn+1 = max
a≤x≤b

|f (n+1)(x)|, on a alors

E(x) ≤ |γn+1(x)|
(n+ 1)!

Mn+1

Exemple 1 : Déterminons le polynôme de Lagrange qui interpole la fonction définie par

ces valeurs suivant ce tableau

xi 0 2 3 5

yi = f(xi) -1 2 9 87

On a

P (x) =
3∑
i=0

f(xi)Li(x) = f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x) + f(x3)L3(x).

avec

Li(x) =
3∏

j=0,j 6=i

x− xj
xi − xj

, i = 0, 1, 2, 3

D’où

P (x) = −(x− 2)(x− 3)(x− 5)

(0− 2)(0− 3)(0− 5)
+ 2

(x− 0)(x− 3)(x− 5)

(2− 0)(2− 3)(2− 5)
+

+ 9
(x− 0)(x− 2)(x− 5)

(3− 0)(3− 2)(3− 5)
+ 87

(x− 0)(x− 2)(x− 3)

(5− 0)(5− 2)(5− 3)

=
53

30
x3 − 7x2 +

253

30
x− 1.

Exemple 2 : Construire, selon la méthode de Lagrange, le polynôme d’interpolation

P (x) de degré quatre qui interpole les points (x0, f(x0)) = (0, 0), (x1, f(x1)) =

(1, 5), (x2, f(x2)) = (2, 15), (x3, f(x3)) = (3, 0) et (x4, f(x4)) = (4, 3).
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On a,

P (x) =
4∑
i=0

f(xi)Li(x) = f(x0)L0(x)+f(x1)L1(x)+f(x2)L2(x)+f(x3)L3(x)+f(x4)L4(x).

avec

Li(x) =
4∏

j=0,j 6=i

x− xj
xi − xj

, i = 0, 1, 2, 3, 4.

On a L0(x) = L3(x) = 0 car ils seront multipliés par zéro dans le remplacement. En

suivant la même procédure que dans l’exemple 1 on obtient :

L1(x) =
(x− 0)(x− 2)(x− 3)(x− 4)

(1− 0)(1− 2)(1− 3)(1− 4)
= −1

6
(x4 − 9x3 + 26x2 − 24x)

L2(x) =
(x− 0)(x− 1)(x− 3)(x− 4)

(2− 0)(2− 1)(2− 3)(2− 4)
=

1

4
(x4 − 8x3 + 19x2 − 12x)

L3(x) =
(x− 0)(x− 1)(x− 2)(x− 3)

(4− 0)(4− 1)(4− 2)(4− 3)
=

1

24
(x4 − 6x3 + 11x2 − 6x)

Finalement on remplace les coefficients polynômes et on obtient :

f(x) ' P (x) = 3.0416x4 − 23.25x3 + 50.9583x2 − 25.75x4.

2.2 Interpolation d’Hermite

L’interpolation de Hermite est une généralisation de celle de Lagrange en faisant

cöıncider non seulement f(x) et P (x) aux nœuds xi, mais également leurs dérivées aux

nœuds xi. Soient x0, x1, . . . , xn, (n + 1) points distincts de l’intervalle [a, b] et f une

fonction définie sur le même intervalle admettant les dérivées f ′(x0), f
′(x1), . . . , f

′(xn).

Dans ce cas, il existe un seul et unique polynôme de degré 2n + 1 tel que P (xi) = f(xi)
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et P ′(xi) = f ′(xi). Ce polynôme P s’écrit

P (x) =
n∑
i=0

Hi(x)f(xi) +
n∑
i=0

Ki(x)f ′(xi)

avec



Hi(x) = [1− 2(x− xi)L′i(xi)]L2
i (x)

Ki(x) = (x− xi)L2
i (x)

avec Li(x) =
n∏

j=0,j 6=i

x− xj
xi − xj

Théorème 2.2. (erreur de l’interpolation d’Hermite)

Soit f ∈ C2n+2[a, b],et soit P (x) le polynôme d’interpolation de f sur les points mi(xi, f(xi)),

pour i = 1, . . . , n. Alors pour tout x ∈ [a, b], il existe ξx ∈] min
1,...,n
{xi},max

1,...,n
{xi}[tel que l’er-

reur f(x)− P (x) soit

E(x) =
γ2n+1(x)

(2n+ 2)!
f (2n+2)(ξx)

Si on pose M2n+2 = max
a≤x≤b

|f (2n+2)(x)|, on a alors

E(x) ≤
γ2n+1(x)

(2n+ 2)!
M2n+2

Exemple 1 : Déterminons le polynôme d’Hermite qui interpole la fonction f(x) = 1
1+x2

aux points x0 = 0 et x1 = 5.

Le polynôme d’Hermite P (x) s’écrit

P (x) =
1∑
i=0

Hi(x)f(xi) +
1∑
i=0

Ki(x)f ′(xi)

avec
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 Hi(x) = [1− 2(x− xi)L′i(xi)]L2
i (x)

Ki(x) = (x− xi)L2
i (x)

Calculons les polynômes Li(x), L′i(x), Hi(x) et Ki(x), sachant que les abscisses des

points d’appui sont x0 = 0 et x1 = 5.

L0(x) =
(x− x1)
(x0 − x1)

= 1− x

5

L1(x) =
(x− x0)
(x1 − x0)

=
x

5

et

L′0(x) = −1

5

L′1(x) =
1

5

H0(x) = [1− 2(x− x0)L′0(x0)]L2
0(x) =

(
1− 2(x− 0)

−1

5

)(
1− x

5

)2
=

2

125
x3 +

3

25
x2 + 1.

H1(x) = [1− 2(x− x1)L′1(x1)]L2
1(x) =

(
1− 2(x− 5)

1

5

)(x
5

)2
= − 2

125
x3 +

3

25
x2.

D’autre part,

K0(x) = (x− x0)L2
0(x) = (x− 0)

(
1− x

5

)2
=

1

25
x3 − 2

5
x2 + x.

K1(x) = (x− x1)L2
1(x) = (x− 5)

(x
5

)2
=

1

25
x3 − 2

5
x2.
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D’où

P (x) =
1∑
i=0

Hi(x)f(xi) +
1∑
i=0

Ki(x)f ′(xi)

= H0(x)f(x0) +H1(x)f(x1) +K0(x)f ′(x0) +K1(x)f ′(x1)

=

(
2

125
x3 +

3

25
x2 + 1

)
+

1

26

(
− 2

125
x3 +

3

25
x2
)
− 10

262

(
1

25
x3 − 2

5
x2
)

=
10

262
x3 − 76

262
x2 + 1

2.3 Exercices supplémentaires

Exercice 1 : On suppose que f(x) = 3
√
x et que (x0, f(x0)) = (0, 0), (x1, f(x1)) = (1, 1)

et (x2, f(x2)) = (8, 2).

1) Déterminer le polynôme P2(x) d’interpolation polynômiale qui passent par les

points (xi, yi)i=0,1,2.

2) Calculer P2(x) et f(x) = 3
√
x pour x = 0.5, 0.95, 1, 1.5 et 3.

Solution .

1- D’après la méthode de Lagrange,

P2(x) =f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x)

=f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

+ f(x2)
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

=0
(x− 1)(x− 8)

(0− 1)(0− 8)
+ 1

(x− 0)(x− 8)

(1− 0)(1− 8)
+ 2

(x− 0)(x− 1)

(8− 0)(8− 1)

=− 3

28
x2 +

31

28
x

On a bien P2(0) = 0, P2(1) = 1 et P2(8) = 2.

2-
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xi 0.5 0.95 1 1.5 3

f(xi) 0.7937 0.98305 1 1.1447 1.4422

P2(x) 0.52679 0.95509 1 1.4196 2.3571

Exercice 2. Soit la fonction f(x) = 1/x.

1- Trouver le polynôme d’interpolation de Lagrange qui passe par les points (2, 0.5), (2.5, 0.4)

et (4, 0.25).

2- Calculer l’approximation de f(2.2).

3- Estimer l’erreur maximale.

Solution .

1- P2(x) = 1
20
x2 − 17

40
x+ 23

20
.

2- On déduit que

f(2.2) ' P2(2.2) = 0.457

3- L’erreur du polynôme P2(x) : d’après Théorème 2.1, il existe ξx ∈ [2, 4] tel que ;

E(x) =
f (3)(ξx)

3!
(x− x0)(x− x1)(x− x2)

donc,

E(x) =
f (3)(ξx)

3!
(x− 2)(x− 2.5)(x− 4).

Posons M3 = max
2≤x≤4

|f (3)(x)|, on a alors

E(x) ≤ M3

3!
|(x− 2)(x− 2.5)(x− 4)|.

D’autre part on a f (3)(x) = − 6
x4

et max
2≤x≤4

|f (3)(x)| = 3

8
. Donc

E(x) ≤ 3

48
|(x− 2)(x− 2.5)(x− 4)|.
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Pour x = 2.2 l’erreur est majorée comme suit :

E(x) ≤ 3

48
|(2.2− 2)(2.2− 2.5)(2.2− 4)| ' 0.0068

Exercice 3. Soit les points suivants : (0, 0), (1, 2), (2, 36), (3, 252), (4, 1040).

1- Obtenir le polynôme de Lagrange passant par les 3 premiers points.

2- Obtenir le polynôme de Lagrange passant par les 4 premiers points.

3- Donner l’expression analytique de l’erreur pour les polynômes obtenus en 1) et

en 2).

4- Obtenir des approximations de f(1, 5) à l’aide des 2 polynômes obtenus en 1) et

en 2).

Solution abrégée .

1- P2(x) = 16x2 − 14x.

