
I H-M A

Complémént

MVC

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Interactions avec le système : modèle et vue

▪ L'interface utilisateur est chargée de représenter, sous une forme

interprétable par un humain, les informations internes de

l'application.

▪ Ces informations constituent le modèle (model) de l'application (les

données représentant son état actuel).

▪ On peut créer plusieurs vues distinctes d'un même modèle.

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Interactions avec le système : contrôleur

▪ Lorsque l'utilisateur interagit avec le système

• Déplacement de la souris, clic, double-clic, …

• Frappe sur les touches du clavier (caractères, touches de fonctions, …)

le composant logiciel qui gère ces actions est nommé le contrôleur

(controller) du système.

▪ Le rôle du contrôleur est donc de réagir aux actions de l'utilisateurs

▪ Si l'utilisateur agit au moyen de la souris (ou touchpad, trackpad,

joystick, tablette graphique, etc.), l'interaction se fait au travers de la

vue

▪ Lors de la saisie, au clavier, d'un champ de texte (ou d'une zone de

texte, ou lors de la navigation à l'aide du clavier), la vue est également

impliquée dans l'interaction

▪ Il y a donc souvent une relation assez forte entre le contrôleur et la

vue

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Synchronisation modèles vues

▪ Qui se charge d'assurer la cohérence entre les données du modèle et

leur représentation dans les différentes vues ?

▪ Dans la variante simple (nommée synchrone) de l'architecture MVC,

c'est le rôle du contrôleur qui agit comme un intermédiaire et qui a la

charge de synchroniser les informations entre les vues et le modèle.

Controller

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Architecture MVC

▪ L'architecture MVC (Model-View-Controller) est un modèle de

conception (Design Pattern) très classique qui a été introduit avec

le langage Smalltalk-80.

▪ Le principe de base de l'architecture MVC est relativement simple,

on divise le système interactif en trois parties distinctes :

• le modèle (Model) qui offre l'accès et permet la gestion des

données (état du système)

• la vue (View) qui a pour tâche l'affichage des informations

(visualisation) et qui participe à la détection de certaines actions de

l'utilisateur

• le contrôleur (Controller) qui est chargé de réagir aux actions

de l'utilisateur (clavier, souris) et à d'autres événements internes et

externes

▪ Ce modèle de conception simplifie le développement et la maintenance

des applications en répartissant et en découplant les activités dans

différents sous-systèmes (plus ou moins) indépendants.

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Interactions MVC

Flux de données

Événements

Model View

Controller

La vue consulte les

données du modèle

La vue détermine quels

événements sont passés

au contrôleur.

Le contrôleur peut modifier les

éléments affichés

Le contrôleur consulte

et met à jour le modèle en

fonction des événements

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

MVC / Le modèle (Model)
▪ Le Modèle (Model) est responsable de la gestion de l'état du système

(son contenu actuel, la valeur de ses données).

▪ Il offre également les méthodes et fonctions permettant de gérer,

transformer et manipuler ces données (logique de l'application).

▪ Le modèle peut informer les vues des changements intervenus dans

ses données. La communication de ces changements intervient en

général sous la forme d'événements qui seront gérés par des

contrôleurs (les vues s'enregistrent auprès du modèle pour être notifiées lors

des changements dans les données)

▪ Les informations gérées par le modèle sont indépendantes de la

manière dont elles seront affichées. En fait, le modèle doit pouvoir

exister indépendamment de la représentation visuelle des données.

▪ Dans certaines situations (simples) le modèle peut contenir lui-même

les données, mais la plupart du temps, il agit comme un intermédiaire

(proxy) vers les données qui sont stockées dans une base de données

ou un serveur d'informations (en Java, le modèle est souvent défini par une

interface).

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

MVC / La vue (View)

▪ La vue (View) se charge de la représentation visuelle des

informations.

▪ La vue utilise les données provenant du modèle pour afficher les

informations. La vue doit être informée des modifications intervenues

dans certaines données du modèle (celles qui influencent l'affichage).

▪ Plusieurs vues différentes peuvent utiliser le même modèle (plusieurs

représentations possibles d'un même jeu de données).

▪ La vue intercepte certaines actions de l'utilisateur et les transmet au

contrôleur pour qu'il les traite (souris, événements clavier, …).

▪ Le contrôleur peut également modifier la vue en réaction à certaines

actions de l'utilisateur (par exemple afficher une nouvelle fenêtre).

▪ La représentation visuelle des informations affichées peut dépendre du

Look-and-Feel adopté (ou imposé) et peut varier d'un système

d'exploitation à l'autre. L'utilisateur peut parfois modifier lui même la

présentation des informations en choisissant par exemple un thème.

MVC / Le contrôleur (Controller)

▪ Le contrôleur (Controller) est chargé de réagir aux différents

événements qui peuvent survenir.

▪ Les événements sont constitués soit par des actions de l'utilisateur

(presser sur une touche, cliquer sur un bouton, fermer une fenêtre, ...) ou par

des directives venant du programme lui-même (un changement

intervenu dans un autre composant, l'écoulement d'un certain temps, etc...).

▪ Le contrôleur définit le comportement de l'application (comment elle

réagit aux sollicitations).

▪ Dans les applications simples, le contrôleur gère la synchronisation

entre la vue et le modèle (rôle de chef d'orchestre).

▪ Le contrôleur est informé des événements qui doivent être traités et sait

d'où ils proviennent.

▪ Le contrôleur peut agir sur la vue en modifiant les éléments affichés.

▪ Le contrôleur peut également, si nécessaire, modifier le modèle en

réaction à certains événements.

