
I. Fonctions de plusieurs variables

1.1 Fonctions de deux variables

1.1.1 Généralités. Déjà fait!

1.1.2 Limites et continuité. Déjà fait!

1.1.3 Dérivées partielles.

1.1.3.1 Dérivées partielles d�ordre 1.

Dé�nition 1 Soit f une fonction dé�nie sur un ouvert U de R2 et (x0; y0) 2 U .

Si la fonction partielle fx : x 7�! f (x; y0) est dérivable en x0, on dit que f admet

une dérivée partielle d�ordre 1 par rapport à x en (x0; y0) et on note

@f

@x
(x0; y0) = f

0
x (x0; y0) = lim

x!x0

f (x; y0)� f (x0; y0)
x� x0

De même, Si la fonction partielle fy : y 7�! f (x0; y) est dérivable en y0, on dit que

f admet une dérivée partielle d�ordre 1 par rapport à y en (x0; y0) et on note

@f

@y
(x0; y0) = f

0
y (x0; y0) = lim

y!y0

f (x0; y)� f (x0; y0)
y � y0

Dé�nition 2 Si pour tout (x; y) 2 U , f admet les deux dérivées partielles d�ordre 1 par

rapport à x et y, on dit que f admet des dérivées partielles d�ordre 1 sur U notées
@f

@x
et

@f

@y
.

Dé�nition 3 Une fonction f est de classe C1 en (x0; y0) (resp. sur U) si
@f

@x
et
@f

@y
existent et sont continues en (x0; y0) (resp. sur U).
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Exemple 4 1. Soit f (x; y) = x2y + y2 + 3x. f est un polynôme de classe C1 sur R2, en

e¤et :

8 (x; y) 2 R2 : @f
@x
(x; y) = 2xy + 3 et

@f

@y
(x; y) = x2 + 2y

il est clair que
@f

@x
et
@f

@y
sont des polyômes continues sur R2.

2. Soit f (x; y) = ex+y + ln (x� y). f est de classe C1 sur son domaine de dé�nition

Df =
�
(x; y) 2 R2 : y < x

	
, en e¤et :

8 (x; y) 2 Df :
@f

@x
(x; y) = ex+y +

1

x� y et
@f

@y
(x; y) = ex+y � 1

x� y

@f

@x
et
@f

@y
sont continues sur Df .

3. Soit f (x; y) =
x2y2

x2 + y2
. f est de classe C1 sur son domaine de dé�nition Df =

R2n f(0; 0)g, en e¤et :

8 (x; y) 6= (0; 0) : @f
@x
(x; y) =

2xy4

(x2 + y2)2
et
@f

@y
(x; y) =

2x4y

(x2 + y2)2

@f

@x
et
@f

@y
sont continues sur Df .

Remarque 5 L�existence de
@f

@x
(x0; y0) et

@f

@y
(x0; y0) n�assure pas la continuité de f en

(x0; y0).

Exemple 6 Pour f (x; y) =

8><>:
xy

x2 + y2
si (x; y) 6= (0; 0)

0 si (x; y) = (0; 0)
, nous avons montrer (voir con-

tinuité) que f est discontinue en (0; 0), par contre
@f

@x
(0; 0) = 0 et

@f

@y
(0; 0) = 0 existent,

en e¤et ;

lim
x!0
x 6=0

f (x; 0)� f (0; 0)
x

= lim
x!0
x 6=0

x� 0
x2 + 0

� 0

x
= 0 et lim

y!0
y 6=0

f (0; y)� f (0; 0)
y

= lim
y!0
y 6=0

0� y
0 + y2

� 0

y
= 0
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1.1.3.2 Développement limité d�ordre 1.

Théorèm 7 Soit f une fonction de classe C1 sur un ouvert U de R2 et M0 = (x0; y0) un

point de U . Il existe un voisinage V de M0 tel que pour tout point M = (x; y) de V :

f (x; y) = f (x0; y0) + (x� x0)
@f

@x
(x0; y0) + (y � y0)

@f

@y
(x0; y0) + d (M;M0) " (x; y)

avec

lim
(x;y)!(x0;y0)

" (x; y) = 0 et d (M;M0) = k(x; y)� (x0; y0)k

Cette formule dé�nit le développement limité d�ordre 1 de f en (x0; y0) :

Autrement dit, toute fonction de classe C1en (x0; y0) admet une approximation a¢ ne

en ce point, c.à.d. au voisinage (x0; y0)

f (x; y) � f (x0; y0) + (x� x0)
@f

@x
(x0; y0) + (y � y0)

@f

@y
(x0; y0)

Remarque 8 1. On prend usuellement : d (M;M0) = k(x; y)� (x0; y0)k2 =
q
(x� x0)2 + (y � y0)2

2. Si h = x�x0 et k = y�y0, une autre écriture du développement limité est donnée

par

f (h+ x0; k + y0) = f (x0; y0) + h
@f

@x
(x0; y0) + k

@f

@y
(x0; y0) +

p
h2 + k2"1 (h; k)

avec

lim
(h;k)!(0;0)

"1 (h; k) = 0 d�où "1 (h; k) = " (h+ x0; k + y0)

Exemple 9 Soit f (x; y) = ex+y. f est de classe C1 sur R2 et on a f (3; 3) = e6,
@f

@x
(3; 3) = e6 et

@f

@y
(3; 3) = e6.

