I1H-M A
Complément
MVC

Interactions avec le systeme : modele et vue

= L'interface utilisateur est chargée de représenter, sous une forme
interprétable par un humain, les informations internes de

I'application.
= Ces informations constituent le modele (model) de I'application (les

données représentant son état actuel).
= On peut créer plusieurs vues distinctes d'un méme modele.

9o
nfffl 4§
sts}' '
8

|
i
.'..'_{:__.
£ E.EEg

|
W(ETT
piajziz|s]

“}‘
i

Interactions avec le systeme : controleur

= Lorsque l'utilisateur interagit avec le systeme
» Déplacement de la souris, clic, double-clic, ...

» Frappe sur les touches du clavier (caractéres, touches de fonctions, .. |

le composant logiciel qui gere ces actions est nommeé le controleur
(controller) du systeme.

= Le rble du controleur est donc de réagir aux actions de l'utilisateurs

= Si l'utilisateur agit au moyen de la souris (ou touchpad, trackpad,
joystick, tablette graphigue, etc.), l'interaction se fait au travers de la
vue

= Lors de la saisie, au clavier, d'un champ de texte (ou d'une zone de
texte, ou lors de la navigation a l'aide du clavier), la vue est également
impliquée dans l'interaction

= || y a donc souvent une relation assez forte entre le contrbleur et la
vue

Synchronisation modeles vues

= Qui se charge d'assurer la cohérence entre les données du modele et
leur représentation dans les différentes vues ?

= Dans la variante simple (nommée synchrone) de l'architecture MVC,
c'est le r6le du contrdleur qui agit comme un intermédiaire et qui a la
charge de synchroniser les informations entre les vues et le modele.

ok m

i |

4

Controller

N L »~

Architecture MVC

= | 'architecture MVC (Model-View-Controller) est un modele de
conception (Design Pattern) tres classique qui a été introduit avec
le langage Smalltalk-80.

= Le principe de base de l'architecture MVC est relativement simple,
on divise le systeme interactif en trois parties distinctes :

* le modele (Model) qui offre I'acces et permet la gestion des
données (état du systeme)

* la vue (View) qui a pour tache l'affichage des informations
(visualisation) et qui participe a la détection de certaines actions de
I'utilisateur

* le controleur (Controller) qui est chargé de réagir aux actions
de l'utilisateur (clavier, souris) et a d'autres événements internes et
externes

= Ce modele de conception simplifie le développement et la maintenance
des applications en répartissant et en découplant les activités dans
différents sous-systemes (plus ou moins) indépendants.

Interactions MVC

La vue consulte les
données du modele

La vue détermine quels
événements sont passes
au contrébleur.

Le contrbéleur consulte
et met a jour le modéele en

fonction des evénements Le contréleur peut modifier les

éléments affichés

q Flux dedonnées

— =» Evénements

MVC / Le modele (Model)

= Le Modele (Model) est responsable de la gestion de 'état du systeme
(son contenu actuel, la valeur de ses données).

= || offre également les méthodes et fonctions permettant de gérer,
transformer et manipuler ces données (logique de I'application).

= e modele peut informer les vues des changements intervenus dans
ses données. La communication de ces changements intervient en
genéral sous la forme d'événements qui seront gérés par des
contrbleurs (les vues s'enregistrent auprés du modele pour étre notifiées lors
des changements dans les données)

= Les informations gérées par le modele sont indépendantes de la
maniere dont elles seront affichées. En fait, le modele doit pouvoir
exister indépendamment de la représentation visuelle des données.

= Dans certaines situations (simples) le modele peut contenir lui-méme
les données, mais la plupart du temps, il agit comme un intermeédiaire
(proxy) vers les données qui sont stockees dans une base de données
ou un serveur d'informations (en Java, le modéle est souvent défini par une
interface).

MVC / La vue (View)

= La vue (View) se charge de la representation visuelle des
informations.

= La vue utilise les données provenant du modele pour afficher les
informations. La vue doit étre informée des modifications intervenues
dans certaines données du modele (celles qui influencent I'affichage).

= Plusieurs vues différentes peuvent utiliser le méme modele (plusieurs
représentations possibles d'un méme jeu de données).

= La vue intercepte certaines actions de l'utilisateur et les transmet au
contrbleur pour gu'il les traite (souris, événements clavier, ...).

= e contrbleur peut également modifier la vue en réaction a certaines
actions de ['utilisateur (par exemple afficher une nouvelle fenétre).

= La représentation visuelle des informations affichées peut dépendre du
Look-and-Feel adopté (ou imposeé) et peut varier d'un systéeme
d'exploitation a l'autre. L'utilisateur peut parfois modifier lui méme la
présentation des informations en choisissant par exemple un theme.

MVC / Le contréleur (Controller)

= Le contrbleur (Controller) est charge de réagir aux différents
evenements qui peuvent survenir,

= Les evénements sont constitués soit par des actions de l'utilisateur
(presser sur une touche, cliquer sur un bouton, fermer une fenétre, ...) ou par
des directives venant du programme lui-méme (un changement
intervenu dans un autre composant, I'écoulement d'un certain temps, etc...).

= e contrOleur definit le comportement de 'application (comment elle
reagit aux sollicitations).

= Dans les applications simples, le contréleur géere la synchronisation
entre la vue et le modele (réle de chef d'orchestre).

= Le contrOleur est informé des événements qui doivent étre traites et sait
d'ou ils proviennent.

= Le contrbleur peut agir sur la vue en modifiant les éléments affichés.

= Le contrOleur peut également, si nécessaire, modifier le modele en
réaction a certains événements.

Roles des éléeéments de I'architecture MVC

= Lorsqu'un utilisateur interagit avec une interface, les differents élements

de l'architecture MVC jouent chacun un réle bien défini.

