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Introduction

Les ingénieurs rencontrent sans cesse des problemes concrets qui surgissent dans
leurs domaines. La plupart de ces problemes peuvent étre formulés comme des problemes
de mathématiques (tel que la résolution d’une équation, calcule intégrale, etc.), et la plus
part de ces problemes ne sont pas résolvables par les méthodes analytiques traditionnels
connues, ou bien on est convaincu qu’on passera un temps énorme pour les résoudre
analytiquement si ce n’est pas possible, c¢’est a cause on a alors recours aux méthodes
numeériques.

Prenons par exemple l'intégrale suivant :

3 2
/ e “dr,
—2

cette intégrale ne peut pas étre calculée avec les méthodes classiques connues comme
intégration par parties, changement de variable, etc.. En utilisant I'une des méthodes
numériques, ce type d’intégration on peut I'approximer numériquement avec une précision
donnée.

Au cours de ces derniéres décennies, de nombreux algorithmes basés sur une étude
théorique ont été développés pour résoudre des problemes mathématiques tres divers. Due
au fait que, ce cours s’adresse particulierement aux étudiants 2-eme année physique et
chimie, qui ne sont pas des spécialistes en mathématiques, avec un volume horaire 1h30

de cours et 1h30 de TP par semaine, cela ne permettent pas de donner plus des détails sur



le coté théorique des méthodes présentés. Dans ce polycopié de cours, nous avons décrit
les méthodes numériques les plus connues et les plus utilisées pour résoudre pas mal de
problemes rencontrés au cours de leur formation, en se basant sur la simplicité dans la
présentation de ces méthodes.

Dans ce fascicule, chaque section est suivie d’exemples détaillée et dans chaque fin
de chapitre, les étudiants sont invités a résoudre les exercices supplémentaires donnés.
Le cours est structuré en cinqg grands chapitres : Le premier chapitre est consacré a
I'intégration numérique. Dans le second chapitre, on traite deux méthodes d’interpolation
polynomiale. Le troisieme chapitre est consacré a la résolution numérique des équations
non-linéaires. Le chapitre suivant, mis en lumiere les techniques de résolution numériques
d’équations différentielles ordinaires. Enfin, le dernier chapitre est dédié aux méthodes de

résolution des systemes d’équations linéaires.



Chapitre 1

Intégration Numérique

Tres souvent le calcul explicite de 'intégrale, d'une fonction f continue sur un inter-
valle [a,b] dans R, définie par I(f) = / ’ f(z)dz peut étre trés couteux, ou tout simple-
ment impossible a atteindre. Donc, on faait appel a des méthodes numériques, afin de cal-
culer une approximation de I(f). Dans ce chapitre, nous allons présenter trois méthodes
d’intégration usuelles qui sont : Méthode des points milieux, Méthode des trapezes et
Méthode de Simpson. Ces méthodes permettent le calcul des intégrales qui n’ont pas de
solutions directes ou analytiques. On peut aussi calculer I'intégrale d’une fonction donnée
sous forme tabulaire ou discrete.

L’idée consiste a approcher I(f) par une combinaison linéaire finie :

n

1(f) = / Flayde =30 f (),

=0

ou : x; € [a,b], \; € R (indépendantes de f), et I'erreur de calcul de cette approche :

Ru(h)= [ fayde = 3" X faw)

Définition 1.1. On dit qu’une méthode d’intégration numérique est exacte sur l’ensemble



E, si et seulement si : R, (f) =0,Vf € E.

1.1 Méthode du point milieu

La formule classique de la méthode du point milieu (ou du rectangle) est obtenue

en remplacant f par sa valeur au milieu de l'intervalle [a, b] (Voir Figure 1.1).

iy

a (a + b) 7 b

F1GURE 1.1 — Formule du point milieu

La formule de point milieu simple est obtenue en utilisant la formule suivante sur

I'intervalle [a, b] :

I(f) = (b—a)f (b;a)

1.1.1 Généralisation de la méthode du point milieu

La méthode du point milieu composite est obtenue en subdivisant 'intervalle [a, b]
en n sous-intervalles Iy = [zp_1,z],k = 1,..,n, avec vy = a+k X h,k = 0,...,n et
h=(b—a)/n.

En répétant pour chaque sous intervalle la formule du point milieu précédente, en

ZTp_1+T)

posant Ij, = ===, I'intégrale de la fonction est alors la somme des intégrales obtenus,

alors on a :

I(f) = hx f(Z1) + h X f(Z2) + -+ h X f(Zn)

6



On obtient alors la formule générale suivante :

FIGURE 1.2 — Formule du point milieu composite

Exemple Soit & intégrer la fonction f(x) = 3z%+2x dans l'intervalle [1, 2]. Cette fonction
2
est trés simple a intégrer analytiquement / f(x)dx = 10.
1

En utilisant la méthode des points milieux avec n =4, on a :
h =21 =025, et &y = 2 = 1.1250,%, = 1.3750,%3 = 1.6250,%, = 1.8750.

Donc,
I(f) = 0.25[f(1.1250) + f(1.3750) + f(1.6250) + f(1.8750)] = 9.9844
On augmentant n & 8 on va avoir h = 1/8 = 0.125 on obtient le nouveau intégrale :

I(f) = 0.125[f(1.0625) + f(1.1875) + f(1.3125) + f(1.4375) + f(1.5625)+

+ F(1.6875) + f(1.8125) 4 f(1.9375)] = 9.9961



et avec n = 100 on obtient I(f) = 9.999975

Théoréme 1.1. Soit f € C*([a,b]). Alors, il existe £ € [a,b] tel que :

(b—a)? h?

Ra(f) = —Tnzf"(f) = o2

(b—a)f"(6),

ou f" désigne la dérivée seconde de la fonction f. On peut écrire la borne supérieure de

lerreur commise comme suit :

Rn(f) <

(b B a)3 max |f”(l’)|

24n? x€la,b]

Remarque 1.1. Etant donnée une précision €, on peut déterminer le nombre minimal n

de sous intervalles suivant cette formule :

(b — a)® max |f" ()]

z€[a,b]

>
"= 24 ¢

1.2 Méthode de Trapeze

Cette formule est tres simple, elle permet de remplacer la courbe f(x) de la fonction
a intégrer par une ligne droite qui relie les points (a, f (a)) et (b, f (b)) ce qui donne un
trapeze (voir Figure 1.3 au dessous).

L’intégrale est donc remplacée par la surface du trapeze :

_b—a

2

I(f) =S [f(a) + f(0)]-

On peut remarquer qu’il y a une différence importante entre la courbe de la fonction et
la ligne droite, cela veut qu’on commit une erreur de calcul. Pour minimiser cette erreur,

on utilise une autre forme plus adaptée de cette formule.



(b,f(b))

F1GURE 1.3 — Méthode du trapeze

1.2.1 Généralisation de la méthode de Trapeze

Pour obtenir de meilleur résultats, on découpe l'intervalle [a, b] en n sous-intervalles,
et on applique la méthode de trapeze sur chacun d’entre eux [a = xg, 21], [21, x2], . . ., [Tp_1,b0 =

x,]. Lapplication de la formule du trapeze donne :

I(F) & (o) + F(@0)) + 2 (Fan) + (a2) o 5 () + f22)
-0 [f(:vo) F27 (7)) + fm)]
D’ou
1=~ [f(:vo) ) +2Y <f<:ci>>] (1)

Par exemple, dans Figure 1.4, pour ces quatre trapezes on écrira :

() = 5 (7 + F(@),
B(f) = 5 (F@) + F(@2)),
() = 5 (F(e2) + (),
L(f) = 2 + £(0)



fx)

FI1GURE 1.4 — Formule du Trapeze composite représentée sur 4 sous-intervalles

Done, I(f) =~ L(f) + L(f) + Is(f) + L.(f).

Théoréme 1.2. Soit f € C*([a,b]). Alors, il existe & € [a,b] tel que :

(b—a)? h?

Rn(f) = 1212 f”(g) = _12’)’1,2

(b—a)f"(6),

ot f" désigne la dérivée seconde de la fonction f. On peut écrire la borne supérieure de

Uerreur commise comme suit :

(b_a)g % |f”($)|

12n2 z€[a,b]

Ra(f) <

Remarque 1.2. Etant donnée une précision €, on peut déterminer le nombre minimal n

de sous intervalles suivant cette formule :

(b—a)® max | f"(z)]
n > z€[a,b]
- 12¢

(1.2)

Il existe une version améliorée de la méthode des trapezes, dite méthode de Poncelet
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dont le schéma numeérique est donné par :

<f(l’o) + fxon) + 7(f(21) + f220-1)) + 8 i f($2z'+1))

>

I(f) ~

Exemple 1 : On donne la fonction f(z) = vz + 1 avec x € [0, 1] et n = 10. En utilisant
1

la méthode des trapezes, calculer l'intégrale / vV + ldx et évaluer 'erreur de
0

calcul.

b—a

Solution : On calcule le pas h = =% = 0.1.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

flzg) | 1] 1.0481 | 1.0954 | 1.1401 | 1.1832 | 1.2247 | 1.2649 | 1.3038 | 1.3416 | 1.3784 | 1.4142

ﬂ@+f@+ﬂ<§:ﬂ%01

0 1
[1+4 1.4142 + 2 (1.0488 + 1.0954 + 1.1402 + 1.1832 4 1.2247 + 1.2649+

+1.3038 + 1.3416 + 1.3784)]
= 1.2188.

1
Do, / v+ ldxr ~ 1.2188.

Ru(f) < 12><102 ax ‘fﬂ )],

z€[0,1]

f(a) =~ + 1),
O (z) = g(x—i— 1)"2 > 0,vVz € [0,1].

Donc, max |f"(z)] = |f"(0)] = 0.25, d’ott : R,,(f) < 0.25 X 555 =~ 2.08 X 1074,

z€(0,1]

11




Do,

1
/ VI + 1de ~1.2188 +2.08 x 1074
0

1
Exemple 2 : Calculer I'intégrale / e~ dx avec une précision de 1073 par la méthode
0

des trapezes.

Solution : On doit d’abord déterminer le nombre de division n nécessaire pour obtenir
cette précision.

L’erreur d’intégration s’écrit :

(b _ CL>3 " b—a 2 " -3
R < = h <107°.
() <15 max |["(@)] = 5 max |f"(z)] <
D’autre part, on a : f’(z) = (42* — 2)exp(—x?), cette fonction est strictement
croissante dans l'intervalle [0, 1] et max I (x)] = |f"(0)] = 2.
xe|0,
Donc, R,(f) < %2h2 max |f"(z)] < 107%, don, h < 1/% = 0.0774, donc
1 _ . .« . o A .
n 2> o777 = 12.91. On prend 13 divisions, en utilisant la méme technique que dans

I’exemple 1, on obtient :

1
/ e~ dx ~ 0.74646 4+ 1073,
0

Exemple 3 : En utilisant la méthode des trapezes, calculer I'intégrale / sin z%dx avec
0
5 intervalles.
- Sachant que la valeur exacte est 0.7726 ; comparer le résultat obtenu avec la valeur

exacte.

Solution : On a h = ”*T“ =

SUE

i |0 «w/5 | 2n/5 31/5 47 /5 T

f(z;) | 00,3846 | 1,0000 | - 0,3999 | 0,0333 | - 0,4303

12



On a aussi :

h
2

fla) + f(b) +2 (Z f(xn)]

[0 — 0,4303 + 2(0, 3846 + 1 — 0, 3999 + 0, 0333)]

_7T
10

=0, 5044.

D’ou / sin 2%dz ~ 0, 5044.
0
- Comparaison :
On a / sin x’dx = 0.7726, I(f) = 0,5044 et |I(f) —/ sin z2dx| = 0.2682.
0

0
Pour n = 5, 'erreur absolue est 0.2682 par rapport a la solution exacte.

3
Exemple 4 Considérant l'intégrale définie par / 1 + log(z).
1
- Déterminer le nombre de sous-intervalles permettant d’atteindre une erreur d’intégration
inférieure & 1073 .

Solution : Afin d’atteindre une erreur R, (f) < 1072 < (132_17,12) x 0.1111 < 1073, donc

n? > 18.5, d’ott n > 4.30. Il en résulte qu’a partir de cinq sous-intervalles, on atteint

une erreur inférieure a 1073.

