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Introduction

L’analyse numérique est une branche des mathématiques appliquées, qui s’intéresse à la mise
en pratique des méthodes numériques permettant de résoudre les problèmes continus de mathé-
matique, par des calculs purement numériques à l’aide d’ordinateurs. Plus précisément, l’analyse
numérique est consacrée à la construction d’algorithmes permettant de résoudre des problèmes
de mathématiques continues qui viennent de la modélisation des phénomènes physiques. Cela
signifie qu’elle s’occupe principalement de répondre numériquement à des questions à variables
réelles, par exemple : la recherche de solution numérique des équations différentielles et d’autres
problèmes liés survenant dans les sciences physiques, l’ingénierie et d’autres domaines d’appli-
cation qui sont très diversifiés.

Ce cours a été enseigné pour les étudiants du tronc commun technologie à la faculté de l’in-
génieur de l’université de Sétif 1. Le but est de présenter aux étudiants quelques notions de base
concernant la résolution numérique de certains problèmes mathématiques tout en explicitant des
méthodes numériques permettant de résoudre effectivement de tels problèmes. C’est pour cette
raison que ce cours est consacré à la mise en place de certaines techniques fondamentales de
l’analyse numérique. Le cours contient un traitement assez substantiel de l’approximation des
racines des équations algébriques, l’interpolation polynomiale de Lagrange et de Newton, l’ap-
proximation au sens des moindres carrées et du calcul approché des intégrales, quatre thèmes qui
forment souvent l’essentiel d’une introduction à l’analyse numérique. La plupart des méthodes
numériques exposées avaient étés effectivement mise en œuvre au moyens de programmes écrits
en Scilab et les séries d’exercices donneront aux lecteurs une approche plus riche du sujet.
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Chapitre 1

Résolution d’équations non linéaires

Rares sont les équations en mathématiques que l’on peut effectivement résoudre. Les équa-
tions polynomiales du premier et second degré sont particulièrement bien connues et étudiées.
Pour le reste, la situation se dégrade très vite ! Si l’on dispose effectivement de formules de résolu-
tion générale pour les troisième et quatrième degrés, elles ne sont que très rarement utilisées dans
la pratique, à cause de leur complexité. Quant au cinquième degré, ou au-delà, on sait depuis Abel
et Galois qu’elles ne peuvent être résolues par radicaux sans parler bien sûr des équations non
polynomiales, pour lesquelles des méthodes générales de résolution n’existent que très rarement.
Autant dire qu’il est important, sinon essentiel, d’être capable de résoudre de façon approchée
des équations de type f (x) = 0, où f est une fonction réelle de variable réelle quelconque, que
nous supposerons dans tout ce chapitre continue sur son intervalle de définition.

1.1 Racines de l’équation f(x) = 0

Définition 1.1.1
Soit f une fonction de R dans R dont le domaine de définition est une partie D(f ) de R. On dit
que α ∈ D(f ) est une racine de l’équation

f (x) = 0 (1.1)

si
f (α) = 0. (1.2)

La résolution de l’équation (1.1), c’est de trouver tous les nombres α tels que l’équation (1.2) soit
vérifiée.
En d’autres termes, on cherche à déterminer l’ensemble

ker(f ) = {x ∈D(f ) : f (x) = 0}.

3
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Exemple 1.1.1

À Soit l’équation
f (x) = ax2 + bx+ c, avec a,b et c ∈R.

Alors ker(f ) contient au plus deux éléments et peut-être aussi vide.

Á

f (x) = sin(x), avec D(f ) = R
+.

Les racines de l’équation f (x) = 0 sont en nombre infini dénombrable et

ker(f ) = {x ∈R+/x = kπ, k = 0,1, . . .}.

Â Soit f : R→R la fonction définie par

f (x) =

 sin(1
x ) si x > 0,

0 si x ≤ 0.
(1.3)

On a alors
ker(f ) = R

− ∪ {x = 1
kπ , k = 1, . . . }.

L’ensemble des solutions est infini non dénombrable.

1.1.1 Séparation des racines

On dit qu’une racine α de l’équation (1.1) est séparable, si on peut trouver un intervalle [a,b]
tel que α soit la seule racine de cette équation dans [a,b], ou encore si : ker(f )∩ [a,b] = {α}.
Nous nous intéressons dans ce chapitre à la localisation et l’approximation des racines séparables
de l’équation (1.1), nous opérerons en deux étapes :

Ê On cherche d’abord à séparer les racines.
Ë On essaie ensuite d’approximer cette racine.

On dispose de plusieurs méthodes pour séparer les racines d’une équation dont on cite

Méthode Graphique

Graphiquement, la racine α de l’équation (1.1) s’interprète comme l’abscisse du point de l’in-
tersection de la courbe représentative de f et l’axe (ox).

Exemple 1.1.2
À Soit à résoudre graphiquement l’équation f (x) = x2 − a, où a > 0 fixé et D(f ) = R. Les variations
et la courbe représentative de f sont données par le tableau (1.1) et le graphe (1.2) suivants :

On voit que l’intersection du graphe avec l’axe (ox) permet de localiser les racines de l’équation
f (x) = 0.

Á Soit l’équation suivante :
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Table 1.1 – Tableau des variations de la fonction x 7→ x2 − a.
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Figure 1.1 – Approximation des racines de l’équation f (x) = 0.

 x log(x) = 1,
D(f ) = R

+
∗ ,

(1.4)

cette équation s’écrit sous la forme  log(x) =
1
x
,

D(f ) = R
+
∗ ,

(1.5)

en posant f1(x) = log(x) et f2(x) =
1
x

, l’équation (1.4) devient équivalente à l’équation : f1(x)− f2(x) = 0,
D = R

+
∗ ,

(1.6)

Les variations des fonctions f1 et f2 sont données par les courbes ci-dessous.
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Figure 1.2 – Courbes des fonctions f1(x) = logx et f2(x) = 1
x .

La racine de l’équation (1.4) peut être cherchée dans l’intervalle [1,2], elle correspond à l’abs-
cisse du point d’intersection des courbes représentatives des fonctions f1 et f2.

Programme associé à la méthode en Scilab

/ / La s é p a r a t i o n des r a c i n e s par l a méthode graph ique .
a =2;
deff ( " [ y]= f ( x ) " , " y=x^2−a " )

x = l inspace ( −2 , 2 , 5 0 ) ’ ; / / x =[−2:h : 2 ] ; h =(2 −( −2))/50.
s c f ( 1 ) ;
x l a b e l ( ’ $�x��$ ’ ) ;
y l a b e l ( ’ $� f_ { �\nu } ( x ) $ ’ ) ;
x t i t l e ( ’ $\ t e x t c o l o r { black } { �Calcul�\�de�\� l a �\� rac ine �\�de�\�a=2� } $ ’ )
legends ( [ ’ $� l a �\� rac ine �\�de�\�2�$ ’ ] , [ −4 ] , opt =5)

fplot2d ( x , f , s t y l e =2)
xx=[− sqrt ( a ) , sqrt ( a ) ] ;
yy = [ 0 , 0 ] ;
plot2d ( xx , yy , s t y l e =−4);

/ / La s é p a r a t i o n des r a c i n e s par l a méthode graph ique .
deff ( " [ y]= f ( x ) " , " y=log ( x ) " ) ;
deff ( " [ y]=g ( x ) " , " y=1/x " ) ;

x l a b e l ( ’ $�x��$ ’ ) ;
y l a b e l ( ’ $�y$ ’ ) ;
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x t i t l e ( ’ $\ t e x t c o l o r { black } { �Calcul�\�de�\� l a �\� rac ine �\�de�\� f } $ ’ )
legends ( [ ’ $� l a �\� rac ine �\�de�\� f �$ ’ ] , [ −4 ] , opt =5)

x = l inspace ( 0 . 1 , 4 , 1 0 0 ) ’ ;
fplot2d ( x , f , s t y l e =2)
fplot2d ( x , g , s t y l e =4)
xx = [ 1 , 2 ] ;
yy = [ 0 , 0 ] ;
xstr ing ( 3 . 5 , 1 . 4 , ’ $\ log ( x ) $ ’ ) ;
xstr ing ( 3 .7 , −1 , ’ $\ dfrac { 1 } { x } $ ’ ) ;
plot2d ( xx , yy , s t y l e =−4);

Méthode par Balayage

Soit f : [a,b]→ R une fonction continue. On considère une suite croissante finie {xi}0≤i≤n de
valeurs de x réparties sur l’intervalle [a,b] contenu dans le domaine D(f ), et on appliquera le
théorème des valeurs intermédiaires sur chaque intervalle [xi ,xi+1], avec si f (xi) × f (xi+1) < 0,
alors il existe au moins un nombre réel αi entre xi et xi+1, vérifiant l’équation f (x) = 0.

La méthode consiste donc à déterminer parmi les quantités f (xi)×f (xi+1), i = 0, . . . ,n celles qui
sont négatives.

Remarque 1.1.1
La méthode par balayage ne permet pas de conclure qu’à l’existence d’( au moins ) une racine
dans l’intervalle [xi ,xi+1]. Cette méthode ne permet pas la séparation des racines doubles, c’est à
dire les réels α tels que f (α) = f ′(α) = 0 et f ′′(α) , 0.

1.1.2 Approximation des racines, Méthodes itératives

Définition 1.1.2
On appelle méthode itérative un procédé de calcul de la forme

x0 ∈D(f ), xk+1 = f (xk), k = 0,1, . . . (1.7)

dans lequel, on part d’une valeur approchée x0 pour calculer x1, puis à l’aide de x1 on calcule x2

et ainsi de suite.