Interface Homme-Machine / ArAchrcitheictetucrteurMe VMCVC:Interactions asynchrones

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Rôles des éléments de l'architecture MVC

▪ Lorsqu'un utilisateur interagit avec une interface, les différents éléments

de l'architecture MVC jouent chacun un rôle bien défini.

Interface

utilisateur
Décisions Actions

Utilisateur

Vue Contrôleur Modèle

Action

interprétée

Opérations

(fonctions)

RésultatsMise à jour

de l'interface

Présentation
Logique

applicative

Fonctions

métier

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

MVC : Découplage et modèle synchrone

▪ L'architecture MVC est un modèle de conception qui présente comme

intérêt principal de modulariser (découper) l'application en éléments

ayant des rôles distincts et qui permet (si l'on respecte l'esprit de cette

architecture) de minimiser les dépendances entre ces modules.

▪ Le découplage entre les modules favorise la lisibilité ainsi que la

maintenance des applications (on peut modifier un élément du système

sans que tous les autres en soient affectés).

▪ Il existe différentes manières de gérer la communication entre les trois

entités : Modèle - Vue(s) - Contrôleur(s).

▪ Avec un modèle synchrone - dans lequel le contrôleur joue le rôle de

chef d'orchestre - le couplage reste assez fort entre le contrôleur et la

ou les vues. L'essentiel des mises à jour des vues passe par le

contrôleur.

▪ Ce modèle d'interaction fonctionne pour des applications de petite

envergure mais n'est pas adapté si l'application est plus complexe et

notamment lorsqu'il y a plusieurs vues pour un même modèle.

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

MVC : Interactions synchrones

View 1

Model

Controller

La vue peut consulter les

données du modèle.

(mode "pull")

La vue détermine quels

événements sont passés

au contrôleur.

Le contrôleur peut modifier

les éléments affichés

Le contrôleur consulte et

met à jour le modèle en

fonction des événements

View 2

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

MVC : Découplage et modèle asynchrone

▪ Il est possible de réduire le couplage entre les modules et de

restreindre le rôle central du contrôleur en utilisant un modèle

asynchrone basé sur le modèle de conception Observer pattern.

▪ Ce mode de communication entre deux entités est fréquent et on

le trouve sous différentes désignations :

• Observer / Observable (Subject)

• Subscribe / Notify

• Subscriber-Publisher Model

Push Model

Callback Pattern

. . .

▪ Le principe général de ce modèle asynchrone est que les vues

s'inscrivent (s'enregistrent) auprès du modèle et sont informées

lorsque le modèle change.

▪ Ce modèle asynchrone peut être implémenté de différentes manières.

▪ Le niveau de granularité des événements (changements globaux ou

sélectifs) ainsi que celui des informations qui circulent (seulement les

valeurs modifiées ou toutes les données du modèle) dépendent du type

d'application.

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Observer Pattern

Observer

Marion

Observer

Max

Observable

AlarmClock

> Marion

> Max

> . . .

S
u

b
s
c
rip

tio
n

S
e
tC

lo
c
k

S
e
tA

la
rm

G
e
tC

lo
c
k

Observer

Marion

Observer

Max

S
e
tC

lo
c
k

S
e
tA

la
rm

G
e
tC

lo
c
k

N
o

tific
a
tio

n

Observable

AlarmClock

> Marion

> Max

> . . .

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

MVC : Interactions asynchrones [1]

View 1

Model

Controller

View 2

Subscribe

Subscribe

Notify

Notify

UserAction

UserAction
Update

Get Data (pull)

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

MVC : Interactions asynchrones [2]

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Implémentation du modèle asynchrone

▪ En Java, il est possible d'implémenter ce modèle d'interaction

asynchrone de différentes manières, notamment :

• En utilisant la classe Observable et l'interface Observer (j a v a .u t i l)

• En utilisant la technique de notification des JavaBeans qui est utilisée dans

la librairie Swing (EventListeners) avec la notion de propriété liée (Bound

Property).

On fera appel à la classe PropertyChangeEvent ainsi qu'à l'interface

PropertyChangeListener (dans java.beans). La classe utilitaire

PropertyChangeSupport peut être utile pour faciliter la mise en place

de ce mécanisme (gestion de la liste des récepteurs et déclenchement des

événements).

• En utilisant la classe ChangeEvent et l'interface ChangeListener (dans

javax.swing.event). La classe EventListenerList (du mêmepackage)

permet de gérer la liste des récepteurs abonnés aux événements.

• Création d'un événement spécifique en créant une sous-classe de

EventObject et une sous-interface de EventListener (dans j a v a . u t i l)

avec gestion de la liste des abonnés

Interface Homme-Machine / Architecture MVC : Interactions asynchrones

Exemples

▪ Les exemples qui suivent illustrent différentes implémentations du

modèle d'interaction asynchrone.

▪ Ils représentent une mini-application comprenant :

• Un modèle simple qui est un compteur que l'on peut incrémenter et consulter

✓Counter { incrCounter (in t i) ; getCounter() ; setCounter(int i) ; }

• Des vues triviales (simple affichage de la valeur du compteur sur la console)

✓Viewer

• Des classes utilitaires pour mettre en place et gérer le mécanisme

✓Par exemple enregistrement des abonnés, récepteur d'événements (EventListeners)

• Un programme principal qui modifie périodiquement l'état du modèle et qui

permet de tester le fonctionnement de l'ensemble

✓Test...
Viewer : view1

Viewer : view2

Counter : myCounter
in

c
rC

o
u
n
te

r

s
e

tC
o
u
n
te

r

g
e

tC
o
u
n

te
r