1.3 Méthode de Simpson

Dans la formule de Simpson on ne remplace pas la fonction par une droite mais par
une parabole qui doit passer par trois points (zo, f(z0)), (x1, f(z1)), (z2, f(x2)), ce qui fait
que cette méthode n’est applicable que pour un nombre pair de tranches, voir Figure 1.5
au dessous.

La formule de Simpson s’écrit :

b —a
[ ey dn = 2 () + 41 ) + fa)

13



FIGURE 1.5 — Méthode de Simpson

1.3.1 Généralisation de la méthode de Simpson

On subdivise U'intervalle [a, b] par des points [zg = a, z1, X9, . . ., T, = b], avec n pairs
(n=2k|k eN)et h= b_Ta, et on applique la méthode de Simpson sur chaque intervalle
de la forme [a, z5], [T2, 4], . . ., [Xn_2, b](voir Figure 1.6 au dessous). Le schéma numérique

de cette méthode est donné par :

=4

Fa) + 50) 423 Flea) 1Y Floa)

Dans la figure ci-dessous, nous avons écrit la formule de Simpson sur quatre sous-intervalles.
Ainsi, chaque sous-intervalle est interpolé par son polynome de Lagrange de degré deux

sur trois nceuds.

14



f(x)

Xo =0 x; x; a3 Xy X5 x5 X, x,=b x

FIGURE 1.6 — Formule de Simpson composite représentée sur 4 sous-intervalles

Par exemple pour les quatre premiers sous-intervalles on écrira :

R() = 5 (f(a0) +4f() + £(22)
BT = & () + 45 () + Fa)
1) = 5 (F(a) + 45 (25) + F(20))
L) = & () + 45 (r) + F(a3))

Done I(f) = L(f) + L(f) + 13(f) + L(f)-

Théoréme 1.3. Soit f € C*([a,b]). Alors, il existe & € [a,b] tel que :

h4
12n?

(b —a)®
180n*

Ru(f) = = FOE) = —5 (b= a) fN(8),

ot f® désigne la quatriéme dérivée de la fonction f. On peut écrire la borne supérieure

de Uerreur commise comme suit :

R.(5) < L max | /()

180n* z€la

15



Remarque 1.3. Soit € la précision imposée, le nombre de sous intervalles n peut étre

déterminé par :

4

(b—a)’ max‘f )’

n> z€a,b]
- 180¢e
Exemple 1 On donne la fonction f(z) = ﬁ,x € [0,1] et n = 10. En utilisant la
1
méthode de Simpson, calculer I'intégrale / 71 dx et évaluer 'erreur.
0 2T
Solution On calcule le pas h = =2 = 0.1.
T 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f(z;) | 1]0.8333 | 0.7142 | 0.625 | 0.5555 | 0.5 | 0.4545 | 0.4166 | 0.3846 | 0.3571 | 0.3333

0.1
I(f) = =5 [L+0.3333 44 (0.8333 + 0.625 + 0.5 + 0.4166 + 0.3571) + 2 (0.7142+

+0.5555 + 0.4545 4 0.3846)] = 0.5493

384

D’autre part, on a f*(z) = Qo1

@i est une fonction décroissante sur [0, 1]. Donc,

max | (z)| = f(0) = 384.

z€[0,1]

Do,

Ra(f) < R0 < 1t = 2116 1074

Alors,

1
/ 1 dr ~ 0.5493 +2.116 x 1072
0 2x+1

1
Exemple 2 Calculer I'intégrale / e~ dx avec une précision de 1073 par la méthode de
0

Simpson.

Solution On doit d’abord déterminer le nombre de division n nécessaire pour obtenir

cette précision.

16



L’erreur d’intégration s’écrit :

—a)® —
(b—a) X ‘f(4)(x)‘ = h4b—a max |f @ (z)] <107°

R, <
(f) = 180n4 g{%,b} 180 z€fab)

On a fW(z) = (162 — 4822 + 12)e™", et max |f*(z)| = £(0) = 12. D'out

xz€[0,1]

180 x 0.001
h<{/——=0.35

“\Va-o0)x12

Donc n = 2k > OL = 2.85, donc k = 2, on prend 4 devisions, le pas d’intégration

1 _ . A ) L
h = 7 = 0.25. On poursuit le méme processus que dans I'exemple 1 précédant on

obtient : I(f) ~ 0.7469. Donc,

1
/ e dx ~ 0.7469 + 1073,
0

1.4 Exercices supplémentaires

Exercice 1. On lance une fusée verticalement du sol et ’'on mesure pendant les premieres

80 secondes 'accélération y

t(ens) 0| 10| 20| 30| 40| 50| 60| 70| 80

yenm/s? | 30 | 31.63 | 33.44 | 35.47 | 37.75 | 40.33 | 43.29 | 46.70 | 50.67

- Calculer la vitesse V de la fusée a l'instant ¢ = 80s, par la méthode des trapezes

puis par la méthode de Simpson.

Solution .

On sait que l'accélération v est la dérivée de la vitesse V', donc,

V(t) =V(0)+ /tv(t)dt =0+ /Soy(t)dt

17



- Calculons V(80) par la méthode des trapezes, d’apres le tableau des valeurs, on a

h =10 et n = 8. Alors

h
V(80) = 5(7@0) +y(t) + - +(tr))
= 5(30 + 50.67 + 2(31.63 +33.44 + 35.47 + 37.75 + 40.33 + 43.29 + 46.70))

= 3089m/s.

- Calculons V(80) par la méthode de Simpson

k-1 k
V(80) = g Y(to) +(tk) + 227(7521) + 427(1521'—1)

10
= (304 50.67 + 2(33.44 + 37.75 4 43.20) + 4(31.63 + 3547 + 40.33 + 46.70))

= 3087Tm/s

Exercice 2. Soit l'intégrale I = / sin(x)dx.
0
1. Calculer la valeur exacte de 1.

2. En utilisant la méthode des trapezes et la méthode de simpson pour h = 7 :

a- Calculer 1

b- Majorer 'erreur

c- Evaluer 'erreur

3. Donner la valeur du pas h et le nombre de subdivisions de l'intervalle [0, 7] pour
que lerreur obtenue par la méthode de trapezes (resp. de Simpson) soit plus petite

que 5 x 1074,

Solution .

1.1 :/ sin(z)dr = 2.
0

18



2.I- La méthode des trapezes :

a_

=1

Fan) + Flza) +2 3 (@)

™

= S(FO) + F(m) + 2(f(=/4) + f(m/2) + [(37/4)))

~ 1.896.

b- On a

b= Ch? max |/ (2)]

(b — a>3 " .
max |f"(z)] = 5 read)

12n2 z€[a,b]
3 3

™ ™
197 B8 | sin(z)| < o5 = 0-16149.

Rn(f)

IN

| A

o |I(f) - /0” sin(z)dz| = 0.1038

2.11- La méthode de Simpson :

+ f(b) +2 Z_: flwe) + 4Zf(x2i,1)

5+ £()+ 27(5) + A7) + £ ~ 200

b- On a

(b— a) | (4) ‘
180n?* ze [a b]
5

il | sin(z)
= 180 x 41 Jgax sl

Rau(f)

IN

T
< — ~ (.
| < T 0.0066

c- |I(f) —/0 sin(x)dx| = 0.004

19



3. Calculons la valeur du pas h et le nombre de subdivisions n de U'intervalle|0, 7]
pour que 'erreur obtenue est plus petit que e = 5 x 1074,

3.I- La méthode des trapeze :

On a

(b — a)® max | f"(z)|

z€[a,b]
>
m=\ 12¢
3 m[ax] | sin(z)]
z€|0,m
> ’ ~ T1.8
"\ 12 x5 x 10

Donc le nombre de subdivisions de l'intervalle [0, 7] est n > 72.

3.11- La méthode de Simpson :

On a
.| (b—a)® max ‘f(4) (:1:)’
z€la,b]
n >
\ 180¢e
>\ i Ll ~ 7.64116
- 180 x 5 x 104

Donc le nombre de subdivisions de d’intervalle [0, 7] avec la méthode de Simpson
est n > 8.
Exercice 3.

a- Déterminer par la méthode des trapezes puis par la méthode de Simpson une valeur

2
approximative de / f(z)dz suivant les valeurs de ce tableau :
0

T; 0 1/2 1 1.5 2

yi = f(z;) = | 1] 1.284 | 2.718 | 9.487 | 54.598

b- Evaluer I'erreur dans chaque cas en prenant n = 10.

20



c- Quel est le nombre de points nécessaires pour atteindre une precision €(I) = 1072 pour

chaque méthode.
Solution .

2
a.1- Déterminons par la méthode des trapézes une valeur approximative de / f(z)dz.
0

/0 flx)de = I(f) = g f@o) + flan) + 22 (f(xi))]
- %[1 + 54.598 + 2(1.284 + 2.718 + 9.487)]

= 20.644

2
a.2-Déterminons par la méthode de Simpson une valeur approximative de / f(x)dx.
0

/0 f(z)dz = I(f) Zg f(&)+f(b)+22f(1'2z')+42f($2i—1)]

_ g[f(()) F(2) +2F(1) + 4(£(0.5) + F(1.5))]

0.5
= 5 (1454598 +2 x 2.718 + 4 x (1284 + 9.487))

= 26.0295

b.1-Evaluons l'erreur par la méthode des trapezes en prenant n = 10.

On a f"(z) = 2¢* + 4z%e” et max |f"(z)| = 982.766, donc

z€0,2]

(b _ a>3 max ‘f”(l’)‘

12n2 z€[a,b]

b.2-Evaluons I'erreur par la méthode de Simpson en prenant n = 10.
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On a fW(z) = 12e*° +48z2¢*” + 162%™ = e (162" + 4822 +12) et max | FD ()| =
z€|0,2

| £ (2)] = 39092.275, donc

(b - @)5 max }f(4)($)‘

R, <
(f) — 180n4 z€[a,b]

< — 2275 =0.
_180><1043909 75 = 0.6950

c.2- Calculons le nombre de points nécessaires pour atteindre une precision €(/) =

102 avec la méthode des trapezes.

On a

(b — a)® max | f"(z)|

z€[a,b]
12¢

n >

23
> 2. —_— 2
_\/98 76612><102 o6

Donc le nombre de subdivisions de I'intervalle [0, 2] est n > 256.
c.1- Calculons le nombre de points nécessaires pour atteindre une precision €(/) =
102 avec la méthode de Simpson.

On a

(b — a)® max |f(4)(x)|

4

n > z€[a,b]
- 180¢e
5
> 4 2275—— ~51.344
_\/3909 75180><10*2 51.3

Donc le nombre de subdivisions de l'intervalle [0, 2] est n > 52.

Exercice 4.

a- En prenant 4 sous-intervalles, déterminer par I'algorithme des trapezes une valeur
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2
. . ) , , .
approximative de / sin”(x)dx, en évaluant l’erreur commise.
0

b- Quel est le nombre de points nécessaires pour atteindre une precision ¢(I) = 1072 par

la méthode des trapezes.

Solution .

2
a- Déterminons par la méthode des trapezes une valeur approximative de / sin®(z)dx
0

) + 1) +2 Y <f<xi>>]
= U511(0) + £2) + 20(0.5) + (1) + £(1.5))

=1.173

|

- Evaluons l'erreur par la méthode des trapezes en prenant n =4 :

On a f"(z) = 2(cos?(x) — sin®(z)) = 2(1 — 2sin*(z)) et max |f"(z)| = f"(0) =

z€[0,2]
T
f”(§) = 2, donc
(b — a)g 1"
Ro(f) <
8
< T x2 422 = 0.0833

b- Calculons le nombre de points nécessaires pour atteindre une precision €(/) =
1072 avec la méthode des trapezes.

On a

(b — a)® max | f"(z)|

z€[a,b]

>
"= 12¢

3

2— ~ 36.51
12 x 103 565
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Donc le nombre de subdivisions de l'intervalle [0, 2] est n > 37.

Exercice 5. On considere I'intégrale suivante

I:/1dx
0 1+I2

1. Calculer la valeur exacte de cette intégrale.

2. Evaluer numériquement cette intégrale en utilisant :
- la méthode des points milieux avec 5 intervalles.
- la méthode des trapezes avec 4 intervalles

- la méthode de Simpson avec 2 intervalles.

Solution abrégée .

1
L[:/i(m — 0.7854.
0 1+.1'2

2.
- Par la méthode des points milieux, on obtient : I(f) = 0.8387
- Par la méthode des trapezes, on obtient : I(f) = 0.7828

- Par la méthode de Simpson, on obtient : I(f) = 0.7854

1
Exercice 6. Combien faut-il de subdivisions de [0, 1] pour évaluer / re “dx & 1078 pres
0
en utilisant :
1. la méthode des trapezes.

