Institut d'Informatique et Mathématiques Appliguées de Grenoble

UFR

IMA

OpenGL et GLUT
Uneintroduction

Edmond.Boyer@imag.fr

Résumé

Dans ce document, nous introduisons la librairie graphique OpenGL ainsi
que la librairie GLUT qui lui est associée. Les concepts ainsi que quelques
fonctionnalités de base sont présentés au travers d’exemples. L’objectif est de

pouvoir programmer rapidement de petites applications graphiques a I’aide
de ces outils.

TABLE DES MATIERES

Table des matieres
[1__Introduction

1 lasyntaxed’OpenGLl.
R2 leprincind
.3 Spécifier la transformation pointdevue

.31 __Ajouter une transformation pour le calcul du point de vue
2.4 Modifier une transformatiod
.5 Spécifier laprojectiod

2.5.1 _Projection orthograohiqud

[2.5.2 _Projection perspectivd
.6 Spécifier le fenétrag%
.7 _Spécifier des couleur

2.8 Spécifier des primitives g%)_mam_gu_d

.12 Plaquerdestextured

121 Définirunetexturd

B Afficher et animer des images OpenGL avec GLUT]
b_J_Amhjlac[u&générale d’un Drogmmm_e_G_I_U_'I]
.11 Squelette d’un programme GLUT|

O NOoO M~ N

1 INTRODUCTION 3

1 Introduction

OpenGL

OpenGL [[Ope] est une librairie graphique, c’est a dire une interface logiciel per-
mettant d’effectuer des opérations d’affichage sur un écran graphique. Cette in-
terface, développée par Silicon Graphics, est constituée d’environ 150 fonctions
graphiques, de I’affichage de points et segments jusqu’au plaquage de textures sur
des objets tridimensionnels.

OpenGL présente I’intérét majeur d’étre indépendante du matériel utilise, donc
de I’architecture sur laquelle I’application graphique est développée. De fait, OpenGL
n’a pas de fonctions de contréle du matériel, en sortie ou en entrée. Le développeur
doit, soit utiliser directement les fonctions du systeme sur lequel il développe son
application (Xwindow par exemple pour Unix), soit utiliser une interface logiciel
située en amont d’OpenGL et qui propose des fonctions pour cela (Glut par ex-
emple). De maniére équivalente, OpenGL ne propose pas de fonctions graphiques
de haut niveau utilisant des primitives géométriques complexes (sphéres, splines,
etc.). La réalisation des ces fonctions est laissée au développeur ou a I’interface
logiciel en amont d’OpenGL. Cette spécification trés ciblée de la librairie lui as-
sure une portabilité importante et a fait d’OpenGL le standard graphique actuel.

En résumé OpenGL est une librairie graphique de bas niveau utilisant les prim-
itives géometriques de base : points, segments et polygones. L’interfacage avec le
matériel (carte graphique, mémoire vidéo, etc.) ou avec des commandes de haut
niveau (modéles 3D) doit étre ajoute pour construire une application graphique.

GLUT

GLUT [Glu] est une librairie d’outils (Utility Toolkit) permettant I’interfacage de
la librairie OpenGL avec plusieurs architectures matérielles : stations de travail
(SGI, SUN, ...), PCs, etc. GLUT propose un ensemble de fonctions pour la gestion
de fenétres, de la souris et du clavier. Ces fonctions sont simples a utiliser et
permettent de réaliser facilement de petites applications graphiques. Par ailleurs,
GLUT propose certaines primitives de haut niveau (sphére, cylindre par exemple).
GLUT reste par contre limitée a la réalisation d’applications graphiques simples,
permettant de tester et/ou de valider des algorithmes graphiques. Pour la réalisation
d’applications graphiques plus complexes, le développeur aura intérét a utiliser des
librairies plus complétes (Openlnventor par exemple).

OpenGL / GLUT une introduction Edmond.Boyer@imag.fr

2 CONSTRUIRE DES IMAGES AVEC OPENGL 4

2 Construire des images avec OpenGL

2.1 Lasyntaxe d’OpenGL

La syntaxe d’OpenGL caractérise les constantes, types et fonctions de la maniére
suivante :

e les constantes : GL_CONSTANTE (GL_COLOR_BUFFER_BIT par ex-
emple);

e les types : GLtype (GLbyte, GLint par exemple);
e les fonctions : glLaFonction (glDraw, glMatrixMode par exemple).

A cela s’ajoute, dans la syntaxe des fonctions, la caractérisation du nombre et du
type des arguments par un suffixe. Par exemple :

glVertex3f(1.0, 2.0, 3.0);

définit les coordonnées dans I’espace d’un sommet (vertex) en simple précision
réelle. Pour définir les coordonnées du plan d’un sommet par des valeurs entiéres,
on utilise :

glVertex2i(1, 2);

Le tableau suivant donne les différents suffixes et les types correspondants :

suffixe précision type C type OpenGL
b entier 8 bits char GLbyte
S entier 16 bits short GLshort
i entier 32 bits int/long GLint, GLsizei
f réel 32 bits float GLfloat
d réel 64 bits double GLdouble
ub entier non signé 8 bits | unsigned char GLubyte
us entier non signé 16 bits | unsigned short GLushort
ui entier non signé 32 bits | unsigned int GLuint

Enfin les commandes d’OpenGL qui prennent en argument un tableau sont car-
actérisées par un suffixe se terminant par la lettre v (pour vector). Par exemple :

OpenGL / GLUT une introduction Edmond.Boyer@imag.fr

2.1 Lasyntaxe d’OpenGL 5

GL float coordonnees[3];
GLVertexfv(coordonnees);

permet de définir les coordonnées d’un sommet sous la forme d’un tableau de
réels.

2.2 Leprincipe 6

2.2 Le principe

OpenGL dessine dans une image tampon. Cette image tampon peut étre soit di-
rectement la mémoire vidéo de la fenétre graphique, soit une image tampon inter-
médiaire permettant de faire du "double buffering'ﬂ.

transformation
point de vue T

i

/
primitiveJ‘

projection
y

fenétrage

/(

fenétre graphique
Figure 1: La construction d’une image.

Les différentes étapes de la génération d’une image sont (voir figure [:

1. spécification des primitives a dessiner : les primitives sont définies dans un
certain repére,

2. transformation point de vue : une transformation est appliquée aux primitives
a dessiner. Cette transformation sert a fixer le point de vue des primitives ou,
en d’autres termes, la position du plan image.

! le double buffering consiste & dessiner, tout d’abord, dans une image tampon puis a remplacer
I’ensemble de I’écran par cette image. Effectuer ces deux étapes successivement au lieu de dessiner
directement a I’écran rend les animations plus fluides.

2.3 Spécifier la transformation point de vue 7

3. Projection : les primitives sont projetées sur le plan image suivant la projec-
tion spécifiée (orthographique, perspective).

4. Fenétrage et numérisation : I’image obtenue est redimensionnée suivant les
tailles de la fenétre graphique et les primitives projetées sont numérisées sous
la forme de pixels dans la mémoire vidéo.

Ces quatre étapes sont réalisées directement a I’appel d’une fonction de dessin
d’OpenGL et ne nécessitent pas quatre appels spécifiques. En effet, les spécifi-
cations du point de vue, de la projection et du fenétrage se font de maniére in-
dépendante de la spécification des primitives. Cela veut dire qu’a chaque appel
d’une fonction de dessin, la transformation point de vue courante et la projection
courante sont appliquées aux primitives. La figure Pl montre, par exemple, ce qui
est effectué lors de I’appel d’une fonction de dessin d’une ligne polygonale.

Transformation T R
Spécification L point de vue | .| Projectionimage | _ Fenétrage L~ Mémoire

d’une ligne polygonale| | (GL_MODELVIEW) (GL_PROJECTION) Numérisation vidéo

-~

glBegin(GL_LINE)

gl Vertex2f(40.0, 105.3)
glVertex2f(60.2,41.5)
glVertex2f(20.0,10.0)
glEnd()

Figure 2: Le dessin d’une ligne polygonale avec OpenGL.

Les paragraphes suivant explicitent les spécifications de ces différentes étapes.