2- P3(x) = x(x−2)(x−3)−18x(x−1)(x−3)+42x(x−1)(x−2) = 61x3−203x2+144x

3- L’erreur du polynôme P2(x) : d’après Théorème 2.1, il existe ξx ∈ [0, 2] tel que :

E2(x) =
f (3)(ξx)

3!
(x− x0)(x− x1)(x− x2)

donc,

E2(x) =
f (3)(ξx)

3!
(x− 0)(x− 1)(x− 2)

tandis que pour P3(x), il existe ξx ∈ [0, 4], où l’erreur est donné par :

E3(x) =
f (4)(ξx)

4!
(x− 0)(x− 1)(x− 2)(x− 3)

4-Si on approxime f par P2 on a f(1.5) ' P2(1.5) = 15 et, si on approxime f par
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P3 on obtient f(1.5) ' P3(1, 5) = 5.625.

Exercice 4. On souhaite concevoir un virage d’une voie de chemin de fer entre les points

(0, 0) et (1, 1). Le virage est décrit par une courbe de la forme y = f(x) qui satisfait :

f(0) = 0 et f(1) = 1.

De plus, pour assurer une transition en douceur, la pente de la courbe doit satisfaire :

f ′(0) = 0 et f ′(1) = 0.3.

On représente la courbe à l’aide d’un polynôme dans l’intervalle [0, 1].

- Construire, selon la méthode de Hermite, le polynôme d’interpolation P (x) qui

interpole ces points

Solution abrégée .

En suivant le même schéma que dans l’exemple 1 on obtient,

P (x) = −1.7x3 + 2.7x2

Exercice 5. Soient les points suivants : (0, 0), (1, 2), (2, 36) et (3, 252).

1. Obtenir le polynôme de Lagrange passant par les trois premiers points.

2. Obtenir le polynôme de Lagrange passant par les quatre points.

Solution abrégée .

1- P2(x) = 16x2 − 14x.

2- P3(x) = 25x3 − 59x2 + 36x
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Exercice 6. trouver le polynôme d’interpolation passant par les points (1, 0), (2, 1), (9, 2)

et (28, 3).

Solution abrégée .

- P3(x) = x3 + 1
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Chapitre 3

Résolution numériques des équations

non linéaires f (x) = 0

On s’est habitué à résoudre aisément les équations de type ax2 + bx+ c = 0 par le

moyen du calcul du fameux discriminant ∆ à partir duquel on juge l’existence des racines

exactes. Malheureusement ce discriminant ne sera plus rencontré s’il s’agit de l’équation

de type : ax3 + bx2 + cx + d = 0, celle-ci très fréquentée, n’admet pas de méthode de

résolution analogue à la précédente.

Et si on parle d’un autre exemple d’équation de type :

cos(x3) sin(2x2 − 3) + 0.5 = 0,

on est convaincu qu’on passera un temps énorme pour la résoudre analytiquement si ce

n’est pas possible. Ces types d’équations appelées équations non-linéaires (transcendante)

peuvent être résolues numériquement par des méthodes permettent de calculer des racines

approchées avec une précision déterminée. Dans ce chapitre on va étudier trois méthodes

pour la résolution numérique des équations non-linéaires à une variable f(x) = 0.
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Définition 3.1. Tout nombre ξ vérifiant f(ξ) = 0, s’appelle solution (racine) de l’équation

f(x) = 0. Géométriquement, ξ est l’abscisse du point d’intersection de graphe de la fonc-

tion f avec l’axe Ox.

Définition 3.2. Si l’équation f(x) = 0 peut s’écrire sous cette forme

f(x) = (x− ξ)mg(x) = 0

où g(x) 6= 0, alors ξ s’appelle racine d’ordre m. Si m = 1, ξ s’appelle racine simple de

l’équation f(x) = 0.

Dans toutes les méthodes itératives, il est nécessaire, pour éviter une divergence de

la solution, de déterminer un intervalle contenant la racine cherchée et de bien choisir les

valeurs initiales.

3.1 Séparation des racines

La plupart des méthodes numériques supposent que l’on connaisse un intervalle

contenant la racine cherchée et aucune autre. On dit alors qu’elle est localisée ou séparée,

des autres éventuelles racines.

Définition 3.3. On dit qu’une racine ξ d’une équation f(x) = 0 est séparable si on peut

trouver un intervalle [a, b] tel que ξ soit la seule racine de cette équation dans [a, b]. La

racine ξ est alors dite séparée ou localisée.

Les deux techniques les plus classiques pour localiser ou séparer les racines sont :

Méthode analytique

On se base dans ce cas sur le théorème des valeurs intermédiaires :
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Théorème 3.1. Soit un intervalle non vide [a, b] de R et f une application continue de

[a, b] dans R vérifiant f(a)f(b) < 0. Alors il existe ξ ∈]a, b[ tel que f(ξ) = 0.

Exemple Déterminons les racines de l’équation x4 − 4x − 1 = 0. Les variations de la

courbe représentative de la fonction f(x) = x4− 4x− 1 sont données par le tableau

des variations suivant :

x

f ′(x)

f(x)

−∞ 1 +∞

− 0 +

+∞+∞

-4-4

+∞+∞

On a d’après le tableau des variations, la fonction f est strictement monotone sur

l’intervalle [−1, 0] ∪ [1, 2] avec f(−1).f(0) < 0 et f(1).f(2) < 0, donc il existes deux

racines ξ1 ∈]− 1, 0[ et ξ2 ∈]1, 2[.

Méthode Géométrique (graphique)

Soit on trace (expérimentalement ou par étude des variations de f) le graphe de la

fonction f et on cherche son intersection avec l’axe Ox. Soit on décompose f en deux

fonctions f1 et f2 simples à étudier, telles que : f = f1 − f2, et on cherche les points

d’intersection des graphes de f1 et f2, dont les abscisses sont exactement les racines de

l’équation f(x) = 0.

Remarque 3.1. On choisit souvent f1 et f2 de façon à ce que leur courbes soient des

courbes connues.

Exemple. Soit l’équation
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x log x = 1, x > 0. (3.1)

Cette équation s’écrit encore sous la forme : log x = 1
x
. En posant f1(x) = log x,

f2(x) = 1/x et f(x) = f1(x) − f2(x) = log x − 1/x. Les variations des fonctions f1 et f2

sont données par les courbes ci-dessous (Figure 3.1). L’abscisse du point d’intersection

des deux courbes permet de localiser la solution de l’équation (3.1) et fournit même une

(première) approximation de celle-ci.

Figure 3.1 – Séparation graphique du racine.

Méthodes numériques de résolution

3.2 Méthode de bissection (ou dichotomie)

La méthode de dichotomie (ou méthode de la bissection) suppose que la fonction f

est continue sur un intervalle [a, b], n’admet qu’un seul racine ξ ∈]a, b[ et vérifie f(a)f(b) < 0.

Son principe est le suivant : on pose a0 = a, b0 = b, on note x0 = (a0+b0)
2

le milieu

de l’intervalle de départ et on évalue la fonction f en ce point. Si f(x0) = 0, le point x0

est le racine de f et le problème est résolu. Sinon, si f(a0)f(x0) < 0, alors le racine ξ
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est contenu dans l’intervalle ]a0, x0[, alors qu’il appartient à ]x0, b0[ si f(x0)f(b0) < 0. On

réitère ensuite ce processus sur l’intervalle [a1, b1], avec a1 = a0 et b1 = x0 dans le premier

cas, ou a1 = x0 et b1 = b0 dans le second, et ainsi de suite...

De cette manière, on construit de manière récurrente trois suites {an}n∈N, {bn}n∈N

et {xn}n∈N telles que a0 = a, b0 = b et vérifiant, pour tout entier naturel n,

- xn = an+bn
2

- an+1 = an et bn+1 = xn si f(an).f(xn) < 0

- an+1 = xn et bn+1 = bn si f(xn).f(bn) < 0

Figure 3.2 – Construction des premiers itérés de la méthode de dichotomie.

Proposition 3.1. Soit f une fonction continue sur un intervalle [a, b], vérifiant f(a)f(b) < 0,

et soit ξ ∈]a, b[ l’unique solution de l’équation f(x) = 0. Alors, la suite {xn}n∈N construite

par la méthode de dichotomie converge vers ξ et on a l’estimation

|xn − ξ| ≤
b− a
2n+1

,∀n ∈ N

Remarque 3.2. A partir de cette inégalité qui définie l’erreur, si la précision ε est

connue, on peut calculer le nombre nécessaire d’itérations n. En effet :

b− a
2n+1

≤ ε =⇒ n ≥
ln( b−a

2ε
)

ln 2
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Exemple 1 : Appliquons la méthode de bissection pour calculer la racine de l’équation

f(x) = x3 + 4x2 − 10 = 0 avec une précision ε = 10−2.

Le tableau des variations de f est

x

f ′(x)

f(x)

−∞ −8/3 0 +∞

+ 0 − 0 +

−∞−∞

--

-10-10

+∞+∞

Figure 3.3 – Graphe de f .

D’après le tableau des variations et la Figure 3.3, et puisque on a f(1).f(2) < 0,

alors ∃ξ ∈]1, 2[ tel que f(ξ) = 0.

n ≥
ln
(

2−1
2×10−2

)
ln 2

' 5, 64 =⇒ n = 6.

Le tableau suivant résume les pas de la méthode.

42



n an bn xn f(xn) signe : f(an).f(xn) δn = b−a
2n+1

0 1 2 1.5 2.375 - 0.5

1 1 1.5 -1.25 -1.789 + 0.25

2 1.25 1.5 1.375 0.1621 - 0.125

3 1.25 1.375 1.3125 -0.848 + 0.0625

4 1.3125 1.375 1.3437 -0.3509 - 0.03125

5 1.3437 1.375 1.3593 -0.0964 + 0.015625

6 1.35937 1.375 1.36718 0.0322 + 0.0078125

Exemple 2 : Calculons la première racine de l’équation ln(x)−x2+2 = 0 qui appartient

à l’intervalle [0.1, 0.5] avec une précision de ε = 0.01.

Calculons le nombre de divisions n à faire :

n ≥
ln
(
0.5−0.1
2×10−2

)
ln 2

' 4.32 =⇒ n = 5.