D�où le développement limité d�ordre 1 de f en (3; 3) est donné par

ex+y = f (3; 3) + (x� 3) @f
@x
(3; 3) + (y � 3) @f

@y
(3; 3) +

q
(x� 3)2 + (y � 3)2" (x� 3; y � 3)

= e6 (�5 + x+ y) +
q
(x� 3)2 + (y � 3)2" (x� 3; y � 3) avec lim

(x;y)!(3;3)
" (x� 3; y � 3) = 0
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La surface z = ex+y (en rouge) et le plan tangent z = e6 (x+ y � 5) (en vert)

1.1.3.3 Dérivées partielles d�ordre 2.

Dé�nition 10 Soit f une foction de classe C1 sur un ouvert U de R2 et (x0; y0) 2 U . Si

les deux dérivées partielles d�ordre 1
@f

@x
et
@f

@y
admet eux mêmes des dérivées partielles

d�ordre 1 par rapport à x et y en (x0; y0), on dit que f admet des dérivées partielles

d�ordre 2 par rapport à x et y en (x0; y0) notées
@2f

@x2
(x0; y0),

@2f

@x@y
(x0; y0),

@2f

@y@x
(x0; y0)

et
@2f

@y2
(x0; y0) et dé�nies respectivement par

@2f

@x2
(x0; y0) =

@f

@x

�
@f

@x

�
(x0; y0) = lim

x!x0

@f

@x
(x; y0)�

@f

@x
(x0; y0)

x� x0

@2f

@x@y
(x0; y0) =

@f

@x

�
@f

@y

�
(x0; y0) = lim

x!x0

@f

@y
(x; y0)�

@f

@y
(x0; y0)

x� x0

@2f

@y@x
(x0; y0) =

@f

@y

�
@f

@x

�
(x0; y0) = lim

y!y0

@f

@x
(x0; y)�

@f

@x
(x0; y0)

y � y0

@2f

@y2
(x0; y0) =

@f

@y

�
@f

@y

�
(x0; y0) = lim

y!y0

@f

@y
(x0; y)�

@f

@y
(x0; y0)

y � y0
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Dé�nition 11 Soit f une fonction de classe C1 sur un ouvert U de R2. Si pour tout

(x; y) 2 U les deux dérivées partielles d�ordre 1
@f

@x
et
@f

@y
admet eux mêmes des dérivées

partielles d�ordre 1 par rapport à x et y, on dit que f admet des dérivées partielles d�ordre

2 sur U notées
@2f

@x2
,
@2f

@x@y
,
@2f

@y@x
et
@2f

@y2
et on a 8 (x; y) 2 U :

@2f

@x2
(x; y) =

@f

@x

�
@f

@x

�
(x; y) ,

@2f

@x@y
(x; y) =

@f

@x

�
@f

@y

�
(x; y)

@2f

@y@x
(x; y) =

@f

@y

�
@f

@x

�
(x; y) ,

@2f

@y2
(x; y) =

@f

@y

�
@f

@y

�
(x; y)

Exemple 12 Soit f de classe C1 sur R2 dé�nie par : f (x; y) = x2y + y2 + 3x

1. Calculer les dérivées partielles d�ordre 2 de f en (0; 0). En e¤et :

8 (x; y) 2 R2 : @f
@x
(x; y) = 2xy + 3 et

@f

@y
(x; y) = x2 + 2y d�où

lim
x!0

@f

@x
(x; 0)� @f

@x
(0; 0)

x� 0 = lim
x!0

3� 3
x

= 0) @2f

@x2
(0; 0) = 0

lim
x!0

@f

@y
(x; 0)� @f

@y
(0; 0)

x� 0 = lim
x!0

x2 � 0
x

= 0) @2f

@x@y
(0; 0) = 0

lim
y!0

@f

@x
(0; y)� @f

@x
(0; 0)

y � 0 = lim
y!0

3� 3
y

= 0) @2f

@y@x
(0; 0) = 0

lim
y!0

@f

@y
(0; y)� @f

@y
(0; 0)

y � 0 = lim
y!0

2y � 0
y

= 0) @2f

@y2
(0; 0) = 2

2. Calculer les dérivées partielles d�ordre 2 sur R2. En e¤et, 8 (x; y) 2 R2 :

@2f

@x2
(x; y) = 2y,

@2f

@x@y
(x; y) = 2x,

@2f

@y@x
(x; y) = 2x et

@2f

@y2
(x; y) = 2

Remarque 13 Les dérivées partielles d�ordre 2
@2f

@x@y
et

@2f

@y@x
sont appelées dérivées

croisées.
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Théorèm 14 (Schwarz) Soit f une fonction dé�nie sur un ouvert U de R2 et admettant

des dérivées partielles d�ordre 2
@2f

@x@y
et

@2f

@y@x
sur un voisinage de (x0; y0). Si ces dérivées

partielles sont continues en (x0; y0) alors
@2f

@x@y
(x0; y0) =

@2f

@y@x
(x0; y0).

Exemple 15 Dans l�exemple précedent,
@2f

@x@y
(0; 0) =

@2f

@y@x
(0; 0) puisque

@2f

@x@y
et

@2f

@y@x
sont continues en (0; 0).

Dé�nition 16 Une fonction f est de classe C2 en un point (x0; y0) (resp. sur un ouvert

U) si et seulement si f admet des dérivées partielles d�ordre 2 toutes continues en (x0; y0)

(resp. sur U).

Corollaire 17 Si f est de classe C2 en un point (x0; y0) alors
@2f

@x@y
(x0; y0) =

@2f

@y@x
(x0; y0).

Preuve. Déduite directement de la dé�nition ci-dessus.

Remarque 18 Dans le cas où le théorème de Schwarz s�applique; l�ordre de dérivation

par rapport à x puis par rapport y, ou l�inverse, n�a pas d�importance.