2.3 Specifier la transformation point de vue

Les transformations sont représentées dans OpenGL sous la forme de matrices.
Spécifier la transformation courante appliquée aux primitives avant la projection
consiste donc a définir la matrice de cette transformation. OpenGL utilise les co-
ordonnées homogeénes pour effectuer des transformations. La transformation point
de vue est donc représentée par une matrice 4x4. De plus OpenGL stocke les matri-
ces dans des piles. Ainsi, la transformation point de vue correspond, dans OpenGL,
non pas a une matrice mais a une pile de matrice. De cette maniére, OpenGL ap-
pliquera I’ensemble des transformations empilées aux primitives a dessiner avant
de les projeter.

Pour modifier la transformation point de vue, il faut tout d’abord sélectionner
la pile des transformations point de vue, puis ensuite modifier la transformation en

2.3 Spécifier la transformation point de vue 8

olRotatef (angle,dirx, d|r ,dirz)

gITransI atef(tx, ty tz
pri m|t|v
Y,
image

Figure 3: La transformation point de vue.

conséquence.
gl Matri xMode(GL_MODELVI EW ; /* la pile des transformations point */
/* de vue est sel ectionnee */
gl Loadl dentity(); /* initialisation de la transformation */
gl Rot at ef (angl e, /* rotation de angl e degres autour de */
dirx, diry, dirz); /* |"axe de direction (dirx, diry, dirz)*/
gl Translatef (tx, ty, tz); /* translation de vecteur (tx,ty,tz) */

Algorithme de modification de la transformation point de vue (voir figure B).

Quelques remarques :
e les rotations s’expriment en degrés.

e Sans appel de la fonction glLoadldentity(), la rotation et la translation définies
ensuite s’ajoutent a la transformation courante.

e Les maodifications sont appliquées a la matrice en haut de pile alors que la
transformation point de vue comprend I’ensemble des matrices empilées.

2.3 Spécifier la transformation point de vue 9

2.3.1 Ajouter une transformation pour le calcul du point de vue

Pour ajouter une matrice a la pile courante (GL_MODELVIEW, GL_PROJECTION,
...) ou en enlever une, on utilise les fonctions glPushMatrix()et glPopMatrix().
Cela peut étre utilisé pour appliquer une transformation supplémentaire a une prim-
itive donnée (voir figure H). Par exemple, I’algorithme suivant trace la projection
d’un cube auquel est appliqué une rotation puis les transformations contenues dans
la pile point de vue. Ensuite le méme cube est projeté aprés avoir subi les transfor-
mations point de vue sans la rotation précédente :

transformation
point devue 1

transformati on\;
point de vue 2

image

Figure 4. Empilement des matrices de transformation point de vue pour modifier
position et orientation des primitives.

gl Matri xMode(GL_MODELVI EW ; /* la pile des transformations point */
/* de vue est sel ectionnee */
gl PushMatri x(); /| * sel ectionne une nouvelle matrice */

/* courante */
gl Rot at ef (angl e, dirx,

diry, dirz); [* transformation point de vue 2 */
gl ut Wr eCube(1.0); /* dessin du cube */
gl PopMatri x(); /* effacement de |la matrice courante */

/[* et retour a la matrice precedente */
/* dans la pile */
gl ut WreCube(1.0); /* 2eme dessin du cube */

Algorithme de transformation d’une primitive.

2.4 Moadifier une transformation 10

2.4 Modifier une transformation

Les fonctions de modifications d’une transformation s’appliquent a la matrice courante
(haut de pile) de la transformation courante (pile courante). Ces fonctions pren-
nent en parameétres des réels simple ou double précision (glRotatef(), glRotated()
respectivement). Soit M la matrice 4x4 courante, alors :

0
. R 0
gl Rotate{fd}(angle,dirx, M =M - 0
di ry, di rz); /* rotation de
angl e degre autour de |’ axe de 0 0 0 1
direction*/
1 0 0 tx
gl Transl ate{fd} (tx,ty, tz) = M- 8 (1) (1) W
0 0 0 1
fz 0 0 0
gl Scal e{fd}(fx,fx,fz);: M=M-. 8 foy J?Z 8
0 0 0 1
T0] T[4] T[] T[2
. _ | i) 5] Ti9] T3]
gl LoadMatri x{fd}(T); M = T2] T[6] T[10] T[14]
T[3] T[7] T[] T[15]
T0] T[] T8 T[12]
. T[] T|5] T9] T[13
g Ml tMatrix{fd}(T); M=M- TH TH T[[IA] T{M%
T[3] T[7] T[11] T[15]
gIRotate glTransate
glScale glLoadMatrix
gIMultMatrix

Figure 5: Modifications d’une transformation.

2.5 Spécifier la projection 11

2.5 Spécifier la projection

De la méme maniére que la transformation point de vue, la projection appliquée en-
suite aux primitives est définie, dans OpenGL, a I’aide d’une matrice 4x4. L’usage
des coordonnées homogeénes permet en effet de représenter les projections or-
thographiques et perspectives sous la forme de matrices. Ces deux types de projec-
tions sont accessibles dans OpenGL. Il est a noter que les matrices de projection
sont, comme dans le cas des transformations point de vue, empilées. Toute modi-
fication apportée a la projection concerne la matrice de projection courante, située
donc en haut de pile.

La spécification d’une projection commence classiquement par I’appel des
deux fonctions suivantes :

gl Matri xVbde(GL_PRQIECTI ON) ;
gl Loadl dentity();

La premiére opération sélectionne la pile des matrices de projection, la deux-
ieme ré-initialise la matrice de projection et assure ainsi qu’une seule projection
soit effectuée. Les opérations sur les matrices (transformations, empilement, dépile-
ment) effectuées ensuite affecteront la matrice de projection courante.

2.5.1 Projection orthographique

Pour définir une projection image de type orthographique, soit une projection suiv-
ant la direction orthogonale au plan image, il faut définir la direction de projection.
Dans OpenGL, la direction de projection est celle de I’axe des z du repere corre-
spondant au point de vue (soit aprés la transformation point de vue). Pour spécifier
une projection orthographique, OpenGL fournit la fonction :

glOrtho(gauche, droit, bas, haut, proche, loin)

Tous les paramétres étant ici de type GLdouble. Cette fonction prend en argu-
ment la position et les tailles du volume d’observation (voir figure). La matrice de
projection correspondante est (ou d représente la valeur droit, g la valeur gauche,
etc.) :

2.5 Spécifier la projection 12

725 00

2 h+b
0 0 -5
o 0o 0 1

Bien que non caractéristique d’une projection, le volume d’observation permet
de définir une région de visibilité dans I’espace. Une primitive sera donc présente
dans I’image si, et seulement si, elle appartient au volume d’observation. Dans le
cas d’une projection orthographique, les primitives sont projetées suivant la direc-
tion orthogonale au plan image. Définir un volume d’observation consiste donc a
spécifier les coordonnées d’un parallélépipéde rectangle.

direction de projection

haut
A)
gauche (x)
z=—>
droit (x -
| T .
bas (1)

7 N
\ proche (2) / loin (2)
planimage volume d’ observation

Figure 6: Projection orthographique : gauche et droit sont les coordonnées suivant
I’axe des = du volume d’observation, haut et bas suivant I’axe des y et proche et
loin suivant I’axe des z orienté négativement.

En résumé, pour la spécification d’une projection orthographique :

gl Mat ri xMbde(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl O tho(gauche, droit, bas, haut, proche, loin);

2.5.2 Projection perspective

Pour définir une projection de type perspectif, il faut définir un centre de projec-
tion, une distance focale (distance du centre de projection au plan de projection)
et une direction de projection. Dans OpenGL, la direction de projection est tou-
jours suivant I’axe des z. Le centre de projection est a I’origine du repére courant

2.5 Spécifier la projection 13

droit -
)/r0| x)

"~/ bas(y)
centre de

projection 7
planimage ~ Proche(2)

N
volume d’ observation loin (2)

Figure 7: Projection perspective : gauche et droit sont les coordonnées suivant
I’axe des = du volume d’observation, haut et bas suivant I’axe des y et proche et
loin suivant I’axe des z orienté négativement.

et la distance focale est paramétrable. Pour spécifier une projection perspective,
OpenGL fournit la fonction :

glFrustum(gauche, droit, bas, haut, proche, loin)

Tous les parametres étant ici de type GLdouble. La matrice de projection
correspondante est (ou d représente la valeur droit, g la valeur gauche, etc.) :

Booogm
0 -2 hib 0

b 2p
0 0 _p—p T l-p
0 0 -1 0

La fonction glFrustum() prend en argument, comme dans le cas orthographique,
les tailles et position du volume d’observation. Encore une fois, ce volume n’est
pas caractéristique de la projection mais permet de définir une région de visibilité.
Celui-ci est, dans le cas perspectif, une pyramide tronquée. Le plan image de la
projection correspondant a une des faces de la pyramide tronquée (voir la figure
[7). La distance focale de la projection est donc ici égale a la valeur de la variable

2.5 Spécifier la projection 14

proche.

