Initiation a OpenGL — sept 2004 Rémy Bulot

Initiation a OpenGL

Avril - 2003

Rémy Bulot — Polytech’Marseille

3 v

[. Introduction
1. L’infographie

L’ceil regoit une projection 2D (une photographie) de I’environnement dans lequel nous évoluons, et
transmet cette image a notre cerveau. A partir de cette représentation partielle, le cerveau reconstruit
I’environnement 3D en compensant par de nombreux « a priori » la perte d’information induite par
cette projection (distance aux objets, partie cachée, ...).

L’infographie consiste, par calcul, a construire une sceéne virtuelle (généralement 3D, mais parfois
2D) et a reproduire cette projection pour ’afficher sous forme d’une matrice rectangulaire de
pixels : 1’écran de I’ordinateur. L’ceil capte alors cette image 2D et nous effectuons une
reconstruction mentale plus ou moins réussie de la scéne en fonction du degré de réalisme et du
niveau des informations produites (certaines images sont d’interprétation ambigu€ comme le montre
le petit cube dessiné en téte de cette page).

2. Qu’est-ce qu’OpenGL

OpenGL est une librairie graphique 3D disponible sur de nombreuses plate-formes (portabilité) qui
est devenu un standard en infographie.

C’est un langage procédural (environ 200 fonctions) qui permet de donner des ordres de tracé de
primitives graphiques (segments, facettes, etc.) directement en 3D. C’est aussi une machine a états
qui permet de définir un contexte de tracé : position de caméra, projection 2D, couleurs, lumiéres,
matériaux... OpenGL se charge de faire les changements de repére, la projection a I'écran, le
« clipping » (limites de visualisation), 1'élimination des parties cachées, l'interpolation les couleurs,
et de la « rasterisation » (tracer ligne a ligne) des faces pour en faire des pixels.

Initiation a OpenGL — sept 2004 Rémy Bulot

OpenGL s'appuie sur le hardware disponible (selon la carte graphique). Toutes les opérations de
base sont a priori accessibles sur toute machine, simplement elles iront plus ou moins vite selon
qu'elles sont implémentées au niveau matériel ou logiciel.

Ce que ca fait :
e sélection d’un point de vue,
e tracé de polygones,
* organisation des objets dans une scéne
» effets de profondeur (luminosité décroissante, brouillard, flou de type photographie),
* placage de texture,
* ¢clairage des surfaces (en 3D)
* lissage ou anti-crénelage (anti-aliasing) a la « rasterisation ».

Ce que ca ne fait pas:
* ne gere pas le fenétrage,
* ne gere pas les interruptions (interactions utilisateurs).

Remarque :

Une scene Virtuelle 3D n’est jamais mémorisée dans sa totalité et chaque primitive énoncée est
immédiatement projetée « a I’écran » aprés un calcul de rendu plus ou moins complexe. Ce calcul
se fait d’aprés un contexte prédéfini précisant la couleur, 1’éclairage, le point de vue, le type de
projection, ... La simple modification de la scéne ou du contexte de visualisation impose une
reconstruction compléte de la scéne 3D car aucun résultat intermédiaire n’a été conservé.

Aussi, on retiendra tout au long de ce cours qu’un objet dans une scéne 3D est défini par un
ensemble de primitives graphiques (point, segment, triangle) et un contexte de visualisation. En
simplifiant, le tracé d’une primitive déclenche immédiatement la séquence d’opérations suivantes :

1. définition de la primitive dans le repere de 1’objet

2. transformation géométrique sur la primitive (positionnement de I’objet dans la scéne)

3. projection de la primitive sur le plan image

4. cadrage dans la fenétre de visualisation

7

O O o K

1: primitive 2: positionnement 3: projection 4: cadrage

Le plan de cet exposé ne respecte pas I’ordre des opérations effectuées par OpenGL. C’est
simplement une maniére d’aborder la construction d’une image. Nous parlerons de :

Initiation a OpenGL — sept 2004 Rémy Bulot

- GLUT : un systéme simple de fenétrage

- Couleur et primitives de tracé (lignes et polygones)

- Transformations géométriques pour la construction d’une scéne 3D
- Visualisation d’une scéne 3D (z-buffer et projection 2D)

- Amélioration du rendu (ou rendu réaliste) : brouillard, éclairage, ...
- Le cas des images 2D

Nous proposons de présenter ici un sous-ensemble des fonctionnalités d’OpenGL qui permettra une
programmation déja efficace. Certaines restrictions seront faites pour aller a 1’essentiel. La premicre
concerne le mode d’affichage que nous limiterons au mode couleur RGB pour la totalité de ce
cours.

3. Philosophie des identificateurs OpenGL

OpenGL a pris la précaution de redéfinir les types de base pour assurer la portabilité des
applications quelque soit I’implémentation. Si la conversion entre les types de base du C et les
types GL est bien assurée (par exemple, pour les arguments passé€s par valeur dans une fonction
OpenGL lors d’un appel), il est fortement conseillé d’utiliser les types OpenGL pour les tableaux
qui sont passés par adresse.

Par ailleurs, OpenGL s’est imposé certaines régles pour créer ses identificateurs : ceux-ci disposent
presque systématiquement d’un préfixe et d’un suffixe :
- Préfixe : glNom
- Suffixe : précise parfois le nombre d’arguments et leur type. La méme fonction est
souvent disponible pour différents type d’arguments. Par exemple, la définition
d’une couleur peut se faire avec les fonctions suivantes :
glColor4df (rouge, vert, bleu, transparence)
glColor3iv (tableDeTroisEntiers)

Suffixe type taille nature
GLbyte 8 octet signé
S GLshort 16 entier court
i GLint 32 entier
f GLfloat 32 flottant
d GLdouble 64 flottant double précision
ub GLubyte 8 octet non signé
us GLushort 16 entier court non signé
ui GLuint 32 entier long non signé

typev adr d’un vecteur de ce type

Initiation a OpenGL — sept 2004 Rémy Bulot

II. La librairie GLUT

Plan :

Structure d’une application GLUT
Initialisation d’une session GLUT

La boucle de traitement des événements
Gestion des fenétres

Gestion de menus

Inscription des fonctions de rappel
Quelques variables d’état de GLUT
Rendu des polices de caracteres

PRNANE WD~

OpenGL a été congu pour étre indépendant du gestionnaire de fenétres qui est intimement lié au
systéme d’exploitation. Il existe toutefois un systéme de fenétrage « élémentaire » qui permet de
développer des applications graphiques dans un cadre simple tout en garantissant une trés bonne
portabilité sur de trés nombreuses plate-formes : openGL Utility Toolkit (GLUT).

Les fonctionnalités de cette bibliothéque permettent principalement de :

- créer et gérer plusieurs fenétres d’affichage,

- gérer les interruptions (click souris, touches clavier, ...),

- disposer de menus déroulant,

- connaitre la valeur d’un certain nombre de paramétres systémes,
Quelques fonctions supplémentaires permettent de créer simplement un certain nombre d’objets 3D
(cube, sphere, tore, ...).

Cette bibliothéque s’enrichie réguliérement d’outils simples et pratiques (on trouve maintenant sur
les sites OpenGL des boutons, des affichages de répertoires, ...) sans devenir un « monstre » dont la
maitrise demande une longue pratique.

La philosophie générale de ce systéme de fenétrage est basée sur la « programmation
événementielle » (ce que 1’on pourra regretter ...), ce qui impose une structuration assez particuliere
de I’application.

1. Structure d’une application GLUT

Une application GLUT lance une session graphique qui ne sera plus controlée que par des
interruptions (click souris, touche clavier, ...). On trouve dans le « main » les actions suivantes :
- initialisation du fenétrage,
- désignation de la fonction d’affichage (1) dans la fenétre courante,
- désignation de la fonction (2) déclenchée par un redimensionnant la fenétre courante,
- association d’une fonction (3) a chaque type d’interruption,
- laboucle d’événements.

Avec les remarques suivantes :
- Toute opération de tracé est interdite en dehors de la fonction déclarée pour cette tiche (1).
- Laboucle d’événement est la derniére action du programme principal et échappe totalement
au controle du programmeur. Elle prend la main de fagon définitive (jusqu’a la fin
I’application) : elle réactualise régulierement I’affichage d’une part et capte d’autre part les
interruptions pour déclencher les procédures associées (3).
- C’est le systéme qui déclenche la fonction d’affichage (1),

Initiation a OpenGL — sept 2004 Rémy Bulot

- Le programmeur peut demander au systéme 1’exécution de la fonction d’affichage au moyen
de I’instruction glutPostRedisplay ()

Cette gestion indépendante des différents processus impose 1’utilisation de variables globales d’état
pour controler I’affichage en fonction des interruptions (dialogue entre la fonction d’affichage et les
fonctions traitants les interruptions).

Boucle d’événements

Action traitant I’événement
glutPostRedisplay ()

\ 4

Evénement

Action associée

aux dimensions | ——p| Afficher la scéne
de la fenétre

A4

Exemple simplifi¢ de la structuration d’un programme GLUT :
#include <GLUT/glut.h>

void afficheMaScene (void)
{ « effacer 1’écran »
positionner la caméra
construction (tracé) de la scene
glutSwapBuffers(); /* glFlush() */
}

void monCadrage (int largeur, int hauteur)

{ redéfinition du cadre d’affichage aprées redimensionnement de la fenétre
definition de la projection 3D->2D

}

void maFctClavier (unsigned char key, int x, int y)

{ modification du contexte d’affichage sur un événement clavier
glutPostRedisplay ()

}

void maFctTouchesSpeciales (unsigned char key, int x, int y)

{ action déclenchée sur une touche F1, .., F10, fleches
glutPostRedisplay () ;

}

void maFctSouris (int bouton, int etat, int x, int y)

{ modification du contexte d’affichage sur un événement souris
glutPostRedisplay () ;

}

void monInitScéne ()

{ initialisation eventuelle de parametres propres a l’application (eclairages,
..)