1.1.3.4 Développement limité d�ordre 2.

Théorèm 19 Soit f une fonction de classe C2 sur un ouvert U de R2 et M0 = (x0; y0) un

point de U . Il existe un voisinage V de M0 tel que pour tout point M = (x; y) de V :

f (x; y) = f (x0; y0) +
@f (x0; y0)

@x
(x� x0) +

@f (x0; y0)

@y
(y � y0)

+
1

2

@2f (x0; y0)

@x2
(x� x0)2 +

@2f (x0; y0)

@x@y
(x� x0) (y � y0) +

1

2

@2f (x0; y0)

@y2
(y � y0)2

+

q
(x� x0)2 + (y � y0)2" (x; y) avec lim

(x;y)!(x0;y0)
" (x; y) = 0

Cette formule dé�nit le développement limité d�ordre 2 de f en (x0; y0) :
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Remarque 20 Si h = x � x0 et k = y � y0, une autre écriture du développement limité

est donnée par

f (h+ x0; k + y0) = f (x0; y0) + ph+ qk +
1

2
rh2 + shk +

1

2
tk2 +

p
h2 + k2"1 (h; k)

avec lim
(h;k)!(0;0)

"1 (h; k) = 0 et "1 (h; k) = " (h+ x0; k + y0)

où p =
@f (x0; y0)

@x
, q =

@f

@y
(x0; y0), r =

@2f (x0; y0)

@x2
, s =

@2f (x0; y0)

@x@y
=
@2f (x0; y0)

@y@x

et t =
@2f (x0; y0)

@y2
appelés notation de Monge.

Exemple 21 Soit f (x; y) = sin
�
x2 + y2

�
. f est de classe C2 sur R2 et on a f (0; 0) = 0

et

@f (x; y)

@x
= 2x cos

�
x2 + y2

�
,
@f (x; y)

@y
= 2y cos

�
x2 + y2

�
,
@2f (x; y)

@x2
= 2 cos

�
x2 + y2

�
� 4x2 sin

�
x2 + y2

�
@2f (x; y)

@x@y
=

@2f (x; y)

@y@x
= �4xy sin

�
x2 + y2

�
et
@2f (x; y)

@y2
= 2 cos

�
x2 + y2

�
� 4y2 sin

�
x2 + y2

�
d�où

p = 0; q = 0; r = 2; s = 0 et t = 2

Le développement limité d�ordre 2 de f en (x0; y0) = (0; 0) est donné par (ici h = x

et k = y)

sin
�
x2 + y2

�
= f (0; 0) + px+ qy +

1

2
rx2 + sxy +

1

2
ty2 +

p
x2 + y2"1 (x; y)

= x2 + y2 +
p
x2 + y2" (x; y) avec lim

(x;y)!(0;0)
" (x; y) = 0
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La surface z = sin
�
x2 + y2

�
(en rouge) et la surface tangente z = x2 + y2 (en jaune)
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1.1.4 Extremums d�une fonction de deux variables.

Dé�nition 22 Soit f une fonction dé�nie sur un ouvert U de R2. On dit que f admet

un maximum local (ou relatif) en un point (x0; y0) de U s�il existe un voisinage V de

(x0; y0) tel que pour tout point (x; y) de V , f(x; y) � f(x0; y0).

I Si V est l�ouvert U tout entier, le maximum local devient global (ou absolu).

De même, f admet un minimum local au point (x0; y0) s�il existe un voisinage V

de (x0; y0) tel que pour tout point (x; y) de V , f(x; y) � f(x0; y0).

I Si V est l�ouvert U tout entier, le minimum local devient global (ou absolu).

Remarque 23 Si f admet un maximum et (ou) un minimum, on dit que f admet un

extremum.

Exemple 24 1. Soit f (x; y) = x2+y2. Pour tout (x; y) 2 R2 : f (x; y) � 0 et f (0; 0) = 0.

Donc f admet un minimum global en (0; 0) :

­4 ­2
­4

4 y

­2

x
2

0 0
0

2

50

10

20
z

30

40

4

f (x; y) = x2 + y2

2. Soit f (x; y) = sinx + cos y. Pour tout (x; y) 2 R2 : sinx � 1 et cosx � 1 d�où

f (x; y) � 2 = f
��
2
; 0
�
et f

��
2
; 0
�
= 2. Donc f admet un maximum global en

��
2
; 0
�
qui
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vaut 2:

0 4
2

0 0

­1

­2
z

1

­2

2

2
y

­2

­4
x 4

f (x; y) = sinx+ cos y

Dé�nition 25 Un point (x0; y0) est appelé un point critique de f si
@f

@x
(x0; y0) = 0 et

@f

@x
(x0; y0) = 0.

Théorèm 26 Si une fonction f de classe C2 sur un ouvert U de R2 admet au point (x0; y0)

un extremum local alors (x0; y0) est un point critique de f .

Preuve. Si f est admet un minimum (resp. maximum) en (x0; y0) et comme f de

classe C2 au voisinage de ce point, les fonctions partielles fx : x ! f (x; y0) et fy : y !

f (x0; y) admettent aussi un minimum (resp. maximum) perspectivement x0 et y0, par

conséquent leurs dérivées, c�est-à-dire les dérivées partielles d�ordre 1 de f , s�annulent en

(x0; y0).

Notation 27 Pappelons que p =
@f (x0; y0)

@x
, q =

@f

@y
(x0; y0), r =

@2f (x0; y0)

@x2
, s =

@2f (x0; y0)

@x@y
=
@2f (x0; y0)

@y@x
et t =

@2f (x0; y0)

@y2
appelés notation de Monge.

Pour la réciproque du théorème ci-dessus, on a le résultat suivant
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Théorèm 28 Soit f une fonction de classe C2 sur un ouvert U de R2 et (x0; y0) un point

critique de f (c.à.d. p = q = 0).

- Si s2 � rt < 0, f admet en (x0; y0) un maximum si r < 0, un minimum si r > 0.