Une autre facon de spécifier une projection perspective consiste a utiliser la
fonction de la librairie GLU :

gluPerspective(fov, rapport, proche, loin)

Cette fonction sert a spécifier une matrice de projection perspective de la méme
maniére que précédemment, c’est & dire par un volume d’observation. fov est
I’angle (en degré) du champs d’observation (voir figure B), rapport est le rapport
d’échelle entre la largeur et la hauteur du volume d’observation, enfin proche et
loin sont les distances entre le centre de projection et les plans proche et lointain
du volume d’observation.

centre de -l
projection

7
planimage ~ Proche(2)

o
volume d’ observation loin (2)
Figure 8: Projection perspective : le volume d’observation est défini avec la fonc-
tion gluPerspective(). fov est I’angle du champs d’observation dans le plan x — z,
rapport est le rapport d’échelle largeur/hauteur, proche et loin sont les distances
(positives) au plans du volume d’observation.

En résumé, pour la spécification d’une projection perspective :

gl Matri xMbde(GL_PRQIECTI ON) ;
gl Loadl dentity();
gl Frustum(gauche, droit, bas, haut, proche, loin);

2.6 Spécifier le fenétrage 15

/1 gluPerspective(angl e, rapport, proche, loin); /* angle [0 ..
/* rapport

2.6 Spécifier le fenétrage

xy)
N hauteur

S/

fenétrage

/(

fenétre graphique

Figure 9: Fenétrage : permet de définir la fenétre d’affichage a I’intérieur de la
fenétre graphique.

Le fenétrage s’applique a la suite de la transformation point de vue et de
la projection. Il consiste a redimensionner I’image obtenue aux dimensions que
I’on souhaite, celles de la fenétre d’affichage. Par défaut OpenGL redimensionne
I’image aux dimensions de la fenétre graphique au moment de sa création. Comme
les dimensions de cette fenétre graphique peuvent étre modifiées a tout moment
par I’utilisateur & I’aide du gestionnaire de fenétres (window manager), il est utile
de disposer d’une fonction permettant de modifier les dimensions de la fenétre
d’affichage. OpenGL fournit la fonction :

glViewport(x, y, largeur, hauteur)

les paramétres étant de type entier. Cette fonction définit une fenétre d’affichage
a I’intérieur de la fenétre graphique. Cette fenétre d’affichage est positionnée en
(z,y) et a pour largeur largeur et hauteur hauteur en pixels (voir la figure [@).

L’intérét majeur de cette fonction est de pouvoir suivre les évolutions de la
fenétre graphique lorsque celle-ci est redimensionnéee par I’utilisateur. Des exem-
ples d’utilisation sont donnés dans la partie de ce document concernant la librairie

180] */
| ar geur / haut

2.7 Spécifier des couleurs 16

GLUT. On notera par contre que pour éviter des distorsions a I’affichage, il faut
conserver le rapport d’échelle du volume d’observation. Ce dernier est défini par
le rapport entre la largeur du volume du volume d’observation et sa hauteur ; le
rapport entre la largeur de la fenétre d’affichage et sa hauteur doit donc étre équiv-
alent.

2.7 Spécifier des couleurs

Le mode de couleur courant dans OpenGL est le mode RGBA : RGB pour les
composantes rouge, vert et bleu d’une couleur, et A pour la composante alpha qui
peut servir a fixer la transparence par exemple. De la méme maniére qu’OpenGL
conserve des transformations courantes : projections, ..., OpenGL conserve une
couleur courante qui sera appliquée a toutes les primitives a dessiner. Pour spé-
cifier ou modifier cette couleur, il faut utiliser la fonction glColorxx(...) avec en
parameétres les valeurs des différentes composantes de la couleur souhaitée.

gl Col or3f(0.5,0.5,0.5); /* couleur (0.5,0.5,0.5,1.0)
1.

gICoIor4f(., .0,1.0,1.0);

Les composantes sont fixées a 1.0 par défaut. Si la couleur est spécifiée par
trois valeurs, celles-ci sont affectées aux composantes RGB de la couleur et la
composante A est fixée a 1.0. Lorsque la couleur est spécifiée par des réels, ceux-
ci doivent étre de valeurs comprises entre 0 et 1, les valeurs a I’extérieur de cet
intervalle sont ramenées aux limites de cet intervalle. Pour les autres types : entier
i, entier non signées ui, etc, les valeurs sont linéairement interpolées sur I’intervalle
[—1, 1]. Par exemple, les unsigned byte ub sont convertis suivant : [0, 255] — [0, 1]
et les byte b sont convertis suivant : [—128,127] — [—1, 1]. Comme pour les réels,
les valeurs négatives pour les autres types correspondent & la valeur 0.

2.8 Specifier des primitives géométriques

OpenGL fournit plusieurs fonctions pour définir des primitives. Nous ne présen-
tons ici que quelques fonctions parmi les plus significatives : points, lignes et poly-
gones. Les primitives sont toujours tridimensionnelles dans OpenGL et I’ensemble
des transformations courantes : point de vue, projection, etc., leurs sont appliquées.
La spécification d’une primitive consiste a définir tout d’abord le type de la prim-
itive (GL_POINTS ou GL_LINE par exemple) puis les sommets (vertices) qui la
constituent. Un sommet peut étre spécifié par deux, trois ou quatre coordonnées
correspondant, respectivement, a des coordonnées dans le plan z = 0, des coor-
données dans I’espace et des coordonnées homogenes. La structure générale de la
spécification de ces primitives est la suivante :

2.8 Spécifier des primitives géométriques 17

gl Begi n(GL_POINTS - GL_LINES - GL_TRIANGLES - G._POLYGON);

gl Vertex3f(x1,yl,z1); /* e somret 1 (x1,yl,z1) dans |’ espace */
gl Vertex2i (x2,y2); /* le sormmet 2 (x2,y2,0) */
gl Vertex4af (x3,y3,z3,wW3); /* le somet 3 (x3/w3, y3/w3, z3/w3) */
gl End();
Se o0 5— 6 > 6
3e 33— SF
o4 4 4
® e 1, N,
GL_POINTS GL_LINES GL_LINE_STRIP
5 6 ot
123§ 4 11 4

2 2 2
GL_LINE LOOP GL_TRIANGLES GL_TRIANGLE_STRIP

5 5 6
4 3

3 4
l' 1 >

2
GL_QUADS GL_QUAD STRIP

5 4 54
1 2 1 2
GL_TRIANGLE_FAN GL_POLYGON

Figure 10: Les primitives géométriques d’OpenGL.

OpenGL trace, par défaut, des points et lignes d’épaisseurs égales a un pixel
ainsi que des polygones remplis. Ces paramétres par défaut sont modifiables, les
paragraphes suivants explicitent ces différents points.