}

int main (int argc, char **argv)

{ /* initialisation d’une session GLUT */
glutInit (argc, argv); /* initialise la bibliothéque GLUT */
glutInitDiSplayMode(GLUTiDOUBLE | GLUTiRGB | GLUTiDEPTH);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);

Initiation a OpenGL — sept 2004 Rémy Bulot

glutCreateWindow (argv [0]);

/* initialisation éventuelle de parametres
monInitScene () ;

/* ftcs définissant la scéne3D et sa projection */

glutDisplayFunc (afficheMaScene) ; /* (1) */
glutReshapeFunc (monCadrage) ; /* (2) */
/* ftcs liees aux iterruptions */

glutKeyboardFunc (maFctClavier) ; /* (3) */
glutSpecialFunc (maFctTouchesSpeciales) ; /* (3) */
glutMouseFunc (maFctSouris) ; /* (3) */

/* boucle d’événements */
glutMainLoop () ;
return 0;

2. Initialisation d’une session GLUT

void glutlnit (int *argcp, char **argv);

La fonction glutlnit initialise la bibliotheque GLUT et négocie une session avec le
systéme de fenétrage. Elle traite également les lignes de commandes qui sont propres
a chaque systéme de fenétrage.

Parametres pour le systeme X

Les paramétres de la ligne de commande qui sont compris par la bibliothéque GLUT
sont par exemple:

display DISPLAY Spécifie I'adresse du serveur X auquel se connecter. Si ce n'est
spécifié, la variable d'environnement est utilisée.

geometry WxH+X+Y Détermine la position de la fenétre sur I'écran. Le parametre de
geometry doit étre formaté selon la spécification standard de X.

gldebug Aprées le traitement des fonctions de rappel ou des événements, vérifier s'il y
a des erreurs d'OpenGL en appelant glGetError. S'il y a une erreur, imprimer un
avertissement obtenu par la fonction gluErrorString.

void glutInitWindowsSize (int width, int height);

void glutInitWindowPosition (int x, int y);

Les fonctions glutInitWindowSize et glutInitWindowPosition permettent de créer
une fenétre, de la positionner sur I'écran et d'en spécifier la taille.

width Largeur de la fenétre en pixels.
height Hauteur de la fenétre en pixels.
x Position en x du coin gauche supérieur de la fenétre.

y Position en y du coin gauche supérieur de la fenétre.

void glutlnitDisplayMode (unsigned int mode);

Cette fonction spécifie le mode d'affichage de la fenétre. Le mode d'affichage est
utilisé pour créer les fenétres et les sous-fenétres. Le mode GLUT _RGBA permet

Initiation a OpenGL — sept 2004 Rémy Bulot

d'obtenir une fenétre utilisant le modéele de couleur RGB avec une composante de
transparence. C'est le mode de base de la plupart des applications.

mode Mode d'affichage qui est en général une opération or bit a bit de masque de
bits. Les valeurs permises sont :

+ GLUT _RGBA Masque de bits pour choisir une fenétre en mode RGBA. C'est la
valeur par défaut si GLUT RGBA ou GLUT_INDEX ne sont spécifiés.

e GLUT RGB Un alias de GLUT _RGBA.

« GLUT _INDEX Masque de bits pour choisir une fenétre en mode index de couleur.
Ceci lI'emporte si GLUT RGBA est spécifié.

» GLUT _SINGLE Masque de bits pour spécifier un tampon simple pour la fenétre.
Ceci est la valeur par défaut.

« GLUT DOUBLE Masque de bit pour spécifier une fenétre avec un double tampon.
Cette valeur l'emporte sur GLUT_SINGLE.

« GLUT RGBA Masque de bits pour choisir une fenétre avec une composante alpha
pour le tampon de couleur.

« GLUT_DEPTH Masque de bits pour choisir une fenétre avec un tampon de
profondeur.

3. La boucle de traitement des événements

void glutMainLoop (void);

Cette fonction permet d'entrer dans la boucle de GLUT de traitement des
événements. Cette fonction est appelée seulement une fois dans une application.
Dans cette boucle, les fonctions de rappel qui ont été enregistrées sont appelées a
tour de role.

4. Gestion des fenétres

int glutCreateWindow (char * name);

Cette fonction crée une fenétre en utilisant le systéme de fenétrage du systeme. Le
nom de la fenétre dans la barre de titre de la fenétre prend la valeur de la chaine de
caracteres spécifiée par name. Cette fonction retourne un entier positif identifiant le
numéro de la fenétre. Cet entier peut par la suite étre utilisé par la fonction
glutSetWindow.

Chaque fenétre posséde un contexte unique d'OpenGL. Un changement d'état de la
fenétre associée au contexte d'OpenGL peut étre effectué une fois la fenétre créée.
L'état d'affichage de la fenétre a afficher n'est pas actualisé tant que 'application n'est
pas entrée dans la fonction glutMainLoop. Ce qui signifie qu'aucun objet graphique
ne peut étre affiché dans la fenétre, parce que la fenétre n'est pas encore affichée.

Initiation a OpenGL — sept 2004 Rémy Bulot

void glutSetWindow (int win);
Cette fonction établit que la fenétre identifiée par win devient la fenétre courante.
int glutGetWindow (void);

Cette fonction retourne le numéro de la fenétre courante. Si la fenétre courante a été
détruite, alors le numéro retourné est 0.

void glutDestroyWindow (int win);

glutDestroyWindow détruit la fenétre identifiée par le paramétre win. Elle détruit
¢galement le contexte OpenGL associée a la fenétre. Si win identifie la fenétre
courante, alors la fenétre courante devient invalide (glutGetWindow retourne la
valeur 0).

void glutPostRedisplay (void);

Cette fonction indique que la fenétre courante doit étre réaffiché. Lors de la
prochaine itération dans la boucle principale de glutMainLoop, la fonction de rappel
d'affichage est appelée. Plusieurs appels a la fonction glutPostRedisplay
n'engendrent qu'un seul rafraichissement. Logiquement, une fenétre endommagée est
marquée comme devant étre rafraichie, ce qui est équivalent a faire appel la fonction
glutPostRedisplay.

Cette fonction est principalement employée dans les procédures attachées a une
interruption. La modification du contexte demande généralement une réactualisation
de I’affichage.

void glutSwapBuffers (void);

Cette fonction échange les tampons de la couche en utilisation de la fenétre courante.
En fait, le contenu du tampon arriére de la couche en utilisation de la fenétre
courante devient le contenu du tampon avant.. Le contenu du tampon arri¢re devient
indéfini.

La fonction glFlush est appelée implicitement par glutSwapBuffers. On peut
exécuter des commandes d'OpenGL immédiatement aprés glutSwapBuffers, mais
elles prennent effet lorsque 1'échange de tampon est complété. Si le mode double
tamponnage n'est pas activé, cette fonction n'a aucun effet.

void glutPositionWindow (int x, inty);

Demande un changement de position de la fenétre courante. Les coordonnées x et y
sont des décalages par rapport a I'origine de 1'écran. Le changement de position n'est
pas immédiatement effectué¢, mais le changement est effectué lorsque l'application
retourne dans la boucle principale

Pour une fenétre de base, le systéme de fenétrage est libre d'appliquer face a la
requéte sa propre politique pour le positionnement de la fenétre.

glutPositionWindow désactive le mode plein écran s'il est activé.

void glutReshapeWindow (int width, int height);

Initiation a OpenGL — sept 2004 Rémy Bulot

Demande un changement de dimensions de la fenétre courante. Les parameétres
width et height sont les nouvelles dimensions de la fenétre et doivent étre des
entiers positifs. Le changement de dimension n'est pas immédiatement effectué, mais
le changement est effectué lorsque 1'application retourne a la boucle principale.

Pour une fenétre de base, le systéme de fenétrage est libre d'appliquer face a la
requéte sa propre politique pour le dimensionnement de la fenétre.

glutReshapeWindow désactive le mode plein écran s'il est activé.
void glutFullScreen (void);

Demande que la fenétre courante soit en plein écran. La sémantique de plein écran
peut varier d'un systéme de fenétrage a l'autre. Le but est d'obtenir la fenétre la plus
grande possible en la libérant des bordures et des barres de titre. Les dimensions de
la fenétre ne correspondent pas nécessairement aux dimensions de l'écran. Le
changement de dimension n'est pas immédiatement effectué, mais le changement est
effectué lorsque l'application retourne a la boucle principale.