La formule (1.7) est dite formule de récurrence.
Parmi les méthodes numériques en général et les méthodes itératives en particulier, les plus

puissantes permettant la résolution approchée des équations de la forme f (x) = 0, figurent
À Méthode de Newton Raphson.
Á Méthode de la sécante.
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La méthode de bipartition (dichotomie) bien qu’elle figure parmi les méthode à convergence
lente, sera aussi considérée à cause de sa simplicité et sa convergence globale.

Méthode de Newton Raphson

L’une des méthode connue d’analyse numérique pour résoudre les équations algébriques où
les approximations successives des racines d’une fonction à valeurs réelles est la méthode de
Newton Raphson. Cette dernière fonctionne bien pour des fonctions de classe C2.

Soit f une fonction suffisamment régulières, par exemple de classe C2(]a,b[) au voisinage de
la racine α. Le développement de Taylor d’ordre deux de la fonction f au voisinage d’une valeur
approchée x0 de α est :

f (α) = f (x0) + f ′(x0)(α − x0) +
1
2
f ′′(ξ)(α − x0)2︸              ︷︷              ︸ (1.8)

où 
ξ ∈ ]α,x0[

1
2
f ′′(ξ)(α − x0)2 le reste de Lagrange.

(1.9)

Comme f (α) = 0, en supposant que f ′(x0) , 0, on aura

α = x0 −
f (x0)
f ′(x0)

+
[
−1

2
f ′′(ξ)(α − x0)2

]
. (1.10)

En négligeant le reste R2 = −1
2
f ′′(ξ)(α − x0)2, la quantité x0 −

f (x0)
f ′(x0)

dans (1.10) qu’on notera x1

constitue alors une valeur approchée améliorée de α.
En itérant le procédé on trouve la formule de récurrence suivante : xk+1 = xk −

f (xk)
f ′(xk)

, k = 0,1 . . . ,

x0 donnée.
(1.11)

Cette dernière s’appelle Formule de Récurrence de Newton Raphson.
* Convergence de la Méthode de Newton : Le théorème suivant établit une convergence locale

quadratique de la méthode de Newton.

Théorème 1.1.1 ([5], Théorème 5.17)
Soit f une fonction réelle de classe C2 dans un voisinage d’un zéro simple ξ. Alors, la suite (xk)
définie par (1.11) converge au moins quadratiquement vers ξ, pour toute initialisation x0 choisie
suffisamment proche de ce zéro.

On peut aussi démontrer un résultat de convergence globale pour cette méthode dans le cas où la
fonction f est strictement monotone et strictement convexe (ou concave).
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Théorème 1.1.2 ([5], Théorème 5.18)
Soit [a,b] un intervalle de R et f : [a,b]→R une fonction de classe C2, changeant de signe sur [a,b]
telle que f ′ et f ′′ ne s’annulent pas sur [a,b]. Alors pour toute initialisation x0 dans [a,b] vérifiant
f (x0)f ′′(x0) ≥ 0 la suite (xk) définie par (1.11) converge vers l’unique zéro de f dans [a,b].

* Critère d’arrêt de la méthode de Newton : Soit xk la suite des approximations obtenue à l’aide
de la formule de Newton, grâce au développement de Taylor d’ordre 1 au voisinage de α, on a :

| α − xk |≤| xk+1 − xk | . (1.12)

Exemple 1.1.3
Soit l’équation

f (x) = 1− x log(x), x ∈ [1,2]. (1.13)

On remarque que les hypothèses du Théorème 1.1.2 sont vérifiées, donc on peut lui appliquer la
méthode de Newton, on obtient xk+1 = xk +

1− xk log(xk)
1 + log(xk)

, k = 0,1, . . .

x0 = a ou b.
(1.14)

Choix de x0 : Comme f (2)f ′′(2) > 0, on prend x0 = 2.
Les cinq premières approximations de α obtenues par la méthode de Newton (1.14] sont en-

registrées dans le tableau 1.2.

Table 1.2 – Approximations par la méthode de Newton Raphson

k xi |xk+1 − xk |

0 2. ·

1 1.7718483 0.2281517

2 1.7632362 0.0086121

3 1.7632228 0.0000134

4 1.7632228 3.238D-11

5 1.7632228 2.220D-16

Méthode de Bipartition (Dichotomie)

L’idée est de construire une suite d’intervalles [an,bn] de plus en plus petits contenants une
racine isolée de l’équation f (x) = 0. L’outil utilisé pour appliquer cette idée est le théorème des
valeurs intermédiaires
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Figure 1.3 – Localisation de la racine de l’équation 1− x logx = 0.

L’algorithme
Supposons que la racine α ∈ [a,b] avec f (a)× f (b) < 0, on pose : a0 = a, b0 = b et I0 = [a0,b0].

On divise l’intervalle I0 en deux et on construit l’intervalle I1 comme suit :

Soit x0 =
a0 + b0

2
, on calcule f (x0)× f (a0) :

si f (x0)× f (a0) < 0 alors : I1 = [a1,b1] = [a0,x0] sinon I1 = [a1,b1] = [x0,b0]

on répète le procédé pour obtenir une suite d’intervalles emboîtés :

Ik = [ak ,bk] , k = 0,1 . . . , comme suit :

xk =
ak + bk

2
,

Ik+1 = [ak+1,bk+1] =

 [ak ,xk] si f (xk)f (ak) < 0,

[xk ,bk] si f (xk)f (ak) > 0.
(1.15)

enfin, on prend xk comme approximation de la racine α.

* Critère d’arrêt de la méthode de dichotomie :
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Soit xk la suite des approximations obtenues à l’aide de la formule de Dichotomie, on a l’erreur
commise sur xk

| α − xk |≤
(b − a)
2k+1

, k = 0,1 . . . . (1.16)

Remarque 1.1.2
Si on veut calculer une approximation xk avec une erreur donnée ε, il suffit d’aller dans les itéra-
tions jusqu’à ce que n vérifie l’inégalité

| α − xn |≤
(b − a)
2n+1 ≤ ε. (1.17)

Autrement :

n ≥
log(b−aε )
log(2)

− 1. (Nbiter)

Exemple 1.1.4
Soit à résoudre l’équation

f (x) = x3 + x2 − 3x − 3 = 0. (ex)

Pour la méthode de la bipartition (Dichotomie) :
Ê Le choix de l’intervalle de départ est un élément important de la méthode.
Ë Vaut mieux avoir un graphe pour commencer.
Les résultats de la méthode de bipartition appliquée à l’équation (ex) sont enregistrés dans le

tableau 1.3.
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Table 1.3 – Les dix premières approximations par la méthode de Bipartition (Dichotomie)

k ai xi bi f (xi)
| b − a |
2k+1

0 1. 1.5 2. - 1.875 0.5

1 1.5 1.75 2. 0.171875 0.25

2 1.5 1.625 1.75 - 0.9433594 0.125

3 1.625 1.6875 1.75 - 0.4094238 0.0625

4 1.6875 1.71875 1.75 - 0.1247864 0.03125

5 1.71875 1.734375 1.75 0.0220299 0.015625

6 1.71875 1.7265625 1.734375 - 0.0517554 0.0078125

7 1.7265625 1.7304688 1.734375 - 0.0149572 0.0039063

8 1.7304688 1.7324219 1.734375 0.0035127 0.0019531

9 1.7304688 1.7314453 1.7324219 - 0.0057282 0.0009766

10 1.7314453 1.7319336 1.7324219 -0.0011092 0.0004883

/ / / l a méthode de b i p a r t i t i o n / / /
Write ( ’ a�and�b�� are� the� i n t e r v a l �borders� ’ )
Write ( ’ eps�� i s � the�des ired �accuracy . ’ )

function [ y , eps1 ]= Bipart ion ( a , b , eps )

/ / d e f f ( " [ y]= f ( x ) " , " y=x^{3}+x ^{2}−3*x −3") ;
/ / d e f f ( " [ y]= f ( x ) " , " y=x ^{3}−1*x −1") ;
/ / d e f f ( " [ y]= f ( x ) " , " y=x ^{2} −3") ;

deff ( " [ y]= f ( x ) " , " y=exp (3* x)−x−30 " ) ;
y = [ ] ;
a1 = [ ] ; b1 = [ ] ;
eps =0.001;
a =1;b=2;
k=1;

while abs ( b−a ) >eps ,
x=(b+a ) / 2 ;
y ( k)=x ;

i f ( f ( a ) * f ( ( b+a )/2) <0) then
b=x ;
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e l s e
a=x ;

/ / a1 ( k )=a ,

end
b1 ( k)=b ;
a1 ( k)=a ;
k=k+1;

end ; y
/ / p r e s e n t a t i o n o f t h e r e s u l t s in t a b l e A.

for ( l =1:k ) , eps1 ( l )=1/(2^{ l } ) ; end , eps1
A= [ [ 1 ; a1 ] , [ y ; 0 ] , [ 2 ; b1 ] , [ f ( y ) ; 0 ] , eps1 ]

endfunction ;
Write ( ’ The�Running�of� the�programm� ’ )
Write ( ’ The� r e s u l t � i s � ’ ) ;
Write ( ’ y� i s � the� root � square�of� f ( x )=0 ,�with�an�accuracy�eps =0.001� ’ ) ;
Write ( ’We�have� f i n i s h e d �normally . ’ ) ;

Méthode de Lagrange

Bien que la méthode de Newton est très utilisée dans la pratique, son principal inconvénient
vient du fait de l’utilisation à chaque itération de la dérivée. quand la fonction f n’est pas définie
explicitement, on n’a pas toujours accès à sa dérivée. Dans cette partie, nous allons proposer la
méthode de Lagrange qui n’utilise pas la dérivée de f . L’idée de cette méthode est d’approcher la
dérivée f ′(xk) par une différence divisée.