2. la méthode de Simpson.

Solution abrégée .
1. n > 4083

2.n>40
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Exercice 7. Trouver le nombre de subdivisions nécessaires de l'intervalle d’intégration

[—7, 7], pour évaluer & 5 x 10™* pres, grace a la méthode de Simpson, I'intégrale

/: cos(z)dx.

Solution abrégée .

-n>20
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Chapitre 2

Interpolation polynomiale

Dans la pratique on rencontre souvent des probléemes ou la fonction f est inconnue
explicitement mais connue seulement en certains points xg, x1, ..., x,, ou évaluable unique-
ment au moyen de ’appel a un code couteux. Mais dans de nombreux cas, on a besoin
d’effectuer des opérations (dérivation, intégration, minimisation, etc...) sur la fonction f.
On cherche donc a reconstruire f par une autre fonction f, simple et facile a évaluer a
partir des données discretes de f. On espere que le modele f,. ne sera pas trop éloigné de
la fonction f aux autres points.

On s’intéresse dans ce cours a la reconstruction de f par des polyndmes. Plus
précisément, étant donnés n + 1 points d’abscisses distinctes m;(x;, f(z;)),i =0,1,...,n
dans le plan, le probleme de I'interpolation polynomiale consiste a trouver un polynome

P(z) dont le graphe passe par les n + 1 points m;, c’est-a-dire

Dans ce chapitre, on va considérer 'approximation de f par une forme polynomiale, c¢’est-
a-dire :

P(z) = apz™ + - + agx® + a1z + ag
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avec a;,1 = 1,2,...,n sont des coefficients a déterminer.
Les polynomes que nous allons étudier différent seulement par la facon de déterminer
les coefficients a;,7 = 1,2,...,n, car pour un tableau de valeurs données le polynome

d’interpolation est unique.

2.1 Interpolation de Lagrange

Soient (n + 1) points distincts xg, 1, Ta, ..., 2, et f une fonction dont les valeurs
sont f(zo), f(x1),..., f(z,). Alors, il existe un seul polynome de degré inférieur ou égal

a n et qui coincide avec les points d’interpolation, i.e. :
f(.’L'Z> = P(l’l),l = O,l,...,n.
Ce polynome est donné par :

P(x) = Z fxi)Li(x) = f(zo) Lo(x) + f(z1)Li(x) + -+ + f(zn) Ln(2)

avec

ZL‘—I'j

Li(z) = ﬁ ,i=0,...,n.

g=0g#i""

Le polynome P(z) est appelé polynéme d’interpolation de Lagrange de la fonction f aux
points xg, 1, ..., T,, et les polyndémes L;(z) sont appelés polynomes de base de Lagrange

associés a ces points.

Théoréme 2.1. (Erreur de l'interpolation de Lagrange).
Soit f € C"a, b],et soit P(z) le polynome d’interpolation de f sur les points m;(x;, f(x;)),

pour i = 1,...,n. Alors pour tout x € [a,b], il existe &, €] {nin{xi},{nax{xi}[tel que [’er-
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reur f(x) — P(x) soit
o Vnt1(T) a1
E(r) = mf( (&),

0l : Ypy1(T) = H(a: —x;). Si on pose M, 1 = max | £ (2)|, on a alors

=0

[Yn1(2)]
E((L’) S mMn+1

Exemple 1 : Déterminons le polynome de Lagrange qui interpole la fonction définie par

ces valeurs suivant ce tableau

X

On a
P(x) = Zf(xz)Ll(x) = f(wo)Lo(z) + f(21) L1 () + f(22) La(x) + f(z3)L3().
Lz)= [ ==2,i=0,1,2,3
jmogzi T T
D’ou

(x —2)(x — 3)(z — ) (x —0)(x —3)(z — b)
T 03 ez-5"

(x —0)(z —2)(z —b)
0B 2965 606263

53 253
e v s R

30 30

Exemple 2 : Construire, selon la méthode de Lagrange, le polynome d’interpolation
P(z) de degré quatre qui interpole les points (xq, f(x9)) = (0,0), (z1, f(z1))
(1,5), (2, f(z2)) = (2,15), (w3, f(x3)) = (3,0) et (4, f(z4)) = (4,3).
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P(x) =Y fla:)Li(x) = f(xo) Lo(x)+f(21) Ly (@) +f (2) Lo(w)+ f (x5) Ls(x)+ f (24) La(z).

=0

avec

4
L) = [[ 2—2,i=0,1,2,3,4

j=0gi T T
On a Ly(z) = L3(x) = 0 car ils seront multipliés par zéro dans le remplacement. En

suivant la méme procédure que dans 'exemple 1 on obtient :

_(37_0)@3_2)@_3)@_4)_ L 4 3 2
Lyi(z) = =01 -2)1-3)1-1 ——g(x — 927 + 262" — 24x)
(-0 -D=3) (-4 1 , o3 2
Ly(z) = 2-0e-DeE-32-1 :Z(x — 8z° + 192° — 12z)
@0 -DE-2)=-3) 1 , 3 2
Ls(z) = =0 —DI-Dd—3) _ﬂ(x — 62° 4 112° — 6x)

Finalement on remplace les coefficients polynomes et on obtient :

f(z) ~ P(x) = 3.04162* — 23.252% + 50.95832 — 25.75x*.

2.2 Interpolation d’Hermite

L’interpolation de Hermite est une généralisation de celle de Lagrange en faisant

coincider non seulement f(z) et P(x) aux nceuds x;, mais également leurs dérivées aux

neeuds z;. Soient xg,z1,...,x,, (n + 1) points distincts de l'intervalle [a,b] et f une

fonction définie sur le méme intervalle admettant les dérivées f'(xo), f'(z1), ..., f'(zn).

Dans ce cas, il existe un seul et unique polynome de degré 2n + 1 tel que P(x;) = f(x;)
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et P'(z;) = f'(x;). Ce polynome P s’écrit

P(r) = Z Hi(x) f(z:) + Z Ki(z) f' ()

avec

Hi@) == 2 - o) Lifa)] L)
Ki(x) = (z — i) Li(z)
avec L;(x) = H ;__Zj

L j=04#i " Y

Théoréme 2.2. (erreur de linterpolation d’Hermite)
Soit f € C*"*2[a, ], et soit P(x) le polynome d’interpolation de f sur les points m;(z;, f(x;)),
reur f(x) — P(x) soit

Ble) = e (e

Si on pose My, = max |2 (z)|, on a alors
a<z<b

E(r) < '7721+1(x)

1

Exemple 1 : Déterminons le polynéme d’Hermite qui interpole la fonction f(z) = 75

aux points g =0 et 1 = 5.

Le polynéme d'Hermite P(z) s’écrit

avec
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Hi(x) = [1—2(z — ;) Li(2:)] L (x)
Ki(r) = (z —z;)Li(x)
Calculons les polynomes L;(x), L}(z), H;(x) et K;(z), sachant que les abscisses des

points d’appui sont xg = 0 et z; = 5.

(r—m) L,z
Lolz) = (w9 — 1) ! 5
(= m0) @
Ll(I) = —<x1 — IO) 5
et
L1
Ly(z) = 5
L) =
HO(-T) = [1 - 2(1' — Io)Lé([Eo)]L%(:ﬂ) = (1 _ 2(1; . 0)_?1) (1 B g)? _ 1;_51:3 N %12 1
Hy(z) = [1 — 2z — 22) L) (1) L2(x) = (1 ol 5)%) (92 ) _1_35$3 X %932‘

D’autre part,

Ko(z) = (v — z0) L3 (2) = (x — 0) (1 - E)2 = le — gxz + .

K () = (z = a) Li(@) = (@ = 5)
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D’ou
1 1

P(z) = Z Hi(z) f(z:) + Z Ki(x) f'(2:)

i=0 =0

= Ho(z)f(z0) + Hi(z)f(21) + Ko(2) f'(20) + K1(z) f'(21)

2 ., 3, 1/ 2 , 3,\ 10/1., 2,
— (= =2 1)+ — (= 22 o (32
(12555 Tt T )+26( 25" """ ) T\ T
10 , 76

2
B B |
262" 2627 T

2.3 Exercices supplémentaires

Exercice 1 : On suppose que f(z) = Jx et que (zo, f(x)) = (0,0), (z1, f(z1)) = (1,1)
et (2, f(22)) = (8,2).
1) Déterminer le polynéme Py(z) d’interpolation polynémiale qui passent par les
points (2, ¥i)i=o,1,2-
2) Calculer Py(x) et f(x) = /x pour x = 0.5,0.95,1,1.5 et 3.

Solution .

1- D’apres la méthode de Lagrange,

Py(z) =f(wo) Lo(x) + f(21)La(x) + f(22) La()

(s (x —x1)(x — 29) . (x — xo)(x — 29) . (x — x)(x — 1)
_f( 0) (xO —$1)(I0 _xQ) +f( 1)(:):1 —$o)(?€1 _x2) +f( 2) (ZL’Q —J]())(ZL‘Q —$1)
(x —1)(x —8) (x —0)(x —8) (x —0)(x —1)
o= no=s Ttacou=s T*E=0E=1
3, 31
—2—837 +2—81'

On a bien P(0) =0, P»(1) =1 et P(8) = 2.

2
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T; 0.5 095 |1 1.5 3

f(x;) | 0.7937 | 0.98305 | 1 | 1.1447 | 1.4422

Py(x) | 0.52679 | 0.95509 | 1 | 1.4196 | 2.3571

Exercice 2. Soit la fonction f(z) = 1/x.
1- Trouver le polynome d’interpolation de Lagrange qui passe par les points (2, 0.5), (2.5,0.4)
ot (4,0.25).
2- Calculer I'approximation de f(2.2).

3- Estimer 'erreur maximale.

Solution .
1- Py(z) = 2% — iTp 4 23,
2- On déduit que
f(2.2) ~ P»(2.2) = 0.457

3- L’erreur du polynéme Py (z) : d’aprés Théoreme 2.1, il existe &, € [2,4] tel que;

(3)
E(zx) = fg—(‘gx)(x —xo)(x — 1) (T — 9)
donc,
(3)
E(z) = S) (x —2)(x — 2.5)(z — 4).

3!

- 3)
Posons M3 Jax, |f*(z)], on a alors

B(r) < 21— 2)(x — 25)(r — 4)|.

3
) (3) _ _6 (3) ——
D’autre part on a ) (x) > et Joax, | ()] g Donc

3

E(z) < P

(z — 2)(z — 2.5)(z — 4)].
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Pour x = 2.2 'erreur est majorée comme suit :

E(z) < (2.2 = 2)(2.2 — 2.5)(2.2 — 4)| ~ 0.0068

&l e

Exercice 3. Soit les points suivants : (0,0), (1,2), (2, 36), (3,252), (4, 1040).
1- Obtenir le polynome de Lagrange passant par les 3 premiers points.
2- Obtenir le polynome de Lagrange passant par les 4 premiers points.
3- Donner Iexpression analytique de l'erreur pour les polynomes obtenus en 1) et
en 2).
4- Obtenir des approximations de f(1,5) & I’aide des 2 polynémes obtenus en 1) et
en 2).
Solution abrégée .
1- Py(z) = 1622 — 14x.
2- Py(z) = (2 —2)(z—3)—18x(x—1)(x—3)+42x(x—1)(x—2) = 6123 —203z*+144x

3- L’erreur du polynome Py(z) : d’apres Théoreme 2.1, il existe &, € [0, 2] tel que :

(3)
Ey(x) = / 3(!51) (x — zo)(x — 1) (x — 22)
donc,
(3)
Ey(x) = / 3(‘596) (x = 0)(x—1)(z —2)

tandis que pour Ps(z), il existe &, € [0, 4], ou 'erreur est donné par :

(4)
Ei(w) = T @ 0)e - )@ -2 - 3)

4-Si on approxime f par P, on a f(1.5) >~ P»(1.5) = 15 et, si on approxime f par
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P; on obtient f(1.5) ~ P5(1,5) = 5.625.

Exercice 4. On souhaite concevoir un virage d'une voie de chemin de fer entre les points

(0,0) et (1,1). Le virage est décrit par une courbe de la forme y = f(z) qui satisfait :

f(0)=0et f(1)=1.

