1. Fonctions de plusieurs variables
1.1 Fonctions de deux variables

1.1.1 Généralités.  Déja fait!
1.1.2  Limites et continuité.  Déja fait!
1.1.8 Dérivées partielles.

1.1.8.1 Dérivées partielles d’ordre 1.

Définition 1 Soit f une fonction définie sur un ouvert U de R? et (zg,y0) € U.

Si la fonction partielle fy : © — f(x,yo) est dérivable en xo, on dit que f admet

une dérivée partielle d’ordre 1 par rapport a x en (xo,yo) et on note
of /

Iz (z0,90) = fz (z0,90) = JEEO f(z, 90; : io(xo,yo)

De méme, Si la fonction partielle f, : y — f (zo,y) est dérivable en yo, on dit que

f admet une dérivée partielle d’ordre 1 par rapport ¢ y en (xo,yo) et on note

8 —
8.]]: (fL'OyyO) = f?/; (:L‘an[)) — yli_g/lo f ($O>y:; — zo(l'Ov Z/O)

Définition 2 Si pour tout (x,y) € U, f admet les deux dérivées partielles d’ordre 1 par

0
rapport a x et y, on dit que f admet des dérivées partielles d’ordre 1 sur U notées —f et

Ox
of
oy’
PP : 1 of of
Définition 3 Une fonction f est de classe C* en (zo,yo) (resp. sur U) si 9z et 50
£ Y

existent et sont continues en (xo,yo) (resp. sur U).



Exemple 4 1. Soit f (x,y) = 2%y +y? + 3x. f est un polynome de classe C' sur R?, en
effet :

V(z,y) € R*: gi (z,y) =22y +3 et gg (z,y) = 2° + 2y
il est clair que ﬁ et g sont des polyémes continues sur R2.
ox Oy

2. Soit f (z,y) = e*Y +1In(z —y). f est de classe C* sur son domaine de définition
Dy ={(z,y) e R?: y <z}, en effet :

af 1 of 1
Dr: — =" et = ="V —
V(z,y) €Dy 5 (2,y) = ¢ Ty ® ay(ﬂc,y) e pr—
gi et gi sont continues sur Dy.
. z2y? L . L
3. Soit f(x,y) = 22 f est de classe C* sur son domaine de définition Dy =
T Y
R\ {(0,0)}, en effet :
af 2zy? 2y
Y (x, 0,0): —(z,y) = ————— et — (x,y) = ———
(z,y) # (0,0) + 5= (2, ) @122 oy (z,y) 2+ )

of

— et —f sont continues sur Df.

or Oy

0
Remarque 5 L’existence de B—f (zo,Y0) et of (zo,Yy0) nassure pas la continuité de f en
s

dy
(«WO?Z/O)-

g si (2.9) # (0,0)
—— st (z,y ,
Exemple 6 Pour f (z,y) = z? +y° , mous avons montrer (voir con-

0 si (xz,y) =(0,0)

tinuité) que f est discontinue en (0,0), par contre gf (0,0) =0 et gf (0,0) = 0 ezistent,
x Yy
en effet ;
x %0 0 0%y
lim L& SO0y 2240 gy gy LOOZTO0 0492
x—0 T x—0 €T y—0 y y—0 y



1.1.8.2 Développement limité d’ordre 1.

Théorém 7 Soit f une fonction de classe C* sur un ouvert U de R? et Mg = (0, 10) un

point de U. Il existe un voisinage V de My tel que pour tout point M = (x,y) de V :

of

F @) = £ (20,30) + (&~ 20) 5 (a0 90) + (0~ v0) 5 (a0 o) + A (M, M) (1)

avec

lim  e(x,y) =0 et d(M, Mo) = |(z,y) — (z0,%0)|l
(z,y)—(z0,y0)

Cette formule définit le développement limité d’ordre 1 de f en (zo,yo) -

Autrement dit, toute fonction de classe Cten (xq,vo) admet une approxvimation affine

en ce point, c.da.d. au voisinage (xg,yo)

F (o) 1 (oo, 90) + (& = 20) 57 (an, o) + (5 = 30) - (a0.0)

Remarque 8 1. On prend usuellement : d (M, My) = ||(z,y) — (20, Y0) |5 = \/(:B —20)* + (y — v0)*

2. Sih=x—x9 etk =1y—1yo, une autre écriture du développement limité est donnée

par

0 0
f(h+z0,k+y0) = f (x0,90) + ha% (%0, v0) + ké)i (z0,y0) + V h2 + k2e1 (h, k)

avec

(h,k%E0,0) €1 (h, k) =0 d’ou &1 (h, k) =€ (h + x9,k + 'y())

Exemple 9 Soit f(z,y) = e*™Y. f est de classe C' sur R% et on a f(3,3) = €5,
af of