- Si s2 � rt > 0, il n�y a pas d�extremum en (x0; y0)

- Si s2 � rt = 0, on ne peut pas conclure par cette méthode : il faut alors faire une

étude du signe de f (x; y)� f (x0; y0).

Preuve. Soit (x0; y0) un point critique de f , (p = q = 0), alors le développement

limité d�ordre 2 de f au voisinage de ce point s�écrit :

f (x0 + h; y0 + k)�f (x0; y0) = r
h2

2
+shk+t

k2

2
+
p
h2 + k2" (h; k) avec lim

(h;k)!(0;0)
" (h; k) = 0

en utilisant les notations de Monge.

Cette di¤érence sera donc du signe de r
h2

2
+ shk + t

k2

2
, pour h et k assez petits.

Posons Q(h; k) = r
h2

2
+ shk + t

k2

2
=
k2

2

 
r

�
h

k

�2
+ 2s

h

k
+ t

!

Le signe de Q(h; k) est celui du trinôme rX2+2sX+t avec X =
h

k
. Son discriminant

réduit est � = s2 � rt.

- Si � est strictement négatif, le trinôme n�a pas de racine et son signe est celui du

signe de r sur R.

On peut en déduire que le signe de la di¤érence f (x; y)�f (x0; y0) est constant dans

un voisinage de (x0; y0).

- Si � est strictement positif, le trinôme change de signe sur R, donc l�expression

Q(h; k) change de signe au voisinage de (x0; y0), donc la d¤érence f (x; y)�f (x0; y0) change

de signe dans un voisinage de (x0; y0).

Conclusion 29 Pour chercher les extremums éventuels d�une fonction f de deux vari-

ables, sur un ouvert U :
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1. Chercher les points critiques de f , ce qui revient à résoudre le système de deux

équations à deux inconnues :

@f (x; y)

@x
= 0 et

@f

@y
(x; y) = 0

2. Pour chacun des points trouvés, calculer s2 � rt, et conclure à l�aide du théorème

ci-dessus.

Exemple 30 Soit f (x; y) = x3 + 3xy2 � 15x� 12y.

Ses dérivées partielles d�ordre 1 et 2 sont :

@f (x; y)

@x
= 3x2 + 3y2 � 15, @f (x; y)

@y
= 6xy � 12, @

2f (x; y)

@x2
= 6x

@2f (x; y)

@x@y
=

@2f (x; y)

@y@x
= 6y et

@2f (x; y)

@y2
= 6x

On cherche d�abord les points critiques en résolvant le système

@f (x; y)

@x
= 0 et

@f

@y
(x; y) = 0

soit 8<: 3x2 + 3y2 � 15 = 0

6xy � 12 = 0
,

8><>:
x2 +

4

x2
� 5 = 0

y =
2

x

,

8<: x4 � 5x2 + 4 = 0

y =
2

x

,
�
y =

2

x

�
et
�
x2 = 1 ou x2 = 4

�

,

8<: (x = 1 et y = 2) ou (x = �1 et y = �2)

ou (x = 2 et y = 1) ou (x = �2 et y = �1)

Donc f admet 4 points critiques : A = (1; 2), B = (�1;�2), C = (2; 1) et D =

(�2;�1).
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Pour chacun d�entre eux calculons s2 � rt

- Pour A, on a r = t = 6 et s = 12 d�où s2 � rt = 108 > 0 donc f n�admet pas

d�extremum en A.

- Pour B, on a r = t = �6 et s = �12 d�où s2 � rt = 108 > 0 donc f n�admet pas

d�extremum en B.

- Pour C, on a r = t = 12 et s = 6 d�où s2 � rt = �108 < 0 et r > 0 donc f admet

un minimum local au point C = (2; 1), et ce minimum vaut f (2; 1) = �28.

- Pour D, on a r = t = �12 et s = �6 d�où s2 � rt = �108 < 0 et r < 0 donc f

admet un maximum local au point D = (�2;�1), et ce maximum vaut f (�2;�1) = 28.
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1.1.5 Fonctions di¤érentiables de deux variables.

Rappel 31 Une application l : R2 ! R est dite forme linéaire s�il existe deux réels � et �

tels que l (x; y) = �x+ �y pour tout (x; y) de R2. Autrement dit, l véri�e la condition

8u; v 2 R2, 8�; � 2 R : l (�u+ �v) = �l (u) + �l (v)

Dé�nition 32 Soit f une fonction d�un ouvert U de R2 dans R et a un point de U . On

dit que f est di¤érentiable en a s�il existe une forme linéaire la sur R2 telle que

lim
h!0

h6=0;a+h2U

f (a+ h)� f (a)� la (h)
khk2

= 0 (1)

Autrement dit : Il existe une fonction " telle que

f (a+ h) = f (a) + la (h) + khk2 " (h) avec lim
h!0

" (h) = 0 (2)

La forme linéaire la s�appelle di¤érentielle de f en a et se note Daf .

Remarque 33 1. Si a = (a1; a2) et h = (h1; h2), (1) et (2) est équivalentes respectivment

à

lim
(h1;h2)!(0;0)

f (a1 + h1; a2 + h2)� f (a1; a2)� la (h1; h2)p
h21 + h

2
2

= 0

et

f (a1 + h1; a2 + h2)�f (a1; a2) = la (h1; h2)+
q
h21 + h

2
2." (h1; h2) avec lim

(h1;h2)!(0;0)
" (h1; h2) = 0

2. On utilise souvent la formule (2) pour trouver la forme linéaire la, c.à.d. démon-

trer la di¤érentiabilité de f en a:

Proposition 34 La forme linéaire la introduite dans le dé�nition précédente, quand elle

existe, est unique.