Le tableau suivant résume les pas de la méthode.

n an bn xn f(xn) signe : f(an).f(xn) δn = b−a
2n+1

0 0.1 0.5 0.3 0.706 - 0.2

1 0.1 0.3 0.2 0.351 - 0.1

2 0.1 0.2 0.15 0.08 - 0.05

3 0.1 0.15 0.125 -0.095 + 0.025

4 0.125 0.15 0.1375 -0.030 + 0.0125

5 0.1375 0.15 0.14375 0.0393 - 0.0062

3.3 Méthode de Lagrange

La méthode de Lagrange, ou méthode de la fausse position, est une méthode pour

trouver une valeur approchée de la solution d’une équationf(x) = 0. Elle consiste sur le

principe suivant : on suppose que la fonction f est continue sur [a, b] et que que f(a).f(b) <
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0. On considère les points A(a, f(a)) et B(b, f(b)) situés sur la courbe représentative Cf

de f . On construit une suite {xn}n∈N de réels à l’aide des points An de Cf . Pour cela, on

pose A0 = A et on construit An+1 en traçant la droite (AnB) qui rencontre l’axe (Ox) en

un point d’abscisse xn+1. Le point An+1 est le point de Cf d’abscisse xn+1.

Choisir un point x0 vérifie la condition f(x0)f
′′(x0) < 0, le schéma itératif de l’al-

gorithme de Lagrange est donné par :

 −Choisir x0 = a si f(a)f ′′(a) < 0.

−Poser xn+1 = xn − f(xn) xn−b
f(xn)−f(b) .

et  −Choisir x0 = b si f(b)f ′′(b) < 0.

−Poser xn+1 = xn − f(xn) xn−a
f(xn)−f(a) .

Exemple Considérons l’équation f(x) = x3 − 20 = 0. Comme f(0.75)f(4.5) < 0 donc

on peut appliquer le méthode de Lagrange dans l’intervalle [0.75, 4.5] en choisissant

x0 = 0.75 comme point de départ. La construction des premiers itérés de la méthode

de Lagrange sont illustré dans Figure 3.4.

Figure 3.4 – Construction des itérés de la méthode de Lagrange.

Proposition 3.2. Soit f une fonction continue sur un intervalle [a, b], vérifiant f(a)f(b) < 0,
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et soit ξ ∈]a, b[ l’unique solution de l’équation f(x) = 0. Si f ∈ C2([a, b]) tel que ∀x ∈

[a, b], f ′(x).f ′′(x) 6= 0, alors la suite {xn}n∈N construite par la méthode de Lagrange

converge vers ξ et on a l’estimation

|xn − ξ| ≤
M1 −m1

m1

|xn − xn−1|

avec

M1 = max
[a,b]
{|f ′(x)|},m1 = min

[a,b]
{|f ′(x)|}

Exemple. Trouver la racine de l’équation x3 − x − 4 = 0 dans [1, 2] avec une erreur

ε = 10−2, en utilisant la méthode de Lagrange.

Figure 3.5 – Graphe de f

On a

M1 = max
[1,2]
{|f ′(x)|} = |f ′(2)| = 11

m1 = min
[1,2]
{|f ′(x)|} = |f ′(1)| = 2,
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et pour tout x ∈ [1, 2], on a

f ′(x) = 3x2 − 1 > 0,

f ′′(x) = 6x > 0,

et f(1)f ′′(1) < 0, donc on prend x0 = 1, et pour tout n ∈ N

xn+1 = xn − f(xn)
xn − 2

f(xn)− f(2)
.

En suivant le schéma itératif de l’algorithme de Lagrange on obtient,

∗ x1 = x0 − f(x0)
x0 − 2

f(x0)− f(2)
= 1− (−4)

2− 1

2− (−4)
= 1.666 et f(x1) = −1, 0368

|x1 − ξ| ≤
M1 −m1

m1

|x1 − x0| =
11− 2

2
|1, 6667− 1| = 3.

∗ x2 = x1 − f(x1)
x1 − 2

f(x1)− f(2)
= 1.7805

|x2 − ξ| ≤
M1 −m1

m1

|x2 − x1| = 0.05

∗ x3 = x2 − f(x2)
x2 − 2

f(x2)− f(2)
= 1.7945

|x3 − ξ| ≤
M1 −m1

m1

|x3 − x2| = 0.034

∗ x4 = x3 − f(x3)
x3 − 2

f(x3)− f(2)
= 1.7961

|x4 − ξ| ≤
M1 −m1

m1

|x4 − x3| = 0.009

Donc ξ = 1.7961± 0.009
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3.4 Méthode de Newton-Raphson

Cette méthode est la plus utilisée pour la recherche des racines dans les problèmes à

une dimension. Elle requiert cependant l’évaluation de f(x) et de f ′(x). Soit ξ une racine

unique de l’équation f(x) = 0 sur l’intervalle [a, b], tel que f est continue qui vérifie :

f ′(x) 6= 0 sur [a, b], (3.2)

f ′′(x) 6= 0 sur [a, b] (3.3)

L’idée principale de cette méthode, consiste à remplacer à chaque itération k, l’arc

de la courbe de la fonction y = f(x) dans [a, b] par la tangente de cet arc au point

(xn, f(xn)) : L’abscisse xn+1 de l’intersection de l’équation de la tangente avec l’axe Ox

est une approximation de l’unique solution ξ dans [a, b] pour l’équation f(x) = 0 (voir

Figure 3.6). L’équation de la tangente s’écrit :

y = f(xn) + f ′(xn)(x− xn)

qui coupe l’axe Ox au point (xn+1, 0) d’où :

f(xn) + f ′(xn)(xn+1 − xn) = 0

ce qui donne le schéma itératif suivant de Newton-Raphson :

 −Choisir x0 ∈ [a, b] tel que f(x0).f
′′(x0) > 0.

−Poser xn+1 = xn − f(xn)
f ′(xn)

Proposition 3.3. Soit f une fonction continue sur un intervalle [a, b], vérifiant f(a)f(b) < 0,
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Figure 3.6 – Construction des premiers itérés de la Méthode de Newton-Raphson.

et soit ξ ∈]a, b[ l’unique solution de l’équation f(x) = 0. Si f ∈ C2([a, b]) tel que ∀x ∈

[a, b], f ′(x).f ′′(x) 6= 0, alors la suite {xn}n∈N construite par la méthode de Newton-Raphson

converge vers ξ et on a l’estimation

|xn − ξ| ≤
M2

2m1

(xn − xn−1)2

avec

M2 = max
[a,b]
{|f ′′(x)|},m1 = min

[a,b]
{|f ′(x)|}

Exemple 1 : Calculons la racine de l’équation x3 − x− 4 = 0 dans [1, 2], avec un erreur

ε < 10−2, en utilisant la méthode de Newton-Raphson.

On a f(1).f(2) < 0,∀x ∈ [1, 2] : f ′(x) = 3x2 − 1 > 0 et f ′′(x) = 6x > 0. Appli-

quons le schéma itératif de l’algorithme de Newton-Raphson partant de x0 = 2 avec
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f(2).f ′′(2) > 0, on obtient :

M2 = max
[1,2]
{|f ′′(x)|} = f ′′(2) = 12 et m1 = min

[1,2]
{|f ′(x)|} = f ′(1) = 2

∗ x1 = x0 −
f(x0)

f ′(x0)
= 2− f(2)

f ′(2)
= 1, 8181,

|ξ − x1| ≤
M2

2m1

(x1 − x0)2 =
12

2× 2
(1.818− 2)2 ' 0.01

∗ x2 = x1 −
f(x1)

f ′(x1)
= 1, 8181− f(1, 8181)

f ′(1, 8181)
= 1.7966,

|ξ − x2| ≤
M2

2m1

(x2 − x1)2 =
12

4
(1.7966− 1.818)2 ' 0.001 < 0.01

Donc ξ = 1.7966± 0.001.

Dans certaines situations, la dérivée de f est très compliquée voir même impossible

à calculer. Dans ce cas, nous approchons la dérivée par un taux d’accroissement. Ce

que nous obtenons est appelée méthode de la sécante :

 −Choisir x0, x1 ∈ [a, b] proche de ξ.

−Poser xn+1 = xn − f(xn) xn−xn−1

f(xn)−f(xn−1)
.

Ici, xn+1 dépend de xn et de xn−1 : on dit que c’est une méthode à deux pas ;

nous avons d’ailleurs besoin de deux itérés initiaux x0 et x1. L’avantage de cette

méthode est qu’elle ne nécessite pas le calcul de la dérivée f ′. L’inconvénient est que

la convergence n’est plus quadratique.

3.5 Exercices supplémentaires

Exercice 1. En utilisant l’algorithme de Newton-Raphson, chercher la racine carrée

de 2 sur l’intervalle [1, 2] pour une précision de ε = 10−3, en prenant x0 = 2

comme point initiale.
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Solution .

Cherchons la racine carrée de 2 sur l’intervalle [1, 2], c’est à dire posons

x2 = 2⇒ f(x) = x2 − 2 = 0

. Pour tout n ∈ N, on pose

xn+1 = xn −
f(xn)

f ′(xn)

On a f ′(x) = 2x et f ′′(x) = 2 > 0, d’où

M2 = max
[1,2]
|f ′′(x)| = 2 et m1 = min

[1,2]
|f ′(x)| = f ′(1) = 2

∗ x1 = x0 −
f(x0)

f ′(x0)
= 2− f(2)

f ′(2)
= 1.5

|ξ − x1| ≤
M2

2m1

(x1 − x0)2 =
2

2× 2
(2− 1.5)2 = 0.125

∗ x2 = x1 −
f(x1)

f ′(x1)
= 1.5− f(1.5)

f ′(1.5)
= 1.416

|ξ − x2| ≤
M2

2m1

(x2 − x1)2 =
2

2× 2
(1.5− 1.416)2 = 0.0035

∗ x3 = x2 −
f(x2)

f ′(x2)
= 1.416− 1.416

1.416
= 1.414

|ξ − x3| ≤
M2

2m1

(x3 − x2)2 =
2

2× 2
(1.416− 1.414)2 = 2× 10−6 < ε

Donc x∗ ' 1.414± 2× 10−6

Exercice 2.

a- Donné le schéma itératif de l’algorithme de Newton-Raphson pour résoudre une
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équation non-linéaire f(x) = 0.

b- Déterminer en utilisant l’algorithme de Newton-Raphson la racine situé dans

[0, 1], de l’équation x2 = e−2x, avec une précision ε ≤ 10−3 en partant d’un

point initial x0 = 1.