3,3) =eb et == (3,3) = €.
(3.3 = et 5 (33) =

D’ou le développement limité d’ordre 1 de f en (3,3) est donné par

et = f(3,3)+(x—3)g£(3,3)+(y—3)g£(3,3)+\/(x_3)2+(y—3)2e(x—3,y—3)

= 66(—5+:B+y)+\/($—3)2+(y—3)25(:p—3,y—3) (wec( 1)irr%33)e(z—3,y—3):0
x7y_)7



La surface z = e*Y (en rouge) et le plan tangent z = €8 (x +y — 5) (en vert)

1.1.8.8 Dérivées partielles d’ordre 2.

Définition 10 Soit f une foction de classe Ct sur un ouvert U de R? et (zo,y0) € U. Si

af  of

les deux dérivées partielles d’ordre 1

Ox oy

— et = admet euxr mémes des dérivées partielles

d’ordre 1 par rapport o x et y en (xo,yo), on dit que f admet des dérivées partielles

2 2f 2f
d’ordre 2 par rapport a x ety en (xg,yo) notées 92 (z0,Y0), 920y (zo,Y0), ay0n (o, Y0)
2
et a2 (zo,y0) et définies respectivement par
2 O (w90) ~ 2L (0, 30)
9 9f /0 - oo @yo) — o (To, Yo
GTCJ; (zo,90) = *i; <£> (w0, 30) = lim d o ;9090
O () — 2L (w0, m0)
2 . » J0 . \WL0, Y0
ﬁ (z0,9%0) = % ﬁ (z0,90) = lim 0 0
0x0y x \ Oy z—x0 T — T
of of
o2 f af (Of y 5, (0Y) = 57 (20, %0)
Oydx (zo,90) = By <$> (0, Y0) ygglo Y — %0
O (w0.9) — 22 (w0, 30)
2 a 0, a_ 0, 90
87]20 (T0,90) = a7 <8f> (z0,¥0) = lim 0 9
dy y \ Oy =10 Y — Yo



Définition 11 Soit f une fonction de classe C' sur un ouvert U de R2. Si pour tout

0 0
(z,y) € U les deux dérivées partielles d’ordre 1 —f et —f admet eur mémes des dérivées

ox oy

partielles d’ordre 1 par rapport a x et y, on dit que f admet des dérivées partielles d’ordre

2 sur U notées ﬁ an 82f et 2f
0x2” 0z0y’ Oydxr — Oy?

2f _of (of *f of (of
s en = () en. gawn =5 () @)

0 f of (of o2 f of (of
ot e = (D) e 5hen -2 (L) @

Exemple 12 Soit f de classe C* sur R? définie par : f (z,y) = 2%y + y* + 32

et on aV(z,y) e U:

1. Calculer les dérivées partielles d’ordre 2 de f en (0,0). En effet :

0 0
V(z,y) € R?: —f(:v,y) =2zy+3 et —f(:v,y) =22 42y d’on

oz oy
of of
— (z,0) — (0,0) _ 2
lim 92 Oz ~ mo=3 g 6—J;(O,o)—o
z—0 z—0 z—0 T T
of of
(z,0) = =~ (0,0) 2 2
.y dy .ozt —=0 o f _
ilg%) x—0 n ;IL% x =0= dxdy 0,0)=0
of of
2= (0,y) — 5= (0,0) 3_3 92
oz Oz o _ f _
hny y—0 = == 0= 50, (00 =0
of of
- (0,y) — 5-(0,0) _ 2
lim 2 dy — im 2=V 87{(0,0)—2
y—0 y—0 y—=0 Y Yy

2. Calculer les dérivées partielles d’ordre 2 sur R?. En effet, ¥ (z,y) € R? :

0% f 0% f 0% f 0% f
a2 (&Y) =2y, 920y (z,y) = 2, D90 (z,y) =2 et oy (2,y)

O f ot >’f
0xdy 0yox

sont appelées dérivées

Remarque 13 Les dérivées partielles d’ordre 2

croisées.



Théorém 14 (Schwarz) Soit f une fonction définie sur un ouvert U de R? et admettant

2 82
des dérivées partielles d’ordre 2 o7 et / sur un voisinage de (xo,yo). St ces dérivées
Oxdy  Oyox
tiell t conti ( ) alors O ( ) O (o, Yo0)
artielles sont continues en (x x = .
p 05 Yo 910y 0, Y0 DvOT 0, Y0
0? 0? 0? 0?
Exemple 15 Dans l'exemple précedent, (%:ny (0,0) = ay(;; (0,0) puisque 6.%(;;/ et ayafx

sont continues en (0,0).

Définition 16 Une fonction f est de classe C? en un point (xg,1yo) (resp. sur un ouvert
U) si et seulement si f admet des dérivées partielles d’ordre 2 toutes continues en (o, o)
(resp. sur U ).