Les appels aux fonctions glutReshapeWindow et glutPositionWindow désactivent
le mode plein écran.

void glutPopWindow (void);
void glutPushWindow (void);

La fonction glutShowWindow affiche la fenétre courante (elle pourrait ne pas étre
visible si elle est occultée par une autre fenétre). La fonction glutHideWindow
cache la fenétre courante. Les actions de cacher ou afficher une fenétre ne sont pas
effectués immédiatement. Les requétes sont conservées pour exécution future lors du
retour a la boucle principale des événements. Les effets d'afficher ou masquer une
fenétre dépendent de la politique d'affichage du systéme de fenétrage.

void glutSetWindowTitle (char *name);

Cette fonction s'applique a la fenétre. Le nom d'une fenétre est établi lorsque de la
création de la fenétre par la fonction glutCreateWindow. Par la suite, le nom d'une
fenétre peut étre changé respectivement par un appel a la fonction
glutSetWindowTitle.

void glutSetCursor (int cursor);

Change l'apparence du curseur pour la fenétre courante. Valeur du curseur :

o GLUT_CURSOR_RIGHT_ARROW Fléche pointant vers le haut et
la droite.

o GLUT_CURSOR_LEFT_ARROW Fleche pointant vers le haut et
la gauche.

o GLUT_CURSOR_INFO Main directionnelle.
o GLUT_CURSOR_DESTROY Crane et os (téte de mort).
o GLUT_CURSOR_HELP Point d'interrogation.

Initiation a OpenGL — sept 2004 Rémy Bulot

o GLUT_CURSOR_CYCLE Fleche tournant en cercle.

o GLUT_CURSOR_SPRAY Aérosol.

o GLUT_CURSOR_WAIT Montre bracelet.

o GLUT_CURSOR_TEXT Point d'insertion pour le texte.
o GLUT_CURSOR_CROSSHAIR Croix.

o GLUT_CURSOR_UP_DOWN Curseur bidirectionnel pointant vers
le haut et le bas.

o GLUT_CURSOR_LEFT_ RIGHT Curseur bidirectionnel pointant
vers la gauche et la droite.

o GLUT_CURSOR_TOP_SIDE Fléche pointant vers le coté
supérieur.

o GLUT_CURSOR_BOTTOM_SIDE Fleche pointant vers le coté
inférieur.

o GLUT_CURSOR_LEFT_SIDE Fléche pointant vers le c6té gauche.
o GLUT_CURSOR_RIGHT_SIDE Fléche pointant vers le c6té droit.

o GLUT_CURSOR_TOP_LEFT_CORNER Fléche pointant vers le
coin supérieur gauche.

o GLUT_CURSOR_TOP_RIGHT_CORNER Fléche pointant vers le
coin supérieur droit.

o GLUT_CURSOR_BOTTOM_ LEFT_CORNER Fléche vers le coin
inférieur gauche.

o GLUT_CURSOR_BOTTOM RIGHT_ CORNER Fléche vers le
coin inférieur droit .

o GLUT_CURSOR_FULL_CROSSHAIR Grande croix.
o GLUT_CURSOR_NONE Curseur invisible.

5. Gestion de menus

La bibliothéque GLUT supporte des menus déroulants en cascades. La fonctionnalité
est simple et minimale. La bibliothéque GLUT n'a pas la méme fonctionnalité que
X-Windows ou WindowsXX; mais elle a I'avantage d'étre portable sur plusieurs
plates-formes. Il est illégal de créer ou éliminer des menus, ou de changer, ajouter ou
retirer des ¢éléments d'un menu pendant qu'il est en cours d'utilisation.

int glutCreateMenu (void (*func) (int value));

La fonction glutCreateMenu crée un nouveau menu déroulant et retourne un entier
identifiant ce menu. La plage du numéro de menu commence a 1. Implicitement, le
menu courant correspond au nouveau menu créé. L'identificateur de menu peut étre

Initiation a OpenGL — sept 2004 Rémy Bulot

utilisé par la suite par la fonction glutSetMenu. Lorsque la fonction de rappel est
appelée parce qu'un élément du menu a été sélectionné, la valeur du menu courant
devient le menu sélectionné. La valeur de la fonction de rappel correspond a
'élément du menu sélectionné.

void glutSetMenu (int menu);
int glutGetMenu (void);

La fonction glutSetMenu permet d'établir le menu courant; la fonction
glutGetMenu retourne la valeur du menu courant. Si le menu n'existe pas, ou si le
menu courant précédent a été détruit, glutGetMenu retourne la valeur 0.

void glutDestroyMenu (int menu);

La fonction glutDestroyMenu détruit le menu identifié par menu. Si menu identifie
le menu courant, la valeur du menu courant devient invalide ou 0.

void glutAddMenuEntry (char * name, int value);

La fonction glutAddMenuEntry ajoute un élément au bas du menu courant. La
chaine de caractéres est affichée dans le menu déroulant. Si un élément du menu est
sélectionné par un utilisateur, la valeur value est la valeur transmise a la fonction de
rappel correspondant au menu courant.

void glutAddSubMenu (char * name, int menu);

La fonction glutAddSubMenu ajoute un sous-menu pour cet élément de menu. Lors
de la sélection de cet élément, un sous-menu menu est ouvert en cascade pour le
menu courant. Un élément de ce sous-menu peut étre par la suite sélectionné.

void glutChangeToMenuEntry (int entry, char *name, int value);

La fonction glutChangeToMenuEntry permet de changer un élément du menu
courant en une entrée du menu. Le parameétre entry indique quel est 1'élément du
menu qui doit étre changé; 1 correspond a I'élément du haut et entry doit étre entre 1
et glutGet(GLUT_MENU_NUM_ITEMS) inclusivement. La chaine de caractéres
name est affichée pour l'entrée du menu modifiée. Si un €élément du menu est
sélectionné par un utilisateur, la valeur value est la valeur transmise a la fonction de
rappel correspondant au menu courant.

void glutChangeToSubMenu (int entry, char *name, int menu);

La fonction glutChangeToSubMenu permet de changer I'élément du menu du menu
courant en un ¢élément déclenchant un sous-menu. Le paramétre entry indique quel
est I'élément du menu qui doit étre changé; 1 correspond a 1'élément du haut et entry
doit étre entre 1 et glutGet(GLUT_MENU _NUM _ITEMS) inclusivement.
L'identificateur menu nomme le menu qui est ouvert en cascade lorsque cet élément
est sélectionné.

void glutRemoveMenultem (int entry);

La fonction glutRemoveMenultem ¢limine un élément du menu. Le parameétre
entry indique quel est 1'¢lément du menu qui doit étre ¢liminé; 1 correspond a
1'élément du haut et entry doit &tre entre 1 et

Initiation a OpenGL — sept 2004 Rémy Bulot

glutGet(GLUT_MENU_NUM_ITEMS) inclusivement. Les éléments du menu en
dessous sont renumérotés.

void glutAttachMenu (int button);
void glutDetachMenu (int button);

Ces fonctions attachent ou détachent respectivement le menu courant a un des
boutons de la souris.

6. Inscription des fonctions de rappel

La bibliothéeque GLUT supporte un certain nombre de fonctions de rappel dont le but
est d’attacher une réponse (une fonction programmeur) a différents types
d’événement. Il y a trois types de fonctions de rappel:

o fenétre : les fonctions de rappel concernant les fenétres indiquent quand
réafficher ou redimensionner la fenétre, quand la visibilité de la fenétre
change et quand une entrée est disponible pour la fenétre;

o menu : une fonction de rappel concernant un menu indique la fonction a
rappeler lorsqu'un élément du menu est sélectionné;

o globale : les fonctions de rappel globales gére le temps et I'utilisation des
menus

Les fonctions de rappel attachées a des événements d'entrée doivent étre traitées pour
les fenétres pour lesquelles 1'événement a été effectué.

void glutDisplayFunc (void (*func) (void));

La fonction glutDisplayFunc établit la fonction de rappel pour la fenétre courante.
Quand GLUT détermine que la fenétre doit étre réafficher, la fonction de rappel
d'affichage est appelée.

GLUT détermine quand la fonction de rappel doit étre déclenchée en se basant sur
I'état d'affichage de la fenétre. L'état d'affichage peut étre modifi¢ explicitement en
faisant appel a la fonction glutPostRedisplay ou lorsque le systéme de fenétrage
rapporte des dommages a la fenétre. Si plusieurs requétes d'affichage en différé ont
¢té enregistrées, elles sont regroupées afin de minimiser le nombre d'appel aux
fonctions de rappel d'affichage.

Chaque fenétre doit avoir une fonction de rappel inscrite. Une erreur fatale se produit
si une tentative d'affichage d'une fenétre est effectuée sans qu'une fonction de rappel
n'ait été inscrite. C'est donc une erreur de faire appel a la fonction glutDisplayFunc
avec le paramétre NULL.

void glutReshapeFunc (void (*func) (int width, int height));

La fonction glutReshapeFunc établit la fonction de rappel de redimensionnement de
la fenétre courante. La fonction de rappel de redimensionnement est déclenchée
lorsque la fenétre est refaconnée. La fonction de rappel est aussi déclenchée
immédiatement avant le premier appel a la fonction de rappel d'affichage apres la

Initiation a OpenGL — sept 2004 Rémy Bulot

création de la fenétre. Les paramétres width et height de la fonction de rappel de
redimensionnement spécifient les dimensions en pixels de la nouvelle fenétre.

Si aucune fonction de rappel de redimensionnement n'est inscrite ou qu'on fait appel
a la fonction glutReshapeFunc avec la valeur NULL, la fonction de rappel de
redimensionnement implicite est appelée. Cette fonction implicite fait simplement
appel a la fonction glViewport(0, 0, width, height) pour le plan normal de la fenétre
courante.

void glutKeyboardFunc (void (*func) (unsigned char key, int x, inty);

La fonction glutKeyboardFunc établit la fonction de rappel du clavier pour la
fenétre courante. Lorsqu'un utilisateur tape au clavier (dans une fenétre), chaque
touche génére un appel a la fonction de rappel du clavier. Le paramétre key est le
code ASCII de la touche. L'état d'une touche modificatrice telle majuscule [Shift] ne
peut étre connu directement; son effet se refléte cependant sur le caractére ASCII.

