
1

L’ordonnanceur (1)

• L’ordonnanceur de processus (“scheduler”) est

responsable de la gestion des processus (activation,
suspension, ...)

• Chaque changement d’état d’exécution du processus
demande une intervention de l’ordonnanceur

 Création

 nouveau

file prêt

 interrompu

 terminé

prêt actif

 fin E/S ou
ressources
disponibles

 élu

en attente

E/S ou demande
 de ressources
non disponible

file d’attente

DIAGRAMME de TRANSITION

2

L’ordonnanceur (2)

• Un ordonnanceur simple peut conserver les processus
exécutables dans une file prêt (“ready queue”)

• Sur un monoprocesseur, le processus à la tête de cette
file est le processus courant (celui qui a le CPU
présentement)

• Les nouveaux processus sont ajoutés à la file (à la fin
de la file ready: FIFO)

• Lorsque le processus courant demande une E/S ou
ressources non disponibles, l’ordonnanceur sauve
son contexte puis transfère le processus de la
file des processus prêts à la file d’attente, et
réveille processus en tête de la file ready

3

Les objectifs de l’ordonnanceur

1. Rendement : Nombre de travaux exécutés par
unité de temps.

2. Temps de service: Temps qui s’écoule entre le
moment où un travail est soumis et où il est exécuté
(temps d’accès mémoire + temps d’attente dans la file
des processus prêts + temps d’exécution dans l’unité
centrale + temps d’attente (prêt) + temps d’exécution
des entrée/sortie).

3. Temps d’attente : Temps passé dans la file des
processus prêts (file prêt).

4. Temps de réponse: le temps qui s’écoule entre la
soumission d’une requête et la première réponse
obtenue (particulièrement recherché pour les processus interactifs,

p.e. editeur de texte).

4

Ordonnancement préemptif et non

préemptif

 Si l’ordonnancement est non préemptif, la transition de
l’état actif vers l’état prêt est interdite: un processus
quitte le processeur s’il a terminé son exécution ou s’il se
bloque (E/S);

 Si l’ordonnancement est préemptif, la transition de l’état
actif vers l’état prêt est autorisée: un processus quitte le
processeur s’il a terminé son exécution, s’il se bloque ou
si le processeur est réquisitionné.

Actif
Prêt

Préemption

Interruption

5

Algorithmes d’Ordonnancement

1. Premier arrivé premier servi (“FCFS”): les processus
sont exécutés dans l’ordre où ils deviennent exécutables
(l’ordre de création)

2. Plus petite tâche en premier (“Shortest-Job-First”):

parmi les processus exécutables, celui qui va terminer le

plus vite est exécuté en premier (suppose qu’on peut

estimer le temps d’exécution à l’avance)

3. Ordonnancement “round-robin” (cyclique):
utilisation d’un timer (horloge) pour multiplexer le CPU;

chaque processus obtient à tour de rôle un quantum ou

“time slice” pour avancer son exécution

4. Ordonnancement par priorité: les processus

exécutables les plus prioritaires exécutent en premier

(FCFS pour un même niveau de priorité)

6

Analyse

• Soit 3 processus qui ont été soumis pour exécution
dans l’ordre P1, P2, P3 et les temps d’exécution
respectifs sont 24, 3, 3 (et qu’il n’y a pas d’E/S)

• Ordonnancement avec chaque approche

 FCFS, Temps d’attente moyen = (0+24+27)/3=17 ;

 Temps de réponse moyen= (24+27+30)/3= 27

 SJF, Temps d’attente moyen = (0+3+6)/3=3 ;
 Temps de réponse moyen= (3+6+30)/ 3= 13

 RR (quantum=1), Temps d’attente moyen = (6+5+6)/3=6

 Temps de réponse moyen= (30+8+9)/3=19

• Pour minimiser le temps d’attente, SJF est optimal mais RR s’en

approche et a l’avantage de ne pas supposer les temps d’exécution

connus à l’avance

 P1 P2 P3

 P1 P2 P3

7

Système de Priorité (1)

c

• Un système de priorité permet d’attribuer un degré
d’urgence à chaque processus:

• Il est critique qu’un processus de haute priorité
complète son travail rapidement, même si c’est
au dépend d’un processus de plus faible priorité

• Par exemple un processus qui doit répondre
rapidement à un événement (panne de courant,
arrivée d’un paquet du réseau) a une priorité élevée
(autrement des données pourraient être perdues)

• La priorité d’un processus peut être fixée à sa
création ou variée pendant son exécution

8

Système de Priorité (2)

• Les garanties de l’ordonnanceur vis-à-vis la priorité des
processus varie d’un S.E. à un autre, mais en général:

• ∀ processus en exécution P et ∀ processus
exécutable P 0: prio(P) ≥ prio(P 0)

• Sur monoprocesseur, le processus en exécution a la
plus haute priorité des processus exécutables
(les autres processus doivent attendre qu’il n’existe
plus de processus exécutable de plus haute priorité)

9

L’ordonnancement sous Linux

Chaque processus est qualifié par une priorité et attaché à l’une

des politiques

 Trois politiques d’ordonnancement

 SCHED_FIFO : Élit à tout instant le processus de plus forte priorité parmi les

processus attachés à cette classe

 SCHED_RR : Type tourniquet entre processus de même priorité

 SCHED_OTHER : Politique à extinction de priorité

 Les processus attachés aux SCHED_FIFO et SCHED_RR sont plus prioritaires

que les processus attachés à la politique SCHED_OTHER

 Deux types de processus :

 Processus temps réel sont de priorité fixe: Politiques utilisées sont :

 SCHED_FIFO et SCHED_RR

 Processus classiques sont de priorité dynamique : Politique utilisée

est SCHED_OTHER