De plus, pour assurer une transition en douceur, la pente de la courbe doit satisfaire :

f(0)=0cet f(1)=0.3.

On représente la courbe a 'aide d’un polynéme dans U'intervalle [0, 1].
- Construire, selon la méthode de Hermite, le polynéme d’interpolation P(x) qui

interpole ces points

Solution abrégée .

En suivant le méme schéma que dans I'exemple 1 on obtient,

P(z) = —1.72° + 2.72?

Exercice 5. Soient les points suivants : (0,0), (1,2),(2,36) et (3,252).
1. Obtenir le polynome de Lagrange passant par les trois premiers points.
2. Obtenir le polynome de Lagrange passant par les quatre points.
Solution abrégée .
1- Py(z) = 1622 — 14x.

2- P3(z) = 252° — 5922 + 36z
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Exercice 6. trouver le polynome d’interpolation passant par les points (1,0), (2,1), (9, 2)

et (28,3).

Solution abrégée .

—Pg(l’):l’:g"—l
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Chapitre 3

Résolution numériques des équations

non linéaires f(z) =0

On s’est habitué & résoudre aisément les équations de type az? 4 bx +c = 0 par le
moyen du calcul du fameux discriminant A a partir duquel on juge I'existence des racines
exactes. Malheureusement ce discriminant ne sera plus rencontré s’il s’agit de I’équation
de type : ax® + bx? + cx + d = 0, celle-ci tres fréquentée, n’admet pas de méthode de
résolution analogue a la précédente.

Et si on parle d'un autre exemple d’équation de type :
cos(x?) sin(22* — 3) + 0.5 = 0,

on est convaincu qu’on passera un temps énorme pour la résoudre analytiquement si ce
, . s . . . .

n’est pas possible. Ces types d’équations appelées équations non-linéaires (transcendante)

peuvent étre résolues numériquement par des méthodes permettent de calculer des racines

approchées avec une précision déterminée. Dans ce chapitre on va étudier trois méthodes

pour la résolution numérique des équations non-linéaires a une variable f(z) = 0.
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Définition 3.1. Tout nombre & vérifiant (&) = 0, s’appelle solution (racine) de I’équation
f(x) = 0. Géométriquement, & est l’abscisse du point d’intersection de graphe de la fonc-

tion f avec 'axe Ox.

Définition 3.2. Si l’équation f(x) = 0 peut s’écrire sous cette forme

flz) = (z=¢&"g(x) =0
ot g(x) # 0, alors & s’appelle racine d’ordre m. Sim = 1, € s’appelle racine simple de
Iéquation f(x) = 0.

Dans toutes les méthodes itératives, il est nécessaire, pour éviter une divergence de
la solution, de déterminer un intervalle contenant la racine cherchée et de bien choisir les

valeurs initiales.

3.1 Séparation des racines

La plupart des méthodes numériques supposent que 'on connaisse un intervalle
contenant la racine cherchée et aucune autre. On dit alors qu’elle est localisée ou séparée,

des autres éventuelles racines.

Définition 3.3. On dit qu’une racine § d’une équation f(x) =0 est séparable si on peut
trouver un intervalle [a,b] tel que & soit la seule racine de cette équation dans |a,b]. La

racine £ est alors dite séparée ou localisée.

Les deux techniques les plus classiques pour localiser ou séparer les racines sont :

Méthode analytique
On se base dans ce cas sur le théoreme des valeurs intermédiaires :
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Théoréme 3.1. Soit un intervalle non vide [a,b] de R et f une application continue de

[a,b] dans R vérifiant f(a)f(b) < 0. Alors il existe & €]a,b] tel que f(§) = 0.

Exemple Déterminons les racines de I’équation z* — 42z — 1 = 0. Les variations de la
courbe représentative de la fonction f(z) = 2* — 42 — 1 sont données par le tableau

des variations suivant :

T —00 1 +00
(@) - 0 +
+00 +00

On a d’apres le tableau des variations, la fonction f est strictement monotone sur
I'intervalle [—1,0] U [1,2] avec f(—1).f(0) < 0 et f(1).f(2) < 0, donc il existes deux

racines & €] — 1,0] et & €]1,2].

Méthode Géométrique (graphique)

Soit on trace (expérimentalement ou par étude des variations de f) le graphe de la
fonction f et on cherche son intersection avec 'axe Oz. Soit on décompose f en deux
fonctions f; et fo simples a étudier, telles que : f = f; — fo, et on cherche les points
d’intersection des graphes de f; et fo, dont les abscisses sont exactement les racines de

I'équation f(z) = 0.

Remarque 3.1. On choisit souvent fi et fo de facon a ce que leur courbes soient des

courbes connues.

Exemple. Soit I’équation
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zlogr =1,2 > 0. (3.1)

Cette équation s’écrit encore sous la forme : logx = % En posant fi(z) = logz,
fo(z) =1/x et f(x) = fi(z) — fa(x) = logx — 1/x. Les variations des fonctions f; et fo
sont données par les courbes ci-dessous (Figure 3.1). L’abscisse du point d’intersection

des deux courbes permet de localiser la solution de I’équation (3.1) et fournit méme une

(premiere) approximation de celle-ci.

10

f,(x)=log(x)

8t

6

f(x)
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FIGURE 3.1 — Séparation graphique du racine.

Méthodes numériques de résolution

3.2 Meéthode de bissection (ou dichotomie)

La méthode de dichotomie (ou méthode de la bissection) suppose que la fonction f

est continue sur un intervalle [a, b], n’admet qu’un seul racine £ €a, b| et vérifie f(a)f(b) < 0.
Son principe est le suivant : on pose ag = a, by = b, on note xy = (‘”’2;170) le milieu
de l'intervalle de départ et on évalue la fonction f en ce point. Si f(xg) = 0, le point xg

est le racine de f et le probleme est résolu. Sinon, si f(ao)f(xg) < 0, alors le racine &
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est contenu dans 'intervalle Jag, xo[, alors qu’il appartient & |xg, bo[ si f(xo)f(bo) < 0. On
réitére ensuite ce processus sur lintervalle [ay, b;], avec a; = ag et by = x¢ dans le premier
cas, ou a; = xg et by = by dans le second, et ainsi de suite...

De cette maniere, on construit de maniere récurrente trois suites {a, }nen, {bn}nen
et {x, nen telles que ag = a, by = b et vérifiant, pour tout entier naturel n,

S = g

- Upy1 = Qp et by =y st flay). f(z,) <0

- Apy1 = Tp €t by = by st f(z,). f(by) <O

FIGURE 3.2 — Construction des premiers itérés de la méthode de dichotomie.

Proposition 3.1. Soit f une fonction continue sur un intervalle |a, b], vérifiant f(a)f(b) <0,
et soit & €la, b| l'unique solution de l'équation f(x) = 0. Alors, la suite {x, }nen construite

par la méthode de dichotomie converge vers & et on a [’estimation

b —

Remarque 3.2. A partir de cette inégalité qui définie l'erreur, si la précision € est

connue, on peut calculer le nombre nécessaire d’itérations n. En effet :

b—a In(%2)
2n+l1 se=nz lng

41



Exemple 1 : Appliquons la méthode de bissection pour calculer la racine de I'équation
f(x) = x® + 42® — 10 = 0 avec une précision € = 1072.

Le tableau des variations de f est

x —00 —8/3 0 +o00
f'(x) + 0 - 0 +
B 400
= \\\_\\\ /
\\\\\ /f

FIGURE 3.3 — Graphe de f.

D’apres le tableau des variations et la Figure 3.3, et puisque on a f(1).f(2) < 0,
alors 3¢ €]1,2] tel que f(§) = 0.

In 2;1_2
nzmzﬁ),&l:n:&
In2

Le tableau suivant résume les pas de la méthode.
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n ayn bn Tn, f(zn) | signe: f(an).f(z,) | 6, = 2%
0 1 2 1.5 2.375 - 0.5

1 1 1.5 -1.25 -1.789 + 0.25

2 1.25 1.5 1.375 0.1621 - 0.125

3 1.25 1.375 | 1.3125 | -0.848 + 0.0625
4 | 1.3125 | 1.375 | 1.3437 | -0.3509 - 0.03125
5 | 1.3437 | 1.375 | 1.3593 | -0.0964 + 0.015625
6 | 1.35937 | 1.375 | 1.36718 | 0.0322 + 0.0078125

Exemple 2 : Calculons la premiere racine de I’équation In(z) — 2?42 = 0 qui appartient

a I'intervalle [0.1,0.5] avec une précision de € = 0.01.

Calculons le nombre de divisions n a faire :

|
n >

n ( 0.5-0.1 )

2x10—2

In2

~ 432 = n=>.

Le tableau suivant résume les pas de la méthode.

n|an | b | owa | Flea) | siene s f(a).f() | 8. = b
0 0.1 0.5 0.3 0.706 - 0.2

1 0.1 0.3 0.2 0.351 - 0.1

2 0.1 0.2 0.15 0.08 - 0.05

3 0.1 0.15| 0.125 | -0.095 + 0.025
41 0.125 | 0.15 | 0.1375 | -0.030 0.0125
51 0.1375 | 0.15 | 0.14375 | 0.0393 - 0.0062

3.3 Méthode de Lagrange

La méthode de Lagrange, ou méthode de la fausse position, est une méthode pour
trouver une valeur approchée de la solution d’une équationf(x) = 0. Elle consiste sur le

principe suivant : on suppose que la fonction f est continue sur [a, b] et que que f(a).f(b) <
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0. On considere les points A(a, f(a)) et B(b, f(b)) situés sur la courbe représentative C;
de f. On construit une suite {x, },en de réels a I'aide des points A,, de C;. Pour cela, on
pose Ag = A et on construit A, en tragant la droite (A, B) qui rencontre 'axe (Ox) en
un point d’abscisse x,;. Le point A, est le point de C; d’abscisse ;1.

Choisir un point z( vérifie la condition f(x¢)f”(xo) < 0, le schéma itératif de I’al-

gorithme de Lagrange est donné par :

—Choisir zp = a si f(a)f"(a) <O0.

ZTn—b

—Poser z,,1 = x, — f(xn)m
et
—Choisir zg = b si f(b)f"(b) < 0.
—Poser x,41 =z, — f(mn)%
Exemple Considérons I'équation f(x) = x* — 20 = 0. Comme f(0.75)f(4.5) < 0 donc
on peut appliquer le méthode de Lagrange dans I'intervalle [0.75,4.5] en choisissant

xo = 0.75 comme point de départ. La construction des premiers itérés de la méthode

de Lagrange sont illustré dans Figure 3.4.

120

100

80

fh
D)

60

401

20

fta)20
0

FI1GURE 3.4 — Construction des itérés de la méthode de Lagrange.

Proposition 3.2. Soit f une fonction continue sur un intervalle [a, b, vérifiant f(a)f(b) <0,
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et soit & €)a,b[ lunique solution de I’équation f(z) = 0. Si f € C*([a,b]) tel que Vx €
[a,b], f'(x).f"(x) # 0, alors la suite {x,}nen construite par la méthode de Lagrange

converge vers £ et on a l’estimation

M, —m
‘iL‘n—ﬂ < lm l‘l'n_xnfl
1

avec

My = max{| f'(z)[}, m1 = min{| f'(2)[}

Exemple. Trouver la racine de I’équation z°> — x — 4 = 0 dans [1,2] avec une erreur

e = 1072, en utilisant la méthode de Lagrange.

20 ]
/
'
15 ,’f
/
4
10 /
/z
é /
/
5 P
7
/
e e s oo 7‘— ---------------
5 s — s
-1 0.5 0 05 1 15 2 25 3

FI1GURE 3.5 — Graphe de f

My = max{ (@)} = 1£/(2) = 1

my = min{| f'(z)[} = |f'(1)] = 2,

(1,2]
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et pour tout x € [1,2], on a

fl(x) =32 —1>0,

f"(x) =62 >0,

et f(1)f”(1) <0, donc on prend zg = 1, et pour tout n € N

T, — 2
Tpi1 = Ty — f(wn)m-

En suivant le schéma itératif de 'algorithme de Lagrange on obtient,

%21 = 20 — f(xo)#:jc@) —1- (—4)22_;<_14) — 1.666 ct f(z1) = —1,0368
oy — g < Mz — LI AP _11—]1 6667 — 1| = 3.