Dé�nition 35 Si f est di¤érentiable en tout point de U , on dit que f est di¤érentiable

sur U .
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Exemple 36 1. Il résulte de la dé�nition que tout polynôme de degré 1 au plus un est

di¤érentiable partout. En e¤et :

Soit f (x; y) = �x+ �y + 
 le polynôme de degré au plus. On a

f (a1 + h1; a2 + h2)� f (a1; a2) = � (a1 + h1) + � (a2 + h2) + 
 � (�a1 + �a2 + 
)

= �h1 + �h2

= la (h1; h2) +
q
h21 + h

2
2 � 0 avec la (h1; h2) = �h1 + �h2

il est clair que la est une forme linéaire.

2. Soit f (x; y) =

8><>:
x2y2

x2 + y2
si (x; y) 6= (0; 0)

0 si (x; y) = (0; 0)
. Montrer que f est di¤érentielle à

l�origine. En e¤et, en prenant (a1; a2) = (0; 0), on a f (0; 0) = 0 et 8 (h1; h2) 6= (0; 0)

f (a1 + h1; a2 + h2)� f (a1; a2)p
h21 + h

2
2

=

h21h
2
2

h21 + h
2
2

� 0p
h21 + h

2
2

=
h21h

2
2�

h21 + h
2
2

�3=2
�

�
h21 + h

2
2

�2
2
�
h21 + h

2
2

�3=2 (puisque �h21 + h22�2 = h41 + h42 + 2h21h22 � 2h21h22)
� 1

2

q
h21 + h

2
2

d�où

lim
(h1;h2)!(0;0)

f (a1 + h1; a2 + h2)� f (a1; a2)� 0p
h21 + h

2
2

= 0

De (1), on déduit que f est di¤érentiable en (0; 0) et son di¤érentielle est la forme linéairenulle

D(0;0)f = 0.

Théorèm 37 Si f est di¤érentiable en a, alors f est continue en a.

Preuve. Il en résulte directement de (2), quand h tend vers 0.

Le théorème fondamental suivant représente les fonctions linéaires de la dé�nition de

la di¤érentiabilité à l�aide de dérivées partielles.
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Théorèm 38 Si une fonction f : U ! R est di¤érentiable en un point a = (a1; a2) 2 U,

alors f admet en a les dérivée partielles
@f

@x
(a) et

@f

@y
(a) et on a

1)
@f

@x
(a1; a2) = Da (1; 0) et

@f

@y
(a1; a2) = Da (0; 1)

2) Da (h1; h2) =
@f

@x
(a1; a2) � h1 +

@f

@y
(a1; a2) � h2 pour tout (h1; h2) 2 R2.

Preuve. 1) L�hypothèse de di¤érentiabilité de f en a s�écrit

f (a1 + h1; a2 + h2)�f (a1; a2) = Da (h1; h2)+
q
h21 + h

2
2." (h1; h2) avec lim

(h1;h2)!(0;0)
" (h1; h2) = 0

Pour h2 = 0, on a

f (a1 + h1; a2)� f (a1; a2) = Da (h1; 0) +
q
h21." (h1; 0) avec lim

(h1;0)!(0;0)
" (h1; 0) = 0

= Da [h1 (1; 0)] + jh1j :"1 (h1) avec lim
h1!0

"1 (h1) = 0

f (a1 + h1; a2)� f (a1; a2) = h1 (Da (1; 0) + "1 (h1)) ( puisque Da est une forme linéaire)

d�où
f (a1 + h1; a2)� f (a1; a2)

h1
= Da (1; 0) + "1 (h1)

le passage à la limite quand h1 ! 0, on obtient
@f

@x
(a1; a2) = Da (1; 0) :

- De même si h1 = 0 on obtient
@f

@y
(a1; a2) = Da (0; 1)

2) En tenant compte du fait que Daf est une forme linéaire et d�après 1), on a :

8 (h1; h2) 2 R2 :

Da (h1; h2) = Da [h1 (1; 0) + h2 (0; 1)]

= h1Da (1; 0) + h2Da (0; 1)

=
@f

@x
(a1; a2) � h1 +

@f

@y
(a1; a2) � h2
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Théorèm 39 Soit f une fonction dé�nie sur un ouvert U de R2 et a 2U . Si les dérivées

partielles d�ordre 1 de f existent et sont continues en a (resp. sur U), alors f est di¤éren-

tiable en a (resp. sur U).

Corollaire 40 Si f est de classe C1en a (resp. sur U), alors f est di¤érentiable en a (resp.

sur U).

Remarque 41 Par les théorème 37,38 et 39, nous avons les deux implications suivantes:

(I) Si f est di¤érentiable en a, alors f est continue en a, et ses dérivées partielles

d�ordre 1 existent et sont �nies en a.

(II) Si les dérivées partielles d�ordre 1 existent au voisinage de a et sont continues

en a, alors f est di¤érentiable en a.

I On montre que les réciproques de ces implications sont fausses.

Exemple 42 Implication (I) : Soit f (x; y) =

8><>:
x2y

x2 + y2
si (x; y) 6= (0; 0)

0 si (x; y) = (0; 0)
. On va mon-

trer que f est continue en (0; 0) et ses dérivées partielles d�ordre 1 existent et sont �nies

mais f n�est pas di¤érentiable en (0; 0).

f est continue en (0; 0) (déjà démontré voir continuité) et
@f

@x
(0; 0) =

@f

@x
(0; 0) = 0,

en e¤et:

lim
x!0
x6=0

f (x; 0)� f (0; 0)
x

= lim
x!0
x6=0

x2 � 0
x2 + 02

� 0

x
= 0 et lim

y!0
y 6=0

f (0; y)� f (0; 0)
y

= lim
y!0
y 6=0

0�2 y
02 + y2

� 0

y
= 0

Mais f n�est pas di¤érentiable en (0; 0), en e¤et :

lim
(x;y)!(0;0)

f (x; y)� f (0; 0)� @f
@x
(0; 0)x� @f

@y
(0; 0) yp

x2 + y2
= lim

(x;y)!(0;0)

x2y

x2 + y2p
x2 + y2

= lim
(x;y)!(0;0)

x2y

(x2 + y2)
p
x2 + y2

= lim
r!0

r3 cos2 x sinx

r2:r

= cos2 � sin �, 8� 2 [0; 2�[
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d�où la limite n�existe pas.