2.8 Spécifier des primitives géométriques 18

2.8.1 Dessiner des points

L exemple ci-dessous montre comment dessiner des points. La spécification de la
couleur courante (r, g, b) se fait par appel de la fonction glColorxx(). Cette spéci-
fication reste valide jusqu’a I’appel suivant de glColorxx(). La taille des points est
spécifiée par un réel a I’aide de la fonction glPointSize(). L’appel de cette derniére
doit étre a I’extérieur de glBegin()-glEnd().

gl Poi nt Si ze(s);
gl Begi n(GL_PQO NTS) ;
gl Col or3f (r, g, b);

gl Vertexaf (x,y,z,wW; /* le point (x/w,y/w z/w) dans |’ espace */
gl Vertex3f(x,vy, z); /[* le point (Xx,y,z) dans |’ espace */

gl Vertex2i (x,Yy); /* le point (x,y,0) dans |’ espace */

gl End();

2.8.2 Dessiner des lignes polygonales

De maniére similaire, les lignes polygonales se dessinent a I’aide de glBegin()-
glEnd(). Pour dessiner des segments de droites joignant les paires de points suc-
cessives :

gl Li neW dt h(s);

gl Col or3f(r, g, b);

gl Begi n(GL_LI NES)

gl Vertex3f(x1,yl, z1)

gl Vertex3f (x2,y2,z2) /* Segments (1,2) et (3,4) */
gl Vertex3f (x3,y3, z3)

gl Vertex3f (x4, y4, z4)

gl End()

Pour dessiner une ligne polygonale entre les points 1,2 et 3 :

gl Begi n(G._LI NES_STRI P)

gl Vertex3f(x1,yl, z1)

gl Vertex3f(x2,y2,z2) /* Segments (1,2) et (2,3) */
gl Vertex3f (x3,y3, z3)

gl End()

Pour dessiner une ligne polygonale fermée entre les points 1,2 et 3 :

gl Begi n(GL_LI NES_LOOP)
gl Vertex3f(x1,yl,z1)

2.9 Afficher une image 19

gl Vertex3f (x2,y2,z2) /* Segments (1,2), (2,3) et (3,1) */
gl Vertex3f (x3,y3, z3)
gl End()

2.8.3 Dessiner un polygone

Le dessin d’un polygone fait intervenir des paramétres supplémentaires. En parti-
culier un polygone a deux faces et peut étre dessiné sous la forme de points, seg-
ments, ou faces remplies. Les faces d’un polygone sont définies par I’orientation
de ce dernier et donc par I’ordre dans lequel sont spécifiés les sommets. Un poly-
gone ne doit pas s’intersecter lui-méme et doit étre convexe pour étre rempli. Par
défaut, un polygone est dessiné les deux faces remplies. Ces paramétres peuvent
étre modifiés par appel de la fonction glPolygonMode(). La procédure standard de
dessin d’un polygone est la suivante :

gl Pol ygonMode(GL_FRONT - GL_BACK - GL_FRONT_AND BACK,
G._PONT - G_LINE - G_FILL);

gl Col or3f(r, g, b);

gl Begi n(G._POLYGON) ;

gl Vertex3f(x,vy, z);

gl End();
Les deux faces d’un polygone peuvent étre traitées de maniéres différentes en
effectuant deux appels successifs a la fonction glPolygonMode() :

gl Pol ygonMode(G._FRONT, GL_LINE); [/* face frontale segnments */
gl Pol ygonMode(G._BACK, G._FI LL); /* face arriere renplie */

Par ailleurs, le remplissage effectué sur un polygone est fonction du modéle
d’ombrage courant : plat ou lisse. Dans le cas d’un ombrage plat, la couleur est
constante a I’intérieur du polygone. Dans le cas d’un ombrage lisse (ombrage de
Gouraud ici), la couleur a I’intérieur du polygone est interpolée entre les couleurs
des sommets du polygone. Pour modifier le modéle d’ombrage courant, il faut
utiliser la fonction glShadeModel(GL_FLAT - GL_SMOOQTH) (voir le para-
graphe ZIT.2Isur les ombrages).

2.9 Afficher une image

La fonction d’affichage d’une image (ou, de maniére générale, d’une matrice de
pixels) est la fonction glDrawPixels(). Cette fonction prend en paramétres :
glDrawPixels(ImgWidth, ImgHeight, ImgFormat, DataType, Image)

2.9 Afficher une image 20

Position du pixel
(0,0) dans I’espace
(glRasterPosxx(...))

(largeur,hauteur)

Matrice de pixels

(largeur,0)

y | image
projetée
Z \

Fenétre graphique

Figure 11: L’affichage d’une image a I’aide de la fonction glDrawPixels() dans le
cas d’une projection orthographique.

e ImgWidth et ImgHeight : la largeur et la hauteur de I’image qui sont de type
GLint.

e ImgFormat : le format de I’image qui est principalememﬁ une des constantes
suivantes : GL_RGB (couleur), GL_RGBA (couleur + alpha), GL_RED
(composante rouge seulement), GL_GREEN (composante verte), GL_BLUE
(composante bleu), GL_LUMINANCE (composante blanche).

e DataType : le format des données qui est principalementm une des con-
stantes suivantes : GL_UNSIGNED_BYTE (entiers non signés sur 8 bit),
GL_BYTE, GL_BITMAP (bits codés dans des unsigned bytes), GL_SHORT
(entiers signés sur 16 bits), GL_UNSIGNED_SHORT (entiers non signés sur
16 bits).

e Image : la matrice de pixels de format DataType.

Comme cela a été dit précédemment, les primitives dans OpenGL sont toujours
de nature tri-dimensionnelle et sont donc transformées (point de vue et projection)

2D’autres valeurs moins courantes existent.

2.10 Eliminer les parties cachées 21

en fonction des transformations courantes. Une image n’échappe pas a la régle
et possede donc une position dans I’espace ; son orientation dans I’espace étant
définie par les axes = et y du repére de la scéne (voir figure [I)). La position
dans I’espace de I’image est, par défaut, (0,0,0). Cette position courante est spé-
cifiée/modifiée a I’aide la fonction glRasterPosxx(...), ceci de la méme maniére
qu’un sommet par deux, trois ou quatre coordonnées : {(z,y),(z = 0,w =
DY, {(z,y,2),w = 1} ou {(z,y,z,w)} de type réels (gIRasterPos234f()), en-
tiers (glRaster234i()) ou autre.

A noter : la librairie MESA [[Mes] propose une fonction :
gl W ndowPos MESAxX ()

qui permet de positionner le premier pixel de I’'image dans la fenétre d’affichage
sans se préoccuper de la projection ou du point de vue appliquée.

Enfin, OpenGL impose, par défaut, que la matrice de pixels soit constituée de
lignes contenant un nombre de bytes multiple de quatre. Pour modifier cela, il faut
utiliser la fonction :

gl Pi xel Storei (GL_UNPACK_ALI GNVENT, 1-2-4-8);

avec pour parametre I’alignement souhaité (1,2,4 ou 8). Dans le cas général,
les bytes sont stockés les uns a la suite des autres et ’alignement sera donc 1. A
noter ici que cette fonction sert aussi a afficher une partie de I’image uniquement
ou a définir des modes de stockage particulier des pixels (voir [WND397] pour plus
d’informations).

La procédure classique d’affichage d’une image sera donc :

gl Pi xel Storei (GL_UNPACK_ALI GNVENT, 1);

gl Rast er Pos2i (0, 0);

/* gl WndowPosMESA2i (0,0); */ [/* positionnenent independant des */
/* trans. proj. et point de vue */

gl DrawPi xel s(512, 512, GL_RGB, G._UNSI GNED BYTE, Matri cePi xel s);

2.10 Eliminer les parties cachées

Pour éliminer les parties cachées d’un objet ou d’une scéne, OpenGL propose deux
méthodes : le back-face culling pour les polygones et le z-buffer ou depth-buffer
en général.

2.10 Eliminer les parties cachées 22

2.10.1 Backface-culling

Le backface culling, ou élimination des faces arriéres, consiste a éliminer de I’affichage
les polygones pour lesquels la normale forme un angle supérieur a 7/2 avec les
lignes de vue de chaque sommet du polygone (voir figure [2)).

normae

lignes de vues

Figure 12: Un polygone est visible si I’angle que forme la normale au polygone
avec la ligne en chacun de ses sommets est supérieur & /2.

La normale a un polygone correspond a la normale au plan contenant le poly-
gone. L’orientation de ce plan peut étre choisie a partir de I’ordre des sommets du
polygone. Par défaut, une orientation positive correspond a des sommets ordonnés
dans le sens inverse des aiguilles d’une montre (voir figure [[2). Cela peut étre
changé a I’aide de :

gl Front Face(G._CCW- G_CW

ou GL_CCW correspond au sens inverse des aiguilles d’une montre et GL_CW au
sens des aiguilles d’une montre.

Ensuite pour valider I’élimination des faces arriéeres, il suffit de suivre la procé-
dure suivante :

gl Enabl e(G._CULL_FACE) ; [* inversenment gl Di sabl e(G._CULL_FACE) */
gl Cul | Face(GL_FRONT - GL_BACK - GL_FRONT_AND_ BACK) ;
qui valide donc I’élimination des polygones respectivement de face par rapport

au point de vue et suivant I’orientation choisie (les sommets sont ordonnés dans
I’image suivant I’ordre choisi), de dos (GL_BACK) ou les deux (GL_FRONT_AND_BACK).

