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Infroduction

L’'analyse numérique est une branche des mathématiques appliquées, qui s’intéresse a la mise
en pratique des méthodes numériques permettant de résoudre les problemes continus de mathé-
matique, par des calculs purement numériques a I’aide d’ordinateurs. Plus précisément, ’analyse
numeérique est consacrée a la construction d’algorithmes permettant de résoudre des problemes
de mathématiques continues qui viennent de la modélisation des phénomenes physiques. Cela
signifie qu’elle s’occupe principalement de répondre numériquement a des questions a variables
réelles, par exemple : la recherche de solution numérique des équations différentielles et d’autres
problémes liés survenant dans les sciences physiques, I'ingénierie et d’autres domaines d’appli-
cation qui sont tres diversifiés.

Ce cours a été enseigné pour les étudiants du tronc commun technologie a la faculté de I'in-
génieur de 'université de Sétif 1. Le but est de présenter aux étudiants quelques notions de base
concernant la résolution numérique de certains probléemes mathématiques tout en explicitant des
méthodes numériques permettant de résoudre effectivement de tels problemes. C’est pour cette
raison que ce cours est consacré a la mise en place de certaines techniques fondamentales de
I’analyse numérique. Le cours contient un traitement assez substantiel de 'approximation des
racines des équations algébriques, l'interpolation polynomiale de Lagrange et de Newton, 1’ap-
proximation au sens des moindres carrées et du calcul approché des intégrales, quatre themes qui
forment souvent l’essentiel d’une introduction a I’analyse numérique. La plupart des méthodes
numeériques exposées avaient étés effectivement mise en ceuvre au moyens de programmes écrits

en Scilab et les séries d’exercices donneront aux lecteurs une approche plus riche du sujet.



Chapitre 1

Résolution d’équations non linéaires

Rares sont les équations en mathématiques que l'on peut effectivement résoudre. Les équa-
tions polynomiales du premier et second degré sont particuliérement bien connues et étudiées.
Pour le reste, la situation se dégrade tres vite! Sil'on dispose effectivement de formules de résolu-
tion générale pour les troisieme et quatrieme degrés, elles ne sont que tres rarement utilisées dans
la pratique, a cause de leur complexité. Quant au cinquieme degré, ou au-dela, on sait depuis Abel
et Galois qu’elles ne peuvent étre résolues par radicaux sans parler bien stir des équations non
polynomiales, pour lesquelles des méthodes générales de résolution n’existent que tres rarement.
Autant dire qu’il est important, sinon essentiel, d’étre capable de résoudre de facon approchée
des équations de type f(x) = 0, ou f est une fonction réelle de variable réelle quelconque, que

nous supposerons dans tout ce chapitre continue sur son intervalle de définition.

Racines de I'’équation f(x) = 0

Définition 1.1.1
Soit f une fonction de IR dans R dont le domaine de définition est une partie D(f) de R. On dit
que a € D(f) est une racine de I’équation

flx)=0 (1.1)
si
f(a)=0. (1.2)

La résolution de ’équation (1.1), c’est de trouver tous les nombres «a tels que 1’équation (1.2) soit
vérifiée.

En d’autres termes, on cherche a déterminer I’ensemble
Ker(f) = {x € D(f) : f(x) = 0},

3
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Exemple 1.1.1

@ Soit I’équation
f(x)= ax?+bx+c, avec a,betcelR.

Alors ker(f) contient au plus deux éléments et peut-étre aussi vide.

@
f(x) =sin(x), avec D(f)=R".

Les racines de I’équation f(x) = 0 sont en nombre infini dénombrable et
ker(f)={xeR"/x=km, k=0,1,...}.

® Soit f : R — R la fonction définie par

f(x)= (1.3)

sin(%) six>0,
0 six <0.

On a alors
ker(f) =R U {x = ﬁ, k=1,...}.

L’'ensemble des solutions est infini non dénombrable.

1.1.1 Séparation des racines

On dit qu’une racine a de I’équation (1.1) est séparable, si on peut trouver un intervalle [a, D]
tel que a soit la seule racine de cette équation dans [a, b], ou encore si : ker(f)N[a,b] = {a}.
Nous nous intéressons dans ce chapitre a la localisation et I’approximation des racines séparables
de I’équation (1.1), nous opérerons en deux étapes :

O On cherche d’abord a séparer les racines.

® On essaie ensuite d’approximer cette racine.

On dispose de plusieurs méthodes pour séparer les racines d’une équation dont on cite

Méthode Graphique

Graphiquement, la racine a de I’équation (1.1) s’interprete comme l’abscisse du point de l'in-
tersection de la courbe représentative de f et I'axe (ox).

Exemple 1.1.2
® Soit a résoudre graphiquement ’équation f(x) = x> —a, ot a > 0 fixé et D(f) = R. Les variations
et la courbe représentative de f sont données par le tableau (1.1) et le graphe (1.2) suivants :

On voit que I'intersection du graphe avec I’axe (0x) permet de localiser les racines de I’équation

flx)=0.

@ Soit I’équation suivante :
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TasLE 1.1 — Tableau des variations de la fonction x > x? —a.
X —00 0 +00
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FiGure 1.1 — Approximation des racines de I’équation f(x) =0
1 =1,
xlog(x) (1.4)
D(f) =Rz,
cette équation s’écrit sous la forme
1
log(x) = —,
8(x) x (1.5)
D(f) = R?,

1
en posant f;(x) =log(x) et fo(x) = o I’équation (1.4) devient équivalente a I’équation :

{gggﬁuhm, (1.6)

Les variations des fonctions f; et f, sont données par les courbes ci-dessous.
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10 ——fonction f1 |
——fonction f2

fi(x) = fa(x)
i~

2, -
O, _
2 B
| | | | |
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X

Ficure 1.2 — Courbes des fonctions f(x) =logx et f,(x) = %

La racine de I’équation (1.4) peut étre cherchée dans 'intervalle [1, 2], elle correspond a I’abs-

cisse du point d’intersection des courbes représentatives des fonctions f; et f,.

Programme associé a la méthode en Scilab

//  La séparation des racines par la méthode graphique.
a=2;
deff("[y]=f(x)","y=xA2-a")

x = linspace(-2,2,50)";//x=[-2:h:2];h=(2-(-2))/50.

scf(1);

xlabel ("$oxon$);

ylabel ("$.f_{.\nu}(x)$’);

xtitle (’$\textcolor{black}{.Calcul_o\.de_.\_la_\_racine_.\.deo\a=2.}$%

legends ([ "$.la_\_racine.\o.deo\o20.$"],[ —4],0pt=5)
fplot2d (x,f,style=2)
xx=[-sqrt(a),sqrt(a)];
yy=[0,0];
plot2d (xx,yy, style =-4);

// La séparation des racines par la méthode graphique.
deff("[y]=f(x)","y=log(x)");
deff ("[yl=g(x)","y=1/x");
xlabel ("$oxon$’);
ylabel ("$.y$’);
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xtitle (’$\textcolor{black}{.Calcul_o\.de.\olao\oracineo\odeo\of}$7)
legends ([ "$_la.\_.racine.\ode\ofo$’],[—4],0pt=5)

x = linspace(0.1,4,100)";
fplot2d(x,f,style=2)
fplot2d(x,g,style=4)

xx=[1,2];

yy=[0,0];

xstring( 3.5,1.4, ’$\log(x)$’);
xstring ( 3.7,-1, ’$\dfrac{l}{x}$’);
plot2d (xx,yy,style=-4);

Méthode par Balayage

Soit f : [a,b] — R une fonction continue. On considére une suite croissante finie {x;}o<j<, de
valeurs de x réparties sur l'intervalle [a,b] contenu dans le domaine D(f), et on appliquera le
théoreme des valeurs intermédiaires sur chaque intervalle [x;,x;,1], avec si f(x;) x f(x;41) <0,
alors il existe au moins un nombre réel a; entre x; et x;,, vérifiant I’équation f(x) = 0.

La méthode consiste donc a déterminer parmi les quantités f(x;)x f(x;.1),i =0,...,n celles qui

sont négatives.

Remarque 1.1.1

La méthode par balayage ne permet pas de conclure qu’a l'existence d’( au moins ) une racine
dans l'intervalle [x;, x;,1]. Cette méthode ne permet pas la séparation des racines doubles, c’est a
dire les réels a tels que f(a) = f'(a)=0et f”(a) = 0.