Implication (II) : Soit f (x; y) =

8<: x2y sin
1

x
si x 6= 0

0 si x = 0
. On va montrer que pour

tout a 2 R, f est di¤érentiable en (0; a), mais l�une au moins de ses dérivées partielles

d�ordre 1 n�est pas continue en (0; a). On a f (0; a) = 0 et

lim
x!0
x6=0

f (x; a)� f (0; a)
x

= lim
x!0
x6=0

x2a sin
1

x
� 0

x
= lim
x!0
x6=0

�
ax sin

1

x

�
= 0

et

lim
y!a
y 6=a

f (0; y)� f (0; a)
y � a = lim

y!a
y 6=a

0� 0
y � a = 0

Donc f admet des dérivées partielles d�ordre 1 en (0; a) tels que
@f

@x
(0; a) =

@f

@y
(0; a) =

0. Pour la di¤érentiabilité de f en (0; a), (en posant h1 = x et h2 = y � a) on a�������
f (h1; h2 + a)� f (0; a)�

@f

@x
(0; a)h1 �

@f

@x
(0; a)h2p

h21 + h
2
2

�������
=

�������
h21 (h2 + a) sin

1

h1
� 0� 0� h1 � 0� h2p
h21 + h

2
2

�������
=

�������
h21 (h2 + a) sin

1

h1p
h21 + h

2
2

�������
� j(h2 + a)j

q
h21 + h

2
2 ! 0 si (h1; h2)! (0; 0)

f est donc di¤érentielle en (0; a). Par contre, on montre qu�au moins une des dérivées

partielles d�ordre 1 de f n�est pas continue en (0; a). En e¤et,

@f

@x
(x; y) =

8><>:
y

�
2x sin

1

x
� cos 1

x

�
, si x 6= 0

0, si x = 0
et
@f

@y
(x; y) =

8<: x2 sin
1

x
, si x 6= 0

0, si x = 0
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Il est facile de véri�er que

lim
(x;y)!(0;a)

@f

@y
(x; y) = 0 =

@f

@y
(0; a) et pour a = 0, on a lim

(x;y)!(0;0)

@f

@x
(x; y) = 0 =

@f

@x
(0; 0)

mais pour a 6= 0, lim
(x;y)!(0;a)

@f

@x
(x; y) n�existe pas puisque lim

x;!0

�
a cos

1

x

�
n�existe pas. On

déduit que
@f

@x
est discontinue en (0; a).

1.1.6 Gradient et Matrice jacobienne d�une fonctions de deux variables.

Dé�nition 43 Si f : U ! R, où U est un ouvert de R2 admettant des dérivées partielles

en (a1; a2) 2 U , on appelle gradient de f en (a1; a2) le vecteur de R2 noté grad f (a1; a2)

ou rf (a1; a2) dé�ni par

grad f (a1; a2) =

�
@f

@x
(a1; a2) ;

@f

@y
(a1; a2)

�

Dé�nition 44 Si f = (f1; f2; f3) : U ! R3 où U est un ouvert de R2 admettant des

dérivées partielles en (a1; a2) 2 U , on appelle matrice jacobienne de f en (a1; a2) la matrice

à 3 lignes et 2 colonnes notée Jf (a1; a2) dé�nie par

Jf (a1; a2) =

0BBBBB@
@f1
@x

(a1; a2)
@f1
@y

(a1; a2)

@f2
@x

(a1; a2)
@f2
@y

(a1; a2)

@f3
@x

(a1; a2)
@f3
@y

(a1; a2)

1CCCCCA
autrement dit

Jf (a1; a2) =

0BBB@
grad f1 (a1; a2)

grad f2 (a1; a2)

grad f3 (a1; a2)

1CCCA
Exemple 45 1. Soit f (x; y) = ln

�
x2 + y2 + 1

�
. Pour tout (x; y) de R2, on a

@f

@x
(x; y) =

2x

x2 + y2 + 1
et
@f

@y
(x; y) =

2y

x2 + y2 + 1
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d�où le gradient de f en tout (x; y) est donné par

grad f (x; y) =

�
2x

x2 + y2 + 1
;

2x

x2 + y2 + 1

�

on a par exemple

grad f (0; 0) = (0; 0) , grad f (1;�1) =
�
2

3
;
�2
3

�
et grad f

�
1

2
;
1

2

�
=

�
2

3
;
2

3

�

2. Soit f (x; y) =

0BBB@
x2 � 3xy + 2y3

2x3 � xy � 3y2

�x2 + 2xy + 4y2

1CCCA. On a : f = (f1; f2; f3) telle que pour tout
(x; y) de R2

f1 (x; y) = x
2 � 3xy + 2y3, f2 (x; y) = 2x3 � xy � 3y2 et f2 (x; y) = �x2 + 2xy + 4y2

d�où la matrice jacobienne de f en tout (x; y) est donnée par

Jf (x; y) =

0BBB@
2x� 3y �3x+ 6y2

6x2 � y �x� 6y

�2x+ 2y 2x+ 8y

1CCCA
on a par exemple

Jf (0; 0) =

0BBB@
0 0

0 0

0 0

1CCCA , Jf (1; 1) =
0BBB@
�1 3

5 �7

0 10

1CCCA et Jf (1;�2) =

0BBB@
8 21

8 11

�6 �14

1CCCA
Remarque 46 On peut écrire les di¤érentielles en utilisant la notion du gradient de f en

a (si f est réelle), sous la forme

8h = (h1; h2) 2 R2 : Daf (h) = hgrad f (a) ; hi

20



et en utilisant la notion de la matrice jacobienne de f en a (si f est vectorielle) sous la

forme

8h = (h1; h2) 2 R2 : Daf (h) = Jf (a) :h

où le symbole h ; i désigne le produit scalaire euclidien de R2qui est dé�ni par

hx; yi = x1y1 + x2y2 , 8x = (x1; x2) , y = (y1; y2)