2.10 Eliminer les parties cachées 23

2.10.2 z-buffer

L’idée directrice de la méthode du z-buffer est de maintenir a jour une mémoire
tampon contenant la profondeur (le "2") du point observé en chaque pixel de
I’image; cela de la méme maniéere que la mémoire vidéo contient I’information
RGBA du point observé en chaque pixel. Lors du dessin d’une primitive, la pro-
fondeur d’un pixel a afficher est remise a jour si et seulement le point correspondant
a ce pixel sur la primitive présente une profondeur inférieure a celle déja présente
dans la mémaoire tampon. Cette remise a jour dans le tampon de profondeur en-

traine alors une remise a jour de I’information RGBA dans la mémoire vidéo (voir

figure [3).

profondeur

couleur 1

couleur 3

couleur 2

les points
correspondants

le pixel a afficher

Affichage | valeur ~ mémoire | valeur tampon de
vidéo profondeur
état initial | fond d’écran 00
point1 | couleur 1 prof. 1
point 2 | couleur 2 prof. 2
point 3 | couleur 2 prof 2

Figure 13: z-buffer, les polygones sont affichés dans I’ordre 1,2 et 3.

Pour OpenGL, la profondeur correspond a I’opposé de la coordonnée en z et
le tampon mémoire s’appelle le depth buffer. Pour valider les tests de profondeur,

2.11 Effectuer un rendu 24

il faut suivre la procédure suivante :

gl Enabl e(GL_DEPTH_TEST) ; /* inv. gl D sabl e(G_DEPTH TEST) */
gl Dept hFunc(GL_LESS - /* < val eur par defaut */
GL_CREATER - [* > */
GL_LEQUAL - [* <= */
GL_GEQUAL - [* >= */
GL_NOTEQUAL - [* 1= *]
GL_EQUAL) ; [* = *]

La fonction glDepthFunc() sert ici a définir la comparaison effectuée pour la
remise a jour d’un pixel dans le tampon de profondeur et la mémoire vidéo. La
valeur par défaut est GL_LESS. Pour cette valeur, une remise a jour s’effectue si
la profondeur d’un point a afficher est strictement inférieure a celle stockée dans le
tampon de profondeur aux coordonnées image du point en question.

A noter que I’utilisation du z-buffer nécessite la création d’un tampon de pro-
fondeur et son accés par OpenGL. Cela n’est pas effectué par OpenGL et doit donc
étre géré par la librairie utilisant OpenGL. L’exemple de programme Blmontre com-
ment utiliser un z-buffer avec GLUT pour afficher une surface sous la forme fil de
fer en procédant a une élimination des lignes cachées.

2.11 Effectuer un rendu

Pour effectuer un rendu d’une scéne, il faut placer des sources lumineuses dans la
scéne et préeciser les caractéristiques de ces sources ainsi que celles des surfaces
présentes. Un exemple de programme est donné au paragraphe

OpenGL propose un certain nombre de fonctions permettant de spécifier les
caractéristiques de sources lumineuses dans la scéne : position, couleur, etc. Pour
utiliser des sources lumineuses dans OpenGL, il faut tout d’abord valider I’illumination
de maniére globale :

gl Enabl e(GL_LI GHTI NG ; /* inver. gl Disable(..)*/

et ensuite valider individuellement chaque source lumineuse utilisée (jusqu’a 8 ou
plus en fonction de I’implementation d’OpenGL) :

gl Enabl e(G._LI GHTO) ; /* lere source |um neuse */
gl Enabl e(GL_LI GHT1); /* 2eme source | um neuse */

gl Enabl e(GL_LI GHT7); /* 8eme source | um neuse */

2.11 Effectuer un rendu 25

2.11.1 Le modele d’illumination

L’illumination en un point de la scéne se calcule comme la somme de différentes
contributions des sources lumineuses en fonction du matériel. Classiquement, ces
contributions sont au nombre de trois : ambiante, diffuse et spéculaire (voir figure
[[9). L’intensité lumineuse en point P de la surface S et pour une composante R,
G ou B est donc :

Figure 14: Les différentes directions au point P.

IP :Iambiante X Sambiante +

Z Izliffuse X SdifoSG X (N ! L2)+
1€[0..7]

7 n
§ : Ispeculaire X SSPGCUZaiTE X (V ! RZ)
1€[0..7]

avec :
e N : normale a la surface S en P;

e [, : direction de P vers la source lumineuse ¢;

V' - direction de P vers le centre de projection;

R; : direction symétrique de L; par rapport a N;

n : I’exposant spéculaire ou brillance de la surface;

2.11 Effectuer un rendu 26

 Lumbianter Lif puser Tepecuiaire - INEENSitéS des sources lumineuses pour une
composante R,G,B donnée. Les valeurs sont comprises entre 0 et 1 pour

OpenGL,;

® Sumbianter Sdif fuser Sspeculaire - Propriétés materielles de la surface au point
P pour une composante R,G,B donnée (valeurs également comprises entre
0 et 1 pour OpenGL).

La spécification des caractéristiques d’une source lumineuse se fait a I’aide de
vecteurs. Pour la lumiere ambiante (contribution I,,,.piante CONStante en tous points
de I’espace) :

G.float lum.anbiente[]={0.2,0.2,0.2,1.0}; /* conposantes R, G */
/* B, A par defaut */
gl Li ght Mbdel f v(GL_LI GHT_MODEL_AMBI ENT, | um anbi ente);

Pour les sources lumineuses ponctuelles (contributions diffuse 17, .., et specu-

laire Jgpeculm qui sont fonction des positions respectives de la source et du point
traité), par exemple GL_LIGHTO (voir figure [I5) :

G.float lunD diffuse[]={1.0,1.0,1.0,1.0}; /* conposantes R G */

G.float lunmD_speculaire[]={1.0,1.0,1.0,1.0};/* B, A par defaut */

G.float lunD_position[]={0.0,0.0,1.0,0.0}; /* pos. par defaut */
[* (al’infini) */

gl Li ghtfv(GL_LI GHTO, GL_DI FFUSE, | un0_di f f use) ;

gl Li ghtfv(G._LI GHTO, G._SPECULAR, | unD_specul aire);

gl Li ghtfv(GL_LI GATO, G._PCSI TI ON, | unD_position);

A noter :

1. A I’aide des coordonnées homogénes, une source lumineuse peut étre placée
a I’infini (4éme coordonnées nulle). Les trois premieres coordonnées déter-
minent alors la direction de la source lumineuse dite directionnelle.

2. La position d’une source lumineuse est calculée au moment de I’appel de
la fonction glLight(...,GL_POSITION,...) a partir de la position donnée en
paramétre; cette position étant soumise a I’ensemble des transformations
point de vue courantes (mais non les projections).

De la méme maniere, pour spécifier les caractéristiques matérielles (S qmpiante.
Sdif fuser Sspeculaire €t 1) des surfaces observees :

2.11 Effectuer un rendu 27

GLfloat surf_anmbient[]={0.2,0.2,0.2,1.0}; /* valeurs par defaut */
G.float surf_diffuse[]={0.8,0.8,0.8,1.0}; /* R GB,A */
GLfl oat surf_speculaire[]={0.0,0 0,0 0,1 0}; /'* RGBA */
G.float surf_brillance[]={0.0}; /* exposant specul aire*/

gl Materi al f v(G._FRONT, G._SPECULAR, surf _anbi ent);

gl Material f v(GL_FRONT, G._DI FFUSE, surf _di ffuse);

gl Materi al f v(G._FRONT, G._SPECULAR, surf _specul aire);
gl Material fv(G_FRONT, G._SHI NI NESS, surf_brill ance);

Enfin OpenGL considére, par défaut, que le point de vue est situé a I’infini pour
le calcul de la réflexion spéculaire. Cela diminue en effet le nombre d’opérations a
réaliser mais entraine des résultats moins "réalistes”. Pour modifier cela :

gl Li ght Mbdel i (G_LI GHT_MODEL_LOCAL_VI EVER, /* val eur G._FALSE */
GL_TRUE) ; [* par defaut */

2.11.2 Le modéle d’ombrage

Dans le cas de surface définies sous la formes de facettes polygonales, il existe
trois méthodes principales pour déterminer les valeurs d’intensité sur la facette :

1. Ombrage plat : le calcul de I’illumination est effectué en un point de la
facette puis cette valeur est dupliquée pour tous les points de la facette.