Les parameétres x et y indiquent les coordonnées relatives de la souris par rapport a la
fenétre en pixels lors du déclenchement de I'événement (frappe d'une touche).

Lors de la création d'une nouvelle fenétre, aucun fonction de rappel du clavier n'est
enregistrée implicitement et les touches du clavier sont ignorées. La valeur NULL
pour la fonction glutKeyboardFunc désactive la génération de fonction de rappel
pour le clavier.

Pendant le traitement d'un événement clavier, on peut faire appel a la fonction
glutGetModifiers pour connaitre 1'état des touches modificatrices (par exemple, la
touche majuscule ou Ctrl ou Alt) lors du déclenchement d'un événement au clavier.
Il faut se référer a la fonction glutSpecialFunc pour le traitement de caractéres non-
ASCII, par exemple les touches de fonction ou les touches fléchées.

void glutMouseFunc (void (*func) (int button, int state, int x, inty);

La fonction glutMouseFunc établit la fonction de rappel de la souris pour la fenétre
courante. Lorsqu'un utilisateur appuie ou relache un des boutons de la souris, chaque
action (appui ou relachement d'un bouton) engendre un appel a la fonction de rappel
de la souris.

Le paramétre button peut prendre les valeurs : GLUT _LEFT BUTTON,
GLUT _MIDDLE BUTTON, ou GLUT _RIGHT _BUTTON.

Le parametre state indique si la fonction de rappel a été rappelée suite a l'appui ou
au relachement d'un bouton de la souris et les valeurs permises sont : GLUT_UP et
GLUT_DOWN.

Les paramétres x et y indiquent les coordonnées relatives de la souris par rapport a la
fenétre en pixels lors du déclenchement de 1'événement.

Si un menu est attaché a un bouton de la souris, aucun rappel de la fonction de la
souris n'est effectué pour ce bouton.

Pendant le traitement d'un événement de la souris, on peut faire appel a la fonction
glutGetModifiers pour connaitre I'état des touches modificatrices (Shift ou Ctrl ou
Alt).

Initiation a OpenGL — sept 2004 Rémy Bulot

La valeur NULL pour la fonction glutMouseFunc désactive la génération de
fonction de rappel pour la souris.

void glutMotionFunc (void (*func) (int x, int y));
void glutPassiveMotionFunc (void (*func) (int x, inty));

Les fonctions glutMotionFunc et glutPassiveMotionFunc établissent les fonctions
de rappel pour la fenétre courante pour un déplacement de la souris. La fonction de
rappel spécifiée par glutMotionFunc est appelée lors du déplacement de la souris
avec un ou plusieurs boutons appuyés. La fonction de rappel spécifiée par
glutPassiveMotionFunc est appelée lors du déplacement de la souris dans la fenétre
avec aucun bouton appuyé.

Les parameétres x et y indiquent les coordonnées relatives de la souris par rapport a la
fenétre en pixels.

La valeur NULL pour les fonctions glutMotionFunc ou glutPassiveMotionFunc
désactive la génération de fonction de rappel lors du déplacement de la souris.

void glutVisibilityFunc (void (*func) (int state));

La fonction glutVisibilityFunc établit la fonction de rappel de visibilité pour la
fenétre courante . Cette fonction de rappel est appelée lorsque la visibilité de la
fenétre change. Le paramétre state peut prendre les valeurs GLUT_VISIBLE ou
GLUT_NOT _VISIBLE selon la visibilité de la fenétre. L'état GLUT_VISIBLE est
valable pour une fenétre partiellement ou totalement visible, i.e. & moins que la
visibilit¢ ne change, aucun rafraichissement de la fenétre n'est effectué.
GLUT_NOT_VISIBLE signifie donc qu'aucun pixel de la fenétre n'est visible.

La valeur NULL pour les fonctions glutVisibilityFunc désactive la fonction de
rappel de visibilité. Si la fonction de rappel de visibilité est désactivée, I'état de la
fenétre devient indéfinie. Tout changement a la visibilité de la fenétre est rapporté.
Donc la réactivation de la fonction de rappel de visibilité garantit qu'un changement
de visibilité est rapporté.

void glutSpecialFunc (void (*func) (int key, int x, int y));

La fonction glutSpecialFunc établit la fonction de rappel du clavier pour les
caracteres non-ASCII pour la fenétre courante. Des caractéres non-ASCII sont
générés du clavier lorsqu'une des touches de fonction (F1 a F12) ou une des touches
de direction est utilisée. Le paramétre key est une constante correspondant a une
touche spéciale (GLUT_KEY_*). Les paramétres x et y indiquent les coordonnées
relatives de la souris par rapport a la fenétre en pixels lors du déclenchement d'un
événement clavier. Pendant le traitement d'un événement du clavier, on peut faire
appel a la fonction glutGetModifiers pour connaitre 1'état des touches modificatrices
(Shift ou Ctrl ou Alt).

La valeur NULL pour la fonction glutSpecialFunc désactive la génération de
fonction de rappel pour le clavier (touches spéciales).

Les valeurs correspondant aux touches spéciales sont les suivantes:

o GLUT_KEY_F1 Touche F1.

Initiation a OpenGL — sept 2004 Rémy Bulot

o GLUT_KEY_F2 Touche F2.
o GLUT_KEY_F3 Touche F3.
o GLUT_KEY_F4 Touche F4.

o GLUT_KEY_LEFT Touche fléchée vers la gauche.

o GLUT_KEY_UP Touche fléchée vers le haut.

o GLUT_KEY_RIGHT Touche fléchée vers la droite.

o GLUT_KEY_DOWN Touche fléchée vers le bas.

o GLUT_KEY_PAGE_UP Touche page précédente (Page up).

o GLUT_KEY_PAGE_DOWN Touche page suivante (Page down).
o GLUT_KEY_HOME Touche Home.

o GLUT_KEY_END Touche End.

o GLUT_KEY_INSERT Touche d'insertion (ins)

Il est a noter que les touches d'échappement [Escape], de recul [Backspace] et
d'é¢limination [delete] générent des caractéres ASCII. Voici quelques valeurs
importantes de caracteres ASCII:

Backspace *

Tabulation °

Return 13

Escape %

Delete 127

void glutMenuStatusFunc (void (*func) (int status, int x, int y));

La fonction glutMenuStatusFunc établit une fonction de rappel pour 1'état du menu
de sorte qu'une application utilisant GLUT puisse déterminer si le menu est en
utilisation ou non. Quand une fonction de rappel d'état du menu est inscrite, un appel
est effectué avec la valeur GLUT_MENU _IN_USE pour le paramétre status quand
les menus déroulants sont utilisés; la valeur GLUT_MENU_NOT _IN_USE pour le
paramétre status est utilisée lorsque les menus ne sont pas en utilisation. Les
parameétres x et y indique la position, en coordonnées de fenétre, lorsque le menu a
¢été déclenché par un bouton de la souris. Le paramétre func représente la fonction de
rappel.

Les autres fonctions de rappel (excepté les fonctions de rappel pour le déplacement
de la souris) continuent a étre actives pendant l'utilisation des menus, de sorte que la
fonction de rappel pour I'é¢tat du menu peut suspendre une animation ou d'autres
taches lorsque le menu est en cours d'utilisation. Une cascade de sous-menus pour un
menu initial déroulant ne génére pas d'appel a la fonction de rappel pour 1'état du
menu. Il y a une seule fonction de rappel pour I'état du menu dans GLUT.

Initiation a OpenGL — sept 2004 Rémy Bulot

La valeur NULL pour la fonction glutMenuStatusFunc désactive la génération de
fonction de rappel pour I'état du menu.

void glutldleFunc (void (*func) (void));

La fonction glutldleFunc établit la fonction de rappel au repos de telle sorte que
GLUT peut effectuer des taches de traitement a l'arriere plan ou effectuer une
animation continue lorsque aucun événement n'est recu. La fonction de rappel n'a
aucun paramétre. Cette fonction est continuellement appelé lorsque aucun événement
n'est recu. La fenétre courante et le menu courant ne sont pas changés avant 1'appel a
la fonction de rappel. Les applications utilisant plusieurs fenétres ou menus doivent
explicitement établir fenétre courante et le menu courant, et ne pas se fier a I'état
courant.

On doit éviter les calculs dans une fonction de rappel pour le repos afin de minimiser
les effets sur le temps de réponse interactif.

void glutTimerFunc (unsigned int msecs, void (*func) (int value), value);

La fonction glutTimerFunc établit une fonction de rappel de minuterie qui est
appelée dans un nombre déterminé de millisecondes. La valeur du paramétre value
de la fonction de rappel est la valeur du paramétre de la fonction glutTimerFunc.
Plusieurs appels de la fonction de rappel a la méme heure ou a des heures différentes
peuvent étre inscrits simultanément.

Le nombre de millisecondes constitue une borne inférieure avant qu'un appel a la
fonction de rappel soit effectué¢. GLUT essaie d'effectuer 1'appel a la fonction de
rappel aussitot que possible apres l'expiration du délai. Il n'y a aucun moyen pour
annuler une inscription d'une fonction de rappel de minuterie. Il faut plutdt ignorer
I'appel en se basant sur la valeur du paramétre value.