1.1.2 Approximation des racines, Méthodes itératives

Définition 1.1.2
On appelle méthode itérative un procédé de calcul de la forme

X0 €D(f), X1 =flxp), k=0,1,... (1.7)

dans lequel, on part d’une valeur approchée x, pour calculer x;, puis a I'aide de x; on calcule x,

et ainsi de suite.

La formule (1.7) est dite formule de récurrence.

Parmi les méthodes numériques en général et les méthodes itératives en particulier, les plus
puissantes permettant la résolution approchée des équations de la forme f(x) =0, figurent

® Méthode de Newton Raphson.

@ Méthode de la sécante.
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La méthode de bipartition (dichotomie) bien qu’elle figure parmi les méthode a convergence

lente, sera aussi considérée a cause de sa simplicité et sa convergence globale.

Méthode de Newton Raphson

L'une des méthode connue d’analyse numérique pour résoudre les équations algébriques ou
les approximations successives des racines d’une fonction a valeurs réelles est la méthode de
Newton Raphson. Cette derniére fonctionne bien pour des fonctions de classe C2.

Soit f une fonction suffisamment réguliéres, par exemple de classe C?(]a, b[) au voisinage de
la racine a. Le développement de Taylor d’ordre deux de la fonction f au voisinage d’une valeur
approchée x; de a est :

fl@) = f(xo) + f(xo)(@ = x0) + 5 f ()@ = x0)° (1.8)

& €la, xol
1 ” 2 (19)
Ef (&)(a@—xp)° lereste de Lagrange.

Comme f(a) =0, en supposant que f’(xy) # 0, on aura

_ f(x()) 1 7 2
@ =x= 5o+ 5O —x)] (1.10)
En négligeant le reste R, = —%f”(é)(oc —x0)?, la quantité x — J]:/(();O)) dans (1.10) qu’on notera x;
0

constitue alors une valeur approchée améliorée de a.

En itérant le procédé on trouve la formule de récurrence suivante :

Xk+1 :xk_}(f’((f(i))’ k=0,1...,

(1.11)
xo donnée.

Cette derniere s’appelle Formule de Récurrence de Newton Raphson.
@ Convergence de la Méthode de Newton : Le théoreme suivant établit une convergence locale
quadratique de la méthode de Newton.

Théoreme 1.1.1 ([5], Théoréeme 5.17)

Soit f une fonction réelle de classe C? dans un voisinage d’un zéro simple &. Alors, la suite (x;)
définie par (1.11) converge au moins quadratiquement vers &, pour toute initialisation x, choisie
suffisamment proche de ce zéro.

On peut aussi démontrer un résultat de convergence globale pour cette méthode dans le cas ou la

fonction f est strictement monotone et strictement convexe (ou concave).
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Théoreme 1.1.2 ([5], Théoréeme 5.18)

Soit [a,b] un intervalle de Reet f : [a,b] — R une fonction de classe C?, changeant de signe sur [a, b]
telle que f’ et f” ne s’annulent pas sur [4,b]. Alors pour toute initialisation x, dans [a, b] vérifiant
f(x0)f”(xg) = 0 la suite (x;) définie par (1.11) converge vers l'unique zéro de f dans [a,b].

@ Critere d’arrét de la méthode de Newton : Soit x; la suite des approximations obtenue a l'aide

de la formule de Newton, grace au développement de Taylor d’ordre 1 au voisinage de a, on a :

| o —xp [<[ xps1 — x| (1.12)

Exemple 1.1.3
Soit I’équation

f(x)=1-xlog(x), x€[1,2]. (1.13)
On remarque que les hypotheses du Théoreme 1.1.2 sont vérifiées, donc on peut lui appliquer la
méthode de Newton, on obtient

1-xloglx) 4

Ml = X T g () o (1.14)

Xg=aoub.

Choix de x; : Comme f(2)f”(2)> 0, on prend xy = 2.
Les cinq premieres approximations de « obtenues par la méthode de Newton (1.14] sont en-
registrées dans le tableau 1.2.

TaBLE 1.2 — Approximations par la méthode de Newton Raphson

X; |Xk1 = x

2.
1.7718483 | 0.2281517
1.7632362 | 0.0086121
1.7632228 | 0.0000134
1.7632228 | 3.238D-11
1.7632228 | 2.220D-16

QL |k | W [N || &

Méthode de Bipartition (Dichotomie)

L’idée est de construire une suite d’intervalles [a,, b, ] de plus en plus petits contenants une
racine isolée de ’équation f(x) = 0. L'outil utilisé pour appliquer cette idée est le théoreme des

valeurs intermédiaires
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fonction f
—e—Intervalle (a, b) ||

Ficure 1.3 - Localisation de la racine de I’équation 1 — xlogx = 0.

L’algorithme

Supposons que la racine a € [a,b] avec f(a) X f(b) <0, on pose : ay = a, by = b et Iy = [ag, by]-

On divise l'intervalle I, en deux et on construit l'intervalle I; comme suit :

Soit xy = a bo, on calcule f(xq) x f(ag) :

si f(xg) % f(ag) <0alors: I} =[ay,by] =[ag, x¢] sinon Iy = [ay,b;] =[x, bo]

on répete le procédé pour obtenir une suite d’intervalles emboités :

Iy = [ag, br], k=0,1..., comme suit :

X >

[ar, xi]

Iri1 = [ak+1:bk+1] = {
(X%, by ]

enfin, on prend x; comme approximation de la racine a.

@ Critere d’arrét de la méthode de dichotomie :

_ak+bk

’

si f(xk) flax) <0,

si f(xx) f (ax) > 0.

(1.15)
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Soit xy la suite des approximations obtenues a I’aide de la formule de Dichotomie, on a I’erreur
commise sur X
(b—a)

|0(—Xklﬁw,k:0,l.... (116)

Remarque 1.1.2
Si on veut calculer une approximation x; avec une erreur donnée ¢, il suffit d’aller dans les itéra-

tions jusqu’a ce que n vérifie I'inégalité

—_

b—a)

|a—x, |< S <e. (1.17)
Autrement : )
log(=*2
nso8U) (Nbiter)
log(2)
Exemple 1.1.4
Soit a résoudre 1’équation
f(x):x3+x2—3x—3:0. (ex)

Pour la méthode de la bipartition (Dichotomie) :

@ Le choix de l'intervalle de départ est un élément important de la méthode.

® Vaut mieux avoir un graphe pour commencer.

Les résultats de la méthode de bipartition appliquée a I’équation (ex) sont enregistrés dans le
tableau 1.3.
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TasLE 1.3 — Les dix premieres approximations par la méthode de Bipartition (Dichotomie)

k | a X; b; f(x;) Izk;jl

0 1. 1.5 2. -1.875 0.5

1 1.5 1.75 2. 0.171875 0.25

2 1.5 1.625 1.75 -0.9433594 | 0.125

3 1.625 1.6875 1.75 -0.4094238 | 0.0625

4 1.6875 1.71875 1.75 -0.1247864 | 0.03125

5 1.71875 1.734375 1.75 0.0220299 0.015625
6 1.71875 1.7265625 | 1.734375 -0.0517554 | 0.0078125
7 1.7265625 | 1.7304688 | 1.734375 -0.0149572 | 0.0039063
8 1.7304688 | 1.7324219 | 1.734375 0.0035127 0.0019531
9 1.7304688 | 1.7314453 | 1.7324219 | - 0.0057282 | 0.0009766
1 1.7314453 | 1.7319336 | 1.7324219 | -0.0011092 | 0.0004883

/// la méthode de bipartition///
Write(’acandob..are.the.interval._borders.’)