Solution .

b- Déterminons la racine situé dans [0, 1], de l’équation x2 = e−2x à 10−3 près

en utilisant l’algorithme de Newton-Raphson.

On a

f ′(x) = 2x+ 2e−2x et f ′′(x) = 2− 4e−2x

avec

M2 = max
[1,2]
|f ′′(x)| = f ′′(1) = 1.45 et m1 = min

[1,2]
|f ′(x)| = f ′(0.346) = 1.69

En suivant le même schémas que dans l’exercice précédant, on obtient

∗ x1 = x0 −
f(x0)

f ′(x0)
= 1− f(1)

f ′(1)
= 0.6192

|ξ − x1| ≤
M2

2m1

(x1 − x0)2 = 0.0624

∗ x2 = x1 −
f(x1)

f ′(x1)
= 0.6192− f(0.6192)

f ′(0.6192)
= 0.5677

|ξ − x2| ≤
M2

2m1

(x2 − x1)2 = 0.0011

∗ x3 = x2 −
f(x2)

f ′(x2)
= 0.6192− 0.6192

0.6192
= 0.5671

|ξ − x3| ≤
M2

2m1

(x3 − x2)2 = 1.55× 10−7 < ε

Donc x∗ ' 0.5671± 1.55× 10−7
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Exercice 3. Soit l’équation f(x) = 2 tan(x)− x− 1 = 0 avec x ∈ [−π, π].

a- Séparer analytiquement les racines de cette équation.

b- Calculer le nombre d’itérations n nécessaires pour approcher cette racine à

10−3 par la méthode de bissection.

Solution .

a- On a f(x) = 2 tan(x)−x− 1, et f ′(x) = 2
cos(x)2

− 1. Le tableau de variations

de f est :

x

f ′(x)

f(x)

−π −π/2 π/2 π

+ || + || +

2.142.14

+∞

-∞

+∞

−∞

−4.14−4.14

Donc d’après ce tableau il existe une seule racine dans l’intervalle ]− π
2
, π
2
[.

b-Calculons le nombre nécessaire des itérations

n ≥
ln( b−a

2ε
)

ln 2

≥
ln( π

2×10−3 )

ln 2
' 10.6173

Donc pour atteindre la racine à 2× 10−3 près, il faudra avoir n ≥ 11.

Exercice 4 .

a-Calculer la racine minimale de l’équation x4− 2x− 4 = 0 à 5× 10−3 près, en

utilisant la méthode de Newton-Raphson et la méthode de Lagrange.

b- D’après les résultats obtenus comparer les deux méthodes et conclure.

Solution . D’après Figure 3.7, cette équation admet deux racines, cherchons la

racine négatif situé dans l’intervalle [−2,−1].
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Figure 3.7 – Graphe de f .

Méthode de Newton :

On a

f ′(x) = 4x3 − 2 < 0,∀x ∈ [−2,−1],

f ′′(x) = 12x2 > 0,∀x ∈ [−2,−1].

et

M2 = max
[−2,−1]

{|f ′′(x)|} = |f ′′(−2)| = 48

m1 = min
[−2,−1]

{|f ′(x)|} = |f ′(−1)| = 6

Puisque f(−2).f ′′(−2) > 0, donc en prend x0 = −2 comme point initiale, et

pour tout n ∈ N, on pose

xn+1 = xn −
f(xn)

f ′(xn)
.
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En suivant le schéma itératif de l’algorithme de Newton-Raphson on obtient,

∗ x1 = x0 −
f(x0)

f ′(x0)
= −2− 16

−34
= −1.53

|ξ − x1| ≤
M2

2m1

(x1 − x0)2 =
48

2× 6
(−1.53 + 2)2 = 0.88

∗ x2 = x1 −
f(x1)

f ′(x1)
= −1.53− −4.53

−16.32
= −1.25

|ξ − x2| ≤
M2

2m1

(x2 − x1)2 = 0.31

∗ x3 = x2 −
f(x2)

f ′(x2)
= −1.25− 0.94

−9.81
= −1.1542

|ξ − x3| ≤
M2

2m1

(x3 − x2)2 = 0.03

∗ x4 = x3 −
f(x3)

f ′(x3)
= −1.1542− 0.083

−8.15
= −1.144

|ξ − x4| ≤
M2

2m1

(x4 − x3)2 = 0.004

Donc ξ = −1.144± 0.004

Méthode de Lagrange :

Puisque f(−1).f ′′(−1) < 0, donc en prend x0 = −1 comme point initiale, et

pour tout n ∈ N, on pose

xn+1 = xn − f(xn)
xn + 2

f(xn)− f(−2)
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avecM1 = max
[−2,−1]

{|f ′(x)|} = |f ′(−2)| = 34 etm1 = min
[−2,−1]

{|f ′(x)|} = |f ′(−1)| = 6

∗ x1 = x0 − f(x0)
x0 + 2

f(x0)− f(−2)
= −1.05

|x1 − ξ| ≤
M1 −m1

m1

|x1 − x0| = 0.274

∗ x2 = x1 − f(x1)
x1 + 2

f(x1)− f(−2)
= −1.0941

|x2 − ξ| ≤
M1 −m1

m1

|x2 − x1| = 0.164

∗ x3 = x2 − f(x2)
x2 + 2

f(x2)− f(−2)
= −1.1149

|x3 − ξ| ≤
M1 −m1

m1

|x3 − x2| = 0.097

∗ x4 = x3 − f(x3)
x3 + 2

f(x3)− f(−2)
= −1.127

|x4 − ξ| ≤
M1 −m1

m1

|x4 − x3| = 0.0564

∗ x5 = x4 − f(x4)
x4 + 2

f(x4)− f(−2)
= −1.1341

|x5 − ξ| ≤
M1 −m1

m1

|x5 − x4| = 0.033

∗ x6 = x5 − f(x5)
x5 + 2

f(x5)− f(−2)
= −1.1382

|x6 − ξ| ≤
M1 −m1

m1

|x6 − x5| = 0.0191

∗ x7 = x6 − f(x6)
x6 + 2

f(x6)− f(−2)
= −1.1406

|x7 − ξ| ≤
M1 −m1

m1

|x7 − x6| = 0.011

∗ x8 = x7 − f(x7)
x7 + 2

f(x7)− f(−2)
= −1.1419

|x8 − ξ| ≤
M1 −m1

m1

|x5 − x4| = 0.006

∗ x9 = x8 − f(x8)
x8 + 2

f(x8)− f(−2)
= −1.14275

|x9 − ξ| ≤
M1 −m1

m1

|x9 − x8| = 0.004
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Donc ξ = −1.14275± 0.004.

Pour atteindre une précision ε < 5 × 10−3 il faudrait faire 09 itérations par

la méthode de Lagrange alors que la méthode de Newton ne nécessite que

4 itérations. La méthode de Newton converge beaucoup plus rapide que la

méthode Lagrange.

Exercice 5. On considère l’équation f(x) = 0, avec f(x) = ln(x)− x+ 2.

1.a-Ecrire l’équation f(x) = 0 sous la forme f1(x) = f2(x) avec f1(x) = ln(x).

b- Tracer les graphe de f1 et f2. Que peut-on dire concernant cette équation ?

2.a- Faire 4 itérations de la méthode de dichotomie à partir de l’intervalle [3, 4].

Quelle itération à donner le meilleur résultat ? Justifier et conclure.

b-Déterminer le nombre d’itérations n à faire pour avoir δ ≤ 10−4

c- Donner une estimation de l’erreur après 25 itérations.

3. Approcher la racine à 10−4 près par la méthode de Newton en posant x0 = 3

(utiliser 4 chiffre après la virgule).

4. D’après les résultats obtenus comparer les deux méthodes et conclure.

Solution .

1-a.

f(x) = 0⇔ ln(x)− x+ 2 = 0

⇔ ln(x) = x− 2

⇔ f1(x) = f2(x) avec f1(x) = ln(x) et f2(x) = x− 2

1-b. D’après Figure 3.8, les graphe de f1 et f2 possèdent deux points d’intersection,

donc cette équation possède deux racines ξ1 ∈]0, 1[ et ξ2 ∈]3, 4[.
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Figure 3.8 – Séparation graphique des racines.

2-a. En suivant la même procédure que dans les exemples 1 et 2 on obtient x1 =

3.5, x2 = 3.25, x3 = 3.125 et x4 = 3.1875 avec x3 est la meilleur résultat obtenu car

f(x3) = 0.014 est le plus proche que f(x1), f(x2), f(x4). On conclus que même si la

convergence de la suite de dichotomie vers la racine est sûre, elle n’est pas monotone.

2-b.

n ≥
ln( b−a

2ε
)

ln 2

≥
ln( 1

10−4 )

ln 2
' 13.29

Donc n ≥ 14.

2-c

|xn − ξ| ≤
b− a
2n+1

=
4− 3

226
= 1.4901× 10−8

3. En appliquant l’algorithme de Newton partant du point x0 = 3, et après 3

itérations, l’algorithme atteint la racine à 10−4. les points générés sont x1 = 3.1479, x2 =
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3.1462 et x3 = 3.1462.