2 2
Corollaire 17 Si f est de classe C? en un point (xo,yo) alors gpéfy (xo,y0) = 88 é}; (zo,Y0)-

Preuve. Déduite directement de la définition ci-dessus. ®m

Remarque 18 Dans le cas ou le théoréme de Schwarz s’applique; 'ordre de dérivation

par rapport & x puis par rapport y, ou l'inverse, n’a pas d’importance.
1.1.3.4 Développement limité d’ordre 2.

Théorém 19 Soit f une fonction de classe C? sur un ouvert U de R? et My = (o, o) un

point de U. Il existe un voisinage V' de My tel que pour tout point M = (x,y) de V :

o) = £ Gang) + LI () 4 DI
0% f (z 0% f (zo, 192f (o,
;fémg’ o) (& —z0)* + - fagcgyy[)) (z —x0) (y — vo) + Qféyg ) (v — yo)?

- 20 + (-1 (e,y) avee  Tim  e(,y) =0
(I‘,y)—>(1'0,y0)

Cette formule définit le développement limité d’ordre 2 de f en (zo,yo) -



Remarque 20 Si h =z — xg et k = y — yo, une autre écriture du développement limité

est donnée par

1 1
f(h+ 20,k +1y0) = f(20,y0) + ph + gk + §rh2 + shk + §tk2 + vV h? + k2¢1 (h, k)

avec  lim g1 (h,k) =0 etey (h,k) =c(h+ o,k + y0)

(h,k)—»(ﬂ,o)
oilp = Of (zo,yo0) ‘= of (50,90, T = & f (0, %0) s 0%f (zo, o) _ 0*f (z0, o)
or Ay 0,507, ox? Oxdy OyOx
2
ett= W appelés notation de Monge.

Exemple 21 Soit f (z,y) = sin (:1:2 + y2). f est de classe C? sur R? et on a f(0,0) =0

et

of (z,y) of (z,y) 0*f (z,y) .
e 2x cos (962 + y2) , Ty = 2y cos (a:2 + y2) o 2 cos (a:2 + y2) — 422 sin (ac2 + y2)
52f(1”y) _ 32f(33,y) _ . 2 2 82f(1‘7?/) _ 2 2 2 . 2 2
T@y = W——leysm(a: +y) etT/z—2cos(:c +y)—4y Sln(x -l-y)

d’ot

p=0,g=0,r=2,s=0ett=2

Le développement limité d’ordre 2 de f en (zo,y0) = (0,0) est donné par (ici h = x
etk=1y)

1 1
sin (2% +9%) = f(0,0)+pr+ay + 5ra’ +svy + Sty + Va? +y’e (2,y)

= 2+ + V22 + 2 (2,y) avec( %im(oo)g(a:,y):()
z,y)— (0,



La surface z = sin (2% 4+ y?) (en rouge) et la surface tangente z = 2*> + y* (en jaune)




1.1.4 Extremums d’une fonction de deuz variables.

Définition 22 Soit f une fonction définie sur un ouvert U de R%. On dit que f admet

un maximum local (ou relatif) en un point (xg,y0) de U s’il existe un voisinage V' de
(o, o) tel que pour tout point (z,y) de V., f(z,y) < f(zo,90).

> SiV est Uouvert U tout entier, le mazimum local devient global (ou absolu).

De méme, f admet un minimum local au point (xo,yo) s’il existe un voisinage V

de (xo,yo0) tel que pour tout point (x,y) de V , f(x,y) > f(xo,y0)-

» SiV est l'ouwvert U tout entier, le minimum local devient global (ou absolu).

Remarque 23 Si f admet un mazimum et (ou) un minimum, on dit que f admet un

extremum.

Exemple 24 1. Soit f (x,y) = 2?+y2. Pour tout (x,y) € R?: f (z,y) >0 et f£(0,0) = 0.

Donc f admet un minimum global en (0,0) .

f(z,y) =2+ 42

2. Soit f (x,y) = sinz + cosy. Pour tout (x,y) € R? : sinz < 1 et cosz < 1 d’ou
flzy) <2=f (g,O) et f (g,O) = 2. Donc f admet un mazimum global en (%,O) qui



vaut 2.

f(z,y) =sinz + cosy

0
Définition 25 Un point (xg,y0) est appelé un point critique de f si Oif (zo,y0) = 0 et
x

0
87£ (x():yO) =0.

Théorém 26 Si une fonction f de classe C? sur un ouvert U de R? admet au point (xq,yo)

un extremum local alors (o, yo) est un point critique de f.