Write (’eps..is.the_desired.accuracy.’)
function [y, epsl]|=Bipartion(a,b,eps)

/] deff("[y]=f(x)", "y=xN3}+x {2} -3+x—-3");
/] deff("[y]=f(x)","y=xM3}-Txx—1");
/] deff("[yI=f(x)","y=xN{2}=3");

deff ("[y]=f(x)","y=exp(3*x)—-x-30");
y=1[1
al=[];bl=[];
eps=0.001;
a=1;b=2;
k=1;
while abs(b-a) >eps,
x=(b+a)/2;
y (k)=x;
if (f(a)~f((b+a)/2)<0) then
b=x;
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else
a=x;

// al(k)=a,

end
bl (k)
al (k)
k=k+1;
end; y

b;

a;

// presentation of the results in table A.
for (1=1:k), epsl(1l)=1/(2~{1l}); end, epsl
A:[[l;al],[y;O],[Z;bl],[f(y);O],epsl]

endfunction;

Write (’The_.Running.of_.the_programm. )
Write (

Write (’y.is.the_.root.square.of.f(x)=0,_.with_.an_.accuracy.eps=0.001.");
Write (

"The_resultois.’);

"We_have._finished.normally.”);

Méthode de Lagrange

Bien que la méthode de Newton est tres utilisée dans la pratique, son principal inconvénient
vient du fait de I'utilisation a chaque itération de la dérivée. quand la fonction f n’est pas définie
explicitement, on n’a pas toujours acces a sa dérivée. Dans cette partie, nous allons proposer la
méthode de Lagrange qui n’utilise pas la dérivée de f. L'idée de cette méthode est d’approcher la
dérivée f’(x;) par une différence divisée.

Soit f une fonction continue au voisinage de la racine . Litération de la méthode de la sécante

est donnée par la formule de récurrence suivante :

_ f(xk) _
Xk+1—Xk—m(b—Xk), k—O,l,...

xo = a doit vérifier f(xy) X f’(x9) >0

ou (1.18)

Xk+1:Xk—%(Xk—ﬂ), kZO,l...,

xo = b donnée.

ou [a,b] est 'intervalle qui contient la racine.
La formule (3.21) s’appelle Formule de Récurrence de la sécante.

@ Critere d’arrét de la sécante :
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Soit xj la suite des approximations obtenues a l’aide de la formule sécante, on arréte le pro-

cessus lorsque :

If (xi)l <. (1.19)

Remarque 1.1.3

Le choix de x
O pour la la méthode de Newton, xy = a si f(a) x f”(a) >0
@ pour la la méthode de Lagrange, xo = asi f(a) x f’(a) >0

Exemple 1.1.5
Résoudre I’équation
f(x)=x°-x-4=0

Solution
En utilisant la méthode de Lagrange sur 'intervalle [4,b] = [1,2].

Le choix de x

Onaf(a=1)f"(a=1)=(-4)(2) <0, donc

xozb:2.

Ce qui nous permet d’écrire la formule de récurrence suivante :

B f(x) 3
Xk+1—Xk—m(Xk—1), k—O,l,... (120)

onbzz

m Applications

1.2.1 Calcul de v/a, a>0.
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TaBLE 1.4 — Approximations par la méthode de Lagrange

k Xj f(xi) |xgs1 — xil
0 2. 2. 0

1 | 1.6666667 | -1.037037 | 0.3333333
2 1.9 0.959 0.2333333
3 | 1.7259528 | - 0.5844893 | 0.1740472
4 | 1.8501836 | 0.4833270 | 0.1242308
5 1 1.7585292 | - 0.3204095 | 0.0916544
6 1.82458 0.2496153 | 0.0660508
7 | 1.7761456 | - 0.1729513 | 0.0484345
8 1.811221 0.1305286 | 0.0350754
9 | 1.7855857 | - 0.0925740 | 0.0256354
10 | 1.8041976 | 0.0686984 | 0.0186120
11 | 1.790619 | - 0.0493276 | 0.0135786
12 | 1.8004906 | 0.0362794 | 0.0098716
13 | 1.7932955 | - 0.0262205 | 0.0071951
14 1.79853 0.0191932 | 0.0052345

Méthode de Newton (a = 2)

Page 15/51

On définit la fonction f(x) = x> — 2, d’ott f’(x) = 2x. La méthode itérative de Newton sur

I'intervalle [a,b] = [1, 2] est donnée par :

2
-2
Xk+1zxk—f(xk) :xk_(xk) = ,k=0,...

f/(xk) 2xp

Notons que si xy > 0, alors x; > 0 pour tout k.

Il s’agit donc d’'une méthode de point fixe pour la fonction

_x2+2
T 2x

F(x) , x>0

On montre que la suite x; est positive, décroissante (a partir du deuxiéme terme) et bornée. Donc
elle converge.

Le choix de x

D’apres la formule du testona f(a=1)x f”(a =1) <0, on doit choisir xy = 2.

La racine exacte de V2 est | Ve = 1.414213562373095..]
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TasLe 1.5 — Approximations de V2 par la méthode de Newton Raphson.

k| x f(x;) | X1 — X
012 2.

1|15 0.25 0.5

2| 1.4166667 | 0.0069444 -0.0833333
3 11.4142157 | 0.0000060 0.0024510
4 | 1.4142136 | 4.511D-12 0.0000021
511.4142136 | 4.441D-16 1.595D-12
6 | 1.4142136 | - 4.441D-16 | 2.220D-16
7 | 1.4142136 | 4.441D-16 2.220D-16

1.2.2 Calcul de valeurs propres d’'une matrice

On sait que les valeurs propres d’une matrice sont les racines du polynéme caractéristique.

Soit A la matrice donnée par

BN
Il
o = N

—_ =
N = O

Le polyndme caractéristique de la matrice A est donné par :

P(A)=|A-AL,| =

Les valeurs propres sont : .

On commence par la séparation des racines

@ Tracer la courbe représentative du polyndme P(A).

(1.21)

(1.22)
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40 |
3|§ 30|
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5 20|
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=
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~10 |

— fonction f
e lesV.Ps.de A

Ficure 1.4 — Courbe du polynome caractéristique P() de la matrice A sur I'intervalle [-2,4].

TaBLe 1.6 — Approximations de la premiere valeur propre A; = 0 par la méthode de Newton

Raphson avec [a,b] =[-0.5,0.5]

Xi

ka1 — Xkl

-0.5

- 0.1276596

0.3723404

-0.0116915

0.1159681

-0.0001122

0.0115792

- 1.050D-08

0.0001122

-9.184D-17

1.050D-08

-1.233D-32

9.184D-17

N N |G|k N |~ |O| R~

0.

1.233D-32




Chapitre 2

Interpolation polynomiale des fonctions

Introduction et Définitions

Soit y = f(x) une fonction tabulée telle que :

Tasre 2.1 - La fonction tabulée f

X X0 X1 . Xy

vk =f(xx) | f(x0) | fx1) | o0 | fxn)

On veut calculer une approximation f,(x) de la fonction f(x) définie sur l'intervalle [a = x(, b =
x,]. La méthode d’interpolation consiste a déterminer une fonction f;(x) qui prend les mémes
valeurs que la fonction f(x) aux points (x)o<k<y, C’est a dire :

fulxk)=f(xx), k=0,1,...n

Dans le cas ou fj,(x) est un polynome alors ' fi(x) = p,(x) s’appelle I'interpolation polynomiale
de f(x) d’ordre n aux points (Xx)o<k<n-

Apres la détermination de f;(x); il faut estimer l’erreur commise sur cette approximation
I1fn(x) = f ()l = e(x).

2.0.1 Interpolation

Soit y = f(x) une fonction dont on ne connait que les valeurs (y;) qu’elle prend aux (n+ 1)

points distincts x;, k =0,1,...,n,doncon a:

ve=f(xx), k=0,1,...,n (2.1)

18
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Position du Probleme :
Déterminer un polynome p,,(x) de degré inférieur ou égal a n, tel que :

P,(xx)=ve=f(xx), k=0,1,...,n (2.2)

de maniére a pouvoir estimer les valeurs f(x) au moyen de p,(x) pour tout x € [xy = minxg, x,, =

max x|; c’est ce qu’on appelle

__Linterpolation de s foncton f{=) par e polyndme ol anxpointe sk 200 or )
—_— e e

Théoreme 2.0.1
Soit f(x) une fonction définie sur R tel que y; = f(x¢),k =0,1,...,n, alors il existe un polynome

unique P,(x) tel que P,,(xx) =yx = f(xx),k=0,1,...,n.