Soit f une fonction continue au voisinage de la racine α. L’itération de la méthode de la sécante
est donnée par la formule de récurrence suivante :

xk+1 = xk −
f (xk)

(f (b)− f (xk))
(b − xk), k = 0,1, . . .

x0 = a doit vérifier f (x0)× f ′(x0) > 0

ou

xk+1 = xk −
f (xk)

(f (xk)− f (a))
(xk − a), k = 0,1 . . . ,

x0 = b donnée.

(1.18)

où [a,b] est l’intervalle qui contient la racine.
La formule (3.21) s’appelle Formule de Récurrence de la sécante.
* Critère d’arrêt de la sécante :
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Soit xk la suite des approximations obtenues à l’aide de la formule sécante, on arrête le pro-
cessus lorsque :

|f (xk)| < ε. (1.19)

Remarque 1.1.3
Le choix de x0

Ê pour la la méthode de Newton, x0 = a si f (a)× f ′′ (a) > 0
Ë pour la la méthode de Lagrange, x0 = a si f (a)× f ′(a) > 0

Exemple 1.1.5
Résoudre l’équation

f (x) = x3 − x − 4 = 0

.
Solution

En utilisant la méthode de Lagrange sur l’intervalle [a,b] = [1,2].

Le choix de x0

On a f (a = 1)f ′(a = 1) = (−4)(2) < 0, donc

x0 = b = 2.

Ce qui nous permet d’écrire la formule de récurrence suivante : xk+1 = xk −
f (xk)

(f (xk) + 4)
(xk − 1), k = 0,1, . . .

x0 = b = 2
(1.20)

1.2 Applications

1.2.1 Calcul de
√
a, a > 0.
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Table 1.4 – Approximations par la méthode de Lagrange

k xi f (xi) |xk+1 − xk |
0 2. 2. 0

1 1.6666667 - 1.037037 0.3333333

2 1.9 0.959 0.2333333

3 1.7259528 - 0.5844893 0.1740472

4 1.8501836 0.4833270 0.1242308

5 1.7585292 - 0.3204095 0.0916544

6 1.82458 0.2496153 0.0660508

7 1.7761456 - 0.1729513 0.0484345

8 1.811221 0.1305286 0.0350754

9 1.7855857 - 0.0925740 0.0256354

10 1.8041976 0.0686984 0.0186120

11 1.790619 - 0.0493276 0.0135786

12 1.8004906 0.0362794 0.0098716

13 1.7932955 - 0.0262205 0.0071951

14 1.79853 0.0191932 0.0052345

Méthode de Newton (a = 2)
On définit la fonction f (x) = x2 − 2, d’où f ′(x) = 2x. La méthode itérative de Newton sur

l’intervalle [a,b] = [1,2] est donnée par :

xk+1 = xk −
f (xk)
f ′(xk)

= xk −
(xk)2 − 2

2xk
=

(xk)2 + 2
2xk

, k = 0, . . .

Notons que si x0 > 0, alors xk > 0 pour tout k.
Il s’agit donc d’une méthode de point fixe pour la fonction

F(x) =
x2 + 2

2x
, x > 0

On montre que la suite xk est positive, décroissante (à partir du deuxième terme) et bornée. Donc
elle converge.

Le choix de x0

D’après la formule du test on a f (a = 1)× f ′′ (a = 1) < 0, on doit choisir x0 = 2.
La racine exacte de

√
2 est V e = 1.414213562373095..
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Table 1.5 – Approximations de
√

2 par la méthode de Newton Raphson.

k xi f (xi) |xk+1 − xk |
0 2. 2. · · ·
1 1.5 0.25 0.5

2 1.4166667 0.0069444 -0.0833333

3 1.4142157 0.0000060 0.0024510

4 1.4142136 4.511D-12 0.0000021

5 1.4142136 4.441D-16 1.595D-12

6 1.4142136 - 4.441D-16 2.220D-16

7 1.4142136 4.441D-16 2.220D-16

1.2.2 Calcul de valeurs propres d’une matrice

On sait que les valeurs propres d’une matrice sont les racines du polynôme caractéristique.
Soit A la matrice donnée par

A =


2 1 0
1 1 1
0 1 2

 (1.21)

Le polynôme caractéristique de la matrice A est donné par :

P (λ) = |A−λIn| =

∣∣∣∣∣∣∣∣∣
2−λ 1 0

1 1−λ 1
0 1 2−λ

∣∣∣∣∣∣∣∣∣ = −λ3 + 5λ2 − 6λ. (1.22)

Les valeurs propres sont : 0,2 et 3 .

On commence par la séparation des racines
* Tracer la courbe représentative du polynôme P (λ).
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Figure 1.4 – Courbe du polynôme caractéristique P (λ) de la matrice A sur l’intervalle [−2,4].

Table 1.6 – Approximations de la première valeur propre λ1 = 0 par la méthode de Newton
Raphson avec [a,b] = [−0.5,0.5]

k xi |xk+1 − xk |
0 -0.5 · · ·
1 - 0.1276596 0.3723404

2 - 0.0116915 0.1159681

3 - 0.0001122 0.0115792

4 - 1.050D-08 0.0001122

5 - 9.184D-17 1.050D-08

6 - 1.233D-32 9.184D-17

7 0. 1.233D-32



Chapitre 2

Interpolation polynomiale des fonctions

Introduction et Définitions
Soit y = f (x) une fonction tabulée telle que :

Table 2.1 – La fonction tabulée f

xk x0 x1 . . . xn
yk = f (xk) f (x0) f (x1) . . . f (xn)

On veut calculer une approximation fh(x) de la fonction f (x) définie sur l’intervalle [a = x0,b =
xn]. La méthode d’interpolation consiste à déterminer une fonction fh(x) qui prend les mêmes
valeurs que la fonction f (x) aux points (xk)0≤k≤n, c’est à dire :

fh(xk) = f (xk), k = 0,1, . . .n

Dans le cas où fh(x) est un polynôme alors fh(x) = pn(x) s’appelle l’interpolation polynomiale
de f (x) d’ordre n aux points (xk)0≤k≤n.

Après la détermination de fh(x) ; il faut estimer l’erreur commise sur cette approximation

‖fh(x)− f (x)‖ = ε(x).

2.0.1 Interpolation

Soit y = f (x) une fonction dont on ne connaît que les valeurs (yk) qu’elle prend aux (n + 1)
points distincts xk , k = 0,1, . . . ,n, donc on a :

yk = f (xk), k = 0,1, . . . ,n (2.1)

18
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Position du Problème :
Déterminer un polynôme pn(x) de degré inférieur où égal à n, tel que :

Pn(xk) = yk = f (xk), k = 0,1, . . . ,n (2.2)

de manière à pouvoir estimer les valeurs f (x) au moyen de pn(x) pour tout x ∈ [x0 = minxk ,xn =
maxxk] ; c’est ce qu’on appelle

l’interpolation de la fonction f (x) par le polynôme pn(x) aux points xk , k = 0,1, . . . ,n

Question : Un tel polynôme, existe-t-il ? si oui, est-il unique ?

Théorème 2.0.1
Soit f (x) une fonction définie sur R tel que yk = f (xk), k = 0,1, . . . ,n, alors il existe un polynôme
unique Pn(x) tel que Pn(xk) = yk = f (xk), k = 0,1, . . . ,n.

Preuve
L’existence de Pn(x) est équivalente à l’existence des coefficients ak , k = 0,1, . . .n, tel que

Pn(x) =
k=n∑
k=0

akx
k

.
D’après la relation (2.0.6), les coefficients ak , k = 0,1, . . .n, vérifient le système suivant :

a0 + a1x0 + a2x
2
0 + · · ·+ anxn0 = y0

a0 + a1x1 + a2x
2
1 + · · ·+ anxn1 = y1
...

...

a0 + a1xk + a2x
2
k + · · ·+ anxnk = yk
...

...

a0 + a1xn + a2x
2
n + · · ·+ anxnn = yn

(2.3)

c’est un système linéaire de déterminant :

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0 x2
0 · · · x

n
0

1 x1 x2
1 · · · x

n
1

...
...

...
...

...

1 xk x2
k · · · x

n
k

...
...

...
...

...

1 xn x2
n · · · xnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.4)

L’opérateur ∆ est appelé le déterminant de Vander Monde, qui n’est pas nul (∆ , 0), car les xi
sont distincts, d’où l’existence et l’unicité de la solution du système 2.3 (le vecteur des coefficients
du polynôme de l’interpolation).
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Exemple 2.0.1
Déterminer le polynôme d’interpolation de la fonction tabulée suivante :

Table 2.2 – Valeurs de f aux points xi

xk x0 = 1 x1 = 2 xn=2 = 5

yk = f (xk) y0 = 0 y1 = −9 yn=2 = 18

D’après la relation (2.0.6), on a

P2(xk) = yk , k = 0,1,2 (2.5)

et

P2(x) =
k=2∑
k=0

akx
k = a0 + a1x+ a2x

2.

L’équation (2.5) s’écrit sous la forme matricielle AX = b, où

A =


1 x0 x2

0

1 x1 x2
1

1 x2 x2
2

 =


1 1 1
1 2 4
1 5 25

 , (2.6)

b =


f (1)
f (2)
f (5)

 =


0
−9
18

 et X =


a0

a1

a2

 , (2.7)

la solution de ce système est donné par

X =


a0

a1

a2

 =


1 1 1
1 2 4
1 5 25


−1 

0
−9
18

 . (2.8)

En utilisant la commande linsolve de Scilab, on obtient :
a0

a1

a2

 =


18
−22.5

4.5

 , (2.9)

et par conséquent la forme explicite de P2 est :

P2(x) = 18− 22.5x+ 4.5x2.
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Remarque 2.0.1
Si n est un entier naturel assez grand, alors cette méthode consiste à résoudre un système linéaire
(n+ 1)× (n+ 1) qui est difficile. Donc il faut chercher d’autres techniques.