Preuve. Si f est admet un minimum (resp. maximum) en (2o, yo) et comme f de
classe C? au voisinage de ce point, les fonctions partielles f, : @ — f(z,y0) et f, 1 y —
f (zo,y) admettent aussi un minimum (resp. maximum) perspectivement xy et yo, par

conséquent leurs dérivées, c’est-a-dire les dérivées partielles d’ordre 1 de f, s’annulent en

($0,?JO)- u
2
Notation 27 Pappelons que p = M, q = %(xo,yo), r = M, s =
Ox oy Ox?
O f (xo,90) _ 0*f (zo,%0) 02 f (z0,y0)

= et t = ————"2% appelés notation de Monge.
0x0y Oyox 0y? PP J

Pour la réciproque du théoréme ci-dessus, on a le résultat suivant

10



Théorém 28 Soit f une fonction de classe C* sur un ouvert U de R? et (xq,yo) un point

critique de f (c.a.d. p=q=0).
-8i s> —rt <0, f admet en (z0,y0) un mazimum si v < 0, un minimum sir > 0.
-8i 8?2 —rt >0, il n'y a pas d’extremum en (xq,yo)

- Si s> —rt =0, on ne peut pas conclure par cette méthode : il faut alors faire une

étude du signe de f (z,y) — f (o, y0)-

Preuve. Soit (xg,y0) un point critique de f, (p = ¢ = 0), alors le développement

limité d’ordre 2 de f au voisinage de ce point s’écrit :

2 2

h k
f(xo+h,yo+ k)—f (x0,%) = r?+shk+t?+ h? + k2e (h, k) avec (h,k%igio,o) e(h,k)=0

en utilisant les notations de Monge.

h? k2
Cette différence sera donc du signe de -y + shk + t?, pour h et k assez petits.

h? kK2 AN
P =r— - = = =
osons Q(h, k) "3 +sh/<;+t2 5 (r(k) +28k+t

h
Le signe de Q(h, k) est celui du trinome r X2 +2sX +t avec X = T Son discriminant
réduit est A = s2 — rt.

- Si A est strictement négatif, le trindme n’a pas de racine et son signe est celui du

signe de r sur R.

On peut en déduire que le signe de la différence f (z,y) — f (zo, yo) est constant dans
un voisinage de (zo, yo).

- Si A est strictement positif, le trindbme change de signe sur R, donc ’expression
Q(h, k) change de signe au voisinage de (zg, yo), donc la dfférence f (z,y)— f (x0,yo) change

de signe dans un voisinage de (zg,yp). ®

Conclusion 29 Pour chercher les extremums éventuels d’une fonction f de deux vari-

ables, sur un ouvert U :

11



1. Chercher les points critiques de f, ce qui revient & résoudre le systéme de deux

équations & deux inconnues :

of (z,y) _ of _

2. Pour chacun des points trouvés, calculer s®> —rt, et conclure o Uaide du théoréme

ci-dessus.

Exemple 30 Soit f (z,y) = 23 + 32y? — 15z — 12y.

Ses dérivées partielles d’ordre 1 et 2 sont :

8f ($7y) _ 2 2 af (x’y) _ . a2f (:C,y) _
el 3z° 4 3y° — 15, 783; = 6zy — 12, o2 6x
Pf(xy) _ Pf(zy) _ *f (z,y) _

0x0y N oydx Oy ct oy b

On cherche d’abord les points critiques en résolvant le systéme

of (z,y) of
0P — 0 et =0
o € ay(fﬂ,y)
soit A
322 + 3y —15=0 >+ —-5=0
& =g
by —12=0 y=—

=522 4+4=0

y=-
xr

<:><y:i> et (362:1 0u3:2:4)

(x=1lety=2) ou (x=—-1ety=-2)

ou (x=2¢ety=1) ou (r=—-2ety=—1)

Donc f admet j points critiques : A = (1,2), B = (=1,-2), C = (2;1) et D =
(—2,-1).

12



2

Pour chacun d’entre eux calculons s — rt

- Pour A, onar =t==6¢ets =12 dou s> —rt = 108 > 0 donc f n’admet pas

d’extremum en A.

-Pour B,onar=t=—6ets=—12 d'ot s> —rt = 108 > 0 donc f n’admet pas

d’extremum en B.

-PourC,onar=t=12 et s=6 dot s> —rt =—108 <0 et r > 0 donc f admet

un minimum local au point C = (2;1), et ce minimum vaut f(2,1) = —28.

-Pour D, onar=t=—12ets=—6 dous>—rt=—-108 <0 etr <0 donc f

admet un mazimum local au point D = (—2,—1), et ce mazimum vaut f (—2,—1) = 28.

13



1.1.5 Fonctions différentiables de deur variables.

Rappel 31 Une application | : R? — R est dite forme linéaire s’il existe deuz réels o et 3

tels que | (z,y) = ax+ By pour tout (x,y) de R%. Autrement dit, | vérifie la condition

Vu,v € R?, Vo, B € R : [ (qu + Bv) = al (u) + Bl (v)

Définition 32 Soit f une fonction d’un ouvert U de R? dans R et a un point de U. On

dit que f est différentiable en a s’il existe une forme linéaire l, sur R? telle que

flath)—f(a)=la(h)

lim =0 (1)
b ety 12l
Autrement dit : Il existe une fonction ¢ telle que
fla+h)=f(a)+1ls(h)+|R|ye(h) avec }Lin%)e (h)=0 (2)

La forme linéaire 1, s’appelle différentielle de f en a et se note D, f.