Preuve
L'existence de P,(x) est équivalente a l’existence des coefficients a;, k =0,1,...n, tel que

k=n

P,(x) = Zakxk

k=0

D’apres la relation (2.0.6), les coefficients ay, k = 0,1,...n, vérifient le systeme suivant :

a0+a1x0+a2x§+---+anx8 =
A+ ay X1 +ayxt +--+a,x] =y
5 ; (2.3)
Ag + a1 X + arXp +- -+ ayx; = Yk
Ag+ a1 X, +arx2+--+a,x! = p,
c’est un systeme linéaire de déterminant :
1 xg x3 -+ xf
1 ox; x3 - X
A= , (2.4)
I oxe xg X
1 x, x> - xI

L'opérateur A est appelé le déterminant de Vander Monde, qui n’est pas nul (A = 0), car les x;
sont distincts, d’ou I’existence et I'unicité de la solution du systéeme 2.3 (le vecteur des coefficients

du polynome de l'interpolation).
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Exemple 2.0.1

Déterminer le polyndme d’interpolation de la fonction tabulée suivante :

TaBLe 2.2 — Valeurs de f aux points x;

X XO:1 X1:2 x”:2:5
v=f(x) | v0=0 v»=-9 v,.,=18

D’apres la relation (2.0.6), on a

Py(xx) =vx,k=0,1,2

et
k=2
Pz(X) = Zakxk =dptaix+ a2x2.
k=0

L’équation (2.5) s’écrit sous la forme matricielle AX = b, ou

I xo x5 1 1 1
A=[1 x x2 [=] 1 2 4 |
1 x x3 1 5 25
f() 0 ag
b= f(2) [=] -9 et X=|a [
f(5) 18 ap
la solution de ce systeme est donné par
-1
a0 11 1 0
X=|la |=|1 2 4 -9
a, 1 5 25 18

En utilisant la commande linsolve de Scilab, on obtient :

ap 18
a1 = —225 y
aj 4.5

et par conséquent la forme explicite de P, est :

Py(x) = 18— 22.5x + 4.5x2.

(2.5)

(2.7)

(2.8)

(2.9)
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Remarque 2.0.1
Si n est un entier naturel assez grand, alors cette méthode consiste a résoudre un systeme linéaire
(n+1)x(n+1) qui est difficile. Donc il faut chercher d’autres techniques.

2.0.2 Interpolation de Lagrange

Soit f(x) une fonction définie sur R tel que yx = f(xx),k=0,1,...,n.
Pour k =i fixe, on considére le probléme partiel suivant :

Construire un polyndome L;(x) de degré n, tel que

1 sij=1
Li(xj)zéij:{ 0 31;7:1 (210)

Le polyndme L;(x) s’annule en n points xg, x1,...,X;_1,Xj41,...,X,, donc il s’écrit sous la forme

Li(x) = Kj(x = x0)(x = x7) -+« (% = x;-1) (x = Xj41) -+ (x = xp) (2.11)
ou K; est une constante.
Pour x = x;, d’une part L;(x;) = 1, et d’autre part,
Li(x;) = Ki(x; —x0)(x; —x1) « (x; = xi-0)(%; = Xj11) - (X = x;)-

Par conséquent

K; = (cte)

d’ou

o (x=xp)(x—xq) - (x—x_q)(x —xj41) - (x — x,)
Sl PR Ty O P Py DY P (212)

La suite L;(x))<;<, est appelée la base de Lagrange de I’espace des polynome de degré < n
P,[X].

Passons a présent a la résolution du probleme d’interpolation qui consiste a chercher P,(x)
vérifiant les conditions indiquées plus haut,c-a-d

Py(xi)=v;, 0<i<n
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Ce polynome s’écrit sous la forme :

y]-:Pn(xj):ZaiL,-(xj):aij(xj):aj, jZO,...,Tl. (213)
Finalement, on obtient
i=n
Py (x) = ,ZOPiLi(x)-
=

Exemple 2.0.2

Construire le polynome d’interpolation de Lagrange de la fonction sin(7mx) aux points xy = 0,x; =

g et Xy = E
TaBLE 2.3 — Valeurs de f(x) = sin(mx) aux points x;
X xXo=0 x;= % Xy = %
ve=f%) | %0=0 yp1=3 p=1
Ona:
n =2, Py(x) =yoLo(x) +y1L1(x) + y2L2(x)
g (x—x)(x- %)
_ X=X )\ X—X)p
Lolx) = (x0 —x1)(x0 — x2)
_ (x—1/6)(x—1/2) (2.14)
(0-1/6)(0-1/2)
= 12(x-1/6)(x—1/2).
g (x=)x 32
_ X —=Xg)\X —Xp
B0 = T — )
__ (x=0)(x-1/2) (2.15)

(1/6 - 0)(1/6 — 1/2)
= —18(x—0)(x—1/2).
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(x —xo)(x—x1)

B0 = T )
_ (x=0)(x-1/6) (2.16)
~ (1/2-0)(1/2-1/6)

6(x—0)(x—1/6).

Dong, | Py(x) = —3x% + %x.
» Déduire une valeur approximative vp de sin(7/3).
sin(rt/3) = Py(1/3) = 2(1/3) - 3(1/3)* = 0.8333333

La valeur exacte est |sin(7t/3) = 0.8660254...

2.0.3 Interpolation de Newton

Différences divisées

Soit f(x) une fonction dont on connait les valeurs f(x), f(x1),..., f(x,) qu’elle prend aux points

X0y X1se0es Xy
Deéfinition On définit les différences divisées de f aux points x(, xy,...,x, par les relations de
récurrences :
&(x;) = f(x;)
51 (x;, %111 _ fl) = flrin) _0%(0x) = 8%(xih1)
[Z8de’ - -
Xi = Xit1 Xi = Xit1
D.Di &1 (xj,xi41) — 01 (X141, Xi42) 2.17
( iv) S2(x;, Xj1 1, Xi1o) _ (Xi, Xit1) (Xit1,Xit2 ( )

Xi—Xiy2

O (X Xispo1) = P (X1, s Xigp)
Xi = Xiyp

oP (x;, xi+11'”1xi+p) =

La derniere relation du systeme (2.17) est appellée Différences Divisées d’ordre p de la fonc-
tion aux points xg, X1,...,X,.

Calcul des Différences Divisées
Exemple 2.0.3
Considérons la fonction tabulée suivante :

@ Calculer les Différences Divisées d’ordre p avec p = 0,1,2 de la fonction présentée au-
dessus.
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xi 0%x;)  OM(xixip1) O xip1Xiya)  OC(XiXiy1,Xiya,Xivs)  OF(xi Xiv1, Xiv2, Xit3, Xita)

a fla) o x1,)
ol (x1,x2) 8o 31,03, 3)
X2 flx2) 6%(x1,x2,X3) _

6! (x,x3) 83 (x, X1, X2, x3)
x3  fl(x3) 6%(x,x3,X4)

X xo=0 X1 =2 X, =4

ve=flx) | flxo)=1 flx1=5 f(x)=17

X 8(x;) &M (xi,xi41) O%(Xi, Xi 41, Xi42)

6%(x1) = 8%(x2)
X1 — X

6! (x1,%0) = =6

4 8%xy) =17

Base de Newton N;(x)

Les polynomes N;(x),i =0,1,...,n de la base de Newton sont définis comme suit :

No(X) ].
Niw) = 1 (x-xp) 1<i<n
k=0

ou encore

(2.18)
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Ni(x) = (x=xp)
Ny(x) = (x—xg)(x—x1)

(2.19)
Ni(x) = (x=xp)(x—x1)....(x = x;_1)
Ny(x) = (x=x0)(x—x1)....(x=x,-1)
Polynome d’interpolation de Newton
Théoreme 2.0.2
Soit f une fonction définie sur [x, x, ] et xg, x1,...x, une suite de points distincts tels que
f(xi)=v;,i=0,1,...,n et x;<x;;,,V0<i<n-1 (2.20)

alors, 'interpolation de Newton est donnée par la formule suivante :
P, (x) = 8°(x)No(x) + 8" (x0, X1 )N (x) + 0% (x0, X1, %2)Np (X) + +++ . + 8" (X0, - 0s Xy )Ny ()

ou  0P(xg,...,x,) estla différence divisée d’ordre p.