7. Quelques variables d’état de GLUT

La bibliothéque GLUT contient un grand nombre de variables d'état dont un certain
nombre (pas tous) peut étre interrogé directement.

int glutGet (GLenum state);
Les principaux états de GLUT sont (il y en a un bon nombre) :

o GLUT_WINDOW_X Position en x en pixels relative a I'origine de la
fenétre courante.

o GLUT_WINDOW._Y Position en y en pixels relative a I'origine de la
fenétre courante.

o GLUT_WINDOW_WIDTH Largeur en pixels de la fenétre
courante.

o GLUT_WINDOW_HEIGHT Hauteur en pixels de la fenétre
courante.

o GLUT_WINDOW_DEPTH_SIZE Nombre total de bits du tampon
de profondeur de la fenétre courante.

Initiation a OpenGL — sept 2004 Rémy Bulot

o GLUT_WINDOW_CURSOR Le curseur courante de la fenétre
courante.

o GLUT_SCREEN_WIDTH Indique la largeur de I'écran en pixels; 0
indique que la largeur est inconnue ou non disponible.

o GLUT_SCREEN_HEIGHT Indique la hauteur de I'écran en pixels;
0 indique que la hauteur est inconnue ou non disponible.

o GLUT_INIT_WINDOW_X Position initiale en x en pixels relative a
l'origine de la fenétre courante.

o GLUT_INIT_WINDOW_Y Position initiale en y en pixels relative a
l'origine de la fenétre courante.

o GLUT_INIT_WINDOW_WIDTH Largeur initiale en pixels de la
fenétre courante.

o GLUT_INIT_WINDOW_HEIGHT Hauteur initiale en pixels de la
fenétre courante.

o GLUT_ELPASED TIME Nombre de millisecondes depuis l'appel a
glutlinit ou depuis le premier appel a
glutGet(GLUT ELAPSED TIME).

La fonction glutGet interroge les variables d'état représenté par des entiers de la
bibliotheque GLUT. Le paramétre state détermine quel état doit étre retourné. Les
variables d'état dont le nom commence par GLUT_WINDOW retournent des
valeurs correspondant a la fenétre courante. Les variables d'état dont le nom
commence par GLUT_MENU retourne des valeurs concernant le menu courant. Les
autres variables correspondent a des états globaux. Si une requéte est incorrecte, la
valeur -1 est retournée.

int glutGetModifiers (void);
Les valeurs retournées par cette fonction sont:

o GLUT_ACTIVE_SHIFT Une des touches modificatrices Shift ou
CapsLock.

o GLUT_ACTIVE_CTRL La touche modificatrice Ctrl.
o GLUT_ACTIVE_ALT La touche modificatrice Alt.

La fonction glutGetModifiers retourne la valeur d'une des touches modificatrices
lorsqu'un événement d'entrée est généré a partir du clavier, d'une touche spéciale ou
de la souris. On ne doit faire appel a cette fonction que lors du traitement d'une
fonction de rappel du clavier, des touches spéciales ou de la souris. Le systéme de
fenétrage peut intercepter certaines touches modificatrices; dans ce cas, aucun appel
a des fonctions de rappel n'est effectué.

8. Rendu des polices de caractéres

Initiation a OpenGL — sept 2004 Rémy Bulot

La bibliothéque GLUT supporte deux types de polices de caracteres: les polices
haute qualité [stroke fonts] pour lesquelles chaque caractere est construit a 1'aide de
segments de lignes et les polices de basse qualité [bitmap fonts] qui sont formées
d'un ensemble de pixels et affichées avec la fonction glbitmap. Les polices haute
qualité ont I'avantage de pouvoir étre mises a 1'échelle. Les polices basse qualité sont
moins flexibles mais habituellement plus rapide a afficher.

void glutBitmapCharacter (void *font, int character);

Sans aucune liste d'affichage, la fonction glutBitmapCharacter affiche le caractére
character selon la police de caractéres font. Les polices de caractéres disponibles
sont:

GLUT BITMAP 8 BY 13, GLUT BITMAP 9 BY 15,
GLUT BITMAP TIMES ROMAN 10, GLUT BITMAP TIMES ROMAN 24,
GLUT BITMAP HELVETICA 10, GLUT BITMAP HELVETICA 12,
GLUT BITMAP HELVETICA 18

Pour une chaine de caractéres, on utilise la fonction glutBitmapCharacter dans une
boucle pour la longueur de la chaine. Pour se positionner pour le premier caractére
de la chaine, on utilise la fonction glRasterPos2f.

int glutBitmapWidth (GLUTbitmapFont font, int character);

La fonction glutBitmapWidth retourne en pixels, la largeur d'un caractére dans une
police de caractéres supportée. Pendant que la largeur d'une police de caractéres peut
varier (la largeur d'une police fixe ne varie pas), la taille maximum d'une police est
toujours fixe.

void glutStrokeCharacter (void * font, int character);

En n'utilisant aucune liste d'affichage, le caractére character est affiché selon la
police de caractéres font. Les polices de caractéres sont:
GLUT_STROKE_ROMAN et GLUT_STROKE_MONO_ ROMAN (pour les
caracteres ASCII de 32 a 127).

La fonction glTranslatef est utilisée pour positionner le premier caractére d'une
chaine de texte.

void glutStrokeWidth (GLUTstrokeFont font, int character);

La fonction glutStrokeWidth retourne en pixels, la largeur d'un caractére dans une
police de caractéres supportée. Pendant que la largeur d'une police de caractéres peut
varier (la largeur d'une police fixe ne varie pas), la taille maximum d'une police est
toujours fixe.

Initiation a OpenGL — sept 2004 Rémy Bulot

9. Rendu d'objets géométriques

Bien que cela ne soit pas le réle principal de GLUT, il existe quelques fonctions permettant de
construire des objets géométriques 3D de base.

void glutSolidSphere (GLdouble radius, GLint slices, GLint stacks);
void glutWireSphere (GLdouble radius, GLint slices, GLint stacks);

Affichent une sphére centrée a 'origine de rayon radius. La sphere est subdivisée en
tranches et en pile autour et le long de I'axe des z.

void glutSolidCube (GLdouble size);
void glutWireCube (GLdouble size);

Affichent un cube plein ou en fil de fer centré a l'origine. La largeur du coté est
donnée par Size.

void glutSolidCone (GLdouble base, GLdouble height, GLint slices, GLint stacks);
void glutWireCone (GLdouble base, GLdouble height, GLint slices, GLint stacks);

Affichent un cone plein ou en fil de fer. La base est a z=0 et le sommet du cone est a
z=height. Le cone est subdivisé en tranches autour de 1'axe des z et en pile le long
de l'axe des z.

void glutSolidTorus (GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint
rings);

void glutWireTorus (GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint
rings);

Affichent un tore plein ou en fil de fer. Le rayon intérieur innerRadius est utilisé
pour calculer une section de cercle qui tourne autour du rayon extérieur
outerRadius. Le tore est composé de rings anneaux subdivisées en nsides cotés.

void glutSolidDodecahedron (void);
void glutWireDodecahedron (void);

Affichent un dodécaedre (12 c6tés réguliers) plein ou en fil de fer centré a 1'origine
de rayon 3 en coordonnées de modélisation.

void glutSolidOctahedron (void);
void glutWireOctahedron (void);

Affichent un octaédre plein ou en fil de fer centré a 1'origine de rayon 1 en
coordonnées de modélisation.

void glutSolidTetrahedron (void);
void glutWireTetrahedron (void);

Affichent un tétraédre plein ou en file de fer centré a 1'origine de rayon 3 en
coordonnées de modélisation.

Initiation a OpenGL — sept 2004 Rémy Bulot

void glutSolidIcosahedron (void);
void glutWirelcosahedron (void);

Affichent un icosaedre plein ou en file de fer centré a l'origine de rayon 1.0 en
coordonnées de modélisation.

void glutSolidTeapot (void);
void glutWireTeapot (void);

Les fonctions glutSolidTeapot et glutWireTeapot affichent une théiére pleine ou
en fil de fer.

Initiation a OpenGL — sept 2004 Rémy Bulot

III. Les primitives graphiques

Toute primitive surfacique 3D est décomposée en triangles par OpenGL.

Le triangle, la ligne et le point sont donc les seules primitives géométriques traitées par le hardware,
ce qui permet de ramener toutes les interpolations au cas linéaire (facile a traiter de facon
incrémentale au niveau hardware).

Bien que cela ne rentre pas dans la catégorie des primitives, nous allons tout d’abord présenter
comment définir la couleur (voir annexe) qui sera employée pour le tracé (on choisit en quelque
sorte son crayon avant de dessiner) . Cette couleur est mémorisée au moyen d’une variable d’état
que I’on peut modifier a tout moment. Les primitives qui seront tracées par la suite recevront cette
couleur jusqu’a la prochaine modification de cette variable.

1. La couleur

Une couleur est généralement caractérisée par 3 valeurs réelles (dans 1’ordre : le rouge, le vert et le
bleu) ou chaque composante doit varier dans (0.0, 1.0]. Cette représentation flottante est
privilégiée au niveau hardware, notamment pour les calculs de rendu.

Une quatrieme valeur, dite composante alpha, peut étre spécifiée. 1l s’agit d’un coefficient
d’opacité qui vaut 1 par défaut. Une valeur plus faible permettra de définir une certaine
transparence pour une face et de « voir » les objets qui se trouvent derriére. La gestion de ce
coefficient pose un certain nombre de problémes que nous préférons ne pas aborder pour une
initiation 8 OpenGL. La composante alpha sera forcée a 1 lorsqu’une fonction OpenGL la réclame.