Remarque 33 1. Sia = (a1,a2) et h = (hy,ha), (1) et (2) est équivalentes respectivment
a
i 1@t haas + he) — flas,a2) — la (b, )

(h1,h2)—(0,0) NCEY

=0

et

f (a1 + hy,a9 + he)—f (a1,a2) =1, (hl,hg)—f—\/h%—i—h%.e (h1,ha) avec lim e (hi,h2) =0

(h1,h2)—(0,0)

2. On utilise souvent la formule (2) pour trowver la forme linéaire l,, c.a.d. démon-

trer la différentiabilité de f en a.

Proposition 34 La forme linéaire l, introduite dans le définition précédente, quand elle

existe, est unique.

Définition 35 Si f est différentiable en tout point de U, on dit que f est différentiable

sur U.

14



Exemple 36 1. Il résulte de la définition que tout polynéme de degré 1 au plus un est

différentiable partout. En effet :

Soit f (z,y) = ax + By + v le polynéome de degré au plus. On a

fla1+hi,a2 + ho) — f(a1,a2) = a(ar+hi)+ B (a2 + he) + v — (aar + Baz +7)
= «ahy + Bhs
= la (h17h2)+\/h%+h% x 0 avec la(hl,hg):ahq-i-ﬂhg

il est clair que l, est une forme linéaire.

222
| I i @) £ 0,0) o
2. Soit f(x,y) =< T°tY . Montrer que [ est différentielle a
(0,0)

0 si (z,y)
lorigine. En effet, en prenant (a1, as) =

(0,0), on a f(0,0) =0 et ¥V (hy,ha) # (0,0)

h2h2
113
f (a1 + hi,a2 + h2) — f (a1, a2) M
Vhi +h3 VhT + 13
_ hihy
3/2
(b3 +n3)"
h2+h2 2
((h;h;;w (puisque (h% + h%)2 = hi + hy + 2h3h3 > 2h3R3)
11T

2
1
SV M+

IN

IN

d’ot
lim f (a1 + hi,a2 + hg) — f(a1,a2) — 0 _

(h1,h2)—(0,0) \/m

De (1), on déduit que f est différentiable en (0,0) et son différentielle est la forme linéairenulle

D(O,O)f - 0

0

Théorém 37 Si f est différentiable en a, alors f est continue en a.
Preuve. Il en résulte directement de (2), quand h tend vers 0. m

Le théoréme fondamental suivant représente les fonctions linéaires de la définition de

la différentiabilité a ’aide de dérivées partielles.

15



Théorém 38 Si une fonction f : U — R est différentiable en un point a = (a1,a2) € U,

alors f admet en a les dérivée partielles of (a) et of (a) et on a

oz oy

1) % (a1,a2) = Dq (1,0) et (;J; (a1,a2) = Dy (0,1)

2) D, (hl, hg) = gi (al,ag) -h1 + g:]gc (al,ag) - hy pour tout (hl,hg) € R2.

Preuve. 1) L’hypothese de différentiabilité de f en a s’écrit

f (a1 + hl, as + hz)—f (al, ag) =D, (hl, hg)—i-\/ h% + h%.s (hl, hg) avec (hhhlzig([),o) € (hl, hg) =0

Pour hy =0, on a

_ — 2 ; —
fla1+ hi,a2) — f(a1,a2) = Dg(h1,0) 4+ 1/hi.e(h1,0) avec (hl,(})lEI(O,O)E (h1,0) =0

= D, [hl (1,0)] + ‘h1| €1 (hl) avec hlim081 (hl) =0
1*)
f a1+ hi,a2) — f(a1,a2) = hi(Dq(1,0) 4+ €1 (h1)) ( puisque D, est une forme linéaire)
d’ou

f (a1 + hi1,a2) — f(a1,a2)
hi

=D, (1, 0) +e1 (hl)

0
le passage a la limite quand h; — 0, on obtient 8—f (a1,a2) = D4 (1,0).
T

- De méme si h; = 0 on obtient or (a1,a2) = D, (0,1)

dy
2) En tenant compte du fait que D,f est une forme linéaire et d’aprés 1), on a :

V(hl,hg) S R? .

Dy (hi,he) = Dglh1(1,0)+ ha(0,1)]
= tha (17 O) + hQDa (Oa 1)

_of of
= o (a1,a2) - h1 + By (a1,a2) - ho

16



Théorém 39 Soit f une fonction définie sur un ouvert U de R? et a €U . Si les dérivées
partielles d’ordre 1 de f existent et sont continues en a (resp. sur U ), alors f est différen-

tiable en a (resp. sur U ).

Corollaire 40 Si f est de classe Cten a (resp. surU), alors f est différentiable en a (resp.

sur U ).

Remarque 41 Par les théoréme 37,38 et 39, nous avons les deux implications suivantes:

(I) Si f est différentiable en a, alors f est continue en a, et ses dérivées partielles

d’ordre 1 existent et sont finies en a.