4. Pour atteindre une précision 10−4, il faudrait faire 14 itérations par la méthode

de dichotomie alors que la méthode de Newton ne nécessite que 3 itérations. La

méthode de Newton converge beaucoup plus rapidement que la méthode de dicho-

tomie.
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Chapitre 4

Résolution numériques des équations

différentielles ordinaires

En physique, les phénomènes sont gouvernés par des lois écrites souvent sous

forme différentielle (cas unidimensionnel) ou plus généralement sous forme d’équations aux

dérivées partielles (cas multidimensionnel). Comme signalé auparavant qu’on se confronte

dans plusieurs cas à des difficultés de résolution par les méthodes analytiques, pour cela

on fait appel aux méthodes numériques.

Plusieurs méthodes sont utilisées, le choix balance entre la simplicité et la précision

de la méthode.

Définition 4.1. On appelle équation différentielle ordinaire (EDO) d’ordre n, n ∈ N∗

toute relation de type

f(t, y(t), y′(t), . . . , y(n)(t)) = 0 (4.1)

qu’on écrit sous la forme (dite canonique)

y(n)(t) = f(t, y(t), y′(t), . . . , y(n−1)(t)) (4.2)
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où y est une fonction de variable t et pour i = 1, . . . , n, y(i) est la dériver de y par rapport

à t d’ordre i.

La solution générale de l’équation (4.1) et (4.2) est donné par la relation entre t et

y avec un nombre de constants (égale au degré de l’équation). Cette relation peut être

implicite :

W (t, y(t), c1, . . . , cn) = 0

ou explicite

y(t) = V (t, c1, . . . , cn)

Pour déterminer les constantes ci, i = 1, . . . , n, il nous faut des conditions (initiales

ou limites) sur y. Dans ce cours on se contentera à résoudre numériquement des équations

du premier ordre de types de problème de Cauchy.

Définition 4.2. Une équation différentielle est dite d’ordre 1 si elle est de la forme :

y′(t) = f(t, y(t)) avec t ∈ [a, b] et f une fonction définie : [a, b]× R→ R

4.1 Problème de Cauchy

Il s’agit de trouver une fonction dérivable y(t) : I = [a, b]→ R, telle que

(P )

 y′(t) = f(t, y(t)), t ∈ I

y(t0) = y0(conditions initiale)
(P)

Existence et l’unicité de la solution

Théorème 4.1. Si f(t, y(t)) est une fonction continue sur I × R alors le problème (P )

admet une solution. L’unicité de la solution est garantie sous l’une des conditions sui-

vantes :
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a- f(t, y(t)) satisfait la condition de Lipschitz par rapport à la variante y, i.e.,

∃L > 0,∀t ∈ I,∀y1, y2 ∈ R : |f(t, y1(t))− f(t, y2(t))| ≤ L|y1(t)− y2(t)|

b- La dérivée partielle δf
δy

(t, y(t)) est continue et bornée sur I × R.

Exemple 1.

(P1) :

 y′(t) = −y
t ln t

+ 1
ln t
, t ∈ [e, 5]

y(e) = e

On a f(t, y) = −y
t ln t

+ 1
ln t

est continue, et | δf
δy

(t, y(t))| = | −1
t ln t
| ≤ 1

e
, donc δf

δy
est

continue sur [e, 5] × R et bornée, donc le problem (P1) admet une solution unique

y(t) = t
ln(t)

.

Exemple 2.

(P2) :

 y′(t) = 1 + t sin(ty(t)), t ∈ [0, 2]

y(0) = 0

On a f(t, y) = 1 + t sin(ty(t)) est continue, et δf
δy

(t, y(t)) = t2 cos(ty(t)) ≤ t2 ≤ 4,

donc δf
δy

est bornée, donc le problem (P2) admet une solution unique.

4.2 Méthode d’Euler

La méthode d’Euler est la procédure numérique la plus simple qui permet de résoudre

de façon approximative des équations différentielles ordinaires du premier ordre avec

condition initiale. Pour résoudre numériquement le problème de Cauchy (P) ; nous com-

mençons par partitionner l’intervalle I = [a, b], c.à.d. nous choisissons des points t0, t1, . . . , tn

tels que a = t0 < t1 < · · · < tn = b, avec ti+1 = ti + h, h = b−a
n

(le pas de subdivision) et

n c’est le nombre de points correspondants. La tangente à la courbe y = y(t) en t = t0 a
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pour équation :

ỹ(t) = y(t0) + (t− t0)y′(t0)

ou

ỹ(t) = y(t0) + (t− t0)f(t0, y(t0)).

Au point t = t1, on obtient (voir Figure 4.1) :

y(t1) ' ỹ(t1) = y(t0) + (t1 − t0)f(t0, y(t0))

or h = t1 − t0, donc

y(t1) ' ỹ(t1) = y(t0) + hf(t0, y(t0)).

Posons y0 = ỹ(t0), y1 = ỹ(t1), et on recommence la même procédure dans l’intervalle

[t1, t2], on obtient :

y(t2) ' y2 = y1 + hf(t1, y1).

Et ainsi de suite, on construit l’algorithme d’Euler suivant :

 y0 = y(t0), t0 = a

yi+1 = yi + hf(ti, yi), i = 1, . . . , n− 1

avec h = b−a
n

, et ti+1 = ti + h.

Erreur de la méthode d’Euler

Définition 4.3. Une méthode numérique approchant y(ti) par yi telles que l’erreur ei =

|y(ti)− yi| vérifie

ei ≤ khp
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Figure 4.1 – Construction des premiers itérés de la méthode de d’Euler.

est dite d’ordre p, où k est une constante indépendante de i et de h, et y(ti) est la valeur

exacte de la solution du problème de Cauchy au point ti = t0 + ih.

Théorème 4.2. Soit f(t, y(t)) une fonction continue sur [a, b]×R et L-lipschitzienne par

rapport à la variante y, et que y ∈ C2[a, b]. Alors on a

ei ≤ (eL(b−a) − 1)
M2

2L
h

où M2 = max
t∈[a,b]

|y′′(t)| et ei est l’erreur commise au point (ti, yi), c.a.d. ei = |y(ti)− yi|.

Remarque 4.1. Ce résultat s’exprime sous la forme ei ≤ kh, c’est à dire que la méthode

d’Euler est d’ordre 1.

Exemple 1 : Soit le problème de Cauchy suivant :

 y′(t) = ty1/3

y(1) = 1

Calculons y(1, 01), y(1.02), y(1.03) par la méthode d’Euler.
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On prend y0 = 1, t0 = 1 avec yi+1 = yi + h(tiy
1/3
i ) et h = 0.01, d’où :

y(1.01) ' y1 = y0 + 001× t0 × y1/30 = 1 + 0.01× 1× 11/3 = 1.01.

y(1.02) ' y2 = y1 + 0.01× 1.01× (1.01)1/3 = 1.0201

y(1.03) ' y3 = y2 + 0.01× 1.0201× (1.0201)1/3 = 1.0304

Exemple 2 : Résoudre le problème de Cauchy suivant par la méthode d’Euler en prenant

un pas h = 0.25.  y′(t) = 2− ty2, t ∈ [0, 1]

y(0) = 1

Les points ti à évaluer pour h = 0.25 sont t0 = 0, t1 = 0.25, t2 = 0.5, t3 = 0.75, t4 = 1.

En suivant le même schéma que dans l’exemple précédant on obtient :

y(0.25) ' y1 = y0 + 0.25× f(t0, y0) = 1 + 0.25(2− 0× 12) = 1.5

y(0.5) ' y2 = y1 + 0.25× f(t1, y1) = 1.5 + 0.25(2− 0.25× 1.52) = 1.8594

y(0.75) ' y3 = y2 + 0.25× f(t2, y2) = 1.859 + 0.25(2− 0.5× 1.8592) = 1.927

y(1) ' y4 = y3 + 0.25× f(t3, y3) = 1.927 + 0.25(2− 0.75× 1.9272) = 1.7308

Exemple 3 : Soit le problème de Cauchy suivant :

 y′(t) = t+ y, t ∈ [0, 1]

y(0) = 1

On veut approcher la solution de ce problem en t = 1 à l’aide de la méthode d’Euler,

en subdivisant l’intervalle [0, 1] en dix parties égales. En suivant la même procédure,

on obtient les valeurs {ti, yi} :
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i 0 1 2 3 4 5 6 7 8 9 10

ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

yi 1 1,1 1,22 1,362 1,5282 1,7210 1,9431 2,1974 2,4871 2,8158 3,1874

D’après ce tableau on obtient y(1) ' y10 = 3, 187. L’approximation calculée est très

grossière car la solution exacte de ce problème est donnée par y(t) = 2et − t − 1,

donc la valeur exact est y(1) = 3, 437.

4.3 Méthode d’Euler améliorée

Cette méthode est plus précise que la précédente, elle consiste à remplacer dans la

méthode d’Euler la pente de la tangente en (xn, yn) par la valeur corrigée au milieu de

l’intervalle [xn, xn+1], dont l’algorithme est :


y0 = y(t0), t0 = a

yi+1 = yi + hf(ti + h
2
, yi + h

2
K1), i = 1, . . . , n− 1

K1 = f(xi, yi)

Exemple Soit le problem de Cauchy suivant :

 y′(t) = y(t)− t+ 2, t ∈ [0, 1]

y(0) = 2
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En utilisant l’algorithme de la méthode d’Euler améliorée avec un pas h = 0.1 on obtient :



y0 = y(0) = 2, h = 0.1

y1 = y(0.1) = y0 + hf(t0 + h
2
, y0 + h

2
K1),

K1 = f(t0, y0) = f(0.2) = 4

y(0.1) ' y1 = 2 + 0.1
2
f(0.05, 2.2) = 2.415.

En répétant la même démarche pour les autres itérations, on obtient les résultats dans le

tableau suivant :

i 0 1 2 3 4 5 6 7 8 9 10

ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

yi 2 2.415 2.8465 3.3111 3.8122 4.3535 4.9388 5.5727 6.2599 7.0059 7.8165

4.4 Méthode de Runge–Kutta

Les méthodes de type Runge-Kutta permettent d’obtenir une plus grande précision

(elles génèrent des solutions numériques plus proches des solutions analytiques) que la

méthode d’Euler.