1.1.7 Dérivée suivant un vecteur ou dérivée directionnelle. Soit f une fonction

dé�nie sur un ouvert U de R2 à valeur dans R et a un point de U , v un vecteur unitaire

de R2 (c.à.d. kvk2 = 1) de telle sorte que la fonction t 7! f (a+ tv) soit dé�nie dans un

voisinage de 0.

Dé�nition 47 Si la fonction t 7! f (a+ tv) est dérivable en 0, la dérivée de t 7! f (a+ tv)

en 0 s�appelle dérivée de f en a suivant le vecteur v et se note dvf (a) qui est donnée par

dvf (a) = lim
t!0

f (a+ tv)� f (a)
t

dvf (a) est dite aussi la dérivée directionnelle de f en a dans la direction v.

Remarque 48 Si a = (a1; a2) et v = (v1; v2), la dérivée dvf (a) est donnée par

d(v1;v2)f (a1; a2) = limt!0

f (a1 + tv1; a2 + tv2)� f (a1; a2)
t

Théorèm 49 Si la fonction f est di¤érentiable en a 2 U , alors la fonction t 7! f (a+ tv)

est dérivable sur un voisinage de 0 pour tout vecteur v de R2 et sa dérivée est hgrad f (a) ; vi.

En particulier si kvk = 1, alors la dérivée directionnelle de f en a dans la direction de v

existe et sa valeur est donnée par

dvf (a) = hgrad f (a) ; vi

Remarque 50 Si kvk 6= 1, on prend dvf (a) =
hgrad f (a) ; vi

kvk
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Exemple 51 Soit f (x; y) = x3 � 2xy2 + 3y2. Calculer la dérivée directionnelle de f au

point (1;�1) suivant le vecteur v = (1; 2). En e¤et, Pour tout (x; y) de R2, on a kvk =
p
5

et
@f

@x
(x; y) = 3x2 � 2y2 et @f

@y
(x; y) = �4xy + 6y

d�où

grad f (1;�1) =

�
@f

@x
(1;�1) ; @f

@y
(1;�1)

�
= (1;�2)

alors

dvf (1;�1) =
hgrad f (a) ; vi

kvk

=
h(1;�2) ; (1; 2)ip

5

=
1� 1 + (�2)� 2p

5

= � 3p
5
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1.1.8 Linéarité et composition de fonctions di¤érentiables.

1.1.8.1 Linéarité de la di¤érentielle.

Proposition 52 On suppose que f et g sont deux fonctions de l�ouvert U de R2 dans R

(ou Rp en général) di¤érentiables en a = (a1; a2) 2 U . Alors pour �; � 2 R la fonction

�f + �g est di¤érentiable en a de di¤érentielle

Da (�f + �g) = �Daf + �Dag

c.à.d.

8 (h1; h2) 2 R2 : Da (�f + �g) (h1; h2) = �Daf (h1; h2) + �Dag (h1; h2)

1.1.8.2 Composition de fonctions di¤érentiables. La propriété suivante

généralise la propriété de dérivation pour la composée de fonctions d�une variable réelle.

Proposition 53 On suppose que f : U � Rn ! Rp est di¤érentiable en a 2 U . Soient

V un ouvert de Rp contenant f (U) et g : V ! Rq une application di¤érentiable en f (a).

Alors l�application g � f est di¤érentiable en a de di¤érentielle

Da (g � f) = Df(a)g �Daf

En forme matricielle on obtient

Ja (g � f) = Jf(a) (g) :Ja (f)

où Ja (f), Jf(a) (g) et Ja (g � f) sont respectivement les matrices jacobiennes des applica-

tions linéaires Daf , Df(a)g et Da (g � f) telles que Ja (f) est de p lignes et n collones,

Jf(a) (g) est de q lignes et p collones et Ja (g � f) est de q lignes et n collones.
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Quelques cas particuliers

1. Si n = 2; p = 1; q = 1, on a a = (a1; a2) et

Da (g � f) = g0 (f (a1; a2))

�
@f

@x
(a1; a2) ;

@f

@y
(a1; a2)

�
=

��
g0 � f

�
(a1; a2)

@f

@x
(a1; a2) ;

�
g0 � f

�
(a1; a2)

@f

@y
(a1; a2)

�

d�où les dérivées partielles de g � f en (a1; a2) sont données par

@ (g � f)
@x

(a1; a2) =
�
g0 � f

�
(a1; a2)

@f

@x
(a1; a2) et

@ (g � f)
@y

(a1; a2) =
�
g0 � f

�
(a1; a2)

@f

@y
(a1; a2)

2. Si n = 2; p = 3; q = 1, on a = (a1; a2), f (x; y) = (f1 (x; y) ; f2 (x; y) ; f3 (x; y)) et

Da (g � f) =

�
@g

@x
(f (a1; a2)) ;

@g

@y
(f (a1; a2)) ;

@g

@z
(f (a1; a2))

�
0BBBBB@
@f1
@x

(a1; a2)
@f1
@y

(a1; a2)

@f2
@x

(a1; a2)
@f2
@y

(a1; a2)

@f3
@x

(a1; a2)
@f3
@y

(a1; a2)