(II) Si les dérivées partielles d’ordre 1 existent au voisinage de a et sont continues

en a, alors f est différentiable en a.

» On montre que les réciproques de ces implications sont fausses.

2

g i (2,y) £ (0.0)
si (z,y ,
Exemple 42 Implication (I) : Soit f (z,y) = 2> +y? . On va mon-

0 st (xz,y) =(0,0)

trer que f est continue en (0,0) et ses dérivées partielles d’ordre 1 existent et sont finies

mais f n'est pas différentiable en (0,0).

of of

f est continue en (0,0) (déja démontré voir continuité) et p (0,0) = 3 (0,0) =0,
x x
en effet:
22 x 0 0 0x*y
— 22102 — 2 442
g L0100 T 0, SO0 S00) P2
w0 v oo v 1{;0 Y %io Y
Mais f nest pas différentiable en (0,0), en effet :
of of z?y
- f(0,0) — = (0,0)x — = (0,0
@ f00-g00a-gie0y o
(z,9)—(0,0) V2 + y? (2,y)—(0,0) /22 + 12
: %y
= lim
(@.9)—(00) (22 + y2) /22 + y?
. r3cos?zsinx
= lim ——p——
r—0 re.r

= cos’fsind, VO € [0, 27|

17



d’ot la limite n’existe pas.
1
o _ z2ysin— six £0
Implication (II) : Soit f(x,y) = z . On va montrer que pour
0siz=0
tout a € R, f est différentiable en (0,a), mais l'une au moins de ses dérivées partielles

d’ordre 1 n’est pas continue en (0,a). On a f(0,a) =0 et

2

1
z*asin— —0

— 1
lim f(@a) = /(0.0) =lim ——%— = lim (ax sin > =0
z—0 T z—0 T z—0 X
z#0 z#0 z#0

et
Yra v Y U0
s : ; of of
Donc f admet des dérivées partielles d’ordre 1 en (0, a) tels que Dz (0,a) = B0 (0,a) =
L Y

0. Pour la différentiabilité de f en (0,a), (en posant hy =x et ho =y —a) on a

(o ta) = F(0,0) ~ o

VhE+ h3

1
h%(h2+a)sinh—1—0—0xh1—0xh2

VhE+ k3
1

h? (ha + a) sin —
hy

|(he + a)| \/h? + h2 — 0 si (h1,h2) — (0,0)

(O, CL) h1 — gi (0, a) h2

IN

f est donc différentielle en (0,a). Par contre, on montre qu’au moins une des dérivées

partielles d’ordre 1 de f n’est pas continue en (0,a). En effet,

et 1 , 1
of y<2m81nm—cosm) ,stx#0 of 2?sin —, six #0
a—(:c,y) = et 87(%3/) = t
v 0,siz=0 Y 0, siz=0



1l est facile de vérifier que

. of af . af af
lim —(z,y)=0=—=-(0,a) et poura=20, on a lim — (x,y)=0=—=—1(0,0
(@y)—(0,0) Oy (@) dy (0a) et p (2,y)—(0,0) O (@) oz (0
) . of : . . 1 .
mais pour a # 0, lim == (z,y) nlexiste pas puisque lim | acos — | n’existe pas. On
(z,y)—(0,a) O z,—0 x

0
déduit que a—f est discontinue en (0,a).
x
1.1.6  Gradient et Matrice jacobienne d’une fonctions de deux variables.

Définition 43 Si f : U — R, o U est un ouvert de R?> admettant des dérivées partielles
en (a1,a2) € U, on appelle gradient de f en (a1,az) le vecteur de R? noté grad f (ay, as)
ou Vf(a1,az) défini par

grad f (a1, az) = (g;’; (a1, az), ‘;z (a1, a2))

Définition 44 Si f = (f1, f2,f3) : U — R3 o U est un ouvert de R? admettant des
dérivées partielles en (a1,az) € U, on appelle matrice jacobienne de f en (a1, a2) la matrice

a 3 lignes et 2 colonnes notée Jy (a1, az) définie par

%xl (a1, a2) 88? (a1,az)
Jy (a1, a2) = aa; (a1, a2) %2 (a1, az)
Ofs (a1,a2) 87}{; (a1,az)
oz y
autrement dit
grad f1 (a1, a2)
Jr(a1,a2) = | grad fa (a1, a2)

grad f3 (a1, a2)
Exemple 45 1. Soit f (z,y) = In (22 4+ y* + 1). Pour tout (z,y) de R?, on a

g(x )_27"”61587]0(35 )_273/
or Y T 21 oy Y T 2
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d’ot le gradient de f en tout (x,y) est donné par