2.0.2 Interpolation de Lagrange

Soit f (x) une fonction définie sur R tel que yk = f (xk), k = 0,1, . . . ,n.
Pour k = i fixe, on considère le problème partiel suivant :
Construire un polynôme Li(x) de degré n, tel que

Li(xj) = δij =

 1 si j = i
0 si j , i

(2.10)

Le polynôme Li(x) s’annule en n points x0,x1, . . . ,xi−1,xi+1, . . . ,xn, donc il s’écrit sous la forme

Li(x) = Ki(x − x0)(x − x1) · · · (x − xi−1)(x − xi+1) · · · (x − xn) (2.11)

où Ki est une constante.
Pour x = xi , d’une part Li(xi) = 1, et d’autre part,

Li(xi) = Ki(xi − x0)(xi − x1) · (xi − xi−1)(xi − xi+1) · (xi − xn).

Par conséquent

Ki =
1

(xi − x0)(xi − x1) · (xi − xi−1)(xi − xi+1) · (xi − xn)
(cte)

,

d’où

Li(x) =
(x − x0)(x − x1) · (x − xi−1)(x − xi+1) · (x − xn)

(xi − x0)(xi − x1) · (xi − xi−1)(xi − xi+1) · (xi − xn)
(2.12)

La suite Li(x)0≤i≤n est appelée la base de Lagrange de l’espace des polynôme de degré ≤ n
Pn[X].

Passons à présent à la résolution du problème d’interpolation qui consiste à chercher Pn(x)
vérifiant les conditions indiquées plus haut, c - à - d

Pn(xi) = yi , 0 ≤ i ≤ n

.
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Ce polynôme s’écrit sous la forme :

Pn(x) =
i=n∑
i=0

αiLi(x)

La condition (2.2) nous donne

yj = Pn(xj) =
i=n∑
i=0

αiLi(xj) = αjLj(xj) = αj , j = 0, . . . ,n. (2.13)

Finalement, on obtient

Pn(x) =
i=n∑
i=0
yiLi(x).

Exemple 2.0.2
Construire le polynôme d’interpolation de Lagrange de la fonction sin(πx) aux points x0 = 0,x1 =
1
6

et x2 =
1
2

.

Table 2.3 – Valeurs de f (x) = sin(πx) aux points xi

xk x0 = 0 x1 = 1
6 x2 = 1

2

yk = f (xk) y0 = 0 y1 = 1
2 y2 = 1

On a :
n = 2, Pn(x) = y0L0(x) + y1L1(x) + y2L2(x)

I

L0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)

=
(x − 1/6)(x − 1/2)
(0− 1/6)(0− 1/2)

= 12(x − 1/6)(x − 1/2).

(2.14)

I

L1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)

=
(x − 0)(x − 1/2)

(1/6− 0)(1/6− 1/2)

= −18(x − 0)(x − 1/2).

(2.15)
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I

L2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)

=
(x − 0)(x − 1/6)

(1/2− 0)(1/2− 1/6)

= 6(x − 0)(x − 1/6).

(2.16)

Donc, P2(x) = −3x2 + 7
2x.

I Déduire une valeur approximative vp de sin(π/3).

sin(π/3) ' P2(1/3) = 7
2(1/3)− 3(1/3)2 = 0.8333333

La valeur exacte est sin(π/3) = 0.8660254 . . .

2.0.3 Interpolation de Newton

Différences divisées
Soit f (x) une fonction dont on connaît les valeurs f (x0), f (x1), . . . , f (xn) qu’elle prend aux points

x0,x1, . . . ,xn.
Définition On définit les différences divisées de f aux points x0,x1, . . . ,xn par les relations de

récurrences :

(D.Div)



δ0(xi) = f (xi)

δ1(xi ,xi+1) =
f (xi)− f (xi+1)
xi − xi+1

=
δ0(xi)− δ0(xi+1)

xi − xi+1

δ2(xi ,xi+1,xi+2) =
δ1(xi ,xi+1)− δ1(xi+1,xi+2)

xi − xi+2
...

δp(xi ,xi+1, . . . ,xi+p) =
δp−1(xi , . . . ,xi+p−1)− δp−1(xi+1, . . . ,xi+p)

xi − xi+p

(2.17)

La dernière relation du système (2.17) est appellée Différences Divisées d’ordre p de la fonc-
tion aux points x0,x1, . . . ,xn.

Calcul des Différences Divisées

Exemple 2.0.3
Considérons la fonction tabulée suivante :

* Calculer les Différences Divisées d’ordre p avec p = 0,1,2 de la fonction présentée au-
dessus.
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Table 2.4 – Différences Divisées d’ordre p,p = 1,2,3,4

xi δ0(xi) δ1(xi ,xi+1) δ2(xi ,xi+1,xi+2) δ3(xi ,xi+1,xi+2,xi+3) δ4(xi ,xi+1,xi+2,xi+3,xi+4)

x0 f (x0)

δ1(x0,x1)

x1 f (x1) δ2(x0,x1,x2)

δ1(x1,x2) δ3(x0,x1,x2,x3)

x2 f (x2) δ2(x1,x2,x3) δ4(x0,x1,x2,x3,x4)

δ1(x2,x3) δ3(x0,x1,x2,x3)
x3 f (x3) δ2(x2,x3,x4)

δ1(x3,x4)
x4 f (x3)

Table 2.5 – La fonction tabulée f

xk x0 = 0 x1 = 2 x2 = 4

yk = f (xk) f (x0) = 1 f (x1 = 5 f (x2) = 17

Table 2.6 – Différences Divisées d’ordre p,p = 0,1,2

xi δ0(xi) δ1(xi ,xi+1) δ2(xi ,xi+1,xi+2)

0 δ0(x0) = 1

δ1(x0,x1) =
δ0(x0)− δ0(x1)

x0 − x1
= 2

2 δ0(x1) = 5 δ2(x0,x1,x2) =
δ1(x0,x1)− δ1(x1,x2)

x0 − x2
= 1

δ1(x1,x2) =
δ0(x1)− δ0(x2)

x1 − x2
= 6

4 δ0(x2) = 17

Base de Newton Ni(x)

Les polynômes Ni(x), i = 0,1, . . . ,n de la base de Newton sont définis comme suit :

N0(x) = 1

Ni(x) =
k=i−1∏
k=0

(x − xk) 1 ≤ i ≤ n.
(2.18)

ou encore
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N0(x) = 1
N1(x) = (x − x0)
N2(x) = (x − x0)(x − x1)

...

Ni(x) = (x − x0)(x − x1) . . . .(x − xi−1)
...

Nn(x) = (x − x0)(x − x1) . . . .(x − xn−1)

(2.19)

Polynôme d’interpolation de Newton

Théorème 2.0.2
Soit f une fonction définie sur [x0,xn] et x0,x1, . . .xn une suite de points distincts tels que

f (xi) = yi , i = 0,1, . . . ,n et xi < xi+1,∀0 ≤ i ≤ n− 1 (2.20)

alors, l’interpolation de Newton est donnée par la formule suivante :

Pn(x) = δ0(x0)N0(x) + δ1(x0,x1)N1(x) + δ2(x0,x1,x2)N2(x) + · · · .+ δn(x0, . . . ..,xn)Nn(x)

où δp(x0, . . . ,xp) est la différence divisée d’ordre p.

Preuve
Comme (Ni)0≤i≤n est une base de Pn[X], alors :

Pn(x) =
∑

0≤i≤n
αiNi(x)

Il suffit de déterminer la suite des coefficients (αi)0≤i≤n, d’après la formule d’interpolation, le
polynôme Pn(x) doit vérifier

Pn(xi) = f (xi) = yi , i = 0, . . . , i = n

pour i = 0, on a :
Pn(x0) = y0 = α0N0(x0) +α1N1(x0) + . . . .+αnNn(x0)

= α0 +α1.0 + . . . .+αn.0
= α0.

(2.21)

pour i = 1,

Pn(x1) = y1 = α0 +α1(x1 − x0)
= y0 +α1(x1 − x0)

(2.22)

d’où
α1 =

y1 − y0

x1 − x0
= δ1(x0,x1)
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et ainsi de suite, jusqu’à i = n ;

αn = δn(x0,x1, . . . ,xn).

Exemple 2.0.4
Soif f (x) la fonction tabulée donnée par le tableau 2.5. Les différences divisées sont enregistrées
dans le tableau 2.6. Le polynôme d’interpolation de Newton est

P2(x) =
i=2∑
i=0

αiNi(x)

où
α0 = δ0(x0) α1 = δ1(x0,x1) α2 = δ2(x0,x1,x2).

Les coefficients αi sont situés dans la diagonale de la matrice des différences divisées. Autre-
ment

P2(x) = 1 + 2(x − 0) + (x − 0)(x − 2).

Relation entre différences divisées et dérivées

Théorème 2.0.3
Soit f une fonction n fois dérivable sur un intervalle [a,b] contenant les points x0,x0, . . . ,xn, alors
il existe ξ ∈ [a,b] tel que :

δn(x0,x1, . . . ,xn) =
f n(ξ)
n!

.