1CCCCCA

=

0B@
@g

@x
(f (a1; a2))

@f1
@x

(a1; a2) +
@g

@y
(f (a1; a2))

@f2
@x

(a1; a2) +
@g

@z
(f (a1; a2))

@f3
@x

(a1; a2)

@g

@x
(f (a1; a2))

@f1
@y

(a1; a2) +
@g

@y
(f (a1; a2))

@f2
@y

(a1; a2) +
@g

@z
(f (a1; a2))

@f3
@y

(a1; a2)

1CA
T

3. Si n = 2; p = 1; q = 3, on a = (a1; a2), g = (g1; g2; g3) et

Da (g � f) =

0BBB@
g01 (f (a1; a2))

g02 (f (a1; a2))

g03 (f (a1; a2))

1CCCA
�
@f1
@x

(a1; a2) ;
@f1
@y

(a1; a2)

�

=

0BBBBB@
g01 (f (a1; a2))

@f1
@x

(a1; a2) g01 (f (a1; a2))
@f1
@y

(a1; a2)

g02 (f (a1; a2))
@f1
@x

(a1; a2) g02 (f (a1; a2))
@f1
@y

(a1; a2)

g03 (f (a1; a2))
@f1
@x

(a1; a2) g02 (f (a1; a2))
@f1
@y

(a1; a2)

1CCCCCA
Exemple 54 Soit f (x; y) = x3+xy2 et h (x; y) = f (y; x). Calculer par deux méthodes la

di¤érentielle de h en tout (x; y) de R2.
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- La méthode directe :

On a h (x; y) = f (y; x) = y3 + yx2 (mettre x à la place de y et yà la place de x), il

est clair que h est di¤érentiable sur R2et son di¤érentielle est donnée par

Dh(x;y) =

�
@h

@x
(x; y) ;

@h

@y
(x; y)

�
=
�
2xy; 3y2 + x2

�
autrement dit

8 (h1; h2) 2 R2 : Dh(x;y) (h1; h2) =

�
2xy; 3y2 + x2

�
; (h1; h2)

�
= 2xyh1 +

�
3y2 + x2

�
h2

- La méthode de composition : Posons g (x; y) = (g1 (x; y) ; g2 (x; y)) = (y; x)

On a

h (x; y) = f (y; x) = f (g (x; y)) = (f � g) (x; y)

d�où

R2 g! R2 f! R =) R2 h=f�g! R

Donc

D(x;y)h = Dg(x;y)f �D(x;y)g = D(y;x)f �D(x;y)g

En terme matriciel, on a

J(x;y) (h) = J(y;x) (f) :J(x;y) (g)

=

�
@f

@x
(y;x) ;

@f

@y
(y;x)

�0B@
@g1
@x

(x; y)
@g1
@y

(x; y)

@g2
@x

(x; y)
@g2
@y

(x; y)

1CA
=

�
3y2 + x2; 2yx

�0@ 0 1

1 0

1A
=

�
2xy; x2 + 3y2

�
Remarque 55 Pour le calcul de

�
@f

@x
(y;x) ;

@f

@y
(y;x)

�
, on calcule

@f

@x
et
@f

@y
puis on

remplace x par y et y par x.
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Théorèm 56 (des fonctions implicites) Soit f une fonction de classe C1 sur un ouvert

U de R2 à valeurs dans R et (a; b) un point de U tel que

f (a; b) = 0 et
@f

@y
(a; b) 6= 0

Alors, il existe deux ouverts I et J de R, et une fonction g de classe C1 dé�nie sur

I à valeurs dans J , tels que :

1. (a; b) 2 I � J � U . (c.à.d. I � J est un voisinage de (a; b))

2. Pour tout couple (x; y) de I � J ,

f (x; y) = 0) y = g (x)

3. Pour tout x de U , on a

f (x; g (x)) = 0

4. Pour tout couple (x; y) 2 I � J :

@f

@y
(x; y) 6= 0 et g0 (x) = �

@f

@x
(x; g (x))

@f

@y
(x; g (x))

Exemple 57 Montrer que l�équation

x2 + y2 � 1 = 0

admet une solution y = g (x) pour des valeurs de x au voisinage de 0. En e¤et :

Considérons la fonction f dé�nie sur R2 par

f (x; y) = x2 + y2 � 1
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f est de classe C1 sur R2 et on a

f (0; 1) = 0 et
@f

@y
(0; 1) 6= 0 (puisque @f

@y
(x; y) = 2y)

D�après le théorème des fonctions implicites, ils existent deux voisinage ]�r; r[ et

]1� q; 1 + q[ de 0 et 1 respectivement tels que

8 (x; y) 2 ]�r; r[ [ ]1� q; 1 + q[ : f (x; y) = 0) y = g (x)

soit

x2 + y2 � 1 = 0 donne g (x) =
p
1� x2

il est bien clair que g est de classe C1 sur ]�r; r[ (il su¢ t de prendre 0 < r < 1

quelconque) et on a

8x 2 ]�r; r[ : g0 (x) = �
@f

@x

�
x;
p
1� x2

�
@f

@y

�
x;
p
1� x2

�
= � 2x

2
p
1� x2

= � xp
1� x2

puisque
@f

@x
(x; y) = 2x et

@f

@y
(x; y) = 2y (on renplace y par

p
1� x2).

- E¤ectivement, on sait bien que
�p
1� x2

�0
= � xp

1� x2
.

1.2 Fonctions de plusieurs variables (généralisation du cas n=2)

Pour l�étude des fonctions de plusieurs variables (n � 2), il su¢ t de généraliser

toutes les notions que nous avons déjâ traité dans le cas de deux variables. Vous pouvez

consulter les notes de cours que je vais vous envoyer (vous pouvez voir d�autres

notes ou ouvrages sur internet).
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