Preuve

Comme (Nj)p<i<, est une base de P,[X], alors :

Py(x) = Z a;N;(x)

0<i<n
Il suffit de déterminer la suite des coefficients (a;)p<i<,, d’apres la formule d’interpolation, le

polyndme P, (x) doit vérifier

P,(xj)=f(x;)=v;, i=0,...,i=n

pouri=0,ona:
Py(x0) =v0 = agNo(xp)+ a1 Ni(xp) +.... + a,N,(x)

=apg+a;.0+....+a,.0 (2.21)
= ay.
pouri=1,
Py(x1)=y1 =ag+ai(x;—xp) (2.22)
=90+ a1(x1 —xo)
d’ou
ay = 20— 51(x5,x,)

X1 —Xp
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et ainsi de suite, jusqu’a i = n;

a, = (S”(X(),XI,...,X”).

Exemple 2.0.4
Soif f(x) la fonction tabulée donnée par le tableau 2.5. Les différences divisées sont enregistrées
dans le tableau 2.6. Le polynome d’interpolation de Newton est

=2
Py(x)= ) a;Nj(x)
i=0

0 q ¥
ag =0 (x9) a; =0 (x9,x1) @ =09(xg,%1,%7).

Les coefficients «; sont situés dans la diagonale de la matrice des différences divisées. Autre-

ment

Py(x)=1+2(x—0)+(x—0)(x—2).

Relation entre différences divisées et dérivées

Théoreme 2.0.3

Soit f une fonction n fois dérivable sur un intervalle [a, b] contenant les points x, xo,..., x,,, alors
il existe & € [a,b] tel que :

f1(&)

n!

(SH(X(),XI,...,X”) =

Erreurs d’interpolation

Théoréme 2.0.4
Soit f une fonction (n + 1) fois dérivable sur un intervalle [a, b] contenant les points xg, xg, ..., X,,

alors pour tout x € [a,b], il existe & € [a,b], tel que :

n+l(cy k=n
R e [ CR)

(n+1)!
k=0

Remarque 2.0.2
La formule précédente ne permet pas de calculer la valeur exacte d’erreur, parce que en général

& est inconnu, mais elle permet d’encadrer l'erreur.
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Corollaire 2.0.1

Sous I’hypothese du théoreme précédent, on a:

k=n

M
£ () =Pl < ]| e =)
k=0

(n+1)!

, ou
1
Mn+l = sup |f”+ (X)l

x€|a,b]

Deuxieme formule d’interpolation de Newton

Cette deuxiéme formule est un cas particulier de la premiere formule lorsque les point d’in-
terpolation sont équidistants. Supposons que les points d’interpolation sont équidistants, alors il
existe un réel h tel que x; = xo + ih, ou x est donné.

Deéfinition Soit y;, i = 0,...,n une suite de nombres réels, on appelle différence finie progres-

sive d’ordre p, p=1,...,n, le systeme suivant :

Aoyi = yi’ i= 0,.. , N
Alyl = yi+1_}7i’ ZZO, ,n—l
(D.fini) { A%y; = Aly-Aly, i=0,...,n-1 (2.23)

APy, = AP Ly, —APly, i=0,...,n-1

La derniere relation du systéme (2.23) est appelée différences finies d’'ordre p de la suite
Vo, V1reosYn-
Théoreme 2.0.5

Soit f une fonction définie sur [x(,x,] et soit x; = xg +ih, h >0, i =0,...,n, une suite de points

tels que
f(Xi):})i, i:O,l,....,n. (2.24)
Alors .
} A" f(x;) .
Ok(X,’,XiH,---,XHk): hkk!l ,0<i<i+k<n.
Preuve

Pour simplifier, on prend i = 0 et donc on va montrer que :

~ A f(xo)

S (xg, x1,...,xx) = h%"0<k<n (2.25)
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La preuve est par récurrence.

@ pour k=1,ona
_ 1
51(x0,x1):f(x0) f(x1) :A f(xo); (2.26)
Xg— X1 1']’11

Donc cette relation est vraie pour k = 1.
@ Supposons que la relation (2.26) est vérifiée pour les différences finies d’ordre k, et mon-
trons qu’elle reste vérifiée pour les différences finies d’ordre k + 1

SK(xo, x1,...,x0) = K (x1,%0, ..., X0, X
5k+1(X0,X1,...,Xk,Xk+1) ( 0rALreees k) ( 17 A25e 00Xk k+1)

X0~ Xk+1
ARF (x1) = A* f (x0)
(k+1)h (2.27)
Akﬂf(xo)
(k + 1)1hk+1

donc la relation (2.25) est vraie pour tout k.

Théoréme 2.0.6
Soit f une fonction définie sur [x(, x, ] et soit x; = xo+ih, h>0, i =0,...,i = n une suite des points

tels que

f(x;)=v,i=0,1,...,n. (2.28)

Alors, le polynome d’interpolation de Newton de f aux points x; peut s’écrire sous la forme

A" (xo) A' £ (xo) A’ (xo) A" f (xo)
pil(x)_ O'ho NO(X)+ 1!]11 Nl(x)+ 2!]12 2(X)+"'.+ T N”(X).
Exemple 2.0.5
Soient les deux fonctions définies par :
f(x)=Vx—1 et g(x)= sin(%(x— 1)) (2.29)

, . N e . : 3
@ Déterminer le polynéme d’interpolation de Newton aux points xy = 1,x; = 5 et x, = 2.

1
On remarque que x;,1 —X; = h = —. On utilise la deuxieme formule de Newton.
@ Calculer les Différences finies d’ordre p,p = 0,1, 2.
@ Le polynome d’interpolation de Newton.

_ A% (x)

AZ
20 =000 0

21h?

Al f (xo)
14!

Np(x) + N (x) + N(x)
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K3 xp =1 X1=%
R | =0 fe0=2 fl=1
Pe=8) | g(x0)=0 g(xn:g

Tacee 2.8 — | ]

X; A%f (x;) Af (x;) A?f (x;)

L %) =0

N | W

R () =1-v2

Af(x1) = A (xp) =A% (xy) =1 -

S

2 Af(xy)=1

Py(x) = V2(x = 1)+ 2(1 - V2)(x - 1)(x - 3)

1
@ Calculer une valeur approximative de \/; .Ona:

Exemple 2.0.6
Soit la fonction définie par le tableau suivant :

@ Déterminer le polynéme d’interpolation de Newton aux points xq = 2,x; =5 et x, = 8.

On remarque que x;,; —X; = h = 3. On utilise la deuxiéme formule de Newton. @ Calculer les
différences finies d’ordre p,p =0, 1, 2.

@ Le polynome d’interpolation de Newton.



Page 30/51

X0:2 X1=5 X2=8
f(x0)==9 f(x1)=18 f(x3)=35

X; Af (x;) Alf(x;) A f(x;)

5 A%f(r)=18 8f(x0) = Al (x1) = Al f(x) = -10

AVf(x1) = A% (x2) ~ AOf (x)) = 17

Af (xo)
21h?

Alf(xo)
1!ht

0
py(x) = 2]

No(X) +

Nl(X) +

N> (x)

Py(x)=-9+F(x-2)- L(x-2)(x-5) =-§(293 - 116x + 5x?)

L’erreur d’interpolation dans le cas présent

Corollaire 2.0.2
Sous I'hypothése du théoréeme (2.0.6), on a :

- Mt ety 1y -
|f (x) Pn(x)ls(n+1)!h t(t=1)(t—=2)...(t—n)
ou
M1 = sup |f" D (x)]
x€[a,b]
etf=x-xg

/// interpolation de Newton ///
Write ( X.nodes ,Y.values )
Write ( 'nois.the.number.of.nodes,.(n-1).is.the_.degree.’)
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Write ( 'Pois.the.numerical _.Newton.polynomial. ")

function [P]=newton (X,Y)

n=length (X);

for j=2:n, for i=1:n—-j+1,
Y(i,j)=(Y(i+1,j-1)=Y(i,j—1))/(X(i+j-1)=-X(i));

end,
end,
x=poly (0,"x");
P=Y(1,n);

for i=2:n,
P=Px(x-X(1i))+Y(i,n-i+1);
end
endfunction;
Write ( 'The_.Running.of_the_programm. )
X=[0;2;4]; Y=[1;5;17];
P=newton (X,Y);
Write ( 'The_interpolation.Newton

L L e e L L e e e L L e e e e L e e

3.5x — 3x

X=[1;3/2;2]; Y=[0;\sqrt((3/2)-1);\sqrt(2-1)]; P=newton(X,Y)
P =

2
- 2.6568542 + 3.4852814x — 0.8284271x

X=[2;5;8]; Y=[-9;18;35]; P=newton(X,Y)
P

2
— 32.555556 + 12.888889x — 0.5555556x

Write(’Puisothe.numerical _.Newton.polynomial.’);

polynomial.is.’); Write( 'We.have.finished.normally.