2y = 11 — f(xl)ﬁ — 1.7805

s — €] < Mlm;lmlm—m —0.05

¥ T3 = T3 — f@@ﬁ — 1.7945

s — ] < ML= — M|y — ] = 0.034

¥ Ty = g — f(xg)ﬁ — 1.7961

M _
24 — €] < 1Tml|x4 — 23] = 0.009
1

Donc £ = 1.7961 £+ 0.009
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3.4 Méthode de Newton-Raphson

Cette méthode est la plus utilisée pour la recherche des racines dans les problemes a
une dimension. Elle requiert cependant 1’évaluation de f(z) et de f’(z). Soit £ une racine

unique de I'équation f(x) = 0 sur Uintervalle [a, ], tel que f est continue qui vérifie :

f'(z) # 0 sur [a,b], (3.2)
f"(x) # 0 sur [a, b (3.3)

L’idée principale de cette méthode, consiste a remplacer a chaque itération k, I'arc
de la courbe de la fonction y = f(x) dans [a,b] par la tangente de cet arc au point
(xn, f(x,)) : L’abscisse x,41 de l'intersection de 1’équation de la tangente avec I'axe Oz
est une approximation de I'unique solution & dans [a,b] pour 'équation f(x) = 0 (voir

Figure 3.6). L’équation de la tangente s’écrit :

y = flzn) + f'(zn)(@ — 2n)

qui coupe l'axe Ox au point (z,41,0) d’otut :

f(@n) + f'(2n)(@n1 — 2,) = 0
ce qui donne le schéma itératif suivant de Newton-Raphson :

—Choisir zg € [a, b] tel que f(xzo).f"(x¢) > 0.

—Poser T,41 = T, — —J{,(é’;))

Proposition 3.3. Soit f une fonction continue sur un intervalle [a, b], vérifiant f(a)f(b) <0,
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FI1GURE 3.6 — Construction des premiers itérés de la Méthode de Newton-Raphson.

et soit & €)a,b[ lunique solution de l’équation f(z) = 0. Si f € C*([a,b]) tel que Vx €
[a,b], f'(x).f"(x) # 0, alors la suite {x, }nen construite par la méthode de Newton-Raphson

converge vers £ et on a l’estimation

avec

M, = [a?éf({‘f (@)}, m1 = I[r;’iél{lf (@)[}

Exemple 1 : Calculons la racine de I’équation 2® — x — 4 = 0 dans [1, 2], avec un erreur
e < 1072, en utilisant la méthode de Newton-Raphson.
On a f(1).f(2) < 0,Vz € [1,2] : f'(x) = 32> — 1 > O et f’(x) = 62 > 0. Appli-

quons le schéma itératif de 'algorithme de Newton-Raphson partant de ¢y = 2 avec
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f(2).f"(2) > 0, on obtient :

My = max{|f"(z)|} = f"(2) =12 et my = I[glg]lﬂf’(lf)l} =f(1)=2

[1,2]
_ f(Io)_ _f(2)_

* X1 = To — Flae) 2 f’(2) =1, 8181,

1§ —a1| < %(9&1 — z)* = 2(1 818 — 2)? ~ 0.01
B f(xy) f(1,8181)

wn == e —1,8181 — (18181 = 1.7966,

M. 12
€ — 2| < Q—mi(xg — 1) = (17966 — 1.818)” = 0.001 < 0.01

Donc ¢ = 1.7966 + 0.001.

Dans certaines situations, la dérivée de f est tres compliquée voir méme impossible
a calculer. Dans ce cas, nous approchons la dérivée par un taux d’accroissement. Ce

que nous obtenons est appelée méthode de la sécante :

—Choisir zg, z1 € [a, b] proche de €.

—Poser Tpt+1l = Tp — f(l’n)%

Ici, z,41 dépend de z, et de x,_1 : on dit que c’est une méthode a deux pas;
nous avons d’ailleurs besoin de deux itérés initiaux xg et xy,. L’avantage de cette
méthode est qu’elle ne nécessite pas le calcul de la dérivée f’. L’inconvénient est que

la convergence n’est plus quadratique.

3.5 Exercices supplémentaires

Exercice 1. En utilisant I’algorithme de Newton-Raphson, chercher la racine carrée
de 2 sur intervalle [1,2] pour une précision de ¢ = 1073, en prenant zy = 2

comme point initiale.
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Solution .

Cherchons la racine carrée de 2 sur U'intervalle [1,2], c’est a dire posons
?=2= flr)=2"-2=0

. Pour tout n € N, on pose

n

Ona f'(zr) =2z et f'(x) =2> 0, dou

My = mae| (@) =2 et my = min| F(@)] = 7/(1) =2

f(xo) - f(2) _
F (o) =2 7(2) =1.5

M.
|€—1?1|§2—m21(f€1—5€0)2=m(
flo) g FOD) g

*T1 = Ty —

2 —1.5) =0.125

¥ Top = T — =1.
N P F/(15)
—wg| < (g — = = (1.5—1.416)%> = 0.
[3 le_le(m 7))t = 5505 6)? = 0.0035
f () 1.416
=y — S = 1416 — —— = 1.414
FE T T ) 1.416

M. 2
€ — x3] < ﬁ(xg —1)% = 55 (1416 — 14142 =2x10 % < ¢
1

Donc x* ~ 1.414+ 2 x 1075

Exercice 2.

a- Donné le schéma itératif de I’algorithme de Newton-Raphson pour résoudre une

50



équation non-linéaire f(x) = 0.

b- Déterminer en utilisant ’algorithme de Newton-Raphson la racine situé dans

—2x

[0,1], de I’équation x? = e~2*  avec une précision ¢ < 1073 en partant d’un

point initial x¢ = 1.

Solution .

b- Déterminons la racine situé dans [0, 1], de I'équation z? = e~2* & 1073 pres

en utilisant ’algorithme de Newton-Raphson.
On a

fl(x) =204+2e et f'(x) =2 —4e >

avec

M, = Iﬁaﬁi |f"(z)| = f"(1) = 1.45 et my = [li2r]1 |f'(z)| = £(0.346) = 1.69

En suivant le méme schémas que dans ’exercice précédant, on obtient

f(ffo) -1 f(l)

=y = et = 1 s = 06192
[ 2%21(:51 — x0)% = 0.0624

52y = 0y — J{((ill)) — 0.6192 — % — 0.5677
€ — 1] < 2%21(@ — ;)% =0.0011

A ;/ii; —0.6192 — 82132 — 0.5671

M
€ — z3] < 2—2(353 — 1)’ =155x10" < ¢
my

Donc z* ~ 0.5671 + 1.55 x 1077
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Exercice 3. Soit l'équation f(z) = 2tan(z) —x —1 =0 avec z € [—m,7].
a- Séparer analytiquement les racines de cette équation.

b- Calculer le nombre d’itérations n nécessaires pour approcher cette racine a

1073 par la méthode de bissection.

Solution .

a- On a f(z) =2tan(zx) —x —1, et f'(x) = ﬁ — 1. Le tableau de variations

de f est :
x -7 —7/2 /2 s
f'() + I + | +
+00 +00 —4.14
2.14 -00 —00

Donc d’apres ce tableau il existe une seule racine dans l'intervalle | — 7, 7[.

b-Calculons le nombre nécessaire des itérations

In(Z2)

2e
In
111( 2><{r0*3 )
In2

n >

~ 10.6173

Donc pour atteindre la racine a 2 x 1073 pres, il faudra avoir n > 11

Exercice 4 .

a-Calculer la racine minimale de I’équation 2% — 22 —4 = 0 &4 5 x 1073 pres, en
utilisant la méthode de Newton-Raphson et la méthode de Lagrange.

b- D’apres les résultats obtenus comparer les deux méthodes et conclure.

Solution . D’apres Figure 3.7, cette équation admet deux racines, cherchons la

racine négatif situé dans l'intervalle [—2, —1].
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FIGURE 3.7 — Graphe de f.

Méthode de Newton :

On a
fl(z) =42® -2 <0,V € [-2, 1],
f"(z) =122 > 0,Vx € [-2, —1].
et
My = {1 (0)]} = |"(-2)] = 48
i = agin (7@} = 17/ (-D] =6
Puisque f(—2).f"(—2) > 0, donc en prend xyg = —2 comme point initiale, et

pour tout n € N, on pose

n
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En suivant le schéma itératif de I'algorithme de Newton-Raphson on obtient,

= 29— =2 =153
* XTq Zo f’({[‘o) Y]
M, , 48 ,
| € 2 (ay — ) = —(—1.53 4+ 2)2 = 0.
[3 xll_zml(:cl o) 2><6( 53 4 2)% = 0.88
= - — 153 = 125
I ) ~16.32
M.
‘f - .172‘ S 2—77121<.Z'2 — I'1>2 =0.31
= 1y — =—-120— — = —1.1542
FE T T ) 981
M-
€ — x3] < 2—77121(:53 —15)2=0.03
0.083
o =y AT s 0083
f/(flfg) —8.15
M-
€ — 4| < —Qmi (24 — 23)° = 0.004
Donc £ = —1.144 + 0.004
Méthode de Lagrange :
Puisque f(—1).f"(—1) < 0, donc en prend xy = —1 comme point initiale, et

pour tout n € N, on pose
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avee My = max {|f ()]} = (2] = 34etmi = min {|7'(@)]} = |7'(~1)| = 6

- f(xo)f(xo"’;“jfz(_z) — _1.05
|z — §|< - |x1—x0|—0274

Ty =2y — f<x1)f(x§1—+f2(—2) — _1.0941
|zo — §|< - |x2—a:1|—0164

% T3 = Ty — f(g;Q)ﬂm;gz_Jer(_Q) = —1.1149
fog = €] < My — ] = 0097
4= 15— f(xg)f(xf)?’jf(_z) = —1.127
24 — €] < Mlm;lmlm — 23] = 0.0564

x5 =Ty — f(a:4)f(x54_+f2(_2) = —1.1341
|zs — §|< - |x5—x4|f0033

* Tg = Ty — f(x5)f(x5:;5—+f2(—2) = —1.1382
|26 — €] < Mlm;lmlm — 5] = 0.0191

%17 = TG — f(a:ﬁ)f(gssﬁjf(_z) — —1.1406
2y — €] < Mlm;lmlm — 26| = 0.011

x5 = 27 — f(x7)f(x:§7_+f2(_2) = —1.1419
|z — €] < Mlm;lmlm — 24| = 0.006

* Tg = Tg — f<x8)f(x$8_+f2(_2) = —1.14275

M, —m
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Donc £ = —1.14275 £ 0.004.

Pour atteindre une précision € < 5 x 1072 il faudrait faire 09 itérations par
la méthode de Lagrange alors que la méthode de Newton ne nécessite que
4 itérations. La méthode de Newton converge beaucoup plus rapide que la

méthode Lagrange.

Exercice 5. On considere 'équation f(z) =0, avec f(z) = In(z) —x + 2.
l.a-Ecrire I'équation f(x) = 0 sous la forme fi(z) = fo(z) avec fi(z) = In(z).
b- Tracer les graphe de f; et fy. Que peut-on dire concernant cette équation ?
2.a- Faire 4 itérations de la méthode de dichotomie a partir de l'intervalle [3,4].
Quelle itération a donner le meilleur résultat ? Justifier et conclure.
b-Déterminer le nombre d’itérations n a faire pour avoir § < 10~*
¢- Donner une estimation de 'erreur apres 25 itérations.
3. Approcher la racine & 10™* pres par la méthode de Newton en posant zy = 3
(utiliser 4 chiffre apres la virgule).

4. D’apres les résultats obtenus comparer les deux méthodes et conclure.

Solution .

fl(x)=0<In(x) —z+2=0
e n(z)=a0-2

& fi(z) = fa(x) avec fi(x) =1In(z) et folz) =2 —2

1-b. D’apres Figure 3.8, les graphe de f; et fy possedent deux points d’intersection,

donc cette équation possede deux racines & €]0, 1] et & €]3,4].
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FIGURE 3.8 — Séparation graphique des racines.

2-a. En suivant la méme procédure que dans les exemples 1 et 2 on obtient 1 =
3.5, 19 = 3.25, 23 = 3.125 et x4 = 3.1875 avec x3 est la meilleur résultat obtenu car
f(z3) = 0.014 est le plus proche que f(z1), f(x2), f(x4). On conclus que méme si la
convergence de la suite de dichotomie vers la racine est stre, elle n’est pas monotone.

2-b.

Donc n > 14.