Erreurs d’interpolation

Théorème 2.0.4
Soit f une fonction (n+ 1) fois dérivable sur un intervalle [a,b] contenant les points x0,x0, . . . ,xn,
alors pour tout x ∈ [a,b], il existe ξ ∈ [a,b], tel que :

f (x)− Pn(x) =
f n+1(ξ)
(n+ 1)!

k=n∏
k=0

(x − xk).

Remarque 2.0.2
La formule précédente ne permet pas de calculer la valeur exacte d’erreur, parce que en général
ξ est inconnu, mais elle permet d’encadrer l’erreur.
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Corollaire 2.0.1
Sous l’hypothèse du théorème précédent, on a :

|f (x)− Pn(x)| ≤ Mn+1

(n+ 1)!
|
k=n∏
k=0

(x − xi)|

, où
Mn+1 = sup

x∈[a,b]
|f n+1(x)|.

Deuxième formule d’interpolation de Newton
Cette deuxième formule est un cas particulier de la première formule lorsque les point d’in-

terpolation sont équidistants. Supposons que les points d’interpolation sont équidistants, alors il
existe un réel h tel que xi = x0 + ih, où x0 est donné.

Définition Soit yi , i = 0, . . . ,n une suite de nombres réels, on appelle différence finie progres-
sive d’ordre p, p = 1, . . . ,n, le système suivant :

(D.f ini)



∆0yi = yi , i = 0, . . . ,n

∆1yi = yi+1 − yi , i = 0, . . . ,n− 1

∆2yi = ∆1yi+1 −∆1yi , i = 0, . . . ,n− 1

...

∆pyi = ∆p−1yi+1 −∆p−1yi , i = 0, . . . ,n− 1

(2.23)

La dernière relation du système (2.23) est appelée différences finies d’ordre p de la suite
y0, y1, . . . , yn.

Théorème 2.0.5
Soit f une fonction définie sur [x0,xn] et soit xi = x0 + ih, h > 0, i = 0, . . . ,n, une suite de points
tels que

f (xi) = yi , i = 0,1, . . . .,n. (2.24)

Alors

δk(xi ,xi+1, . . . ,xi+k) =
∆kf (xi)
hk k!

, 0 ≤ i ≤ i + k ≤ n.

Preuve
Pour simplifier, on prend i = 0 et donc on va montrer que :

δk(x0,x1, . . . ,xk) =
∆kf (x0)
hkk!

, 0 ≤ k ≤ n. (2.25)
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La preuve est par récurrence.

* pour k = 1, on a

δ1(x0,x1) =
f (x0)− f (x1)
x0 − x1

=
∆1f (x0)

1!h1 , (2.26)

Donc cette relation est vraie pour k = 1.
* Supposons que la relation (2.26) est vérifiée pour les différences finies d’ordre k, et mon-

trons qu’elle reste vérifiée pour les différences finies d’ordre k + 1

δk+1(x0,x1, . . . ,xk ,xk+1) =
δk(x0,x1, . . . ,xk)− δk(x1,x2, . . . ,xk ,xk+1)

x0 − xk+1

=
∆kf (x1)−∆kf (x0)

(k + 1)h

=
∆k+1f (x0)

(k + 1)!hk+1

(2.27)

donc la relation (2.25) est vraie pour tout k.

Théorème 2.0.6
Soit f une fonction définie sur [x0,xn] et soit xi = x0 + ih, h > 0, i = 0, . . . , i = n une suite des points
tels que

f (xi) = yi , i = 0,1, . . . ,n. (2.28)

Alors, le polynôme d’interpolation de Newton de f aux points xi peut s’écrire sous la forme

pn(x) =
∆0f (x0)

0!h0 N0(x) +
∆1f (x0)

1!h1 N1(x) +
∆2f (x0)

2!h2 N2(x) + · · · .+
∆nf (x0)
n!hn

Nn(x).

Exemple 2.0.5
Soient les deux fonctions définies par :

f (x) =
√
x − 1 et g(x) = sin

(π
2

(x − 1)
)
. (2.29)

* Déterminer le polynôme d’interpolation de Newton aux points x0 = 1,x1 =
3
2

et x2 = 2.

On remarque que xi+1 − xi = h =
1
2

. On utilise la deuxième formule de Newton.
* Calculer les Différences finies d’ordre p,p = 0,1,2.

* Le polynôme d’interpolation de Newton.

P2(x) =
∆0f (x0)

0!h0 N0(x) +
∆1f (x0)

1!h1 N1(x) +
∆2f (x0)

2!h2 N2(x)
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Table 2.7 – La fonction tabulée f

xk x0 = 1 x1 =
3
2

xn=2 = 2

yk = f (xk) f (x0) = 0 f (x1) =

√
2

2
f (x2) = 1

yk = g(xk) g(x0) = 0 g(x1) =

√
2

2
g(x2) = 1

Table 2.8 – Différences finies d’ordre p,p = 0,1,2

xi ∆0f (xi) ∆1f (xi) ∆2f (xi)

1 ∆0f (x0) = 0

∆1f (x0) = ∆0f (x1)−∆0f (x0) =

√
2

2
3
2

∆0f (x1) =

√
2

2
∆2f (x0) = 1−

√
2

∆1f (x1) = ∆0f (x2)−∆0f (x1) = 1−
√

2
2

2 ∆0f (x2) = 1

P2(x) =
√

2(x − 1) + 2(1−
√

2)(x − 1)(x − 3
2 )

* Calculer une valeur approximative de

√
1
4

. On a :

f (5
4 ) =

√
5
4 − 1 =

√
1
4 = 0.5

.
P2(5

4 ) =
√

2(5
4 − 1) + 2(1−

√
2)(5

4 − 1)(5
4 −

3
2 ) = 0.4053302

.

Exemple 2.0.6
Soit la fonction définie par le tableau suivant :

* Déterminer le polynôme d’interpolation de Newton aux points x0 = 2,x1 = 5 et x2 = 8.
On remarque que xi+1 − xi = h = 3. On utilise la deuxième formule de Newton. * Calculer les

différences finies d’ordre p,p = 0,1,2.
* Le polynôme d’interpolation de Newton.
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Table 2.9 – La fonction tabulée f

xk x0 = 2 x1 = 5 x2 = 8

yk = f (xk) f (x0) = −9 f (x1) = 18 f (x2) = 35

Table 2.10 – Différences finies d’ordre p,p = 0,1,2

xi ∆0f (xi) ∆1f (xi) ∆2f (xi)

2 ∆0f (x0) = −9

∆1f (x0) = ∆0f (x1)−∆0f (x0) = 27

5 ∆0f (x1) = 18 ∆2f (x0) = ∆1f (x1)−∆1f (x0) = −10

∆1f (x1) = ∆0f (x2)−∆0f (x1) = 17
8 ∆0f (x2) = 35

P2(x) =
∆0f (x0)

0!h0 N0(x) +
∆1f (x0)

1!h1 N1(x) +
∆2f (x0)

2!h2 N2(x)

P2(x) = −9 + 27
2 (x − 2)− 10

8 (x − 2)(x − 5) = −1
9(293− 116x+ 5x2)

L’erreur d’interpolation dans le cas présent

Corollaire 2.0.2
Sous l’hypothèse du théorème (2.0.6), on a :

|f (x)− Pn(x)| ≤ Mn+1

(n+ 1)!
hn+1t(t − 1)(t − 2) . . . (t −n)

où
Mn+1 = sup

x∈[a,b]
|f (n+1)(x)|.

et t = x − x0

/ / / i n t e r p o l a t i o n de Newton / / /
Write ( ’X�nodes , Y�values ’ )
Write ( ’n� i s � the�number�of�nodes , � ( n−1)� i s � the�degree . ’ )
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Write ( ’P� i s � the�numerical�Newton�polynomial . ’ )

function [ P]=newton (X, Y)
n=length (X ) ;

for j =2:n , for i =1:n− j +1 ,
Y( i , j )=(Y( i +1 , j −1)−Y( i , j −1 ) ) / (X( i +j −1)−X( i ) ) ;

end ,
end ,

x=poly ( 0 , " x " ) ;
P=Y( 1 , n ) ;

for i =2:n ,
P=P * ( x−X( i ) ) +Y( i , n− i + 1 ) ;

end
endfunction ;

Write ( ’ The�Running�of� the�programm� ’ )
X= [ 0 ; 2 ; 4 ] ; Y = [ 1 ; 5 ; 1 7 ] ;
P=newton (X, Y ) ;
Write ( ’ The� i n t e r p o l a t i o n �Newton

��������������������polynomial� i s � ’ ) ; Write ( ’We�have� f i n i s h e d �normally . ’ ) ;

P =

2
3.5 x − 3x

X= [ 1 ; 3 / 2 ; 2 ] ; Y=[0 ;\ sqrt ( ( 3 / 2 ) −1 ) ; \ sqrt ( 2 −1 ) ] ; P=newton (X, Y)
P =

2
− 2.6568542 + 3.4852814x − 0.8284271x

X= [ 2 ; 5 ; 8 ] ; Y=[ −9 ;18 ;35 ] ; P=newton (X, Y)
P =

2
− 32.555556 + 12.888889x − 0.5555556x

Write ( ’P� i s � the�numerical�Newton�polynomial� ’ ) ;



Chapitre 3

Approximation au sens des moindres carrées

3.0.1 Notions et Définitions

Produit scalaire discret
On considère l’ensemble de points {x0,x1, . . . ,xn} et un ensemble de nombres réels positifs

{w0,w1, . . . ,wn}.
Soient f et g deux fonctions réelles, on définit le produit scalaire discret entre f et g aux points
xi , i = 0, . . . ,n avec les poids {w0,w1, . . . ,wn} par :

〈f ,g 〉 =
i=n∑
i=0

wif (xi)g(xi).