Chapitre 3

Approximation au sens des moindres carrées

3.0.1 Notions et Définitions

Produit scalaire discret

On considére I'ensemble de points {xg,xq,...,x,} et un ensemble de nombres réels positifs
{wo, wy,...,w,}.

Soient f et ¢ deux fonctions réelles, on définit le produit scalaire discret entre f et g aux points
x;,1=0,...,n avec les poids {wg, wy,..., w,} par:

(f8y=) wif (x;)g(x)).

i=0

Norme discréte d’une fonction

i=n

FIP=CF =) wif (xi)

i=0
L'orthogonalité

Définition On dit que f et g sont orthogonales par rapport au produit scalaire discret si

(f,g)=0.

Exemple 3.0.1

@ Calculer le produit scalaire des fonctions tabulées suivantes ainsi que leurs normes, en suppo-
sant que w(x) = 1.

32
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Tasre 3.1 - Calcul du produit scalaire

x; 1 2 3 4 ¢)
fl) | fx)=1 f(x)=3 flx3)=4 flx)=5]IfI*=.
glx) | glx)=1 g(x2)=V3 glxs)=V4 glxy)=3 | llgl*=.

f(xi)g(x;) : : : : (f.8)=

3.0.2 Polynomes Orthogonaux

Soit P,[X], I'ensemble des polynomes de degré < n défini sur RR.

On dit qu’une famille de polynomes p, py,..., px de degré inférieur ou égal a n est orthogonale
si et seulement si :

(pipj) = 0 siizj (3.1)

Remarque 3.0.1

Pour simplifier, on suppose dans toute la suite que les poids w; sont égaux a 1.

Exemple 3.0.2
Soient les polynomes py(x) = 1 et p1(x) = x. Considérons I’ensemble des points xq = 0,x; = 1,x, = 2.
@ Les polyndmes p et p;. sont-ils orthogonaux?

TaBrE 3.2 — | produit scalaire

X; 01 2 0)
pox;) |1 1 1] [pol>=3
pi(x) |0 1 2| [pl>=5

po(x))p1(x;) | 0 1 2| {po,p1)=3

On remarque que les polynomes py(x) =1 et p;(x) = x ne sont pas orthogonaux par rapport
au produit scalaire défini par les points x(, x; et x,.

Exemple 3.0.3
@& po(x) =1,p1(x) =x—1 et 'ensemble des points xy = 0,x; = 1,x, = 2. Le lecteur peut vérifier en
faisant un calcul similaire au précédent que les polynomes py(x) et p;(x) sont orthogonaux.
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TasLe 3.3 — | produit scalaire

Xi 0 ()
Po(x;) 1 lIpoll> =3
pi(x) | -1 Ip1lI> =2

po(xi)pi(x;) | =1 {(po,p1)=0

Théoreme 3.0.1 ( Orthogonalisation de Gram Schmidt)
Soit {x,...,x,} un ensemble de points et A = {pg, p1,...,px} I'ensemble de polynomes tels que

po(x) =
pilx) = x-a

(3.2)

pi(x) = (x—a;)pi1(x)=bipia(x) i=2,...k

ou

(xpi_1(x), pi—1(x))

(pic1(x), pia (%))

b, = (xpi_1(x), pi_2(x))
l (pi-1(x),pi—1(x))

i=1,..k
(3.3)
—2,..k

Les polynomes py, ..., px sont de degré inférieurs ou égal a k et I’ensemble A ainsi construit forme

un systeme orthogonal par apport aux points xg, xq,...,x,,.

Exemple 3.0.4

@ Construire une base orthogonale A = {py(x), p1(x), p2(x) } de 'espace P,[X], associée aux points

1
xo=—-1,x1 = —E,xz = E,x3 =17

> po(x) =1
> pl(x)zx_al ,

_ {xpo(x),po(x)) 0

o), po(x))

> pi(x)=x
_ {xp1(x),po(x))

> b @ )

=—=0

4

> br=1 » po(x)=x>~1 » py(x) =1 pi(x) =xet py(x) = x>~ 1 forme une base orthgonale

sur P[X].

3.0.3 Approximation des fonctions au sens des moindres carrées
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TasrLe 3.4— Construction d’une base des polynomes orthogonaux en utilisant ’algorithme de Gram

X; -1 -3 3 1 ()
po(x;) 11 1 1 {popo)=llpol*=4
xipo(x;) -1 -3 3 1 llxpoll* = ...
xipo(xi)po(x;) | -1 -3 5 1 (xpo,po) =0
a; =0
pi(x;) -1 -3 3 1| <pup)=Ipl*=3
x;ip1(x;) 1 i i 1
xip1(x)pi(x) | -1 —§ & 1 (xp1,p1)=0
a, =0
po(x;) 1 1 1 1
xip1(x;) 1 3 11
xipi(xdpo(xi) | 1 5 3 1| (xpipo)=3

by =1

Formulation du probleme

Soit f une fonction définie sur [a,b], f étant connue aux points xg, Xq,..., X, :

f(xj))=vy; i=0,...,n

m On cherche un polynéme P* € P;[X] qui vérifie :

If =P < Nf =PIl VPePX]. (3.4)

Donc, P* rend le membre gauche de (3.4) minimum, c’est a dire P* est solution du probléeme
de minimisation suivant :

Trouver P* € P;[X] tel que
If =P*ll= min [|f-P]|.

PeP[X]

(Par) (3.5)

En exprimant la norme en fonction du produit scalaire, on trouve le probleme équivalent
suivant :
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Trouver P* € P [X] tel que

:ZZ[f(xi)—P*( = pmin Z[f Xi) =

Ce polynome s’il existe, s’appelle approximation au sens des moindres carrées de la fonction f

(Ps) (3.6)

aux points xg, X1,...,X,.

Meilleure approximation au sens (M.C) dans une base orthogonale

Théoreme 3.0.2 (Coefficients dans une base orthogonale)
Soit A ={pg,p1,...,px} un ensemble de polyndmes orthogonaux associés aux points xg, Xq,..., x,,.
Le polynome P} qui est la meilleure approximation d’une fonction f au sens des moindres

carrées aux points xg, xq,...,X,, s’écrit :

i=k
Pe(x) = agpo(x) + ayp1(x) +---+aypr(x) = ) ajpi(x) (3.7)
i=0
ou _
j=n
gof(xj)pz(x])
0= {fopi) _ 1= . i=0,..k (3.8)
(pi,pi)  izn ,
2 (pi(x;}))
j=0
Preuve
Il faut montrer que
If =PI <lf =Pl VPeP[X] (3.9)
Posons
i=k
P*(x) = Zu’;pi(x). (3.10)
i=0

On cherche les valeurs ag, aj,...,az qui rendent 3.6 minimum. Pour cela, en utilisant la propriété

d’orthogonalité suivante :

(f-P,Py=0, YPePyX]
j=k (3.11)
<f—;)a;pj,P>:0, VP e Py[X]
]:

I’égalité est vraie pour les polynomes de la base p;(x), i = 0,...,k, et par suite on construit un

systeme linéaire de dimension k + 1 dont les k + 1 inconnues sont les a;, i =0,...,k

j=k

<f—Za;pj,pi>:0, i=0,..k (3.12)

=0
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ou
k

< a;pk,pi>:<f,pi> i=0,...k (3.13)
]

~.
Il

I
(e}

Le systeme matriciel associé est Ay = b avec

Ipill® st i=j
Aij = <pifpj>:{ o Lj=01,..k
0 s1 1#] (3.14)
b] = <f,p]> j:O,l,...,k.
qui a comme solution
@ = <|{’}|’|1'2>, i=0,1,...,k (3.15)
pi

Exemple 3.0.5
m Trouver la meilleure approximation de la fonction tabulée suivante f au sens des moindres

carrées aux points xg = 0,x; =1 et x, = 2.