4.4.1 Méthode de Runge-Kutta d’ordre 2 (Heun)

La méthode de Rung-Kutta d’ordre 2 (RK2) est une amélioration de la méthode

d’Euler. En effet, la méthode d’Euler s’appuie sur le développement de Taylor d’ordre 1.

Or, il est évident qu’on peut obtenir des méthodes plus performantes en considérant des

développements d’ordre supérieur à 1. Ainsi, si la fonction f est suffisamment différentiable,

en peut écrire :

yi+1 = yi + h× y′(ti) +
h2

2
y′′(ti)
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avec,

y′(t) = f(t, y) et y′′(t) =
δf

δt
(t, y) + f(t, y)× δf

δy
(t, y).

Donc,

yi+1 = yi + hf(ti, yi) +
h2

2

(
δf

δt
(ti, yi) + f(ti, yi)×

δf

δy
(ti, yi)

)
,

du fait que l’on a : f(ti+h, yi+hf(ti, yi)) = f(ti, yi)+h
(
δf
δt

(ti, yi) + f(ti, yi)× δf
δy

(ti, yi)
)

,

on aura

y(ti+1) = y(ti) +
h

2
f(ti, yi) +

h

2
f(ti + h, yi + hf(ti, yi)),

Ainsi, on obtient l’algorithme de Rung-Kutta d’ordre 2 :

(RK2)



y0 = y(t0), t0 = a et h = b−a
n

yi+1 = yi + h
2
(K1 +K2), i = 1, . . . , n− 1

K1 = f(ti, yi)

K2 = f(ti + h, yi + hK1)

4.4.2 Méthode de Runge-Kutta d’ordre 4

C’est la méthode la plus précise et la plus utilisée en pratique, l’erreur est d’ordre

quatre. Elle calcule la valeur de la fonction en quatre points intermédiaires. Sont schéma

itératif est donné comme suit

(RK4)



y0 = y(t0), t0 = a et h = b−a
n

yi+1 = yi + h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(ti, yi)

K2 = f(ti + h
2
, yi + h

2
K1)

K3 = f(ti + h
2
, yi + h

2
K2)

K4 = f(ti + h, yi + hK3)
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Notons que le nombre de termes retenus dans la série de Taylor définit l’ordre de

la méthode de Runge-Kutta. Il vient que la méthode Runge-Kutta d’ordre 4, s’arrête au

terme O(h4) de la série de Taylor.

Exemple 1 : Soit le problème de Cauchy suivant

 y′(t) = y − 2t
y
, t ∈ [0, 1]

y(0) = 1

La solution exacte de ce problème est : y(t) =
√

2t+ 1.

- Donner une valeur approché de y(0.2) en utilisant la méthode de RK2 et RK4 avec

un pas h = 0.2.

- Apprécier les résultats obtenues en les comparant avec la solution exacte.

Solution :

Méthode de Rung-Kutta d’ordre 2 :

(RK2)



y0 = y(0) = 1, h = 0.2

y1 = y(0.2) = y0 + h
2
(K1 +K2),

K1 = f(t0, y0) = f(0, 1) = 1

K2 = f(t0 + h, y0 + hK1) = f(0.2, 1.2) = 0.866

y1 = y(0.2) = 1 + 0.2
2

(1 + 0.866) = 1.1866.

eRK2 = |
√

2× (0.2) + 1− 1.1866| = 3.450709× 10−3.

Méthode de Rung-Kutta d’ordre 4 :
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(RK4)



y0 = y(0) = 1, h = 0.2

y1 = y0 + h
6
(K1 + 2K2 + 2K3 +K4),

K1 = f(t0, y0) = 1

K2 = f(t0 + h
2
, y0 + h

2
K1) = f(0.1, 1.1) = 0.918182

K3 = f(t0 + h
2
, y0 + h

2
K2) = f(0.1, 1.091818) = 0.908637

K4 = f(t0 + h, yi + hK3) = f(0.2, 1.181727) = 0.843239

y1 = 1 + 0.2
6

(K1 + 2K2 + 2K3 +K4) = 1.1832292

eRK4 = |
√

2× (0.2) + 1− 1.1832292| = 1.32× 10−5. Donc eRK4 � eRK2 .

Exemple 2 : Résoudre le problème de Cauchy suivant, par la méthode RK4 en prenant

un pas h = 0.25.  y′(t) = 2− ty2, t ∈ [0, 1]

y(0) = 1

On a,

(RK4)



y0 = y(0) = 1, h = 0.25

y1 = y0 + h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(t0, y0) = 2

K2 = f(t0 + h
2
, y0 + h

2
K1) = 1.8047

K3 = f(t0 + h
2
, y0 + h

2
K2) = 1.8122

K4 = f(t0 + h, yi + hK3) = 1.4722

y1 = 1 + 0.25
6

(K1 + 2K2 + 2K3 +K4) = 1.4461

En répétant le même processus que dans l’étape 1, on obtient : y2 = 1.7028, y3 =

1.7317 et y4 = 1.6147
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4.5 Exercices supplémentaires

Exercice 1. Soit le problème de Cauchy suivant :

 y′(t) = 2t− y(t)
∣∣∣t ∈ [0, 1]

y(0) = 1.
(P )

a- Montrer que le problème (P ) admet une solution unique.

b- Vérifier que le problème (P ) admet l’équation (4.3) comme une solution particulière,

y(t) = 2t− 2 + 3e−t. (4.3)

c- Donner le schéma itératif de l’algorithme Runge–Kutta d’ordre quatre pour résoudre

le problème (P ).

d- Appliquer l’algorithme Runge–Kutta d’ordre quatre à ce problème avec h = 0.1 pour

évaluer la solution en t = 0.3. Comparer la solution obtenue avec la solution exacte.

Solution .

a- On a δf
δy

= 1 est une fonction continue et bornée, donc ce problème admet une

solution unique.

b- On d’après (4.3)

y′(t) =2− 3e−t

=2− 3e−t − 2t+ 2t

=− y(t) + 2t

D’autre part on a y(0) = −2 + 3 = 1, d’où on déduit que l’équation (4.3) est une

solution particulière.
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c-

(RK4)



y0 = y(t0), t0 = a et h = b−a
n

yi+1 = yi + h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(ti, yi)

K2 = f(ti + h
2
, yi + h

2
K1)

K3 = f(ti + h
2
, yi + h

2
K2)

K4 = f(ti + h, yi + hK3)

d- Appliquons l’algorithme de la méthode de Runge-Kutta RK4 avec h = 0.1

(RK4)



y0 = y(0) = 1, h = 0.1

y1 = y0 + h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(t0, y0) = f(0, 1)− 1

K2 = f(t0 + h
2
, y0 + h

2
K1) = f(0.05, 1.05) = −0.95

K3 = f(t0 + h
2
, y0 + h

2
K2) = f(0.05, 0.955) = −0.852

K4 = f(t0 + h, y0 + hK3) = f(0.05, 0.914) = −0.814

y1 = 1 + 0.1
6

(K1 + 2K2 + 2K3 +K4) = 0.943

donc y(0.1) ' y1 = 0.943.

(RK4)



y2 = y1 + h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(t1, y1) = f(0.1, 0.9430) = −0.743

K2 = f(t1 + h
2
, y1 + h

2
K1) = f(0.15, 0.905) = −0.605

K3 = f(t1 + h
2
, y1 + h

2
K2) = f(0.15, 0.9127) = −0.6127

K4 = f(t1 + h, y1 + hK3) = f(0.2, 0.8818) = −0.4818

y1 = 0.943 + 0.1
6

(K1 + 2K2 + 2K3 +K4) = 0.882

donc y(0.2) ' y2 = 0.882.

En répétant la même démarche, on obtient : y(0.3) ' y3 = 0.8436
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Comparaison : On a la valeur de y(0.3) = 2× 0.3− 2 + 3e−0.3 = 0.8225, donc

ei = |0.8225− 0.8436| = 0.0216

Exercice 2.

a- Donner le schéma itératif de l’algorithme d’Euler pour résoudre le problème (P ) de

l’exercice 1.

b- Appliquer l’algorithme d’Euler à ce problème avec h = 0.1 pour évaluer la solution en

t = 0.3. Comparer la solution obtenue avec la solution exacte.

Solution .

a-  y0 = y(t0), t0 = a

yi+1 = yi + hf(ti, yi), i = 1, . . . , n− 1

avec h = b−a
n

, et ti+1 = ti + h.

b-

y(0.1) ' y1 = y0 + 0.1(2t0 − y(t0)) = 1 + 0.1(2× 0− y(0)) = 0.92.

y(0.2) ' y2 = y1 + 0.1(2t1 − y(t1)) = 0.868

y(0.3) ' y3 = y2 + 0.1(2t2 − y(t2)) = 0.8412

Donc y(0.3) ' y3 = 0.8412.

Comparaison : La valeur exacte en t = 0.3 est y(0.3) = 0.8225, donc l’erreur

commise lors de l’application de l’algorithme d’Euler est

ei = |0.8225− 0.8412| = 0.019
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L’erreur théorique est donnée par

et ≤ (eL(b−a) − 1)
M2

2L
h

où M2 = max
t∈[0,1]

|y′′(t)| et L est la constante de Lipschitz de f par rapport à y qui

égale à 1.

De plus on a,

y′′(t) = 3e−t

Donc M2 = max
t∈[0,1]

|3e−t| = 3. Donc ,

et ≤ (eL(b−a) − 1)
M2

2L
h

≤ (e1(0.3−0) − 1)
3× 0.1

2× 1

≤ 0.05247

Il est claire que ei ≤ et, donc la méthode d’Euler donne une bonne approximation

de la solution de ce problème de Cauchy en t = 1.

Exercice 3. Soit l’équation différentielle suivante :

 y′(t) = y(t) + t
∣∣∣t ∈ [0, 1]

y(0) = 1.

La solution exacte de cette équation est y(t) = −1− t+ 2et.