Norme discrète d’une fonction

‖f ‖2 = 〈f , f 〉 =
i=n∑
i=0

wif (xi)
2.

L’orthogonalité
Définition On dit que f et g sont orthogonales par rapport au produit scalaire discret si

〈f ,g 〉 = 0.

Exemple 3.0.1
* Calculer le produit scalaire des fonctions tabulées suivantes ainsi que leurs normes, en suppo-
sant que w(x) = 1.

32
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Table 3.1 – Calcul du produit scalaire

xi 1 2 3 4 〈 , 〉

f (xi) f (x1) = 1 f (x2) = 3 f (x3) = 4 f (x4) = 5 ‖f ‖2 = .

g(xi) g(x1) = 1 g(x2) =
√

3 g(x3) =
√

4 g(x4) = 3 ‖g‖2 = .

f (xi)g(xi) . . . . 〈f ,g 〉 =

3.0.2 Polynômes Orthogonaux

Soit Pn[X], l’ensemble des polynômes de degré ≤ n défini sur R.
On dit qu’une famille de polynômes p0,p1, . . . ,pk de degré inférieur ou égal à n est orthogonale

si et seulement si :

〈pi ,pj 〉 = 0 si i , j (3.1)

Remarque 3.0.1
Pour simplifier, on suppose dans toute la suite que les poids wi sont égaux à 1.

Exemple 3.0.2
Soient les polynômes p0(x) = 1 et p1(x) = x. Considérons l’ensemble des points x0 = 0,x1 = 1,x2 = 2.

* Les polynômes p0 et p1. sont-ils orthogonaux?

Table 3.2 – produit scalaire

xi 0 1 2 〈 , 〉

p0(xi) 1 1 1 ‖p0‖2 = 3

p1(xi) 0 1 2 ‖p1‖2 = 5

p0(xi)p1(xi) 0 1 2 〈p0,p1 〉 = 3

On remarque que les polynômes p0(x) = 1 et p1(x) = x ne sont pas orthogonaux par rapport
au produit scalaire défini par les points x0,x1 et x2.

Exemple 3.0.3
* p0(x) = 1,p1(x) = x − 1 et l’ensemble des points x0 = 0,x1 = 1,x2 = 2. Le lecteur peut vérifier en
faisant un calcul similaire au précédent que les polynômes p0(x) et p1(x) sont orthogonaux.
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Table 3.3 – produit scalaire

xi 0 1 2 〈 , 〉

p0(xi) 1 1 1 ‖p0‖2 = 3

p1(xi) −1 0 1 ‖p1‖2 = 2

p0(xi)p1(xi) −1 0 1 〈p0,p1 〉 = 0

Théorème 3.0.1 ( Orthogonalisation de Gram Schmidt)
Soit {x0, . . . ,xn} un ensemble de points et A = {p0,p1, . . . ,pk} l’ensemble de polynômes tels que

p0(x) = 1
p1(x) = x − a1

pi(x) = (x − ai)pi−1(x)− bipi−2(x) i = 2, . . . , k

(3.2)

où

ai =
〈xpi−1(x),pi−1(x)〉
〈pi−1(x),pi−1(x)〉

i = 1, . . . , k

bi =
〈xpi−1(x),pi−2(x)〉
〈pi−1(x),pi−1(x)〉

i = 2, . . . , k
(3.3)

Les polynômes p0, . . . ,pk sont de degré inférieurs ou égal à k et l’ensemble A ainsi construit forme
un système orthogonal par apport aux points x0,x1, . . . ,xn.

Exemple 3.0.4
* Construire une base orthogonale A = {p0(x),p1(x),p2(x) } de l’espace P2[X], associée aux points

x0 = −1,x1 = −1
2
,x2 =

1
2
,x3 = 1 ?

I p0(x) = 1

I p1(x) = x − a1 ,

a1 =
〈xp0(x),p0(x)〉
〈p0(x),p0(x)〉

=
0
4

= 0

I p1(x) = x

I b2 =
〈xp1(x),p0(x)〉
〈p1(x),p1(x)〉

I b2 = 1 I p2(x) = x2 − 1 I p0(x) = 1 p1(x) = x et p2(x) = x2 − 1 forme une base orthgonale
sur P2[X].

3.0.3 Approximation des fonctions au sens des moindres carrées
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Table 3.4 – Construction d’une base des polynômes orthogonaux en utilisant l’algorithme de Gram-Schmidt

xi −1 −1
2

1
2 1 〈 , 〉

p0(xi) 1 1 1 1 〈p0,p0 〉 = ‖p0‖2 = 4

xip0(xi) −1 −1
2

1
2 1 ‖xp0‖2 = . . .

xip0(xi)p0(xi) −1 −1
2

1
2 1 〈xp0,p0 〉 = 0

a1 = 0

p1(xi) −1 −1
2

1
2 1 〈p1,p1 〉 = ‖p1‖2 = 5

2

xip1(xi) 1 1
4

1
4 1

xip1(xi)p1(xi) −1 −1
8

1
8 1 〈xp1,p1 〉 = 0

a2 = 0

p0(xi) 1 1 1 1

xip1(xi) 1 1
4

1
4 1

xip1(xi)p0(xi) 1 1
4

1
4 1 〈xp1,p0 〉 = 5

2

b2 = 1

Formulation du problème
Soit f une fonction définie sur [a,b], f étant connue aux points x0,x1, . . . ,xn :

f (xi) = yi , i = 0, . . . ,n

� On cherche un polynôme P ∗ ∈ Pk[X] qui vérifie :

‖f − P ∗‖ ≤ ‖f − P ‖ ∀P ∈ Pk[X]. (3.4)

Donc, P ∗ rend le membre gauche de (3.4) minimum, c’est à dire P ∗ est solution du problème
de minimisation suivant :

(PN )


Trouver P ∗ ∈ Pk[X] tel que

‖f − P ∗‖ = min
P ∈Pk[X]

‖f − P ‖.
(3.5)

En exprimant la norme en fonction du produit scalaire, on trouve le problème équivalent
suivant :
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(PS )


Trouver P ∗ ∈ Pk[X] tel que

i=n∑
i=0

[f (xi)− P ∗(xi)]2 = min
P ∈Pk[X]

i=n∑
i=0

[f (xi)− P (xi)]
2.

(3.6)

Ce polynôme s’il existe, s’appelle approximation au sens des moindres carrées de la fonction f
aux points x0,x1, . . . ,xn.

Meilleure approximation au sens (M.C) dans une base orthogonale

Théorème 3.0.2 (Coefficients dans une base orthogonale)
Soit A = {p0,p1, . . . ,pk} un ensemble de polynômes orthogonaux associés aux points x0,x1, . . . ,xn.

Le polynôme P ∗k qui est la meilleure approximation d’une fonction f au sens des moindres
carrées aux points x0,x1, . . . ,xn, s’écrit :

P ∗k (x) = a∗0p0(x) + a∗1p1(x) + · · ·+ a∗kpk(x) =
i=k∑
i=0

a∗ipi(x) (3.7)

où

a∗i =
〈f ,pi 〉
〈pi ,pi 〉

=

j=n∑
j=0
f (xj)pi(xj)

j=n∑
j=0

(pi(xj))2

, i = 0, . . . , k. (3.8)

Preuve
Il faut montrer que

‖f − P ∗k ‖ ≤ ‖f − P ‖ ∀P ∈ Pk[X] (3.9)

Posons

P ∗(x) =
i=k∑
i=0

a∗ipi(x). (3.10)

On cherche les valeurs a∗0, a
∗
1, . . . , a

∗
k qui rendent 3.6 minimum. Pour cela, en utilisant la propriété

d’orthogonalité suivante :

〈f − P ∗k , P 〉 = 0, ∀P ∈ Pk[X]〈
f −

j=k∑
j=0
a∗jpj , P

〉
= 0, ∀P ∈ Pk[X]

(3.11)

l’égalité est vraie pour les polynômes de la base pi(x), i = 0, . . . , k, et par suite on construit un
système linéaire de dimension k + 1 dont les k + 1 inconnues sont les a∗i , i = 0, . . . , k〈

f −
j=k∑
j=0

a∗jpj ,pi

〉
= 0, i = 0, . . . , k, (3.12)
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ou 〈 j=k∑
j=0

a∗jpk ,pi

〉
= 〈f ,pi 〉 i = 0, . . . , k. (3.13)

Le système matriciel associé est Ay = b avec

Ai,j = 〈pi ,pj 〉 =

 ‖pi‖2 si i = j

0 si i , j
i, j = 0,1, . . . , k

bj = 〈f ,pj 〉 j = 0,1, . . . , k.

(3.14)

qui a comme solution

a∗i =
〈f ,pi 〉
‖pi‖2

, i = 0,1, . . . , k. (3.15)

Exemple 3.0.5
� Trouver la meilleure approximation de la fonction tabulée suivante f au sens des moindres
carrées aux points x0 = 0,x1 = 1 et x2 = 2.

Table 3.5 – la fonction tabulée
xi 0 1 2

f (xi) 1 0 2

I Il est clair que l’ensemble A = {p0(x),p1(x)} où p0(x) = 1 et p1(x) = x−1 est orthogonal. Donc

P ∗2(x) = a∗0p0(x) + a∗1p1(x).

Les coefficients a∗0, a
∗
1 sont déterminés à l’aide de la formule (3.15), on obtient alors

P ∗2(x) = 1 +
1
2
p1(x) =

1
2

(x+ 1).