TaBLE 3.5 — | la fonction tabulée
x; [0 1 2
f(xz-) 1 0 2

» 11 est clair que I'ensemble A = {py(x), p1(x)} ot po(x) = 1 et p1(x) = x—1 est orthogonal. Donc

Py(x) = agpo(x) +ajpy(x).

Les coefficients a;;, a] sont déterminés a ’aide de la formule (3.15), on obtient alors
. 1 1
Pi(x)=1+ Epl(x) = E(x+ 1).

Meilleure approximation au sens (M.C) dans la base canonique

Théoréeme 3.0.3
Soit

la meilleure approximation au sens des (M.C) de degré k de la fonction f aux points xg, xq,...,x,,.

Alors, le vecteur des coefficients (a;)o<;<k est la solution unique du systeme linéaire Aa = b ou

Ajp=(x"y  i,j=0,1,..,k (3.16)
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et

bj=(f,x)

i=0,1,...,k

(3.17)

Preuve Ce résultat se déduit immédiatement de 1’égalité d’orthogonalité suivante :

j=k

(f(x)= L ajxd,x")

j=0
j=k o
Y ai(x),x")
j=0
j=k
L Aija;
=0

Exemple 3.0.6

.k (3.18)

m Trouver la meilleure approximation de la fonction tabulée suivante f au sens des moindres

carrées aux points X, xq, Xp, X4, et x5 dans la base canonique x',i = 0,1, 2.

>

Pj(x) = ag + apx + a,x°

Alors, le vecteur des coefficients (a;)p<i<» est la solution unique du systéme linéaire

Aa

TabLE 3.6 — Calcul des coefficients a; de 'exemple 3.0.5

X 0 1 2 ()
Po(xi) 1 1 1| (popo)=llpoll*=3
fxi) L0 2 If (x)II> =5

po(xi))f(x;)) | 1 0 2 (f,po)=3
ay = % =1
pi(xi) | -1 0 1 |{p,p1)=Ipil*=2
flxi) 10 2 If ()II* =5
pi(xi)f(x;) | -1 0 2 (frp1)=1




Page 39/51

TasLE 3.7 — | la fonction tabulée
x, |-1 0 1 2 3
fx)| 1 -1 -1 1 5

.avec

1=2
Ai,j = Zx;ﬂ — Aj,i 1=0,1,2, ] =0,1,2. (3'19)
1=0

TasLE 3.8 — Les éléments du systeme

X; -1 0 1 2 3 ()
x0+0 1 1 1 1 1 5
%1 -1 0 1 2 3 5
X2 11 0 1 4 9 15
x1+1 1 0 1 4 9 15
x*2 -1 0 1 8 27 35
x2+2 1 0 1 16 81 99
Of(x) 1 -1 -1 1 5 (x%f(x))=5
xUfx) -1 0 -1 2 15 {(x',f(x))=17
2f(x;)| 1 0 -1 4 45 (x%f(x))=49

on obtient le systéme d’équation suivant

5 5 15 ag 5
5 15 35 || ay =] 17 | (3.20)
15 35 99 || a, 49
dont la solution est
-32/55 -0.91428575
a=| -8/35 |=| -0.2285714 |. (3.21)

5/7 0.7142857
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Seérie d’exercices et applications

Exercice 3.0.1 (Calcul du produit scalaire)

Soit les fonctions tabulées suivantes :

TaBLe 3.9 — Les fonctions tabulées f et g

X, |-1 0 1 2 3
fx)l 1 -1 -1 1 5
glx;) -1 0 -1 2 15

» Calculer le produit scalaire < f,g >, et les normes de f et g?
» Les fonctions f et g, sont elles orthogonales ?

» Calculer les produits scalaires < f, xi>i=0i=1,i=2?

Exercice 3.0.2

Soit la suite des points suivants :

N —
N —

X; -1 —

» Construire une base orthogonale A ={py, p; p,} de I'espace P,[X] en utilisant ’algorithme
d’orthogonalisation de Gram-Schmidt associé au produit scalaire défini par les points x; ?
» Trouver le polynome p*(x) € P,[X] solution du probléme de minimisation ci-dessous ex-

primé dans la base A :

Trouver P* e P,[X]

7Dminl (3~22)

i=3
minpep,x] 2 (|xi] = P(x;))

i=0

2

Exercice 3.0.3 (Meilleure approximation dans la base canonique)
» Résoudre les problemes d’optimisation suivants :



Trouver a*,b*,c* € R tels que
7)1 i=3

L a,b,ceR £
1=0 1=

Trouver a,b", c* € R tels que
P,

E [sm i) — (a’i +b*z+c ] = min E [sm 7C1)

a,b, ce]R
i=—1

Z[cos(ni) —(a*i®+ i+ c*)]2 = min i[cos(m’)
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~(ai®+bi+ o)

(ai’® + bi + c)]2



Chapitre 4
Intégration Numeérique

4.0.1 Motivations

Soient f une fonction définie et continue sur l'intervalle [a,b] ( f € C[a,b]) et F sa primitive.

On définit la quantité I(f) par

b
)= [ sewdx (4.1)
dont la valeur exacte est

I(f) = F(b) - F(a). (4.2)

Exemple 4.0.1
@ Dans plusieurs cas, on ne peut pas déterminer la primitive F pour différentes raisons, comme

dans ’exemple suivant :

On note que la primitive de f est inconnue.

@ Fonctions tabulées : f connues seulement en un nombre fini de points.

Question : Quelle est la procédure a adopter pour calculer une valeur approximative de

b
)= [ rex (4.4)
42
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La réponse est de construire des méthodes numériques dites indirectes dont le but principal est

d’estimer la valeur de l'intégrale définie d’une fonction f.

4.0.2 Meéthodes Générales :

Ces méthodes suivent en général les étapes suivantes, en premier lieu, on fait la décomposition
de l'intervalle en morceaux, c’est-a-dire en sous-intervalles contigus, puis I'intégration approchée
de la fonction sur chaque morceau, et en fin, la sommation de tous les résultats obtenus. En effet,
pour des points (x;)o<;j<, quelconques de l'intervalle I; I(f) sera approchée par une suite des
intégrales I,,(f) telles que

b
L= [ P (45)

ou P,(x) est le polyndme d’interpolation de la fonction f aux points x;.

Formule des Trapezes

D’ordre n =1

En interpolant f par un polyndome de degré 1, les deux points d’interpolation suffisent a tra-
cer un segment dont l'intégrale correspond a l’aire d’un trapéze, justifiant le nom méthode des
trapezes qui est d’ordre 1.

f(a)+f(b)

1f)=(b-a L2 (46)
Si f est de classe C%(]a, b[), 'erreur est donné par :
bh- 3
B =S 120, v elad] (47)

Conformément aux expressions de l’erreur, la méthode des trapezes est souvent moins perfor-

mante que celle du point milieu.

D’ordre n

ou

Formule de Simpson n =2

En interpolant f par un polynome de degré 2 (3 degré de liberté), 3 points sont nécessaires
pour le caractériser, les valeurs aux extrémités a et b et celle choisie en leur milieu x;, = (b+a)/2,
la méthode de Simpson est basée sur un polyndome de degré 2 ( intégrale d’une parabole ), tout

en restant exact pour des polynomes de degré 3, elle est donc d’ordre 3.
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1) = 2210+ 4 ea) + £ (D) (410

Si f est de classe C%(]a, b[), 'erreur est donné par :

_ (b-a)
(f)=- 2880

fOw), v elab] (4.11)

Remarque : Comme la méthode du point milieu caractérise un polynome de degré 0, et qui reste
exacte pour tout polynome d’ordre 1, la méthode de Simpson caractérise un polynome de degré
2 et reste exacte pour tout polynome de degré 3.