2z 2z
d =
grad f (@) <x2+y2+1’x2+y2+1)

on a par exemple
2 =2 11 2 2
gra‘df(()?O) - (070)7 gradf(la _1) - <37 3) et gradf <27 2) - <37 3)

x? — 3zy + 293
2. Soit f(x,y) = 203 —xy—3y% |- Ona: f=/(f1,f2 f3) telle que pour tout

—22 4 2zy + 4y?
(z,y) de R?

fi(zy) = a® = 3wy + 2%, fa(w,y) = 20° — 2y — 3y* et fo(w,y) = —a® + 22y + 4y
d’ot la matrice jacobienne de f en tout (x,y) est donnée par

2z — 3y  —3x + 61>
Jy (z,y) = 622 -y —x — 6y
—2x+2y 2z+8y

on a par exemple

0 0 -1 3 8 21
Je(0,00=|( 0 0 |, Js(L )= 5 —7 | eJs(1,-2)=] 8 11
00 0 10 —6 —14

Remarque 46 On peut écrire les différentielles en utilisant la notion du gradient de f en

a (si f est réelle), sous la forme

Vh = (h1,ha) € R?: Dof (h) = (grad f (a) , h)
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et en utilisant la notion de la matrice jacobienne de f en a (si f est vectorielle) sous la
forme

Yh = (h1,h) € R?: Do f (h) = J; (a) .k
o le symbole { , ) désigne le produit scalaire euclidien de R%qui est défini par

(x,y) = 1y + 22y , Vo = (z1,22) , ¥y = (Y1, Y2)

1.1.7 Dérivée suivant un vecteur ou dérivée directionnelle. Soit f une fonction
définie sur un ouvert U de R? & valeur dans R et a un point de U, v un vecteur unitaire
de R? (c.a.d. |jv]|, = 1) de telle sorte que la fonction t — f (a + tv) soit définie dans un

voisinage de 0.

Définition 47 Sila fonctiont — f (a + tv) est dérivable en 0, la dérivée det — f (a + tv)

en 0 s’appelle dérivée de f en a suivant le vecteur v et se note d,f (a) qui est donnée par

0ot (@) — fim L0 1) = S @)

t—0 t

dyf (a) est dite aussi la dérivée directionnelle de f en a dans la direction v.

Remarque 48 Sia = (a1,a2) et v = (v1,v2), la dérivée d, f (a) est donnée par

. flar +tvr,an +tve) — f (a1,a2
d(uhm)f(al,@):%g% ( - ) ( )

Théorém 49 Si la fonction f est différentiable en a € U, alors la fonction t — f (a + tv)
est dérivable sur un voisinage de 0 pour tout vecteur v de R? et sa dérivée est (grad f (a) ,v).
En particulier si |v|| = 1, alors la dérivée directionnelle de f en a dans la direction de v

existe et sa valeur est donnée par

dyf (a) = (grad f (a) ,v)

Remarque 50 Si ||v|| # 1, on prend d, f (a) = <
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Exemple 51 Soit f (z,y) = 2® — 2zy? + 3y%. Calculer la dérivée directionnelle de f au
point (1, —1) suivant le vecteur v = (1,2). En effet, Pour tout (x,y) de R?, on a |Jv|]| = V5

et
of a2 o502, Of _
8x(x,y)—3w 2y° et 3y (z,y) = —dxy + 6y
d’ou
_ (9F 4 4y O _
madf -0 = (0.5 0 -)
= (17_2)
alors

(grad [ (a) ,v)

dvf (17_1) = HUH
— <(1a_2)7(1ﬂ2>>
NG
o Ix14(-2)x2
- B

Sl
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1.1.8 Linéarité et composition de fonctions différentiables.
1.1.8.1 Linéarité de la différentielle.

Proposition 52 On suppose que f et g sont deux fonctions de Uouvert U de R? dans R
(ou RP en général) différentiables en a = (ai,a2) € U. Alors pour A\, € R la fonction

Af + pg est différentiable en a de différentielle

Dy (Af + p1g) = ADof 4+ pDag

V (h1,he) € R?: Dy (A\f + pg) (h1, ha) = ADyf (h1, ho) + uDag (h, ho)

1.1.8.2 Composition de fonctions différentiables. La propriété suivante

généralise la propriété de dérivation pour la composée de fonctions d’une variable réelle.

Proposition 53 On suppose que f : U C R™ — RP est différentiable en a € U. Soient
V' un ouvert de RP contenant f (U) et g : V — RY une application différentiable en f (a).
Alors Uapplication g o f est différentiable en a de différentielle

D,(go f)= Dyygo Daf

En forme matricielle on obtient

Ja(gof):‘]f(a) (g)-Ja(f)

ot Jo (f), Jf(a) (g) et Ju(go f) sont respectivement les matrices jacobiennes des applica-
tions linéaires Dof, Dyq)g et Do (go f) telles que Jo (f) est de p lignes et n collones,
Jt(a) (g) est de q lignes et p collones et J, (go f) est de q lignes et n collones.
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Quelques cas particuliers