2. Ombrage de Gouraud : P’illumination en chaque point de la facette est
déterminée par interpolation linéaire des valeurs aux sommets de la facette .

3. Ombrage de Phong : I’illumination en chaque point de la facette est déter-
minée par interpolation linéaire des normales aux sommets de la facette puis
calcul de I’intensité suivant la valeur de cette normale.

OpenGL propose les deux premieres méthodes (voir figure I5). Le choix de
I’une ou de I’autre se faisant par :

gl ShadeModel (GL_FLAT - G._SMOOTH); /* onbrage plat - de

la valeur par défaut correspondant a un ombrage lisse : GL_SMOOTH.

Ajoutons pour finir qu’il existe des fonctions OpenGL permettant d’affiner en-
core le réglage des éclairages. Ces fonctions sortent du cadre de ce document, le
lecteur intéressé pourra cependant consulter [WND97l, (Ope] pour plus de détails.

Gour aud */

2.11 Effectuer un rendu

28

GLfloat lum_ambiante[]={1.0,1.0,0.0,1.0};

glShadeModel(GL_FLAT);

glEnable(GL_LIGHTING);

glLightModelfv(GL_LIGHT MODEL_AMBIENT,
lum_ambiante);

(@) Lumiére ambiante.

GLfloat lum_diffuse[]={0.8,0.8,0.0,1.0};
glShadeModel(GL_FLAT);
glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);
glMaterialfv(GL_FRONT,GL_DIFFUSE,lum_diffuse);

(b) Réflexion diffuse (surface lambertienne) et ombrage plat.

4

GLfloat surf_diffuse[]={0.8,0.8,0.0,1.0};
glShadeModel(GL_SMOOQOTH); /* valeur par defaut */
glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);
glMaterialfv(GL_FRONT,GL_DIFFUSE,surf_diffuse);

(c) Réflexion diffuse (surface lambertienne) et ombrage de Gouraud.

3

GLfloat surf_diffuse[]={0.8,0.8,0.0,1.0};

GLfloat surf_speculaire[]={1.0,1.0,0.0,1.0};

GLfloat surf_shininess[]={10.0};
glShadeModel(GL_SMOOTH);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);
glMaterialfv(GL_FRONT,GL_DIFFUSE,surf_diffuse);
glMaterialfv(GL_FRONT,GL_SPECULAR,surf_speculaire);
glMaterialfv(GL_FRONT,GL_SHININESS,surf_shininess);

(d) Réflexion diffuse et spéculaire (exposant spéculaire 10).

3

GLfloat surf_diffuse[]={0.8,0.8,0.0,1.0};

GLfloat surf_speculaire[]={1.0,1.0,0.0,1.0};

GLfloat surf_shininess[]={100.0};
glShadeModel(GL_SMOOQOTH);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHTO);
glMaterialfv(GL_FRONT,GL_DIFFUSE,surf_diffuse);
glMaterialfv(GL_FRONT,GL_SPECULAR,surf_speculaire);
glMaterialfv(GL_FRONT,GL_SHININESS,surf_shininess);

(d) Réflexion diffuse et spéculaire (exposant spéculaire 100).

Figure 15: Différents ombrages et illuminations d’un tore. La source lumineuse
directionelle GL_LIGHTO a la position par défaut (0,0,1,0) et les intensités

R,G,B,A par defaut (1,1,1,1).

2.12 Plaquer des textures 29

2.12 Plaquer des textures

Les textures conférent aux images de synthése un réalisme indéniable. Le principe
est d’utiliser, pour remplir un élément de surface de la scéne observée, une texture
(en général une image). Le plaquage de texture consiste donc a définir, pour les
points texturés de I’image a synthétiser, quelles sont les points de références cor-
respondants (texels) dans une image (2D ou 1D) de texture (ou de quelle maniere
déterminer ces points de références), et comment utiliser ces points de références.

Figure 16: Le plaquage de texture consiste a utiliser des textures (ici une image
2D) pour remplir les éléments de surface de la scene.

L utilisation des textures dans OpenGL s’effectue suivant deux étapes princi-
pales :

1. Création de la texture : spécifier I’image source pour la texture et la méthode
de plaquage a utiliser.

2. Plaquage de la texture : spécifier les points de la scéne délimitant la zone de
plaquage.
L’utilisation des textures requiére au préalable la validation des calculs les con-
cernant dans OpenGL :
gl Enabl e(GL_TEXTURE_1D - GL_TEXTURE_2D); /* inver. gl Disable(..)*/

Il est & noter qu’OpenGL permet I'utilisation de textures 1D (tableaux de pixels
a 1 dimension) ou 2D (tableaux de pixels & 2 dimensions). Nous ne traiterons ici
que les textures 2D ; I’'usage de textures 1D étant sensiblement similaire a celui de
textures 2D.

2.12 Plaquer des textures 30

2.12.1 Définir une texture

La création d’une texture nécessite dans un premier temps une image source. Cette
image source peut soit étre crée a I’intérieur du programme, soit étre lue dans un
fichier. La définition d’une texture a partir de cette image source s’effectue ensuite
en plusieurs étapeﬂ dont certaines découlent du besoin d’utiliser plusieurs textures
de facon simultanée :

1. Identifier,

2. spécifier la texture courante,

w

. spécifier le plaquage,

e

spécifier I’image source,

5. spécifier le mode de rendu.

Identifier Pour pouvoir manipuler plusieurs textures, il est nécessaire de les iden-
tifier. OpenGL utilise pour cela des entiers. Le choix des entiers peut étre fait soit
directement, soit a I’aide de la fonction glGenTextures. Cette derniére gére les
identifiants de textures et fournit des entiers qui ne sont pas encore utilisés.

int textures[n+1]; /* un tableau d identifiants vide */
gl GenTextures(n, textures); [/* genere n entiers */
/* disponibles */

Spécifier la texture courante 1l s’agit de spécifier la texture (1D ou 2D) sur

laquelle s’appliqueront les opérations ultérieures. Cela se fait par I’identifiant de la
texture.

gl Bi ndText ure(G._TEXTURE 2D, textures[2]); /* textures[2] */
/* devient active*/

Spécifier le plaquage 1l s’agit de spécifier la méthode a utiliser pour plaquer la
texture courante. Cela se fait a I’aide la fonction glTexParameter. Cette derniére
permet de plaquer les textures de différentes maniéres suivant la fonction de trans-
fert choisie entre I’image destination d’une texture et son image source.

SAttention & la chronologie entre les différentes étapes !

2.12 Plaquer des textures 31

e Répéter ou clamper la texture : les coordonnées textures (s, t) associées a
un point sont comprises entre 0 et 1 pour parcourir I’ensemble de I’image
de texture. Lorsque ces coordonnées sont en dehors de I’intervalle [0 1],
OpenGL peut soit répéter soit clamper la texture (voir figure [7) :

gl TexParaneteri (G._TEXTURE 2D, G._ TEXTURE WRAP_S,
GL_REPEAT - GL_CLAWP);

gl TexParanet eri (GL_TEXTURE 2D, GL_TEXTURE _WRAP_T,
GL_REPEAT - GL_CLAWP);

e Déterminer les valeurs des pixels a remplir : les coordonnées texture (s,t)
associées a un pixel ne sont pas nécessairement des valeurs entiéres et ne
correspondent donc pas nécessairement a un texel de I’image de texture. Les
solutions consistent alors & prendre soit la valeur du texel le plus proche de
(s,t), soit I’interpolation des valeurs des 4 pixels entourant (s, ¢). OpenGL
offre ces deux possibilités dans le cas ou la surface a remplir est plus grande
que I’image de texture (pixel de taille inférieur au texel) et plus dans le cas
ou la surface est plus petite que I’image de texture (pixel de taille supérieur
au texel).

gl TexPar amet eri (GL_TEXTURE_ 2D, G._TEXTURE_MAG _FI LTER,
GL_NEAREST - GL_LI NEAR);

gl TexParanet eri (GL_TEXTURE 2D, G._TEXTURE_M N_FI LTER,
GL_NEAREST - G._LI NEAR -
GL_NEAREST_M PMAP_NEAREST -
GL_NEAREST_M PMVAP_LI NEAR -
GL_LI NEAR_M PNVAP_NEAREST -
GL_LI NEAR_M PNMAP_LI NEAR) ;

Lorsque la surface a remplir est plus grande que I’'image de texture (GL_TEXTURE_MAG_FILTER),
deux méthodes sont possibles : GL_NEAREST ou GL_LINEAR. La pre-

miére consiste & choisir le texel le plus proche des coordonnées (s, t) spéci-

fiées (ou calculées), la deuxiéme consiste a prendre la valeur interpolée des

quatre texels entourant la position (s, t) (voir figure [L8).