2-c

b—a
|xn_§|§ 2n+1
43

_ -8
= 5% = 1.4901 x 10

3. En appliquant l'algorithme de Newton partant du point xy = 3, et apres 3

itérations, 'algorithme atteint la racine & 1072, les points générés sont z; = 3.1479, x5 =

o7



3.1462 et x5 = 3.1462.

4. Pour atteindre une précision 1074, il faudrait faire 14 itérations par la méthode
de dichotomie alors que la méthode de Newton ne nécessite que 3 itérations. La
méthode de Newton converge beaucoup plus rapidement que la méthode de dicho-

tomie.

58



Chapitre 4

Résolution numériques des équations

différentielles ordinaires

En physique, les phénomenes sont gouvernés par des lois écrites souvent sous
forme différentielle (cas unidimensionnel) ou plus généralement sous forme d’équations aux
dérivées partielles (cas multidimensionnel). Comme signalé auparavant qu’on se confronte
dans plusieurs cas a des difficultés de résolution par les méthodes analytiques, pour cela
on fait appel aux méthodes numériques.

Plusieurs méthodes sont utilisées, le choix balance entre la simplicité et la précision

de la méthode.

Définition 4.1. On appelle équation différentielle ordinaire (EDQO) d’ordre n,n € N*

toute relation de type

Flty(®), '), y™ () =0 (4.1)

qu’on écrit sous la forme (dite canonique)

y (6 = fty(0).y' @),y (1) (4.2)

59



ol y est une fonction de variable t et pouri=1,...,n,y" est la dériver de y par rapport

at dordre 1.

La solution générale de 1’équation (4.1) et (4.2) est donné par la relation entre ¢ et
y avec un nombre de constants (égale au degré de I’équation). Cette relation peut étre
implicite :

W(t,y(t),c1,...,c,) =0

ou explicite

y(t) =Vi(t,cr,. .., cn)

Pour déterminer les constantes ¢;,i = 1,...,n, il nous faut des conditions (initiales
ou limites) sur y. Dans ce cours on se contentera a résoudre numériquement des équations

du premier ordre de types de probleme de Cauchy.

Définition 4.2. Une équation différentielle est dite d’ordre 1 si elle est de la forme :

y'(t) = f(t,y(t)) avec t € [a,b] et f une fonction définie : [a,b] x R — R

4.1 Probleme de Cauchy

Il s’agit de trouver une fonction dérivable y(t) : I = [a,b] — R, telle que

) = f(t,y(t)),t €l
(P y'(t) = f(t,y(t),t € )

y(to) = yo(conditions initiale)

Existence et ’unicité de la solution

Théoréme 4.1. Si f(t,y(t)) est une fonction continue sur I x R alors le probléeme (P)
admet une solution. L’unicité de la solution est garantie sous 'une des conditions sui-

vantes :
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a- f(t,y(t)) satisfait la condition de Lipschitz par rapport d la variante y, i.e.,
L > 07Vt € IvvylvyZ eR: ‘f(t7y1(t)) - f(t7y2(t>>| < L|y1(t) - yQ(t)|

b- La dérivée partielle %(t,y(t)) est continue et bornée sur I x R.

Exemple 1.
py. ] VO = me Rt el
1
yle) =e
On a f(t,y) = 7% + o7 est continue, et |§—£(t,y(t))’ = |75] < 1, donc g_Jy” est

continue sur [e, 5] X R et bornée, donc le problem (P;) admet une solution unique

y'(t) = 1+ tsin(ty(t)),t € [0, 2]

y(0) =0

(%)

On a f(t,y) = 1+ tsin(ty(t)) est continue, et %(t,y(t)) = t?cos(ty(t)) < t* < 4,

donc g—g est bornée, donc le problem (P;) admet une solution unique.

4.2 Méthode d’Euler

La méthode d’Euler est la procédure numérique la plus simple qui permet de résoudre
de fagon approximative des équations différentielles ordinaires du premier ordre avec
condition initiale. Pour résoudre numériquement le probléeme de Cauchy (P); nous com-
mengons par partitionner 'intervalle I = [a, b], c.a.d. nous choisissons des points to, t1, ..., t,
telsquea =ty <ty <---<t,=>b,avect; 1 =t;+h, h= ”’Ta (le pas de subdivision) et

n c’est le nombre de points correspondants. La tangente a la courbe y = y(t) ent =ty a
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pour équation :

g(t) = y(to) + (t —to)y'(to)

ou

g(t) = y(to) + (t —to) f(to, y(to))-

Au point ¢ = ¢, on obtient (voir Figure 4.1) :

y(t) = g(t) = y(to) + (t1 — to) f(to, y(to))

or h =t —ty, donc

y(t1) =~ y(t1) = y(to) + hf(to,y(to)).

Posons yo = 4(to),y1 = ¢(t1), et on recommence la méme procédure dans l'intervalle

[t1,12], on obtient :

y(t2) = y2 = y1 + hf(t1, 11).
Et ainsi de suite, on construit 'algorithme d’Euler suivant :

Yo = y(to),to = a

Yit1 :yz+hf<t1)yz)7lzl77n_]-

avec h = b’Ta, et tiy1 =1t;,+ h.

Erreur de la méthode d’Euler

Définition 4.3. Une méthode numérique approchant y(t;) par y; telles que Uerreur e; =
ly(t:) — yi| vérifie

€; S khP
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V) =¥ =v@,)
y @ 1

)

F1GURE 4.1 — Construction des premiers itérés de la méthode de d’Euler.

est dite d’ordre p, ot k est une constante indépendante de i et de h, et y(t;) est la valeur

exacte de la solution du probleme de Cauchy au point t; = tg + th.

Théoréme 4.2. Soit f(t,y(t)) une fonction continue sur [a,b] xR et L-lipschitzienne par

rapport a la variante y, et que y € C?[a,b]. Alors on a

e; < (el — 1)%h

ot My = m[ax] ly"(t)| et e; est lerreur commise au point (t;,y;), c.a.d. e; = |y(t;) — yil.
t€la,b
Remarque 4.1. Ce résultat s’exprime sous la forme e; < kh, c’est a dire que la méthode

d’Euler est d’ordre 1.

Exemple 1 : Soit le probleme de Cauchy suivant :

y(t) =ty'/?

y(1) =1

Calculons y(1,01),y(1.02),y(1.03) par la méthode d’Euler.
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On prend yo = 1,1y = 1 avec y;41 = y; + h(tiyil/g) et h =0.01, d’ou :

y(1.01) ~ 4y = yo + 001 x to x yo/* =1+ 0.01 x 1 x 1% = 1.01.
y(1.02) ~ yp = y; +0.01 x 1.01 x (1.01)"/% = 1.0201

4(1.03) ~ y5 = y5 + 0.01 x 1.0201 x (1.0201)"/3 = 1.0304

Exemple 2 : Résoudre le probleme de Cauchy suivant par la méthode d’Euler en prenant

un pas h = 0.25.
y(t)=2—ty*t€]0,1]

y(0) =1
Les points t; a évaluer pour h = 0.25 sont ty = 0,¢; = 0.25,t5 = 0.5,t3 = 0.75,t4, = 1.

En suivant le méme schéma que dans I’exemple précédant on obtient :

y(0.25) ~ 41 = yo + 0.25 x f(to,y0) = 1+0.25(2—-0x 1%) =15
y(0.5) ~ 1o = y1 +0.25 x f(ty,y1) = 1.5+ 0.25(2 — 0.25 x 1.5%) = 1.8594
y(0.75) =~ y3 = yo + 0.25 X f(ta,12) = 1.859 + 0.25(2 — 0.5 x 1.859%) = 1.927

y(1) ~ yy = y3 +0.25 x f(t3,y3) = 1.927 + 0.25(2 — 0.75 x 1.927%) = 1.7308

Exemple 3 : Soit le probleme de Cauchy suivant :

y(t)=t+y,tel01]

y(0) =1

On veut approcher la solution de ce problem en ¢ = 1 a I'aide de la méthode d’Euler,
en subdivisant l'intervalle [0, 1] en dix parties égales. En suivant la méme procédure,

on obtient les valeurs {t;,v;} :
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ilo] 1] 2 3 4 5 6 7 8 9 10
t: 1010102 03 | 04 0.5 0.6 0.7 0.8 0.9 1
g | 11,1 1,22 (1,362 | 1,5282 | 1,7210 | 1,9431 | 2,1974 | 2,4871 | 2,8158 | 3,1874

D’apres ce tableau on obtient y(1) ~ y;o = 3, 187. L’approximation calculée est tres

grossiere car la solution exacte de ce probléme est donnée par y(t) = 2e' — ¢ — 1,

donc la valeur exact est y(1) = 3,437.

4.3 Meéthode d’Euler améliorée

Cette méthode est plus précise que la précédente, elle consiste a remplacer dans la

méthode d’Euler la pente de la tangente en (z,,y,) par la valeur corrigée au milieu de

I'intervalle [z, x,.1], dont I'algorithme est :

Yo = y(to),to = a

Y1 =Y+ hf(ti+ 2y + 2Ky) i =1,

Ky = f(ws,y:)

Exemple Soit le problem de Cauchy suivant :

y'(t) =y(t)—t+2,t€0,1]

y(0) =2
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En utilisant ’algorithme de la méthode d’Euler améliorée avec un pas h = 0.1 on obtient :

yo=y(0)=2,h=0.1

y = y(0.1) = yo + hf(to + %, 50 + L K1),
Ky = f(to,y0) = f(0.2) =4

y(0.1) ~ y; =2+ %1 £(0.05,2.2) = 2.415.

En répétant la méme démarche pour les autres itérations, on obtient les résultats dans le

tableau suivant :

vt |0 1 2 3 4 ) 6 7 8 9 10

t, 0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

yi | 2| 2.415 | 2.8465 | 3.3111 | 3.8122 | 4.3535 | 4.9388 | 5.5727 | 6.2599 | 7.0059 | 7.8165

4.4 Méthode de Runge—Kutta

Les méthodes de type Runge-Kutta permettent d’obtenir une plus grande précision
(elles génerent des solutions numériques plus proches des solutions analytiques) que la

méthode d’Euler.

4.4.1 Méthode de Runge-Kutta d’ordre 2 (Heun)

La méthode de Rung-Kutta d’ordre 2 (RK>3) est une amélioration de la méthode
d’Euler. En effet, la méthode d’Euler s’appuie sur le développement de Taylor d’ordre 1.
Or, il est évident qu’on peut obtenir des méthodes plus performantes en considérant des
développements d’ordre supérieur a 1. Ainsi, si la fonction f est suffisamment différentiable,
en peut écrire :

h2

Vi1 = Yi +h xy'(t;) + ?y”(ti)
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avec,

0 0
V() = Ft0) et 5"(0) = G (t) + S (80) x 5 t,0)
Donc,
h? (5 )
Yirr = Yi + hf(ti,yi) + 5 <5_{(ti7 yi) + f(ti, yi) X 5_§(ti7 yz)) )

du fait que 'on a @ f(t;+h,yi+hf(ti,y:) = f(ts, y:) +h <fs_{(ti7yi) + f(ti, yi) ¥ g—i(ti,yz-)>,

on aura

h h
y(tiv) = y(t:) + §f<ti7yi) + §f(7fz' + h,yi + hf(ti,yi),
Ainsi, on obtient I'algorithme de Rung-Kutta d’ordre 2 :

/

yo = y(to),to = a et h = b_T“

Y1 = Ui + 2(K1+ Kp),i=1,...,n—1
Ky = f(ti,y:)

Ky = f(ti + h,y; + hK;)

4.4.2 Meéthode de Runge-Kutta d’ordre 4

C’est la méthode la plus précise et la plus utilisée en pratique, I'erreur est d’ordre
quatre. Elle calcule la valeur de la fonction en quatre points intermédiaires. Sont schéma

itératif est donné comme suit

(

yo = y(to),to = a et h = b;—a
Yirr = Ui + 2(K1 4+ 2K, +2K3+ Ky),i=1,...,n— 1
Kl = f(tzayz)

= flti+ 5y + 2Ky)

Ko
K
K,y

(
flti+ 2y + LK)
(

f(ti+h,y; + hK3)
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Notons que le nombre de termes retenus dans la série de Taylor définit 1'ordre de
la méthode de Runge-Kutta. Il vient que la méthode Runge-Kutta d’ordre 4, s’arréte au

terme O(h*) de la série de Taylor.

Exemple 1 : Soit le probleme de Cauchy suivant

y'(t) :y—%,te 0,1]

y(0) =1

La solution exacte de ce probleme est : y(t) = /2t + 1.
- Donner une valeur approché de y(0.2) en utilisant la méthode de RKs et RK 4 avec
un pas h = 0.2.