Meilleure approximation au sens (M.C) dans la base canonique

Théorème 3.0.3
Soit

P ∗k (x) =
i=k∑
i=0

αix
i ,

la meilleure approximation au sens des (M.C) de degré k de la fonction f aux points x0,x1, . . . ,xn.
Alors, le vecteur des coefficients (αi)0≤i≤k est la solution unique du système linéaire Aα = b où

Ai,j = 〈xi ,xj 〉 i, j = 0,1, . . . , k. (3.16)
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et
bj = 〈f ,xj 〉 j = 0,1, . . . , k. (3.17)

Preuve Ce résultat se déduit immédiatement de l’égalité d’orthogonalité suivante :

〈f (x)−
j=k∑
j=0
αjx

j ,xi 〉 = 0, i = 0, . . . , k

m
j=k∑
j=0
αj〈xj ,xi 〉 = 〈f (x),xi 〉 i = 0, . . . , k

m
j=k∑
j=0
Ai,jαj = bi i = 0, . . . , k.

(3.18)

Exemple 3.0.6
� Trouver la meilleure approximation de la fonction tabulée suivante f au sens des moindres
carrées aux points x0, x1, x2, x4, et x5 dans la base canonique xi , i = 0,1,2.
I

P ∗2(x) = α0 +α1x+α2x
2

Alors, le vecteur des coefficients (αi)0≤i≤2 est la solution unique du système linéaire

Aα = b

Table 3.6 – Calcul des coefficients a∗i de l’exemple 3.0.5

xi 0 1 2 〈 , 〉

p0(xi) 1 1 1 〈p0,p0 〉 = ‖p0‖2 = 3

f (xi) 1 0 2 ‖f (x)‖2 = 5

p0(xi)f (xi) 1 0 2 〈f ,p0 〉 = 3

a∗0 =
3
3

= 1

p1(xi) −1 0 1 〈p1,p1 〉 = ‖p1‖2 = 2

f (xi) 1 0 2 ‖f (x)‖2 = 5

p1(xi)f (xi) −1 0 2 〈f ,p1 〉 = 1

a∗1 =
1
2
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Table 3.7 – la fonction tabulée
xi −1 0 1 2 3

f (xi) 1 −1 −1 1 5

. avec

Ai,j =
l=2∑
l=0

x
i+j
l = Aj,i i = 0,1,2, j = 0,1,2. (3.19)

Table 3.8 – Les éléments du système

xi −1 0 1 2 3 〈 , 〉
x0+0 1 1 1 1 1 5

x0+1 −1 0 1 2 3 5

x0+2 1 0 1 4 9 15

x1+1 1 0 1 4 9 15

x1+2 −1 0 1 8 27 35

x2+2 1 0 1 16 81 99

x0f (xi) 1 −1 −1 1 5 〈x0, f (x)〉 = 5

x1f (xi) −1 0 −1 2 15 〈x1, f (x)〉 = 17

x2f (xi) 1 0 −1 4 45 〈x2, f (x)〉 = 49

on obtient le système d’équation suivant
5 5 15
5 15 35

15 35 99



α0

α1

α2

 =


5

17
49

 . (3.20)

dont la solution est

α =


−32/55
−8/35

5/7

 =


−0.91428575
−0.2285714
0.7142857

 . (3.21)
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Série d’exercices et applications

Exercice 3.0.1 (Calcul du produit scalaire)
Soit les fonctions tabulées suivantes :

Table 3.9 – Les fonctions tabulées f et g

xi −1 0 1 2 3
f (xi) 1 −1 −1 1 5
g(xi) −1 0 −1 2 15

I Calculer le produit scalaire < f ,g >, et les normes de f et g ?
I Les fonctions f et g, sont elles orthogonales ?
I Calculer les produits scalaires < f ,xi >, i = 0, i = 1, i = 2 ?

Exercice 3.0.2
Soit la suite des points suivants :

xi −1 −1
2

1
2 1

I Construire une base orthogonale A = {p0, p1 p2} de l’espace P2[X] en utilisant l’algorithme
d’orthogonalisation de Gram-Schmidt associé au produit scalaire défini par les points xi ?
I Trouver le polynôme p∗(x) ∈ P2[X] solution du problème de minimisation ci-dessous ex-

primé dans la base A :

Pmin1


Trouver P ∗ ∈ P2[X]

minP ∈P2[X]

i=3∑
i=0

(|xi | − P (xi))2
(3.22)

Exercice 3.0.3 (Meilleure approximation dans la base canonique)
I Résoudre les problèmes d’optimisation suivants :
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P1


Trouver a∗,b∗, c∗ ∈R tels que

i=3∑
i=0

[
cos(πi)− (a∗i2 + b∗i + c∗)

]2
= min
a,b,c∈R

i=3∑
i=0

[
cos(πi)− (ai2 + bi + c)

]2

P2


Trouver a∗,b∗, c∗ ∈R tels que

i=2∑
i=−1

[
sin(πi)− (a∗i2 + b∗i + c∗)

]2
= min
a,b,c∈R

i=2∑
i=−1

[
sin(πi)− (ai2 + bi + c)

]2



Chapitre 4

Intégration Numérique

4.0.1 Motivations

Soient f une fonction définie et continue sur l’intervalle [a,b] ( f ∈ C[a,b] ) et F sa primitive.

On définit la quantité I(f ) par

I(f ) =
∫ b

a
f (x)dx. (4.1)

dont la valeur exacte est

I(f ) = F(b)−F(a). (4.2)

Exemple 4.0.1
* Dans plusieurs cas, on ne peut pas déterminer la primitive F pour différentes raisons, comme
dans l’exemple suivant :

f (x) =


sin(x)
x

si x , 0

0 si x = 0.
(4.3)

On note que la primitive de f est inconnue.
* Fonctions tabulées : f connues seulement en un nombre fini de points.

Question : Quelle est la procédure à adopter pour calculer une valeur approximative de

I(f ) =
∫ b

a
f (x)dx. (4.4)

42
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La réponse est de construire des méthodes numériques dites indirectes dont le but principal est
d’estimer la valeur de l’intégrale définie d’une fonction f .

4.0.2 Méthodes Générales :

Ces méthodes suivent en général les étapes suivantes, en premier lieu, on fait la décomposition
de l’intervalle en morceaux, c’est-à-dire en sous-intervalles contigus, puis l’intégration approchée
de la fonction sur chaque morceau, et en fin, la sommation de tous les résultats obtenus. En effet,
pour des points (xi)0≤i≤n quelconques de l’intervalle I ; I(f ) sera approchée par une suite des
intégrales In(f ) telles que

In(f ) =
∫ b

a
Pn(x)dx. (4.5)

où Pn(x) est le polynôme d’interpolation de la fonction f aux points xi .

Formule des Trapèzes

D’ordre n = 1
En interpolant f par un polynôme de degré 1, les deux points d’interpolation suffisent à tra-

cer un segment dont l’intégrale correspond à l’aire d’un trapèze, justifiant le nom méthode des
trapèzes qui est d’ordre 1.

I(f ) = (b − a)
f (a) + f (b)

2
(4.6)

Si f est de classe C2(]a,b[), l’erreur est donné par :

E(f ) = −(b − a)3

12
f (2)(ν), ν ∈ ]a,b[ (4.7)

Conformément aux expressions de l’erreur, la méthode des trapèzes est souvent moins perfor-
mante que celle du point milieu.

D’ordre n

In(f ) =
h
2

{
f (x0) + f (xn) + 2

i=n−1∑
i=1

f (xi)
}
, (4.8)

où
h =

b − a
n
, x0 = a, xn = b. (4.9)

Formule de Simpson n = 2

En interpolant f par un polynôme de degré 2 (3 degré de liberté), 3 points sont nécessaires
pour le caractériser, les valeurs aux extrémités a et b et celle choisie en leur milieu x1/2 = (b+a)/2,
la méthode de Simpson est basée sur un polynôme de degré 2 ( intégrale d’une parabole ), tout
en restant exact pour des polynômes de degré 3, elle est donc d’ordre 3.
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I(f ) =
(b − a)

6
[f (a) + 4f (x1/2) + f (b)]. (4.10)

Si f est de classe C2(]a,b[), l’erreur est donné par :

E(f ) = −(b − a)5

2880
f (4)(ν), ν ∈ ]a,b[ (4.11)

Remarque : Comme la méthode du point milieu caractérise un polynôme de degré 0, et qui reste
exacte pour tout polynôme d’ordre 1, la méthode de Simpson caractérise un polynôme de degré
2 et reste exacte pour tout polynôme de degré 3.

Formule de Simpson généralisée n = 2k
On divise l’intervalle [a,b] en 2n intervalles égaux.