Formule de Simpson généralisée n = 2k

On divise I'intervalle [, b] en 2n intervalles égaux.

i:n—l i:n—l

L) =5 {FEo+ fxn+2 ) Flan+4 ) flrain) (412)
i=1 ]

4.0.3 Erreur d’approximation

Théoreme 4.0.1

Soit f une fonction deux fois dérivable,

® Lerreur maximale pouvant étre commise sur la valeur I(f) approchée par la méthode des
trapezes est donnée par la formule suivante :

boa)f’
etrap =110~ 1) 1= L L)

Si on suppose de plus que f est une fonction de classe C* dans [a, b], alors

. avec & €a,b]. (4.13)

@ L’erreur maximale pouvant étre commise sur la valeur I(f) approchée par la méthode de

Simpson est donnée par la formule suivante :

_ (b-a)
T 23x4!x15n4

Esimp =1 1(f) = L,(f) | fO(E). avec & €a,b). (4.14)

Ces méthodes ont été programmeées en Scilab 5.2 avec des tests de validation pour des fonc-
tions dont les intégrales exactes sont connues. On cloturera cette partie par deux représentations
graphiques qui montrent I'ordre de la convergence de ces méthodes en fonction du pas de discré-

tisation de l'intervalle [a,b], h = %.
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function [xx] = Trapezes(x0,y0,xn,Mz,yl, pci)
h=(xn-x0)/Mz;

+
i)=yl(i)*pci(i);
(

end,
xx=(h/2)*(y0+s—y(Mz));

endfunction
deff (' [y]=f(x)", y=exp(x)’);
for(i=1:5), Mz=ix20;
h=1/Mz; x=h:h:1;
yl=f(x);
[(f)=integrate (' f(x)72’,’x’,0,1);
g(i)=Trapezes(0,1,1 ,Mz,yl’,yl");

end;

integrate ('f(x)"2’,’x”,0,1) // La valeur exacte de la fonction exp(2:
for(i=1:5),

er(i)= (g(i)-integrate(’'f(x)"2’,’x’,0,1))/1(f); // erreur relative
end;

11711711177 presentation graphique /////////////11/71171177/177774/

Mx=[20,40,60,80,100];

plot2d (MxA(-1),6xer ,logflag="11",style=-4);
plot2d (MxA(-1),6xer,logflag="11",style=2);
plot2d (MxA(-1),1+Mx~(—-2),logflag="11",style=-5)
plot2d (MxA(-1),1+Mx"(-2),logflag="11",style=1);

xlabel ("$opaso\odec\odiscrétisationo\cho\o=c\oo\frac{b-a}{n}$’);
ylabel ("$_\[T(f)o=INA{Tr}(£)\NI/NIT(£)\IS7);
xtitle ("$\textcolor{black}{.\.The..\_Trapezes.\_formula_.\_.of.\

uuuuuuuuuuuu Numerical.\ointegrationo\oo}o$’);
legends ([ "$Log (h~{2})$’; ’$_.Numerical.\Lerror.\.slope=2.$"],[2 1],opt:

[ITT1T177 7777777 77777777771777777777
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function [xx] = Simpson(x0,y0,xn,Mz,yl, pci)
h=(xn-x0)/Mz;
x=x0:h:xn;
for (i=1:Mz),

end;
s1=0;s2=0;
for (i=1:Mz/2),
sl=sl+4xy(2xi—-1);
$2=52+2xy(2%1);
end,
xx=(h/3)*(y0+sl+s2-y(Mz));

endfunction

deff (’[y]=f(x)", y=exp(x)’);

for(i=1:6),

Mz=1+20; h=1/Mz;

x=h:h:1;

yl=f(x); g(i)=Simpson(0,1,1,Mz,yl’,yl1");
end;
I(f)=integrate(’f(x)72’,’x",0,1)
for(i=1:6),
er(i)= (g(i)—integrate(’'f(x)"2’,’x’,0,1))/1(f);
end;

/17117711777 presentation graphique ////////////////11177711777177777A/7
Mx=[20,40,60,80,100,120];

scf(2);
plot2d (MxA(-1),1xer,logflag="11",style=-4);
plot2d (MxA(-1),1xer,logflag="11",style=2);
plot2d (MxA(-1),1+Mx~(—-4),logflag="11",style=-5)
plot2d (MxA(-1),1+Mx"(—-4),logflag="11",style=1);

xlabel ("$opasc\adec\odiscrétisationo\cho\o=c\oo\frac{b-a}{n}$’);
ylabel ("$_\[T(f)o—INA{SIm}(£)\[/NIT(£)\IS$);
xtitle ("$\textcolor{black}{.\_.The_..\_Simpson.\.formula.\_.of.\_.Numerical.

coointegrationo\oojo$’);
legends ([ "$Log (h~{4})$’; '$_Numericalo.\.error.\.slope=4.$"],[2 1],opt=5

O
~
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Série d’exercices et applications sur I’'intégration

numérique

Exercice 4.0.1

Approximer l'intégrale suivante :

par la méthode de :
@ des trapezes
@ de Simpson.
® des trapezes, formule générale avec n = 3.
@ Simpson, formule générale avec n = 6.

® Estimer l'erreur commise pour chaque cas.

Exercice 4.0.2
Déterminer le nombre de points n qu’il faut utiliser dans la méthode des trapezes pour approxi-

mer l'intégrale
1
I(f) :J exp(—x?)dx.
0

avec une erreur € = 1072

Exercice 4.0.3
Méme question que celle de l’exercice précédent, pour l'intégrale

2
I(f)= L xlog(x)dx.

TaBLe 4.1 — Les valeurs de f(x) = xlog(x) aux pts x;
x; |1 3/2 2 4/3 5/3
f(x;) | 0 0.6081977 1.3862944 0.3835761 0.8513760

Exercice 4.0.4 (Application en calcul de probabilité)
On souhaite calculer une valeur approximative de I'intégrale de la fonction de Gauss définie ci-

dessous :
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Définition 4.0.1

On appelle fonction de Laplace-Gauss la fonction définie sur R par :

N

I 2
f(x)—me

Sa courbe représentative est donnée sur la figure 4.1. On l"appelle courbe de Gauss ou courbe er

cloche.

0.4 .
0.3 .
®l02} |
o«
0.1 |
O | |
| | |

| | | |
-3.5 -2.5 -1.5 0 1.5 2.5 3.5

Ficure 4.1 — Courbe de la fonction de Laplace-Gauss

% Calculer une valeur approximative I,,(f) de I(f) par la méthode de Simpson avec n = 4. ( les
bornes sont a = -3.5 et b = 3.5).

En théorie des probabilités et en statistique, la fonction de Laplace-Gauss est la densité de
probabilité de la loi normale qui est I'une des lois de probabilité les plus utilisées pour modéliser
des problémes issus de plusieurs expériences aléatoires. Elle est également appelée loi gaussienne,
loi de Gauss ou loi de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux
mathématiciens, astronomes et physiciens qui 'ont étudié.

La courbe de cette densité de probabilité est appelée courbe de Gauss. C’est la représentation
de la loi normale de moyenne nulle et d’écart type unitaire qui est appelée loi normale centrée
réduite.
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Programme de 1a méthode des Trapeézes en Scilab

@ Les résultats numériques sont enregistrés dans le tableau ci-dessous ainsi que les figures
4.2 et 4.3 montrent l'ordre de la convergence de la méthode de Simpson et celle des trapezes
respectivement appliquées sur la fonction test f(x) = exp(x)?, ces courbes sont tracées dans une

échelle logarithmique.

level er erl h h2 h4

1 6-1077  8.33-107* 5.107%  2.5-1073 6.25-107°
2 3.47-107% 208-10*% 2.5-102 6.25-107* 3.91-1077
3  6.86-107° 9.26-107° 1.67-1072 2.78-107* 7.72-1078
4  217-107° 521-107° 1.25-1072 1.56-107* 2.44-.10°8
5 889-1071° 333.107° 1-1072 1-1074 1-1078

— 107}
< , |
=| 10°)
- i i
a._/ [ |
s | 107}
Z i 1
~
| I 1
| 1078 )
\: . ]
= ——Log(er). slope = 4 |
&b 0 4 1
=1 107°} -~ Log(h”) E
E | | | | E
10—2 10—1,78 10—1.6 10—1.3

L)

log(pas de discrtisation h = >

Ficure 4.2 — Ordre de convergence de la formule de Simpson
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2

=| 103 1

= i 1

S i |

- I |

Z.

—~ L B

|

S| o104l |

= 107 |

5 i ——Log(erl). slope = 2 1

= ; — Log(h?) |

| | | |

10—2 10—1.78 10—1.6 10—1.3

b—a
=)

log(pas de discrtisation h =

Ficure 4.3 - Ordre de convergence de la formule des trapzes
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