Lorsque la surface a remplir est plus petite (GL_TEXTURE_MIN_FILTER),

plusieurs méthodes sont possibles, GL_NEAREST et GL_LINEAR comme

précédemment ainsi que des méthodes faisant intervenir des mipmaps. Le

principe des mipmaps est de stocker I’image de texture a différents niveaux

de résolution : I'image méme, I’image de tailles divisées par 4, I’image de

2.12 Plaquer des textures 32

void Display()

{
gl ut Wr eCube(200);

gl Begi n(G._QUADS) ;
gl TexCoor d2f (0.0, 0.0);
gl Vertex3f(-100.0, -100.0, 100);
gl TexCoord2f (2.0, 0.0);
gl Vertex3f (100.0, -100.0, 100)
gl TexCoord2f (2.0, 2.0);
gl Vert ex3f (100.0, 100.0, 100);
gl TexCoord2f (0.0, 2.0);
gl Vert ex3f (-100. 0, 100.0, 100);

gl End();

}

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_REPEAT)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT)

glTexParameteri(GL_TEXTURE_2D, glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_CLAMP) GL_TEXTURE_WRAP_S, GL_CLAMP)
glTexParameteri(GL_TEXTURE_2D, glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_CLAMP) GL_TEXTURE_WRAP_T, GL_REPEAT)

Figure 17: Plaquage de texture : lorsque les coordonnées textures sont supérieures
aux dimensions de I’'image (donc supérieures a 1), OpenGL peut soit répéter la tex-
ture (GL_REPEAT) soit ramener les coordonnées a 1 (GL_CLAMP) en fonction
de ce qui a été spécifié avec la fonction glTexParameter.

2.12 Plaquer des textures 33

tailles divisées par 16, et ainsi de suite jusqu’a ce que I’image soit de la di-
mension d’un pixel. Ensuite, pour déterminer les valeurs d’intensités pour
un pixel, on peut (voir figure I9) :

1. choisir I’'image dans la mipmap dont les dimensions en pixels sont les
plus proches de celles de la surface a remplir(_ MIPMAP_NEAREST);

2. interpoler entre les deux images dans la mipmap dont les dimensions en

pixels sont les plus proches de celles de la surface a remplir (MIPMAP_LINEAR);

3. etenfin choisir le texel le plus proche (GL_NEAREST_MIPMAP_), ou
interpoler entre les 4 plus proches (GL_LINEAR_MIPMAP_), dans les
images choisies de la mipmap .

Il est a noter que I’option GL_LINEAR_MIPMAP_LINEAR faisant inter-
venir deux interpolations produira les résultats les plus lisses mais que cela
a un codt en temps de calcul.

glTexParameteri(GL_TEXTURE_2D, glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MAG_FILTER, GL_LINEAR) GL_TEXTURE_MAG_FILTER, GL_NEAREST)

Figure 18: Magnification : la texture, dans I’image finale, a des dimensions
supérieures a celles de I’image dont elle provient.

Spécifier I’image de texture Pour spécifier I'image de texture, il est possible de
définir directement I’image concernée (soit un tableau de pixels) ou bien de définir
ou de calculer une mipmap (I’image a différents niveaux de résolution) a partir de
cette image.

2.12 Plaquer des textures

34

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_LINEAR)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_NEAREST_MIPMAP_LINEAR)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_NEAREST_MIPMAP_NEAREST)

Figure 19: Minification :

la texture, dans I’image finale, a des dimensions in-

férieures a celles de I'image dont elle provient.

2.12 Plaquer des textures 35

La fonction suivante permet de définir une image de texture :

gl Texl mage2D(G._ TEXTURE_ 2D,

Level, /* niveau de resolution */
Formati nt, /* format interne */

Lar geur, Hauteur, /* di mensi ons pui ssances de 2*/
Bor d, /* largeur du bord (0 ou 1)*/
For mat ext [* format de |’ image */
Type, /* type des donnees */

| mage) ; /* tabl eau de donnees */

ou :

e Level : caractérise le niveau de résolution de I’image, soit O pour une seule
image. Ce paramétre sert a construire une mipmap lorsque 1’on dispose de
I’image a plusieurs niveaux de résolutions.

e Formatint : le format interne ou, en d’autres termes, ce que I’on souhaite
utiliser dans I’image de texture (quelle composante ...). Les valeurs de ce
parameétre sont principalement : GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
GL_RGB, GL_RGBAf.

e Largeur, Hauteur : les dimensions de I’image de texture qui doivent étre des
puissances de 2 de valeur minimum 64. Si I’image que I’on souhaite utilisée
ne Vérifie pas ce critére, il est toujours possible d’en modifier les dimensions
a I’aide de la fonction :

gl uScal el mage(Fornmat, Largeurl, Hauteurl, Typel, |magel,
Largeur2, Hauteur2, Type2, |nage2)},

ol Imagel est I’image initiale et Image2 est I’image redimensionnée.
e Bord : la largeur du bord, soit la valeur 0 ou 1.

e Formatext : le format externe de I’image de texture soit principalement
GL_RGB, GL_RGBA, GL_RED, GL_GREEN, GL_BLUE, GL_LUMINANCE,
GL_ALPHA, GL_LUMINANCE_ALPHA.

e Type : le type des données soit GL_UNSIGNED_ BYTE (entiers non signés
sur 8 bit), GL_BYTE, GL_BITMAP (bits codés dans des unsigned bytes),
GL_SHORT (entiers signés sur 16 bits), GL_UNSIGNED_SHORT.

4Drautres valeurs existent, en particulier du fait que le nombre de bits utilisés par composantes
peut étre modifiable, GL_RGB8 ou GL_RGB10 par exemple.

2.12 Plaquer des textures 36

e Image : le tableau de valeurs pour I’image de texture.

La fonction glTexImage2D peut aussi servir a construire une mipmap en util-
isant différentes valeurs du paramétre Level. Par contre, il existe une fonction de la
libraire glu qui construit une mipmap directement a partir de I’image initiale et qui,
de plus, redimensionne automatiquement I’image si celle-ci n’a pas des dimensions
puissances de 2 :

gl uBui | d2DM prmaps(G._TEXTURE_2D,

Formati nt, /[* format interne */
Lar geur, Hauteur, /* di mensions de |’inmage */
For mat ext , /* format de |’ image */
Type, /* type des donnees */
| mage) ; /* tabl eau de donnees */

Spécifier le mode de rendu Enfin, la derniére fonction concerne le mode de
rendu a utiliser : soit la texture uniquement, soit la combinaison de la texture et
d’un rendu.

gl TexEnvi (GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE,
G._DECAL - G._REPLACE - G._MODULATE - GL_BLEND)

la valeur par défaut est GL_MODULATE qui combine le rendu, si celui ci est
défini, et la texture. Pour une texture de format RGB, le rendu s’effectue pour
chaque composante suivant (voir figure 20):

DECAL | REPLACE | MODULATE BLEND
texture texture texture x rendu | rendu x (1 - texture)

En résumé Le code suivant illustre I’ensemble des appels de fonctions utiles a
I’usage d’une texture :

void init_texture()

{
gl GenTextures(1, &wum texture);
gl Bi ndText ure(G._TEXTURE_2D, num texture);
gl TexParaneteri (GL_TEXTURE 2D, G__TEXTURE WRAP_S, G._REPEAT);
gl TexParamet eri (GL_TEXTURE_2D, G._TEXTURE _WRAP_T, GL_REPEAT);
gl TexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

2.12 Plaquer des textures 37

gITexEnVi(GL_TEXTURE_ENV, gITexEnVi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, GL_DECAL); | GL_TEXTURE_ENV_MODE, GL_DECAL -
gIDisable(GL_TEXTURE_2D) GL_REPLACE);

glEnable(GL_TEXTURE_2D)

gITexENVi(GL_TEXTURE_ENV, gITexENVi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, GL_TEXTURE_ENV_MODE, GL_BLEND);
GL_MODULATE); glEnable(GL_TEXTURE_2D)

glEnable(GL_TEXTURE_2D)

Figure 20: Spécifier le rendu : en fonction du mode rendu choisi, il est
possible d’afficher le rendu uniquement, la texture uniquement (GL_DECAL -
GL_REPLACE) ou une combinaison des deux (GL_MODULATE - GL_BLEND).