2. La couleur du fond

Un dessin commence sur une feuille dont il faut définir la couleur (le fond). Cette opération pourrait
consister a tracer un rectangle de cette couleur, mais :

- ce fond n’est pas simple a définir dans le cas d’une scéne 3D projetée dans la fenétre,

- il est plus efficace d’utiliser une commande spéciale (cablée),
Il est a noter que colorier le fond consiste aussi a effacer ce qu’il y avait dans la fenétre de
visualisation en passant une nouvelle couche de « peinture ».

glClearColor (0.0, 0.0, 0.0, 1.0) ; /* définit la couleur d’effacement, ici noire
*/

La couleur du fond est affectée a une variable d’état et sera utilisée pour chaque appel de

glClear (GL_COLOR BUFFER BIT) ; /* effacement du contenu de la fenétre */

GL_COLOR BUFFER BIT est une constante GL qui désigne les pixels de la fenétre d’affichage.

Remarque : on spécifie la composante alpha qui vaut généralement 1.0 (fond opaque !).

3. La couleur des primitives

glColor3f (rouge, vert, bleu) permet de spécifier la couleur pour toutes les primitives
graphiques qui vont suivre. Il est possible de rajouter un quatriéme parametre pour caractériser
I’opacité (paramétre alpha) mais sa gestion n’est pas simple sous OpenGL et nous préférerons
I’ignorer ici.

Quelques exemples de couleurs :

Initiation a OpenGL — sept 2004 Rémy Bulot

glColor3f (0., 0., 0.) ; /* noir */
glColor3f(l., 1., 1.) ; /* blanc */
glColor3f (0.5, 0.5, 0.5) ; /* gris moyen */
glColor3f (1., 0., 0.) ; /* rouge */

On peut aussi utiliser la notation vectorielle :
GLfloat rouge[3] = {1., 0., 0.};
GLfloat jaune[3] = {1., 1., 0.};
glColor3fv (rouge) ;

On conseille de séparer, quand on le peut, I’affectation d’une couleur de la construction
géométrique d’un objet. On favorise ainsi la conception modulaire. Cela permet par exemple de
construire plusieurs « clones » de couleurs différentes :

glColor3fv (rouge) ;

dessineBicyclette (position, direction);
glColor3fv (jaune) ;

dessineBicyclette (autrePosition, autreDirection);

Une couleur peut étre employée « brutalement » sans faire référence a aucun modele de lissage ou

d’éclairage. On spécifie simplement une fois avant le tracé :
glShadeModel (GL_FLAT)

OpenGL propose aussi des rendus plus « sophistiqués » avec I’option glshadeModel (GL_SMOOTH)
qui permet d’obtenir des dégradés de couleur ou de prendre en compte l'orientation des faces par
rapport aux éclairages (cette partie sera développée dans la partie VI. Amélioration du rendu de ce
cours).

4. Primitives graphiques

Les fonctions glBegin(..) et glEnd () délimitent la suite de sommets associés au tracé.
Cette suite de sommets pourra aussi bien définir des lignes brisées (contours) que des polygones
(éléments surfaciques). Un polygone doit étre obligatoirement plan.

Un sommet est défini par la fonction glvertex* (..)

Par exemple, on dessine un triangle « plein » de la fagon suivante:
glColor3f(l., 0., 0.) ; /* crayon rouge */
glBegin (GL TRIANGLES) ;

/* un triangle */
glVertex3f (x1,yl,zl);
glVertex3f (x2,y2,22)
glVertex3f (x3,vy3,23);
/* un autre triangle */
glVertex3f (x4,v4,z4);
glVertex3f (x5,y5,25);
glVertex3f (x6,y6,26);
/* etc. */

glEnd () ;

’

Lfam;nnentdengegin spécifie le type de primitive (OpenGL en propose 10),
notamment des plus complexes (qui seront décomposées en triangles...) :

- des quadrilatéres (convexes et plans) avec GL_ QUADS,

- des polygones (convexes et plans) avec GL_ POLYGON.

Initiation a OpenGL — sept 2004 Rémy Bulot

On peut également ne tracer que les sommets :
glBegin (GL_POINTS) ;
glVertex2i (x1,vy1l);
glVertex2i (x2,v2);
glVertex2i (x3,vy3);
glVertex2i (x4,v4)
glEnd() ;

’

On notera au passage que glvertex est polymorphe :

* on peut fournir 2 a 4 composantes (on peut se passer de la 3i¢éme coordonnée si I'on fait des tracés
2D, le 4iéme parameétre correspond a la coordonnée homogene...);

* on peut utiliser des GLf1loat, des GLdouble, des GLshort, des GLint pour les coordonnées
(suffixe £,d,s ou i);

* on peut citer explicitement les coordonnées, ou passer par un vecteur (sur-suffixe v).

GLfloat P1[3] = {0, 0, 0} ;

GLfloat P2[3] = {4, 0, 0} ;

GLfloat P3[3] = {0, 2, 0} ;
) 4

glBegin (GL_LINE LOOP) ;
glVertex3fv (P1l);
glVertex3fv (P2) ;
glVertex3fv (P3);
glEnd() ;

Valeurs du paramétre de g1Begin :

glBegin (GL primitive);

glVertex3fv (P1l); P3 P4
glVertex3fv (P2); . ®
glVertex3fv (P3); P e
glVertex3fv (P4) ; ° P>
glVertex3fv (P5) ; o o
glVertex3fv (P6); Pl P6
glEnd () ;
GL_POINTS
P6 P5
P6 PS5 P6 PS5
P1 \ /P4 Pl P4 P1 P4
P2 P3 Py P3 Py P3

GL_LINES GL_LINE_STRIP GL_LINE_LOOP

Initiation a OpenGL — sept 2004 Rémy Bulot

P3 P6 P3 Ps Ps P4
Pl q D ps Pl p6 P6 P3
P P4 P P4 Pl P2
GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

P3 P8 P7

P3 P5 P7 P6 P35
P4 P1
P1 P4
P5 P6 P2 P3
Pl P P6 P2 P4 P8
GL_QUADS GL_QUAD_STRIP GL_POLYGON

Remarques sur I’optimisation du code GL :
- GL_TRIANGLES est plus rapide que GL POLYGON
- Il est plus efficace de regrouper le maximum de primitives entre g1Begin () €t glEnd ().
- Lanotation vectorielle (suffixe v) est généralement plus rapide.

5. Faces avant et arriere

L’orientation d’un polygone est définie par 1’ordre dans lequel on parcourt ses sommets lorsqu’on le
dessine : traditionnellement, on définit sa face avant vers nous lorsque 1’on parcourt ses sommets
dans le sens trigonométrique. C’est cette régle qui est aussi appliquée par OpenGL pour définir
I’avant et I’arri¢re d’une face.

OpenGL permet de traiter différemment les faces avant et arriére d’un polygone, soit par un rendu
différent pour mieux les distinguer, soit pour optimiser les calculs en « oubliant » de dessiner un
coté¢ d’'une f ace (par exemple la face intérieure du coté d’un cube). Cette distinction s’opére a
I’aide de :

GL_FRONT, GL_BACK, GL_FRONT AND BACK.

On peut obtenir des polygones pleins, ou seulement leurs contours :
glPolygonMode (GL_FRONT, GL FILL); /* faces */
glPolygonMode (GL_BACK, GL LINE); /* contours */

Ou encore, supprimer une des deux faces (gain de temps !) :
glCullFace (GL_BACK) ;
glEnable (GL_CULL FACE) ;

Dans le cas d’une scéne éclairée, il faudra préciser:
glLightModeli (GL_LIGHT MODEL_TWO_SIDE,GL_TRUE) ;

si I’on veut éclairer les deux cotés d’une face.

Initiation a OpenGL — sept 2004 Rémy Bulot

IV Construction d’une scene 3D

11 s’agit de définir ici les différents objets qui composent une scene, et de les positionner dans
I’espace a 1’aide de transformations géométriques 3D.

Sous GLUT, la scéne est construite dans la fonction déclarée par glutbisplayFunc avant de lancer
la boucle d’événement (glutMainLoop). On rappelle que cette fonction d’affichage est déclenchée
par le systéme :

- soit parce que la fenétre a été modifiée (redimensionnement),

- soit parce que le programmeur I’a demand¢ par I’intermédiaire de la fonction
glutPostRedisplay ()

OpenGL appliquera automatiquement la matrice de projection aux objets que 1’on a construit pour
obtenir une image 2D qui sera affichée dans la fenétre.

1. Transformations géométriques de bases
La construction d’un objet et son positionnement dans la scéne vont se faire a partir de trois
transformations géométriques de bases :

* la translation,

* larotation (en degré) autour d’un axe porté par un vecteur,
* [’homothétie suivant les trois axes X, Y et Z.

Ces transformations sont représentées par des matrices de dimension 4 dans 1’espace projectif.
Appliquer une de ces transformations consiste a opérer sa matrice sur les coordonnées des différents
sommets de I’objet considéré.
2. Préliminaire : les Espaces Projectifs
a. Rappel sur les transformations 2D

a) Translation 2D
Soit un vecteur T(dx, dy) et un point P(x, y), alors le translaté P’(x’, y’) de P par T est donné par :

PP=P+T
b) Homothétie 2D

elle se fait par rapport a 1’origine.
Ix" | lh O] [x|
[= [
ly" | 10 kI Iyl

I’homothétie est dite uniforme si h.x = k.y et différentielle sinon

¢) Rotation 2D

Initiation a OpenGL — sept 2004 Rémy Bulot

Une rotation d’angle 0 autour de I’origine est définie par :
x| lcos 0 -sin O] | x|
I = [
[y’ | |sin O cos 0] [y

b. Coordonnées homogénes en 2D

Si I’enchainement d’homothétie et de rotation s’exprime sous la forme d’un produit matriciel, la
translation est une opération de nature différente. Celle-ci peut toutefois étre aussi définie comme
un produit matriciel si les objets sont exprimés en coordonnées homogeénes.