1.Sin=2,p=1,¢g=1,0n a a=(a,a2) et

of 0

Dutges) = o (lanan) (52 (@00, 5 (ar.00))

= ((g’ o f) (a1,a2) gi (a1,a2), (9" o f) (a1, a2) g“; (a1,a2))

d’ou les dérivées partielles de go f en (a1, a2) sont données par

d(gof)
ox

d(go f)

Ay (a1,02) = (g o f) (a1, a2) 0

Ay

(a1,a2) = (¢'o f) (a1, a2)

(a1,a2) et

(a1, az)

2. Sinz?,p:?),q: 17 ona = (CL1,CL2), f('r7y) = (fl (x7y)7f2 ('r?y)afiﬁ (SE,y)) et

o (ar.a) 9D (a1,
) ) 2 o i
Dalgef) = (ai(f(ahm)),ai(f(al,a2)>,ai(f(a1,a2))> D ar,a) G2 (aa2)
% (00 25 (0,
or b2 dy 1, a2

9(f (01,02)) P2 (ar,02) + &
+

gﬂ (a17a2) 5 5
Dy(gof) = g5 (f (a1,a2)) <i;$0h>a2)yé£}(a1>a2)>
g3 (f (a1,a2))

Exemple 54 Soit f (z,y) = 2%+ 232 et h(z,y) = f (y,z). Calculer par deux méthodes la
différentielle de h en tout (z,y) de R?.
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- La méthode directe :

On a h(z,y) = f (y,x) = y> + yx? (mettre x a la place de y et ya la place de x), il

est clair que h est différentiable sur R%et son différentielle est donnée par

oh oh
Dh(:p,y) = <81L“ (xa y) ’ @ (LE, y)) = (2$y, 33/2 + 332)
autrement dit

V (h1, hg) € R? : Dhy ) (h1, ha) = ((2zy,3y* + 2?) , (h1, ha)) = 2zyhy + (3y* + 2?) he

- La méthode de composition : Posons g (z,y) = (91 (x,y),92 (z,y)) = (y,x)

On a
h(z,y) = f(y,z) = f(9(z,y) = (fog)(z,y)
d’ou
R2LR2 LR — R2"LR
Donc

Dy)h = Dy(uy)f © D(z4)9 = Dy2)f © D(z,)9

En terme matriciel, on a

J(m,y) (h) = J(y,x) (f) 'J(:Jc,y) (g)

= (81: (y,x), dy (va)> dga 992

01
= (3y* + 27, 2yz)
10
= (Qxy, x? + 3y2)
Remarque 55 Pour le calcul de (g]; (v,x), g‘?}; (y,x)), on calcule g‘i et ?)ZZ puis on

remplace x par y ety par x.
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Théorém 56 (des fonctions implicites) Soit f une fonction de classe C' sur un ouvert

U de R? a valeurs dans R et (a,b) un point de U tel que

f(a,b)ZOetgj;(a,b)#O

Alors, il existe deux ouverts I et J de R, et une fonction g de classe C' définie sur

I o valeurs dans J, tels que :
1. (a,b) e I x JCU. (c.a.d. I x J est un voisinage de (a,b))

2. Pour tout couple (x,y) de I x J,

f(z,y)=0=y=g(z)

3. Pour tout x de U, on a

[z, g(x)) =0

4. Pour tout couple (z,y) € I x J:

of
of , O (2.9
O (o) #0 ety (@) =—02""""
% Y (w9

Exemple 57 Montrer que l’équation
24y’ —1=0

admet une solution y = g (z) pour des valeurs de x au voisinage de 0. En effet :

Considérons la fonction f définie sur R? par

fzy) =2a*+y*—1
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f est de classe C* sur R? et on a

f(0,1)=0 et g?j (0,1) # 0 (puisque gjyc (z,y) =2y)

D’apres le théoréme des fonctions implicites, ils existent deux voisinage |—r,r[ et

11 —q,1+q[ de 0 et 1 respectivement tels que

V(z,y) €]-rr[Ull —¢,1+q[: f(z,y) =0=y=g(z)

soit

22 +1% —1=0 donne g (z) = /1 — 22

il est bien clair que g est de classe C' sur |—r,r[ (il suffit de prendre 0 < r < 1

quelconque) et on a

Ve € ]fr,r[:g'(x):fgix
f
@(x,m)
-
o 2V1—22
x

V1—22

puisque % (r,y) = 2x et ggjj (z,y) =2y (on renplace y par V1 — x2).

/
- Effectivement, on sait bien que (\/1 — J:2> = —

T

Vi-a2

1.2 Fonctions de plusieurs variables (généralisation du cas n=2)

Pour 'é¢tude des fonctions de plusieurs variables (n > 2), il suffit de généraliser
toutes les notions que nous avons déji traité dans le cas de deux variables. Vous pouvez
consulter les notes de cours que je vais vous envoyer (vous pouvez voir d’autres

notes ou ouvrages sur internet).
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