2.12 Plaquer des textures 38

}

gl Pi xel Storei (GL_UNPACK_ALI GNVENT, 1);
i mge = LoadPNM nage("i mage. ppni', & ngW dt h, & ngHei ght , &axVal) ;
/1 gl Texl mage2D(GL_TEXTURE 2D, 0, GL_RGB, InmgWdth, | nmgHei ght,
0, GL_RGB, G._UNSI GNED_BYTE, | nmage);
gl uBui | d2DM prmaps(G._TEXTURE_2D, GL_RGB, | ngW dth, | ngHei ght,
GL_RGB, GL_UNSI GNED BYTE, i nmge);
gl Enabl e(GL_TEXTURE_2D) ;

2.12.2 Utiliser une texture

3 AFFICHER ET ANIMER DES IMAGES OPENGL AVEC GLUT 39

3 Afficher et animer des images OpenGL avec GLUT

Les fonctions qui ont été présentées permettent de construire une image en effec-
tuant des dessins dans une mémoire : vidéo ou tampon. Ces fonctions ne réalisent
par contre pas la liaison entre la fenétre graphique et la mémoire de dessin. Cela
nécessite un environnement gérant les interconnexions avec le matériel. La li-
braire GLUT permet cela, et gére en particulier le clavier, la souris et les fenétres
graphiques. Nous présentons ici I’architecture générale d’un programme GLUT et
quelques exemples démonstratifs.

3.1 Architecture générale d’un programme GLUT

Un programme GLUT est généralement constitué des parties suivantes (la liste est
non-exhaustive) :

1. Une fonction d’initialisation : cette fonction permet d’initialiser différentes
valeurs : couleurs, taille d’un point, etc.

2. Une fonction d’affichage : c’est la fonction appelée par GLUT pour rafraichir
la fenétre graphique.

3. Une fonction de fenétrage : c’est la fonction appelée lorsque la fenétre
graphique est modifiée.

4. Une fonction de gestion du clavier : ¢’est la fonction appelée lorsque I’ utilisateur
appuie sur une touche du clavier.

5. Des fonction de gestion des événements de la souris : c’est les fonctions
appelées lorsque I’état de la souris est modifié.

6. Une partie principale : dans cette partie diverses initialisations sont réalisées,
I’association des fonctions précédentes aux événements correspondants est
effectuée et enfin, la boucle principale est lancée.

OpenGL / GLUT une introduction Edmond.Boyer@imag.fr

3.1 Architecture générale d’un programme GLUT 40

3.1.1 Squelette d’un programme GLUT

#i ncl ude <&/ gl . h>
#i ncl ude <G/ gl u. h> /* fichiers d entetes Open@., GLU et GUT */
#i nclude <G/ glut.h>

static void initialiser(void)

{
gl Cl ear Col or (0,0, 0, 0); /* definition de la couleur utilisee */
[* pour effacer */
gl Color3f(1.0,1.0,1.0); /* coul eur courante */
}
static void afficher(void)
{
gl dear(G_COOR BUFFER BIT); [/* effacenment du tanmpon ou */
/* s’effectuent |es dessins */
gl Begi n(GL_POLYGON) ;
gl Vertex3f(12.0,3.0,5.0);
- /* dessin */
gl End() ;
}

static void refenetrer(int w, int h)

{
gl Viewport (0, 0, (Gsizei) w, (Gsizei) h); /* nodification des tailles */
/* du tanpon d’ affichage */

gl Mat ri xMode(GL_PRQIECTI ON) ; /* pile courante = projection */
gl Loadl dentity(); /* specification de la projection */
gl Ot ho(-50.0,50.0,-50.0,50.0,-1.0,1.0);
gl Mat ri xMode(GL_MODELVI EW ; [* pile courante = point de vue */
gl Loadl dentity();
}
static void clavier(unsigned char touche, int x, int y)
{
switch (touche) {
case 27: /* sortie si touche ESC */
exit(0);
}
}
static void gerer_souris(int bouton, int etat, int x, int y)
{

swi t ch(bout on) {

3.1 Architecture générale d’un programme GLUT

41

case GLUT_LEFT_BUTTON :
if(etat == GLUT_DOMWN)

br eak;
case GLUT_M DDLE_BUTTON :

br eak;

defaul t:
br eak;
}

}
static void gerer_souris_nouvenent (int x,
{

/* position courante (x,y) de la souris */
}

void main(int argvc, int **argv)

{
glutlnit(&argvec, argv);
glutlinitD spl ayMde(GLUT_RGB) ;
gl utlni t WndowSi ze(500, 500);
gl ut I ni t WndowPosi ti on(200, 200);
gl ut Creat eW ndow(argv[0]);

init();

gl ut Di spl ayFunc(afficher);
gl ut ReshapeFunc(refenetrer);
gl ut Keyboar drFunc(cl avi er);
gl ut MouseFunc(gerer_souris);

gl ut Mot i onFunc(gerer_souri s_nouvenent);

gl ut Mai nLoop() ;
return(0);

i nt

/*
/*
/*
/)\—

/*
/*
/)\—

/*
/*

y)

af fi chage coul eur */
taille initiale fenetre graphi que */
position initiale */
creation de |la fenetre graphi que */

fonction d affichage */

fonction de refenetrage */

gestion du clavier */

/* fonction souris */

depl acenent de la souris */

| ancenent de | a boucle principale */

3.1 Architecture générale d’un programme GLUT 42

3.1.2 Makefile générique pour OpenGL

HHHHBHHH B H B H R H R
Makefile OpenG
#
HHHHBHHH B H B H P H R R

Nons des progranmes
PROG = sphere tore cube

Librairies G

I NCDI R = -1/ hone/ pyt hi a/ eboyer/ Src/ Mesal/ i ncl ude

LI BDIR = -L/ home/ pyt hi a/ eboyer/ Src/ Mesal/lib

MESAGL_LIBS = $(LIBDIR) -lglut -1MsaG.U -1 MesaGL
GL_LIBS = $(LIBDIR) -lglut -L/usr/openwin/lib -1GU -1G

#Librairies X
XLIBS = -L/usr/openwin/lib -1X11 -1 Xext -1 Xnu -1X

Variabl es pour la conpilation des fichiers
CcC gcc

CFLAGS $(INCDIR) -g -wall

CPPFLAGS - DDEBUG

Cibles
all : $(PROG

cl ean:
-rm $(PROG
-rm*.o0 *~

Regl es de conpil ation
.SUFFIXES: .0 .c
.C.0:
$(CC) -c $(CPPFLAGS) $(CFLAGS) $<

$(CC) $(CPPFLAGS) $(CFLAGS) $< $(GL_LIBS) $(XLIBS) -Im-0 $@

REFERENCES 43

References

[Glu] Glut. Graphics Library Utility Toolkit Specification.
http://reality.sgi.com/mjk/glut3/glut3.html.

[Mes] Mesa. The Mesa 3D Graphics Library, Brian Paul. http://www.mesa3d.org/.

[Ope] OpenGL 1.2 Specification. http://lwww.sgi.com/software/opengl/manual.html.

[WND97] Mason Woo, Jackie Neider, and Tom Davis. OpenGL Programming Guide,
second edition. Addison Wesley, 1997.

	Introduction
	Construire des images avec OpenGL
	La syntaxe d'OpenGL
	Le principe
	Spécifier la transformation point de vue
	Ajouter une transformation pour le calcul du point de vue

	Modifier une transformation
	Spécifier la projection
	Projection orthographique
	Projection perspective

	Spécifier le fenêtrage
	Spécifier des couleurs
	Spécifier des primitives géométriques
	Dessiner des points
	Dessiner des lignes polygonales
	Dessiner un polygone

	Afficher une image
	Éliminer les parties cachées
	Backface-culling
	z-buffer

	Effectuer un rendu
	Le modèle d'illumination
	Le modèle d'ombrage

	Plaquer des textures
	Définir une texture
	Utiliser une texture

	Afficher et animer des images OpenGL avec GLUT
	Architecture générale d'un programme GLUT
	Squelette d'un programme GLUT
	Makefile générique pour OpenGL