Les coordonnées homogenes d’un point sont obtenues en ajoutant une coordonnée supplémentaire
égale a 1. On considére que tout point (X, y, w) dans I’espace projectif est un représentant du point
(x/w, y/w) dans 1’image initiale.

On remarquera que :

- un point image est associé a une droite dans I’espace projectif,

- les points pour lesquels w=0 sont des points a I’infini,

- I’enchainement des trois transformations précédentes s’expriment sous la forme d’un produit
matriciel.

~

X 1 dx X x’ hx 0 O X
y' =10 1 dy|.|y y'|=10 hy O %
1 0O 0 1 1 1 0O 0 1 1

x’ cosB -sinB O X

vy’ |=|sinB cosO 0 |. |y

1 0 0 1 1

c. Composition de transformations 2D
Rappel : le produit matriciel est associatif mais non commutatif.

Etudions la rotation autour d’un point C (cx, cy). Cette opération se décompose en trois
transformations élémentaires :

- une translation de C vers O

- larotation de 6 autour de O

- une translation de O vers C

et qui se traduit par une formule de la forme : P’ = T(cx,cy) . R(0) . T(-cx,-cy) . P

Initiation a OpenGL — sept 2004 Rémy Bulot

Cette opération étant effectuée sur tout les points P de ’image, on peut précalculer la composition
des transformations :

1 0 cx cosB -sinB O 1 0 -cx
0 1 cy sinB® cosO O 0 1 -cy
0 0 1 0 0 1 0 0 1
1 0 cx cosO -sinB -cosB.cx+sinb.cy
0 1 cy sin® cosB -sinB.cx-cosO.cy
0O 0 1 0 0 1
cos® -sinB (l-cosB) .cx+sinB.cy
sinB® cosB -sinB.cx+(1l-cosB) .cy
0 0 1

On démontre que la combinaison de ces trois transformations géométriques de base donne toujours
une matrice de la forme :

a b c
d e f
0O 0 1

d. Extension au 3D

Nous nous plagons dans un repére orthonormé direct ou les rotations positives s’effectue dans le
« sens inverse des aiguilles d’une montre », a savoir :

Axes de rotation Direction d’une rotation positive
X yaz
y zax
z Xay

L’utilisation de coordonnées homogenes est naturellement applicable au 3D et les transformation
géométrique de bases sont représentées par des matrices 4x4.

Un point image (X, y, z) est représenté par (X.w, y.w, z.w, W), (X, y, z, 1) étant les coordonnées
homogenes.

Les matrices associées aux translations et aux homothéties sont respectivement de la forme :

1 0 0 dx hx 0 0 O
0O 1 0 dy 0O hy 0 O
10 1 dz 00 hz 0
O 0 0 1 O 0 0 1

Initiation a OpenGL — sept 2004 Rémy Bulot

Les rotations se décomposent facilement suivant les axes du repére.
Les rotations autour de Oz, Ox, et Oy sont respectivement de la forme :

cosB -sinB

0 0 1 0 0 0 cosB O sinB O

sin® cos6 0 0 0 cosBO -sinB 0 0 1 0 0
0 0 1 0 0 sinB cosB 0 -sinB O cosB O
0 0 0 1 0 0 0 1 0 0 0 1

3. Transformations géométriques sous OpenGL

OpenGL dispose d’une matrice de transformation courante pour la modélisation, matrice qui est
rendue active par la fonction :
glMatrixMode (GL_MODELVIEW)

Cette matrice de modélisation est appliquée automatiquement a tous les objets qui vont étre tracés.

Le positionnement d’un objet dans une scéne est décomposé comme une succession de
transformations de base qu’OpenGL traduit par un produit matriciel (cf les espaces projectifs). La
matrice de transformation courante est construite :

« apartir de la matrice identité,

* et par produits successifs avec des matrices d’opérations de base.

La matrice de modélisation est initialisée avec 1’identité en appelant la fonction :
glLoadIdentity ()

Il est possible de gérer soit méme les opérations de base mais OpenGL propose des fonctions

simples ou le produit matriciel avec la matrice de transformation courante est implicite :
glTranslatef (GLfloat x, GLfloat y, GLfloat z) ;
glRotatef (GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
glScalef (GLfloat x, GLfloat y, GLfloat z) ;

Les appels successifs de ces fonctions composent donc une seule transformation.

Remarque : il faut lire les opérations effectuées sur 1’objet dans 1’ordre inverse de leur apparition
dans le code.

’

Initiation a OpenGL — sept 2004 Rémy Bulot

/* matrice de transformation A */ /* matrice de transformation B */
glLoadIdentity () ; /* 1 */ glLoadIdentity () ; /* 1 */
glTranslatef (0, 5, 0); /* 2 */ glRotatef (45, 1, 0, 0); /* 2 */
glRotatef (45, 1, 0, 0); /* 3 */ glTranslatef (0, 5, 0); /* 3 */
/* objet qui subira la transformation*/ /* objet qui subira la transformation*/
dessineBoite () ; dessineBoite () ;
1000 1000
o 100 o 100
010 010
0 O 01 0 O 01
| |
Evolution de la matrice de modélisation (A) Evolution de la matrice de modélisation (B)
VA Z
=0~ B
T
X X

4. Gestion des transformations

OpenGL dispose en fait d’une pile de matrices de modélisation qui va faciliter la description
hiérarchique d’un objet complexe. La matrice courante (la seule active) est celle se trouvant au
sommet de pile, mais les jeux d’empilage et dépilage permettront d’appliquer la méme
transformation a plusieurs assemblages ayant eux mémes nécessité des transformations spécifiques
pour leur construction.

glLoadIdentity() : mettre 1’identité au sommet de pile
glPushMatrix () : empiler
glPopMatrix () : dépiler

Si ’opération de dépilage ne présente pas de difficulté particuliére (on retrouve la transformation
précédente), I’opération d’empilage réclame quelques précisions : il s’agit en fait d’une duplication
de la matrice se trouvant au sommet de pile. Toutes les opérations qui seront effectuées par la suite
seront combinées a la transformation initiale (dupliquée dans le sommet de pile) de sorte que le
sous-objet que I’on est en train de construire « hérite » de la transformation appliquée globalement a
I’objet.

Bien s, il est toujours possible de faire suivre un glPushMatrix () par glLoadIdentity () pour

oublier temporairement une matrice de modélisation.

Par exemple, pour dessiner une voiture, on définira ce qu’est la construction d’une roue dans le
repere absolu, et on se positionnera successivement aux quatre coins de la voiture (repére voiture)
avant d’appeler cette procédure. Si la voiture a été positionnée a un endroit spécifique de la scéne,
ses roues subiront aussi la transformation.

Initiation a OpenGL — sept 2004 Rémy Bulot

void dessineRoueEtBoulons ()
{ int 1 ;

dessineRoue () ;

for (i=0; 1i<3; i++)

{ glPushMatrix() ;
glRotatef (120*i, 0, 0, 1) ;
glTranslatef (2, 0, 0) ;
dessineBoulon () ;

glPopMatrix () ;

}

}

void dessineVoiture ()
{ int i, posx[4]={20, 20, -20, -20}, posz[4]={8, -8, 8, -8};
dessineCarrosserie() ;
for (i=0; i<4; i++)
{ glPushMatrix() ;
glTranslatef (posx[i], 5, posz[i]) ;
dessineRoueEtBoulons () ;
glPopMatrix () ;

V : matrice positionnant la voiture dans la scéne (repére « scéne »)
Ag : matrice définissant 1’avant gauche de la voiture dans le repére « voiture »
Ad : matrice définissant I’avant droit de la voiture dans le repére « voiture »

/ Construction d’une roue
V v

glPushMatrix avant gauche
>
ﬂ ’ Construction d’une roue
Vv \Y
glPopMatrix glPushMatrix avant droit
>

Evolution de la pile de modélisation dans la construction hiérarchique d 'une voiture

Remarques :
a. Lapile est initialisée par OpenGL avec la matrice identité.
b. Il est intéressant de conserver la matrice identité en bas de pile pour éviter de
rappeler systématiquement glLoadIdentity() (=> une construction débute
toujours par un push)

Initiation a OpenGL — sept 2004 Rémy Bulot

5. Listes d’affichage

Il est possible de stocker une suite de routines OpenGL (a 1’exception de quelques fonctions...) dans
une liste qui pourra étre réutilisée plusieurs fois. Il y a alors une précompilation des instructions GL
et cette opération sera particuliérement rentable lorsqu’un objet « définitif » est dessiné plusieurs
fois, soit parce qu’il constitue une primitive employée a plusieurs reprises (roue d’une voiture), soit
parce qu’il se déplace dans la scéne (animation).

f.

g.

une liste est identifiée par un numéro (GLint) strictement positif,

la création et la suppression des listes est gérée par OpenGL
glGenLists (nbIndex) attribue nbIndex numéros de listes consécutifs, le premier
numéro est retourné par cette fonction (0 si échec d’allocation),

glDeleteLists (numListe, nbre) restitue au systéme le nbre de listes indiqué a
partir de numListe.

glNewList (numListe, mode) €t glEndList () permettent de créer une liste,
glcalllist (numListe) exécute une liste d’affichage,

Par exemple, pour dessiner un tricycle, on pourra stocker la construction d’une roue dans une liste
et appeler 3 fois cette liste apres avoir définie les spécificités de chaque roue (position, taille).

int listeRoue ;

listeRoue = glGenLists(l);

glNewList (listeRoue, GL COMPILE) ; // ou encore GL COMPILE AND EXECUTE
suite d’instructions pour dessiner une roue de tricycle
glEndList () ;

void dessinerTricycle ()

{

transformations pour positionner la roue arriére gauche

glCalllist (listeRoue) ;

transformations pour positionner la roue arriere droite

glCalllist (listeRoue) ;

transformations pour positionner la roue avant

glScalef (1.2, 1.2, 1.) ; // roue avant 20% plus grande mais méme largeur
glCalllist (listeRoue) ;

Remarque : Une liste peut-Etre construite avant de déclencher la boucle d’événements dans le
main () (glutMainLoop ()). Il faut toutefois que le processus graphique soit déja initialisé (i.e.
aprés glutInit () et glutInitDisplayMode ()) et que I’on choisisse I’option GL_ COMPILE .