- Approcher numériquement la solution de cette équation en t = 1 à l’aide de la

méthode d’Euler en subdivisant l’intervalle en 10 parties égales.

- Comparer la solution obtenu avec la solution exacte.
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Solution .

Posons f(t, y) = y(t) + t, les points ti à évaluer pour h = 0.1 sont t1 = 0.1, t2 =

0.2, t3 = 0.4, . . . , t10 = 1. En suivant le même schéma que dans les exemples

précédents on obtient :

y(0.1) ' y1 = y0 + 0.1× f(t0, y0) = 1.1

y(0.2) ' y2 = y1 + 0.1× f(t1, y1) = 1.22

y(0.3) ' y3 = y2 + 0.1× f(t2, y2) = 1.362

...

y(1) ' y10 = y9 + 0.1× f(t9, y9) = 3.1874

C’est à dire que l’approximation en t = 1 de y(t) est y10 = 3.1874

- Comparaisons des résultats :

La valeur exacte en t = 1 est y(1) = −1− 1 + 2e1 = 3.4366. Ainsi l’erreur effective-

ment commise lors de l’application de la méthode d’Euler est

ei = |3.4366− 3.1874| = 0.25

Cherchons l’erreur théoriques qui est donnée par

et ≤ (eL(b−a) − 1)
M2

2L
h

où M2 = max
t∈[0,1]

|y′′(t)| et L est la constante de Lipschitz de f par rapport à y.

On a,

|f(t, y1)− f(t, y2)| = |y1 − y2| ⇒ L = 1.
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De plus on a,

y′′(t) = y′(y) + 1 = y(t) + t+ 1

= 1 + t+ (−1− t+ 2et)

= 2et

Donc M2 = max
t∈[0,1]

|2et| = 2e. Donc

et ≤ (eL(b−a) − 1)
M2

2L
h

≤ (e1(1−0) − 1)
2e× 0.1

2× 1

≤ 0.4673

Il est claire que ei ≤ et, donc la méthode d’Euler donne une bonne approximation

de la solution de ce problème de Cauchy en t = 1.

Exercice 4. Résoudre le problème de Cauchy suivant par la méthode Runge-Kutta d’ordre

4 en prenant un pas h = 0.1 .

 y′(t) = y(t)− t+ 2, t ∈ [0, 1]

y(0) = 2

Solution .
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Appliquons l’algorithme de la méthode de Runge-Kutta RK4 avec h = 0.1 .

(RK4)



y0 = y(0) = 2, h = 0.1

y1 = y0 + h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(t0, y0) = 0.4

K2 = f(t0 + h
2
, y0 + h

2
K1) = 0.4150

K3 = f(t0 + h
2
, y0 + h

2
K2) = 0.4157

K4 = f(t0 + h, yi + hK3) = 0.4365

y1 = 1 + 0.25
6

(K1 + 2K2 + 2K3 +K4) = 2.4163

En répétant la même démarche pour les autres itérations, on obtient les résultats

dans le tableau suivant :

i 0 1 2 3 4 5 6 7 8 9 10

ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

yi 2 2.4163 2.8659 3.5323 3.8793 4.4513 5.0728 5.7492 6.4863 7.2903 8.1684

Exercice 4. Soit l’équation différentielle suivante :

 y′(t) = t− ln y

y(2) = 3.4

- Calculer y(2.8) par la méthode de Runge–Kutta d’ordre quatre avec h = 0.8 puis

avec h = 0.4.

Solution abrégée .

- y(2.8) avec h = 0.8 est y(2.8) ' y1 = 4.255952.

- y(2.8) avec h = 0.4 est y(2.8) ' y2 = 4.255888.
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Exercice 5. Soit l’équation différentielle suivante :

y′(t) =
y2

t

y(1) = 1

- Calculer y(1.5) par la méthode de Runge–Kutta d’ordre quatre en utilisant un pas

h = 0.5.

- Reprendre le calcul de y(1.5) avec h = 0.25

Solution abrégée .

- y(1.5) avec h = 0.5 est y(1.5) ' y1 = 1.67985

- y(1.5) avec h = 0.25 est y(1.5) ' y2 = 1.68178

Exercice 6. Soit le problème de Cauchy suivant :

y′(t) = −y + t+ 1
∣∣∣t ∈ [0, 1]

y(0) = 1.

a- Calculer l’approximation de y(0.2) en utilisant les méthode d’Euler, avec un pas h = 0.1.

b- Calculer l’approximation de y(0.2) en utilisant les méthode d’Euler améliorée, avec un pas

h = 0.1.

c- Pour chaque méthode, calculer l’erreur commise en comparant le résultat obtenu avec la

solution exacte y∗(0.2) = 1.018731.

Solution abrégée .

a- y(0.2) ' y2 = 1.01 et |y2 − y(0.2)| = 0, 008731.

b- y(0.2) ' y2 = 1.019025 et |y2 − y(0.2)| = 0, 000294.
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Chapitre 5

Résolution numériques des systèmes

d’équations linéaires

Dans la pratique, l’ingénieur se trouve souvent confronté à des problèmes dont

la résolution passe par celle d’un système d’équations qui modélise les divers éléments

considérés. Par exemple, la détermination des courants et tensions dans des réseaux

électriques passe par la résolution d’un système d’équations linéaires.

On cherche le vecteur X ∈ Rn, X = (x1, x2, . . . , xn), solution du système linéaire

suivant :

AX = b⇐⇒



a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

(5.1)

Ce système admet une solution unique lorsque le déterminant de A est non nul, ce

que nous supposerons dans la suite. La résolution de ce système à l’aide des méthodes

direct est impraticable lorsque n est relativement grand. Par conséquent, il est préférable

d’utiliser des méthodes itératives basées sur la construction d’une suite convergente vers
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la solution du système. Dans ce chapitre on va introduire deux méthodes itératives qui

donnent une solution approximative du système d’équations linéaires en utilisant une

fonction linéaire f telle que Xk+1 = f(Xk), k ∈ N. Ces méthodes sont très faciles à

mettre en œuvre et à programmer, elles ne consomment pas la mémoire et donnent des

résultats autant précis que l’on veut.

Etant donné un vecteur initial arbitraire X0, on construit une suite de vecteurs

X0, X1, · · · , Xk, · · ·

qui converge vers la solution X∗ du système linéaire AX = b. On considère le système

linéaire (5.1) avec A une matrice carrée d’ordre n inversible et b un vecteur de Rn. Pour

toute matrice M carrée d’ordre n inversible, le système (5.1) est équivalent à

MX − (M − A)X = b

ou encore, en posant N = M − A, B = M−1N et c = M−1b on obtient

X = BX + c.

Ce qui nous permet de définir la formule itérative suivante :

 X0 ∈ Rn vecteur initiale

Xk+1 = BXk + c
(5.2)

Soit X∗ la solution exacte de (5.1), si on note ek = ‖Xk −X∗‖ le k-ième vecteur erreur,

on obtient
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ek = ‖Xk −X∗‖ = ‖(BXk−1 + c)− (BX∗ + c)‖ = B‖Xk−1 −X∗‖

= Bek−1 = Bke0

Remarque 5.1. En pratique si on impose une précision ε on peut estimer l’erreur par :

‖Xk −Xk−1‖ ≤ ε

cela veux dire que, pour tout i ∈ {1, . . . , n} on a :

|xki − xk−1i | ≤ ε

Théorème 5.1. On dit que la méthode itérative (5.2) converge si la suite de vecteurs

{ek}k∈N converge vers zéro indépendamment du vecteur initial X0, si l’une des trois

normes est inférieur à 1 :

- ‖B‖1 = max
j

(
n∑
i=1

|Bij|)

- ‖B‖∞ = max
i

(
n∑
j=1

|Bij|)

- ‖B‖2 =
√
ρ(BBt)

Selon les choix des matrices M et N on a différentes méthodes itératives. On note

D la matrice formée des seuls éléments diagonaux de A, E la matrice formée des −aij si

i > j et F la matrice formée des −aij si i < j, de sorte que A = D − (E + F ).
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- La matrice D, c’est une matrice diagonale de A, donner par :

D =



a11 0 · · · 0

0 a22 · · · 0

...
. . .

...
...

0 0 · · · ann


- La matrice E, c’est une matrice triangulaire inférieure de A de diagonale nulle.

E =



0 0 · · · 0

−a21 0 · · · 0

...
. . .

...
...

−an1 −an2 · · · 0


- La matrice F , c’est une matrice triangulaire supérieure de A de diagonale nulle.

F =



0 −a12 · · · −a1n

0 0 · · · a2n
...

. . .
...

...

0 0 · · · 0



5.1 Méthode de Jacobi

Dans la méthode itérative de Jacobi, la matriceA du systèmeAX = b est décomposée

en A = M − N . La matrice M correspond à la diagonale de A (et des zéros en dehors

de la diagonale) M = D et la matrice N est la matrice A dans laquelle on a rem-

placé les éléments de la diagonale par des zéros N = E + F . La matrice J = M−1N =

D−1(E + F ) = I − D−1A est appelée matrice de Jacobi. Partant d’un vecteur initiale
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X0 = (x01, x
0
2, . . . , x

0
n)t, à chaque pas, on calcule Xk suivant cette formule :

xk+1
i =

1

aii

(
bi −

n∑
j=1,j 6=i

aijx
k
j

)
, i = 1, 2 . . . , n (5.3)

Remarque 5.2. La méthode itérative de Jacobi ne converge pas toujours. Si A est une

matrice définie positive, la méthode itérative converge. De même, si A est une matrice à

diagonale strictement dominante c’est-à-dire |aii| >
∑
j 6=1

|aij|, alors la méthode de Jacobi

est convergente.