- Apprécier les résultats obtenues en les comparant avec la solution exacte.

Solution :

Méthode de Rung-Kutta d’ordre 2 :

y1 = y(0.2) = yo + (K1 + K»),
(RK3) 4 Ky = f(to,yo) = f(0,1) =1

Ky = f(to+ h,yo + hKy) = £(0.2,1.2) = 0.866

y1 =y(0.2) =1+ %3(1 4 0.866) = 1.1866.

\

eri, = |\/2 % (0.2) + 1 — 1.1866] = 3.450709 x 1073,

Méthode de Rung-Kutta d’ordre 4 :
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Y1 ="Yo + %(Kl + 2K, +2K3 + Ky),

tO? ?/0)

E
3
I

to+ 2 yo+ LK) = f(0.1,1.1) = 0.918182

f(
f(
flto+ 5 yo + 2Ky) = £(0.1,1.091818) = 0.908637
f(

to + h,y; + hE3) = £(0.2,1.181727) = 0.843239

| =1+ %2(K, + 2K, 4+ 2K3 + K,) = 1.1832292

<

eri, = |\/2 % (0.2) +1 — 1.1832292| = 1.32 x 107°. Donc egk, < €gr,-

Exemple 2 : Résoudre le probleme de Cauchy suivant, par la méthode RK,4 en prenant

un pas h = 0.25.
y'(t) =2 —ty* t € [0,1]
y(0) =1
On a,
.
yo=y(0) =1,h=0.25
m :yo—|—%(K1+2K2+2K3—|—K4),z‘: 1,....,n—1
= f(to,%0) =
(RK) — flto+ 2,90+ 2K,) = 1.8047
= f(to+ 2, yo + LK) = 1.8122
= fto+ h,y; + hK3) = 1.4722
y1 =1+ 2B(K, + 2K, + 2K;3 + Ky) = 1.4461

En répétant le méme processus que dans I'étape 1, on obtient : yo = 1.7028,y3 =

1.7317 et yq = 1.6147
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4.5 Exercices supplémentaires

Exercice 1. Soit le probleme de Cauchy suivant :

y'(t) =2t —y(t)|t €[0,1]

y(0) =1

a- Montrer que le probleme (P) admet une solution unique.

U‘
1

Vérifier que le probleme (P) admet I’équation (4.3) comme une solution particuliere,

y(t) =2t — 2+ 3e". (4.3)

(@)
1

Donner le schéma itératif de ’algorithme Runge-Kutta d’ordre quatre pour résoudre

le probleme (P).

Q.
1

Appliquer I'algorithme Runge-Kutta d’ordre quatre a ce probleme avec h = 0.1 pour
évaluer la solution en ¢ = 0.3. Comparer la solution obtenue avec la solution exacte.
Solution .

a- On a % = 1 est une fonction continue et bornée, donc ce probleme admet une

solution unique.

b- On d’apres (4.3)

Y (t) =2 — 3e?
=2 —3e ' — 2t + 2t

=—y(t)+2t

D’autre part on a y(0) = -2+ 3 = 1, d’ou on déduit que 'équation (4.3) est une

solution particuliere.
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Yo = y(to), to =a et h = b;—a
Yi+1 = + (K1+2K2+2K3+K4)izl,...,n—l
Ky = f(ti,v)

flti + 5,9i + 5K1)

S

I
flti+ 5y + LK)
I

ti + h,yi + hK3)

\

d- Appliquons 'algorithme de la méthode de Runge-Kutta RK, avec h = 0.1

yl:yo+%(K1+2K2+2K3+K4),2:1,,n—l

= f(to, ) = f(0,1) —

(RK4) = f(to+ 2, y0 + 1K) = £(0.05,1.05) = —0.95
= flto+ %, yo + LK) = £(0.05,0.955) = —0.852
= f(to + h,yo + hK3) = £(0.05,0.914) = —0.814

1 =14 % (K + 2K, + 2K;3 4+ Ky) = 0.943

<

donc y(0.1) ~ y; = 0.943.

y2=y1+%(Kl+2K2+2K3+K4),z':1,...,n—1

= f(t1,y1) = £(0.1,0.9430) = —0.743

) =
Flti+ 2y + 2K = £(0.15,0.905) = —0.605
Flt+ 2y +2K) = f(

Ky = f(t1 + h,y1 + hKs) = £(0.2,0.8818) = —0.4818

£(0.15,0.9127) = —0.6127

y1 = 0.943 + SL(K, + 2K, + 2K3 + Ky) = 0.882

\
donc y(0.2) ~ y = 0.882.

En répétant la méme démarche, on obtient : y(0.3) ~ y3 = 0.8436
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Comparaison : On a la valeur de y(0.3) = 2 x 0.3 — 2 4 3¢~ %3 = 0.8225, donc

e; = 10.8225 — 0.8436| = 0.0216

Exercice 2.

a- Donner le schéma itératif de 'algorithme d’Euler pour résoudre le probleme (P) de

l'exercice 1.

b- Appliquer I'algorithme d’Euler a ce probleme avec h = 0.1 pour évaluer la solution en

t = 0.3. Comparer la solution obtenue avec la solution exacte.

Solution .

a_
Yo = y(to),to = a

Yirr = yi + hf(ti,vi)i=1,...,n—1

avec h = b’T“, et ti1 =1t; + h.

b-

y(0.1) = y; = yo + 0.1(2t0 — y(to)) = 1 + 0.1(2 x 0 — y(0)) = 0.92.
y(0.2) >~ yo =y + 0.1(2¢; — y(t1)) = 0.868

y(0.3) >~ y3 = y2 + 0.1(2t5 — y(t2)) = 0.8412

Donc y(0.3) ~ y5 = 0.8412.
Comparaison : La valeur exacte en ¢t = 0.3 est y(0.3) = 0.8225, donc l'erreur

commise lors de ’application de I'algorithme d’Euler est

e; = [0.8225 — 0.8412| = 0.019
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L’erreur théorique est donnée par

M.
(&3 S (eL(b_“) — 1)2—2]7/

ou My = m[ax] ly"(t)| et L est la constante de Lipschitz de f par rapport & y qui
tefo,1

égale a 1.

De plus on a,

y'(t) =3¢
Donc M, = max |3e”| = 3. Donc ,
te(0,1]
M.
< (el _ N2y
asle )31
< (61(0.3_0) _ 1)3 x 0.1
- 2x1

< 0.05247

Il est claire que e; < e;, donc la méthode d’FEuler donne une bonne approximation

de la solution de ce probleme de Cauchy en ¢t = 1.

Exercice 3. Soit I’équation différentielle suivante :

y'(t) =y(t)+t|t €]0,1]

y(0) =1

La solution exacte de cette équation est y(t) = —1 — ¢ + 2¢'.
- Approcher numériquement la solution de cette équation en ¢t = 1 a 'aide de la
méthode d’Euler en subdivisant l'intervalle en 10 parties égales.

- Comparer la solution obtenu avec la solution exacte.
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Solution .
Posons f(t,y) = y(t) + t, les points t; a évaluer pour h = 0.1 sont t; = 0.1,y =
0.2,t3 = 04,...,t10 = 1. En suivant le méme schéma que dans les exemples

précédents on obtient :

y(0.1) ~ y1 =y + 0.1 x f(to,50) = 1.1

y(0.3) ~ y3 = yo + 0.1 x f(t2,y2) = 1.362

y(1) ~ yio = yo + 0.1 X f(to, yo) = 3.1874

C’est a dire que 'approximation en ¢t = 1 de y(t) est y;o = 3.1874
- Comparaisons des résultats :
La valeur exacte en t = 1 est y(1) = —1 — 1 + 2¢! = 3.4366. Ainsi U'erreur effective-

ment commise lors de I'application de la méthode d’Euler est

e; = |3.4366 — 3.1874| = 0.25

Cherchons I'erreur théoriques qui est donnée par

ou My = m[ax] |y (t)| et L est la constante de Lipschitz de f par rapport a y.
te[0,1

On a,

|f(ty) = [t y)| =y — | = L =1
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De plus on a,

y'(t) =y (y)+1=ylt)+t+1
=1+t+(—1—t+2¢"
= 2¢!

Donc M, = max |2¢'| = 2e. Donc
t€[0,1]

M.
e < (eL(b_“) — 1)2—L2h
< (-0 _ 12X 01
- 2x1

< 0.4673

Il est claire que e; < e;, donc la méthode d’FEuler donne une bonne approximation

de la solution de ce probleme de Cauchy en ¢t = 1.

Exercice 4. Résoudre le probleme de Cauchy suivant par la méthode Runge-Kutta d’ordre

4 en prenant un pas h = 0.1 .

Solution .
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Appliquons 'algorithme de la méthode de Runge-Kutta RK4 avec h = 0.1 .

K
Ky
K
Ky

<

\

Yo =y(0) =
v =yo + LK) + 2K+ 2K3 + Ky),i=1,...,n— 1

2,h =0.1

f(to,y0) = 0.4
f(to+ 5, yo + 2Ky) = 0.4150
f(
f(to+ h,y; + hKs) = 0.4365

to + %,yo + %KQ) = 0.4157

1 =14 98(K, + 2K, + 2K;3 + Ky) = 2.4163

En répétant la méme démarche pour les autres itérations, on obtient les résultats

dans le tableau suivant :

i |01 2 3 4 5 6 7 8 9 10
t; 10101 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Yi | 2] 2.4163 | 2.8659 | 3.5323 | 3.8793 | 4.4513 | 5.0728 | 5.7492 | 6.4863 | 7.2903 | 8.1684

Exercice 4. Soit I’équation différentielle suivante :

y'(1)

y(2)

=t—Iny

=34

- Calculer y(2.8) par la méthode de Runge-Kutta d’ordre quatre avec h = 0.8 puis

avec h = 0.4.

Solution abrégée .

- y(2.8) avec h = 0.8 est y(2.8) ~ y; = 4.255952.

- y(2.8) avec h = 0.4 est y(2.8) ~ y, = 4.255888.
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Exercice 5. Soit I’équation différentielle suivante :

- Calculer y(1.5) par la méthode de Runge-Kutta d’ordre quatre en utilisant un pas
h =0.5.

- Reprendre le calcul de y(1.5) avec h = 0.25

Solution abrégée .
- y(1.5) avec h = 0.5 est y(1.5) ~ y; = 1.67985

- y(1.5) avec h = 0.25 est y(1.5) ~ yo = 1.68178

Exercice 6. Soit le probleme de Cauchy suivant :

y(t)=—y+t+1{t €]0,1]

y(0) = 1.

a- Calculer 'approximation de y(0.2) en utilisant les méthode d'Euler, avec un pas h = 0.1.

b- Calculer I'approximation de y(0.2) en utilisant les méthode d’Euler améliorée, avec un pas
h=0.1.

c- Pour chaque méthode, calculer 'erreur commise en comparant le résultat obtenu avec la

solution exacte y*(0.2) = 1.018731.

Solution abrégée .
a- ¥(0.2) >~ yo = 1.01 et |y2 — y(0.2)| = 0,008731.

b- y(0.2) ~ yo = 1.019025 et |y — y(0.2)| = 0,000294.

7



Chapitre 5

Résolution numériques des systemes

d’équations linéaires

Dans la pratique, I'ingénieur se trouve souvent confronté a des probléemes dont
la résolution passe par celle d'un systeme d’équations qui modélise les divers éléments
considérés. Par exemple, la détermination des courants et tensions dans des réseaux
électriques passe par la résolution d’un systeme d’équations linéaires.

On cherche le vecteur X € R", X = (x1,29,...,2,), solution du systeme linéaire

suivant :
4

a1 + a12T9 + - - - + ATy = bl

A21T1 + A2 + * + + + Aop Ly = bg
AX =b <= (5.1)

[ @n1Z1 + anaa + - + @y = by,

Ce systeme admet une solution unique lorsque le déterminant de A est non nul, ce
que nous supposerons dans la suite. La résolution de ce systeme a 1’aide des méthodes
direct est impraticable lorsque n est relativement grand. Par conséquent, il est préférable

d’utiliser des méthodes itératives basées sur la construction d’une suite convergente vers
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la solution du systeme. Dans ce chapitre on va introduire deux méthodes itératives qui
donnent une solution approximative du systéeme d’équations linéaires en utilisant une
fonction linéaire f telle que X*™! = f(X*) k € N. Ces méthodes sont tres faciles &
mettre en ceuvre et a programmer, elles ne consomment pas la mémoire et donnent des
résultats autant précis que I'on veut.