Utilisateur

Présentation

-

\

Interface
utilisateur

Xfce Panel Settings

Mise a jour

de l'interface

Action

Vue

interprétée

Logique Fonctions
applicative meétier
4) 4)
Résultats
Décisions Actions
Opérations
(fonctions)
G / G /
Controleur Modéle

MVC : Déecouplage et modele synchrone

= L'architecture MVC est un modele de conception qui présente comme
intérét principal de modulariser (decouper) I'application en élements
ayant des roles distincts et qui permet (si I'on respecte l'esprit de cette
architecture) de minimiser les dépendances entre ces modules.

= Le découplage entre les modules favorise la lisibilité ainsi que la
maintenance des applications (on peut modifier un élément du systéme
sans que tous les autres en soient affectés).

= || existe differentes manieres de gérer la communication entre les trois
entités : Modele - Vue(s) - Controéleur(s).

= Avec un modele synchrone - dans lequel le contréleur joue le role de
chef d'orchestre - le couplage reste assez fort entre le contrdleur et la
ou les vues. L'essentiel des mises a jour des vues passe par le
controleur.

= Ce modele d'interaction fonctionne pour des applications de petite
envergure mais n'est pas adapté si I'application est plus complexe et
notamment lorsqu'il y a plusieurs vues pour un méme modele.

MVC : Interactions synchrones

La vue peut consulter les
données du modele.
(mode "pully - ==-—7

—-—
—
—
—
—
—
—
—
—
s =

> View 1

Model

=D View 2

Le contrbleur consulte et
met a jour le modele en
fonction des événements

La vue détermine quels
evénements sont passes
au controleur.

Le contrbéleur peut modifier

Controller A o
les éléments affichés

MVC : Découplage et modele asynchrone

= || est possible de réduire le couplage entre les modules et de
restreindre le role central du contrbleur en utilisant un modele
asynchrone basé sur le modele de conception Observer pattern.

= Ce mode de communication entre deux entités est fréquent et on
le trouve sous différentes désignations :
 Observer / Observable (Subject) Push Model
 Subscribe / Notify Callback Pattern
« Subscriber-Publisher Model

= Le principe géenéral de ce modele asynchrone est que les vues
s'inscrivent (s'enregistrent) aupres du modele et sont informees
lorsque le modele change.

= Ce modeéle asynchrone peut étre implémenté de différentes manieres.

= Le niveau de granularité des événements (changements globaux ou
sélectifs) ainsi que celui des informations qui circulent (seulement les
valeurs modifiées ou toutes les données du modele) dépendent du type
d'application.

Observer Pattern

238

/Observable
AlarmClock

> Marion
> Max

\ > ...

/—cs

/

uog1duosqns>

Subscf"p{\on

N==p

Observer

Marion ﬁ(

-

Observer
Max

\

/Observable ,-/41)
AlarmClock 5 LC |
S
> Marion ((-~
> Max 0’ <3 ')
> ...
N /

7,
e e e ===y
 Lomeannon |
N

-’
-
= o ~n{\0
|y i 0\.\“23’ -\,
\- -~
r - .
/ Not.:NN N
I’/

Observer
Marion

-

Observer
Max

_

=

MVC : Interactions asynchrones [1]

Get Data (pull)

e = e e e e
-— -~
—

L7 Subscribe\ X
/
t . View 1
p Notify

Subscribe

m View 2

Update

UserAction

UserAction

Controller

MVC : Interactions asynchrones [2]

a

Model

» Encapsulates application state

* Hesponds to state queries

» EXposes application
{unctionality

* Notifies views of changes

(r
View controller

+ Renders the models * Defines application behavior

» Requests updates from models ’ Maps’user actions to
» Sends user gestures o controller 4" 1 3 1 1 model updates

» Allows controller to'sefect view User Gestures : Selectsiview forresponse
*» One for each functionality

Method Invocations

REDB Events

Implémentation du modele asynchrone

= En Java, il est possible d'implémenter ce modele d'interaction
asynchrone de differentes manieres, notamment :

« En utilisant la classe Observable et l'interface Observer (java.util)

« En utilisant la technique de notification des JavaBeans qui est utilisée dans
la librairie Swing (EventListeners) avec la notion de propriété liee (Bound
Property).

On fera appel a la classe PropertyChangeEvent ainsi qu'a l'interface
PropertyChangelListener (dansjava.beans). La classe utilitaire
PropertyChangeSupport peut étre utile pour faciliter la mise en place
de ce mécanisme (gestion de la liste des récepteurs et déclenchement des
événements).

« En utilisant la classe ChangeEvent et l'interface ChangeListener (dans
javax.swing.event). La classe EventListenerList (du mémepackage)
permet de gérer la liste des récepteurs abonnés aux eévénements.

» Creéation d'un événement spécifique en créant une sous-classe de
EventObject et une sous-interface de EventListener (dansjava.util)
avec gestion de la liste des abonnés

Exemples

Les exemples qui suivent illustrent différentes implémentations du
modele d'interaction asynchrone.

lls représentent une mini-application comprenant :
* Un modele simple qui est un compteur que I'on peut incrémenter et consulter
v Counter {incrCounter(inti); getCounter(); setCounter(inti);}
» Des vues triviales (simple affichage de la valeur du compteur sur la console)
v Viewer
» Des classes utilitaires pour mettre en place et gérer le mécanisme
v Par exemple enregistrement des abonnés, récepteur d'événements (EventListeners)
« Un programme principal qui modifie périodiguement I'état du modéele et qui
permet de tester le fonctionnement de I'ensemble
v Test...

______ » Viewer : viewl
Counter : myCounter

~ Al Viewer : view?2

121unoD18b