Exemple 1 : Considérons le système


4x1 + 2x2 + x3 = 4

−x1 + 2x2 = 2

2x1 + x2 + 4x3 = 9

Soit X0 = (0, 0, 0)t le vecteur initial, en calculant les cinq premières itérées on

trouve :

X1 =


1

1

9/4

 , X2 =


−1/16

3/2

3/2

 , X3 =


−1/8

−1/32

61/32

 , X4 =


5/128

15/16

265/128

 et X5 =


7/512

261/256

511/256


Exemple 2 : Résoudrons le système suivant par la méthode de Jacobi


3x1 + x2 − x3 = 2

x1 + 5x2 + 2x3 = 17

2x1 − x2 − 6x3 = −18

On a,
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

i = 1, xk+1
1 = 1

3

(
2− xk2 + xk3

)

i = 2, xk+1
2 = 1

5

(
17− xk1 − 2xk3

)

i = 3, xk+1
3 = −1

6

(
−18− 2xk1 + xk2

)

Soit X0 = (0, 0, 0)t le vecteur initial, on trouve X1 =


2/3

17/5

3

, X2 =


8/15

31/15

2.6555

.

Après 10 itérations, on obtient le tableau des résultats suivant :

k xk1 xk2 xk3

0 0 0 0

1 0,666666 3,4 3

2 0,533333 2,066667 2,655556

3 0,862963 2,231111 2,833333

4 0,867407 2,094074 2,915802

5 0,940576 2,0601198 2,970123

6 0,959975 2,035835 2,970159

7 0,978108 2,019941 2,980686

8 0,986915 2,012104 2,989379

9 0,992425 2,006865 2,993621

10 0,995585 2,004067 2,996331

D’après ce tableau, on remarque que les valeurs convergent vers la solution X =


1

2

3

.
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5.2 Méthode de Gauss-Seidel

La méthode de Gauss-Seidel est une amélioration de la méthode de Jacobi en effet

elle rend le processus itératif plus rapide. Partons de la méthode de Jacobi, le calcul des

vecteurs X1, X2, . . . , X
k, . . . , mène à la convergence, cela veut dire que chaque nouveau

vecteur est meilleur que le précédent. On remarque dans la méthode de Jacobi que pour

calculer la composante x22 du vecteur X2 on utilise celles de X1 malgré que x21 est déjà

calculée et elle est meilleure que x11 . D’ici vient le principe de la méthode de Gauss-Seidel,

on utilise chaque composante des quelle sera calculée. Ainsi, pour calculer la composante

xk+1
i , on utilise toutes les composantes de xk+1

1 à xk+1
i−1 déjà calculées à l’itération (k + 1)

en plus de celles xki+1 à xkn qui ne sont qu’à l’itération k.

La matrice A étant décomposée en : A = M −N . On prend

M = D − E,N = F

Ceci revient à modifier (5.3) comme suit : pour k ≥ 0 (en supposant encore que aii 6= 0

pour i = 1, . . . , n)

xk+1
i =

1

aii

(
bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

)
, i = 1, 2 . . . , n (5.4)

Remarque 5.3. La méthode de Gauss-Seidel ne converge pas toujours. Si A est une

matrice définie positive, la méthode itérative converge. De même, si A est une matrice

diagonalement dominante, c’est-à-dire si |aii| >
∑
j 6=1

|aij|, alors la méthode de Gauss-Seidel

converge.

Exemple 1 : Résoudre par la méthode de Gauss-Seidel le système suivant en utilisant 3

itérations et un vecteur initial X0 = (0, 0, 0)t.
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
−x1 + x2 + 3x3 = −1

x1 + 2x2 = 2

3x1 + x2 − x3 = 1

Ce système s’écrira en forme réduite :



i = 1, x1k+1 = 1 + x2k + 3x3k

i = 2, x2k+1 = 1− 1
2
x1k+1

i = 3, x3k+1 = −1 + 3x1k+1 − x2k+1

- Première itération, on obtient X1 =


1

0.5

1.5



- Deuxième itération, on obtient X2 =


6

−2

19



- Troisième itération, on obtient X3 =


56

−27

194

.

Exemple 2 : Résoudre le même système linéaire de l’exemple 2 par la méthode de Gauss-

Seidel.

Pour chaque itération k, le schéma itératif de la méthode de Gauss-Seidel s’écrit

dans ce cas
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

i = 1, xk+1
1 = 1

3

(
2− xk2 + xk3

)

i = 2, xk+1
2 = 1

5

(
17− xk+1

1 − 2xk3
)

i = 3, xk+1
3 = −1

6

(
−18− 2xk+1

1 + xk+1
2

)
Partant deX0 = (0, 0, 0)t, on trouveX1 = (2/3, 49/15, 241/90)t. Après 10 itérations,

on obtient le tableau des résultats suivant :

k x1k x2k x3k

0 0 0 0

1 0.6666667 3.266667 2.677778

2 0.4703704 2,234815 2.784321

3 0.8498354 2.116305 2.930561

4 0.9380855 2.040158 2.972669

5 0.9775034 2.015432 2.989929

6 0.9914991 2.005729 2.996212

7 0.9968271 2.002150 2.998584

8 0.9988115 2.000804 2.999470

9 0.9995553 2.000301 2.999802

10 0.9998335 2.000113 2.999926

On constate que pour le même nombre d’itérations, la solution approximative ob-

tenue par la méthode de Gauss-Seidel est plus précise. La méthode de Gauss-Seidel

converge généralement plus rapide que la méthode de Jacobi mais pas toujours.
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5.3 Exercices supplémentaires

Exercice 1. Résoudre le système suivant par la méthode de Jacobi, et déterminer le

nombre nécessaire d’itérations pour obtenir une erreur ε = ‖xk − xk−1‖ ≤ 10−4, en

prenant un vecteur initial X0 = (0, 0, 0)t.


4x1 + 1x2 + x3 = 4

−x1 + 2x2 = 2

2x1 + x2 + 4x3 = 9

Solution .

Pour chaque itération k, le schéma itératif de la méthode de Jordan s’écrit dans ce

cas



i = 1, xk+1
1 = 1

4

(
4− 4xk2 − xk3

)

i = 2, xk+1
2 = 1

2

(
2 + xk1

)

i = 3, xk+1
3 = 1

4

(
9− 2xk1 − xk2

)
Partant de X0 = (0, 0, 0)t, pour atteindre la précision prescrit, nous effectuons 12

itérations, dont les résultats sont présentées dans le tableau suivant :
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k x1k x2k x3k

0 0 0 0

1 1 1 2.25

2 -0.0625 1.5 1.5

3 -0.125 0.9688 1.9063

4 0.0391 0.9375 2.0703

5 0.0137 1.0195 1.9961

6 -0.0088 1.0068 1.9883

7 -0.0005 0.9956 2.0027

8 0.0015 0.9998 2.0013

9 -0.0002 1.0008 1.9993

10 -0.0002 0.9999 1.9999

11 0.0001 0.9999 2.0001

12 0 1 2

Exercice 2. Soit le système suivant :


2x1 − x2 + x3 = 3

x1 + 7x2 − 3x3 = 6

−x1 + 3x2 + 4x3 = 17

a- En partant de X0 = (0, 0, 0)t, déterminer les 6 première itérations des méthodes de

Jacobi et de Gauss-Seidel.

b- Sachant que la solution exacte est X = (1, 2, 3)t, que peut-on conclure ?

Solution .

a- Pour chaque itération k, le schéma itératif de la méthode de Jordan s’écrit dans

ce cas
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

i = 1, xk+1
1 = 1

3

(
2− xk2 − xk3

)

i = 2, xk+1
2 = 1

5

(
17− xk1 − 2xk3

)

i = 3, xk+1
3 = −1

6

(
−18− 2xk1 + xk2

)
Partant de X0 = (0, 0, 0)t, on trouve

X1 = (1.5000, 0.8571, 4.2500)t

X2 = (−0.1964, 2.4643, 3.9821)t

X3 = (0.7411, 2.5918, 2.3527)t

X4 = (1.6196, 1.7596, 2.4914)t

X5 = (1.1341, 1.6935, 3.3352)t

X6 = (0.6791, 2.1245, 3.2634)t

avec ε = ‖X6 −X∗‖ = 0.4334.

- Pour chaque itération k, le schéma itératif de la méthode de Gauss-Seidel s’écrit

dans ce cas



i = 1, xk+1
1 = 1

3

(
2− xk2 − xk3

)

i = 2, xk+1
2 = 1

5

(
17− xk+1

1 − 2xk3
)

i = 3, xk+1
3 = −1

6

(
−18− 2xk+1

1 + xk+1
2

)
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Partant de X0 = (0, 0, 0)t, on trouve

X1 = (1.5, 0.6429, 4.1429)t

X2 = (−0.25, 2.6684, 2.1862)t

X3 = (1.7411, 1.5454, 3.5262)t

X4 = (0.5096, 2.2956, 2.6557)t

X5 = (1.3199, 1.8067, 3.2249)t

X6 = (0.7909, 2.1263, 2.8530)t

avec ε = ‖X6 − x∗‖ = 0.2851.

b- On constate que, pour un même nombre d’itérations, la solution approximative

obtenue par la méthode de Gauss-Seidel est plus précise.

Exercice 3. Résoudre par la méthode de Gauss-Seidel avec une précision de 10−3 le

système suivant : 
8x1 + x2 + x3 = 26

x1 + 5x2 − x3 = 7

x1 − x2 + 5x3 = 7

Solution .

- Pour chaque itération k, la méthode de Gauss-Seidel s’écrit dans ce cas



i = 1, xk+1
1 = 1

8

(
26− xk2 − xk3

)

i = 2, xk+1
2 = 1

5

(
7− xk+1

1 + xk3
)

i = 3, xk+1
3 = 1

5

(
7− xk+1

1 + xk+1
2

)
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Partant de X0 = (0, 0, 0)t, on trouve

X1 = (3.25, 0.75, 0.9000)t

X2 = (3.0438, 0.9712, 0.9855)t

X3 = (3.0054, 0.996, 0.9981)t

X4 = (3.0007, 0.9995, 0.9997)t

X5 = (3.0001, 0.9999, 1)t

Les solutions approchées de ce système converge vers la solution X∗ = (3, 1, 1)t.
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