Etant donné un vecteur initial arbitraire X%, on construit une suite de vecteurs

X0 xt ..o X ...

’

qui converge vers la solution X* du systeme linéaire AX = b. On considere le systeme
linéaire (5.1) avec A une matrice carrée d’ordre n inversible et b un vecteur de R”. Pour

toute matrice M carrée d’ordre n inversible, le systeme (5.1) est équivalent a

MX —(M—-A)X=b

ou encore, en posant N = M — A, B=M"'N et ¢ = M~'b on obtient

X=BX+c

Ce qui nous permet de définir la formule itérative suivante :

X° € R” vecteur initiale
(5.2)

XK1= BX* + ¢

Soit X* la solution exacte de (5.1), si on note e* = || X* — X*|| le k-iéme vecteur erreur,

on obtient
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e = [1X = X7 = (BX*" +¢) = (BX" + )| = BIX*" - X'|

= Bek,1 = Bkeo
Remarque 5.1. En pratique si on impose une précision € on peut estimer l’erreur par :
X = X" <e
cela veux dire que, pour tout i € {1,...,n} on a :
jof — i <e

Théoréme 5.1. On dit que la méthode itérative (5.2) converge si la suite de vecteurs
{e*}ren converge wvers zéro indépendamment du vecteur initial X°, si l'une des trois

normes est inférieur a 1 :

n

- [[Blx = m]aX(Z | Bijl)

=1

n

- 1Blloe = max(}_ |Byl)

J=1

- 1Bll2 = V/p(BB")

Selon les choix des matrices M et N on a différentes méthodes itératives. On note
D la matrice formée des seuls éléments diagonaux de A, E la matrice formée des —a;; si

i > j et F' la matrice formée des —a;; si ¢ < j, de sorte que A =D — (E+ F).
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- La matrice D, c’est une matrice diagonale de A, donner par :

aiq 0 0
0 929 0
D=
0 0 Ann

0 0 0
— oy 0O --- 0

E =
—Qp1 —Gp2 - 0

- La matrice F', c’est une matrice triangulaire supérieure de A de diagonale nulle.

0 —aip -+ —ai

0 0 ce Qg
F =

0 0 0

5.1 Meéthode de Jacobi

Dans la méthode itérative de Jacobi, la matrice A du systeme AX = b est décomposée
en A = M — N. La matrice M correspond a la diagonale de A (et des zéros en dehors
de la diagonale) M = D et la matrice N est la matrice A dans laquelle on a rem-
placé les éléments de la diagonale par des zéros N = E + F. La matrice J = M~'N =

DY E + F) = I — D7'A est appelée matrice de Jacobi. Partant d’'un vecteur initiale
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X0 = (29,29,...,2%)" & chaque pas, on calcule X* suivant cette formule :

1 n
J}f—i_l:a—m(bl— Z aijx;?),i:l,l..,n (53)

=1,

Remarque 5.2. La méthode itérative de Jacobi ne converge pas toujours. Si A est une
matrice définie positive, la méthode itérative converge. De méme, si A est une matrice a
diagonale strictement dominante c’est-a-dire |a;;| > Z la;;|, alors la méthode de Jacobi

J#1
est convergente.

Exemple 1 : Considérons le systeme

4x1+2a:2+x3 =4
—$1+22L’2 =2

25E1+5E2+4I3 =9

Soit XY = (0,0,0)* le vecteur initial, en calculant les cinq premicres itérées on
trouve :
1 —1/16 —1/8 5/128 7/512
X'=1| 1 [.X?=| 32 [ .X®=|-1/32|.X"=] 15/16 | et X* =] 261/256
9/4 3/2 61/32 265/128 511/256

Exemple 2 : Résoudrons le systeme suivant par la méthode de Jacobi

3x1+ 20 —x3 =2
x1+5x2+2x3:17

21’1 — T9 — 61‘3 = —18

On a,
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Soit XY = (0,0,0)! le vecteur initial, on trouve X; =

Apres 10 itérations, on obtient le tableau des résultats suivant :

7::2, :BQ

i=1, it

k+1

i=3, ait!

T3

:%(Z—xé—i—xlg)

=1 (17 — zf — 22%)

==L (=18 — 22 + %)

6

2/3

3

17/5 |, Xo =

k
Ty

k
Lo

k
T3

10

0
0,666666
0,533333
0,862963
0,867407
0,940576
0,959975
0,978108
0,986915
0,992425

0,995585

0
3.4
2,066667
2,231111
2,094074
2,0601198
2,035835
2,019941
2,012104
2,006865
2,004067

0

3
2,655556
2,833333
2,915802
2,970123
2,970159
2,980686
2,980379
2,993621

2,996331

D’apres ce tableau, on remarque que les valeurs convergent vers la solution X =
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8/15
31/15

2.6555

1
2
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5.2 Meéthode de Gauss-Seidel

La méthode de Gauss-Seidel est une amélioration de la méthode de Jacobi en effet
elle rend le processus itératif plus rapide. Partons de la méthode de Jacobi, le calcul des
vecteurs X', Xo, ..., X* ..., mene & la convergence, cela veut dire que chaque nouveau
vecteur est meilleur que le précédent. On remarque dans la méthode de Jacobi que pour
calculer la composante z2 du vecteur X? on utilise celles de X! malgré que z? est déja
calculée et elle est meilleure que z} . D’ici vient le principe de la méthode de Gauss-Seidel,
on utilise chaque composante des quelle sera calculée. Ainsi, pour calculer la composante

k1

1 Y

on utilise toutes les composantes de z¥*! & 2¥*! déja calculées a litération (k + 1)

x
en plus de celles zF,; & =¥ qui ne sont qu’a litération k.

La matrice A étant décomposée en : A = M — N. On prend
M=D-EN=F

Ceci revient a modifier (5.3) comme suit : pour & > 0 (en supposant encore que a;; # 0

pouri=1,...,n)

i—1 n
1
TR (35 YIFRED o) RET R

j=1 j=i+1

Remarque 5.3. La méthode de Gauss-Seidel ne converge pas toujours. Si A est une

matrice définie positive, la méthode itérative converge. De méme, si A est une matrice

diagonalement dominante, c’est-a-dire si |a;;| > Z la;;|, alors la méthode de Gauss-Seidel
J#1

converge.

Exemple 1 : Résoudre par la méthode de Gauss-Seidel le systeme suivant en utilisant 3

itérations et un vecteur initial X° = (0,0, 0)".
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—I1 +SC2+3£IZ’3 =-1
ZE1+2$2 =2

31‘1—|—$2—£B3 =1

Ce systeme s’écrira en forme réduite :

i=1, z}, =147+ 32}
i=2, i, =1-ga5,
\ i=3, w3y =143z, — 2y
1
- Premiere itération, on obtient X' = | 0.5
1.5
6
- Deuxiéme itération, on obtient X? = | —9
19
56
- Troisiéme itération, on obtient X3 = | _97
194

Exemple 2 : Résoudre le méme systeme linéaire de I’exemple 2 par la méthode de Gauss-

Seidel.

Pour chaque itération k, le schéma itératif de la méthode de Gauss-Seidel s’écrit

dans ce cas
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Partant de X° = (0,0, 0), on trouve X' = (2/3,49/15,241/90). Apres 10 itérations,
p

on obtient le tableau des résultats suivant :

i=1, oitt =1(2—ak+ak)
i=2, af™ =117 -2l —22%)
[ 1= 3, Attt = %1 (—18 — 25 ¢ xé“)

1
T,

2
oy

3
L,

9

10

0
0.6666667
0.4703704
0.8498354
0.9380855
0.9775034
0.9914991
0.9968271
0.9988115

0.9995553

0.9998335

0
3.266667
2,234815
2.116305
2.040158
2.015432
2.005729
2.002150
2.000804

2.000301

2.000113

0
2.677778
2.784321
2.930561
2.972669
2.989929
2.996212
2.998584
2.999470
2.999802

2.999926

On constate que pour le méme nombre d’itérations, la solution approximative ob-
tenue par la méthode de Gauss-Seidel est plus précise. La méthode de Gauss-Seidel

converge généralement plus rapide que la méthode de Jacobi mais pas toujours.
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5.3 Exercices supplémentaires

Exercice 1. Résoudre le systeme suivant par la méthode de Jacobi, et déterminer le
nombre nécessaire d’itérations pour obtenir une erreur € = ||z* — 2*71|| < 1074, en

prenant un vecteur initial X° = (0,0,0)".

dry + 1lxg+23 =4
—1 + 229 =2
201 + 19+ 43 =9
Solution .
Pour chaque itération k, le schéma itératif de la méthode de Jordan s’écrit dans ce

cas

(

i=1, oit" =1 (4— 42k —2b)
i=2, 25T =1(24a})
| i=3, a5 =7 (9—22f —a})

Partant de X° = (0,0,0)!, pour atteindre la précision prescrit, nous effectuons 12

itérations, dont les résultats sont présentées dans le tableau suivant :
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1 1 1 2.25

2 | -0.0625 1.5 1.5

3 | -0.125 | 0.9688 | 1.9063
4 |1 0.0391 | 0.9375 | 2.0703
5 | 0.0137 | 1.0195 | 1.9961
6 | -0.0088 | 1.0068 | 1.9883
7 |1 -0.0005 | 0.9956 | 2.0027
8 | 0.0015 | 0.9998 | 2.0013
9 | -0.0002 | 1.0008 | 1.9993
10 | -0.0002 | 0.9999 | 1.9999
11 | 0.0001 | 0.9999 | 2.0001

12 0 1 2

Exercice 2. Soit le systeme suivant :

2131—.1‘2+I3 =3
l‘1+7$2—31‘3 =6

-1 + 3f[2 + 4:[3 =17

a- En partant de X° = (0,0,0)!, déterminer les 6 premicre itérations des méthodes de

Jacobi et de Gauss-Seidel.
b- Sachant que la solution exacte est X = (1,2, 3)?, que peut-on conclure ?

Solution .
a- Pour chaque itération k, le schéma itératif de la méthode de Jordan s’écrit dans

ce cas
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Partant de X° = (0,0,0)!, on trouve

X, = (1.5000, 0.8571, 4.2500)"
X, = (—0.1964, 2.4643, 3.9821)"
X3 = (0.7411,2.5918, 2.3527)"
X, = (1.6196,1.7596, 2.4914)"
X5 = (1.1341,1.6935, 3.3352)"

X = (0.6791,2.1245, 3.2634)"

avec € = || Xg — X*|| = 0.4334.
- Pour chaque itération k, le schéma itératif de la méthode de Gauss-Seidel s’écrit

dans ce cas

t=1, ] :%(2—1515—33’;)

i=2, zh = % (17 — gt 2x§)
i=3, z§tt =—-1(-18 -2} 4+ 25"
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Partant de X° = (0,0, 0)%, on trouve

X, = (1.5,0.6429, 4.1429)"

X, = (—0.25,2.6684,2.1862)"
X3 = (1.7411, 1.5454, 3.5262)"
X4 = (0.5096, 2.2956, 2.6557)"
X5 = (1.3199, 1.8067, 3.2249)"

X = (0.7909, 2.1263, 2.8530)"

avec € = || X¢ — 2*|| = 0.2851.
b- On constate que, pour un méme nombre d’itérations, la solution approximative

obtenue par la méthode de Gauss-Seidel est plus précise.

Exercice 3. Résoudre par la méthode de Gauss-Seidel avec une précision de 1073 le

systeme suivant :

81‘1+.’L’2+£L’3 =26
I1+5$2—l’3 =7

$1—£L‘2+5l’3 =7

Solution .

- Pour chaque itération k, la méthode de Gauss-Seidel s’écrit dans ce cas

i=1, ¥ :%(26—x’2“—x§)
, k1 k1
i=2, aytt =1 (7t 4 ah)
K+l _ 1 1 |,k
| i=3 oyt =1 (7T — it a5t



Partant de X° = (0,0, 0)%, on trouve

X, = (3.25,0.75,0.9000)"

X, = (3.0438,0.9712,0.9855)"
X3 = (3.0054,0.996,0.9981)"
X4 = (3.0007,0.9995, 0.9997)"

X5 = (3.0001,0.9999, 1)

Les solutions approchées de ce systéme converge vers la solution X* = (3,1,1)".
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