In(f ) =
h
3

{
f (x0) + f (xn) + 2

i=n−1∑
i=1

f (x2i) + 4
i=n−1∑
i=1

f (x2i−1)
}
. (4.12)

4.0.3 Erreur d’approximation

Théorème 4.0.1
Soit f une fonction deux fois dérivable,
À L’erreur maximale pouvant être commise sur la valeur I(f ) approchée par la méthode des
trapèzes est donnée par la formule suivante :

εT rap =| I(f )− In(f ) |=
(b − a)3f

′′
(ξ)

12n2 . avec ξ ∈ [a,b]. (4.13)

Si on suppose de plus que f est une fonction de classe C4 dans [a,b], alors
Á L’erreur maximale pouvant être commise sur la valeur I(f ) approchée par la méthode de
Simpson est donnée par la formule suivante :

εSimp =| I(f )− In(f ) |= (b − a)5

23 × 4!× 15n4 f
(4)(ξ1). avec ξ1 ∈ [a,b]. (4.14)

Ces méthodes ont été programmées en Scilab 5.2 avec des tests de validation pour des fonc-
tions dont les intégrales exactes sont connues. On clôturera cette partie par deux représentations
graphiques qui montrent l’ordre de la convergence de ces méthodes en fonction du pas de discré-

tisation de l’intervalle [a,b], h =
b − a
n

.
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function [ xx ] = Trapezes ( x0 , y0 , xn ,Mz, y1 , pci )
h=(xn−x0 ) /Mz;
s =0;

for ( i =1:Mz) ,
x ( i )=x0+ i *h ;
y ( i )=y1 ( i ) * pci ( i ) ;
s=s +2*y ( i ) ;

end ,
xx=(h / 2 ) * ( y0+s−y (Mz ) ) ;

endfunction
deff ( ’ [ y]= f ( x ) ’ , ’ y=exp ( x ) ’ ) ;

for ( i =1 :5 ) , Mz=i *20 ;
h=1/Mz; x=h : h : 1 ;
y1=f ( x ) ;
I ( f )= i n t e g r a t e ( ’ f ( x )^2 ’ , ’ x ’ , 0 , 1 ) ;
g ( i )= Trapezes ( 0 , 1 , 1 ,Mz, y1 ’ , y1 ’ ) ;

end ;
i n t e g r a t e ( ’ f ( x )^2 ’ , ’ x ’ , 0 , 1 ) / / La v a l e u r e x a c t e de l a f o n c t i o n exp (2 x )

for ( i =1 :5 ) ,
er ( i )= ( g ( i )− i n t e g r a t e ( ’ f ( x )^2 ’ , ’ x ’ , 0 , 1 ) ) / I ( f ) ; / / e r r e u r r e l a t i v e

end ;
/ / / / / / / / / / / p r e s e n t a t i o n graph ique / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Mx=[20 ,40 ,60 ,80 ,100] ;
plot2d (Mx^( −1) ,6* er , l o g f l a g=" l l " , s t y l e =−4);
plot2d (Mx^( −1) ,6* er , l o g f l a g=" l l " , s t y l e =2) ;
plot2d (Mx^( −1) ,1*Mx^( −2) , l o g f l a g=" l l " , s t y l e =−5);
plot2d (Mx^( −1) ,1*Mx^( −2) , l o g f l a g=" l l " , s t y l e =1) ;

x l a b e l ( ’ $�pas�\�de�\� d i s c r é t i s a t i o n �\�h�\�=�\��\ f r a c { b−a } { n } $ ’ ) ;
y l a b e l ( ’ $� \ | I ( f ) �−IN^{ Tr } ( f ) \ | / \ | I ( f ) \ | $ ’ ) ;
x t i t l e ( ’ $\ t e x t c o l o r { black } { �\�The��\�Trapezes�\� formula�\�of�\

������������Numerical�\� i n t e g r a t i o n �\�� } �$ ’ ) ;
legends ( [ ’ $Log ( h ^ { 2 } ) $ ’ ; ’ $�Numerical�\� e r r o r �\� s lope=2�$ ’ ] , [ 2 1 ] , opt =5)

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
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function [ xx ] = Simpson ( x0 , y0 , xn ,Mz, y1 , pci )
h=(xn−x0 ) /Mz;
x=x0 : h : xn ;

for ( i =1:Mz) ,
y ( i )=y1 ( i ) * pci ( i ) ;

end ;
s1 =0; s2 =0;

for ( i =1:Mz/ 2 ) ,
s1=s1 +4*y (2* i −1 ) ;
s2=s2 +2*y (2* i ) ;

end ,
xx=(h / 3 ) * ( y0+s1+s2−y (Mz ) ) ;

endfunction

deff ( ’ [ y]= f ( x ) ’ , ’ y=exp ( x ) ’ ) ;
for ( i =1 :6 ) ,

Mz=i *20 ; h=1/Mz;
x=h : h : 1 ;
y1=f ( x ) ; g ( i )=Simpson ( 0 , 1 , 1 ,Mz, y1 ’ , y1 ’ ) ;

end ;
I ( f )= i n t e g r a t e ( ’ f ( x )^2 ’ , ’ x ’ , 0 , 1 )
for ( i =1 :6 ) ,
er ( i )= ( g ( i )− i n t e g r a t e ( ’ f ( x )^2 ’ , ’ x ’ , 0 , 1 ) ) / I ( f ) ;
end ;

/ / / / / / / / / / / p r e s e n t a t i o n graph ique / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
Mx=[20 ,40 ,60 ,80 ,100 ,120] ;

s c f ( 2 ) ;
plot2d (Mx^( −1) ,1* er , l o g f l a g=" l l " , s t y l e =−4);
plot2d (Mx^( −1) ,1* er , l o g f l a g=" l l " , s t y l e =2) ;
plot2d (Mx^( −1) ,1*Mx^( −4) , l o g f l a g=" l l " , s t y l e =−5);
plot2d (Mx^( −1) ,1*Mx^( −4) , l o g f l a g=" l l " , s t y l e =1) ;

x l a b e l ( ’ $�pas�\�de�\� d i s c r é t i s a t i o n �\�h�\�=�\��\ f r a c { b−a } { n } $ ’ ) ;
y l a b e l ( ’ $� \ | I ( f ) �−IN^{Sim } ( f ) \ | / \ | I ( f ) \ | $ ’ ) ;
x t i t l e ( ’ $\ t e x t c o l o r { black } { �\�The��\�Simpson�\� formula�\�of�\�Numerical�\

��� i n t e g r a t i o n �\�� } �$ ’ ) ;
legends ( [ ’ $Log ( h ^ { 4 } ) $ ’ ; ’ $�Numerical�\� e r r o r �\� s lope=4�$ ’ ] , [ 2 1 ] , opt =5)
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Série d’exercices et applications sur l’intégration

numérique

Exercice 4.0.1
Approximer l’intégrale suivante :

I(f ) =
∫ 2

0

dx

1 + x2 .

par la méthode de :
À des trapèzes
Á de Simpson.
Â des trapèzes, formule générale avec n = 3.
Ã Simpson, formule générale avec n = 6.
Ä Estimer l’erreur commise pour chaque cas.

Exercice 4.0.2
Déterminer le nombre de points n qu’il faut utiliser dans la méthode des trapèzes pour approxi-
mer l’intégrale

I(f ) =
∫ 1

0
exp(−x2)dx.

avec une erreur ε = 10−2

Exercice 4.0.3
Même question que celle de l’exercice précédent, pour l’intégrale

I(f ) =
∫ 2

1
x log(x)dx.

Table 4.1 – Les valeurs de f (x) = x log(x) aux pts xi
xi 1 3/2 2 4/3 5/3

f (xi) 0 0.6081977 1.3862944 0.3835761 0.8513760

Exercice 4.0.4 (Application en calcul de probabilité)
On souhaite calculer une valeur approximative de l’intégrale de la fonction de Gauss définie ci-
dessous :
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Définition 4.0.1
On appelle fonction de Laplace-Gauss la fonction définie sur R par :

f (x) =
1
√

2π
e−

x2
2

Sa courbe représentative est donnée sur la figure 4.1. On l’appelle courbe de Gauss ou courbe en
cloche.

−3.5 −2.5 −1.5 0 1.5 2.5 3.5

0

0.1

0.2

0.3

0.4

x

f
(x

)

Figure 4.1 – Courbe de la fonction de Laplace-Gauss

\ Calculer une valeur approximative In(f ) de I(f ) par la méthode de Simpson avec n = 4. ( les
bornes sont a = −3.5 et b = 3.5).

En théorie des probabilités et en statistique, la fonction de Laplace-Gauss est la densité de
probabilité de la loi normale qui est l’une des lois de probabilité les plus utilisées pour modéliser
des problèmes issus de plusieurs expériences aléatoires. Elle est également appelée loi gaussienne,
loi de Gauss ou loi de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux
mathématiciens, astronomes et physiciens qui l’ont étudié.

La courbe de cette densité de probabilité est appelée courbe de Gauss. C’est la représentation
de la loi normale de moyenne nulle et d’écart type unitaire qui est appelée loi normale centrée
réduite.
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Programme de la méthode des Trapèzes en Scilab

* Les résultats numériques sont enregistrés dans le tableau ci-dessous ainsi que les figures
4.2 et 4.3 montrent l’ordre de la convergence de la méthode de Simpson et celle des trapèzes
respectivement appliquées sur la fonction test f (x) = exp(x)2, ces courbes sont tracées dans une
échelle logarithmique.

level er er1 h h2 h4

1 6 · 10−7 8.33 · 10−4 5 · 10−2 2.5 · 10−3 6.25 · 10−6

2 3.47 · 10−8 2.08 · 10−4 2.5 · 10−2 6.25 · 10−4 3.91 · 10−7

3 6.86 · 10−9 9.26 · 10−5 1.67 · 10−2 2.78 · 10−4 7.72 · 10−8

4 2.17 · 10−9 5.21 · 10−5 1.25 · 10−2 1.56 · 10−4 2.44 · 10−8

5 8.89 · 10−10 3.33 · 10−5 1 · 10−2 1 · 10−4 1 · 10−8

10−1.310−1.610−1.7810−2

10−9

10−8

10−7

10−6

10−5

log(pas de discrtisation h = b−a
n )

lo
g(
‖I

(f
)−
IN

S
im
p
(f

)‖
/‖
I(
f

)‖
)

Log(er). slope = 4
Log(h4)

Figure 4.2 – Ordre de convergence de la f ormule de Simpson
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10−1.310−1.610−1.7810−2

10−4

10−3

log(pas de discrtisation h = b−a
n )

lo
g(
‖I

(f
)−
IN

T
r (
f

)‖
/‖
I(
f

)‖
)

Log(er1). slope = 2
Log(h2)

Figure 4.3 – Ordre de convergence de la f ormule des trapzes
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