Initiation a OpenGL — sept 2004 Rémy Bulot

V. Visualisation d’une scéne
1. Cadrage

Il ne faut pas confondre la fenétre d’affichage (définie par le systeme de fenétrage qui est
indépendant d’OpenGL) et le cadre (partie de fenétre) dans lequel on veut visualiser la scéne. De
méme que 1’on colle une photo sur un poster, on va positionner I’image de la scéne dans la fenétre
en la déformant éventuellement pour la faire rentrer dans un cadre (il faut conserver le ratio
largeur/hauteur pour obtenir une image non « déformée »). C’est le role de la fonction g1viewport .

glViewport (GLint x0, GLint y0, GLint largeur, GLint hauteur)
x0 et y0 précisent le coin inférieur gauche du cadre
largeur et hauteur précisent ses dimensions en pixels

20X
Ma fenétre

hauteur

yof|--====------
largeur

GLUT envoie un événement pour dire que la fenétre courante a été créée, déplacée
ou redimensionnée. Cet événement est intercepté par la fonction désignée dans le
main par glutReshapeFunc (monCadrage dans notre exemple) et 1’affichage de la
scéne est automatiquement relancée. Le programmeur pourra, a cette occasion,
décider d’adapter ou non la projection de la scene aux dimensions de la fenétre.
Exemple

void monCadrage (int large, int haut)
/* les arguments sont fournis par GLUT : nouvelle taille de la fenétre */
{ /* taille du cadre d’affichage dans la fenetre */
glvViewport (0, 0, large, haut) ;
/* On peut a cette occasion redéfinir la projection de la scene */
glMatrixMode (GL PROJECTION) ;
glLoadIdentity () ;
gluPerspective (90., (float)large/ (float)haut, 5, 20) ;
glMatrixMode (GL_MODELVIEW) ;
/* la fonction afficheMaScene () va etre automatiquement
declenchee par le systeme */

Initiation a OpenGL — sept 2004 Rémy Bulot

2. Le mode projection

Lorsqu’une scéne est construite, sa visualisation nécessite deux types de transformation :
- des transformations dans I’espace 3D qui permettent de positionner le point de vue et les
éventuels éclairages si I’on veut obtenir un rendu réaliste,
- la transformation qui consiste a projeter cette scéne 3D sur une fenétre 2D et qui caractérise
les propriétés de la prise de vue.

Pour le premier type de transformation, on utilise encore la matrice de modélisation
(cL_MoDELVIEW) : les lumiéres et le point de vue sont positionnés comme les autres acteurs de la
scene.

Pour la projection 2D, openGL dispose d’une autre matrice spécifique : la matrice de projection .

Une seule de ces deux matrices est active & un moment donné et 1’on bascule de I’une a I’autre

avee |
glMatrixMode (GL_PROJECTION)

ou bien
glMatrixMode (GL_MODELVIEW)

Dans la pratique, on pourra définir la projection soit :
- dans la fonction de cadrage (cf la fonction cadrage ci-dessus),
- dans la fonction d’affichage déclarée par glutDisplayFunc (afficheMaScene).

Dans ce deuxiéme cas, la fonction afficheMaScene a la structure suivante :

void afficheMaScene (void)
{ glMatrixMode (GL PROJECTION) ;
definir la projection
glMatriXMode(GLiMODELVIEW) ;
glClear (GL_COLOR BUFFER BIT); /* définit le fond de la scéne */
construire la scene
glutSwapBuffers(); /* ou glFlush() */

int main (int argc, char **argv)

{

glutReshapeFunc (monCadrage) ;
glutDisplayFunc (afficheMaScene) ;

glutMainLoop ();
return 0;

Remarque : dans les exemples de ce document, le cadrage et la projection sont definis dans la méme
fonction monCadrage (int 1, int h)

3. Caractéristiques de I’appareil photo

OpenGL propose deux types de projection : la projection en perspective et la projection paralléle.

Initiation a OpenGL — sept 2004 Rémy Bulot

\ \ |
Fenétre
de vue
plan de |
projection N.
centre de Mde
projection projection

Pour un volume visionné en perspective conique :
gluPerspective (GLdouble focale, GLdouble aspect, GLdouble devant, GLdouble fond)

focale : angle du champ de vision (dans [0°, 180°])
aspect : rapport largeur/hauteur du plan de devant
devant, fond : distances (valeurs positives) du point de vue aux plans de clipping.

N\ \

argeu
fond hauteur

devant
focale
centre de

projection

Pour un volume visionné en perspective cavaliére (projection parallele) :
glOrtho (GLdouble gauche, GLdouble droite, GLdouble bas, GLdouble haut,
GLdouble devant, GLdouble fond)

définit la « boite » de visualisation ou (gauche, bas, devant) sont les coordonnées du point
avant-inférieur-gauche et (droite, haut, fond) sontles coordonnées du point arri¢re-
supérieur-droit.

Remarques :

- Bien que cela soit possible, on ne compose généralement pas les projections.

- Il est important de minimiser au mieux la distance entre le plan de clipping avant et le plan de
clipping arriere. En effet, OpenGL dispose d’une précision limitée pour représenter I’intervalle
des profondeurs et une mauvaise gestion peut positionner des sommets artificiellement dans le
méme plan par effet d’arrondi, au risque de créer des artefacts de rendu. Ce phénomeéne peut se
manifester occasionnellement lorsque 1’on fait tourner un objet.

Initiation a OpenGL — sept 2004 Rémy Bulot

4. Positionnement de I’appareil photo

Le point de vue se situe par défaut a I’origine en regardant vers 1’axe des z négatifs. Pour visualiser
une scene, on peut

- soit la reculer pour la mettre dans le champ de vision,

- soit déplacer le point de vue avec gluLookAt

Bien que le positionnement du point de vue soit déterminant pour effectuer la projection, on
comprend pourquoi celui-ci doit étre défini en mode GL_MODELVIEW : c’est un déplacement relatif
de la scene.

gluLookAt (GLdouble Px, GLdouble Py, GLdouble Pz, // position de 1’appareil
GLdouble Cx, GLdouble Cy, GLdouble Cz, // point visé dans la scéne
GLdouble Hx, GLdouble Hy, GLdouble Hz) // haut de 1’appareil
Cas

On peut maintenant donner un schéma un peu plus précis de la fonction d’affichage :

void afficheMaScene (void)

{ /* on recule de 5 dans la scéne */
glClear (GL_COLOR _BUFFER BIT);
glLoadIdentity () ;
gluLookat (0,0,5, 0,0,0, 0,1,0) ;
construire la scene
glutSwapBuffers(); /* ou glFlush() */

5. Z-buffer

Lorsque deux objets sont positionnés dans une scéne, il est possible que I'un des deux soit
partiellement ou totalement caché par I’autre en fonction de la position de 1I’observateur. Or, en
pratique, le dernier dessiné écrase une partie du premier, et ceci indépendamment du point de vue
qui peut changer.

L’algorithme du peintre est une solution qui n’est plus guere utilisée. Il consiste a trier les objets
suivant 1’ordre décroissant de leur distance au point de vue et a les dessiner dans cet ordre. Les
objets en premier plan seront dessinés en dernier et « écraseront » les parties cachées des objets en
arriére plan.

(/\ O
\J

Découpage d’objets pour disposer d’'une relation d’ordre totale.

Initiation a OpenGL — sept 2004 Rémy Bulot

Bien qu’un peu plus coliteux en espace mémoire, on préfére maintenant utiliser un tampon de
profondeur (distance au point de vue) qui permet de s’affranchir de I’ordre de construction des
objets : le Z-buffer. Le Z-buffer a la taille de la fenétre de projection et est initialis¢ avec la plus
grande profondeur possible (généralement le plan de clipping arriére). Lorsqu’un objet est dessingé,
les pixels qui lui correspondent dans le plan de projection ont une valeur de profondeur qui est
comparée a celle stockée dans le Z-buffer. Si un pixel est plus éloigné, il est abandonné. Sinon, le
Z-buffer regoit sa profondeur et la fenétre recoit ses valeurs chromatiques.

Mise en ceuvre :

On déclare 1’utilisation du Z-buffer a ’initialisation avant de rentrer dans la boucle d’événements

avec la constante GLUT_DEPTH :
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH) ;

On active ou désactive le mode Z-buffer avec :
glEnable (GL_DEPTH_TEST) ;
glDisable (GL_DEPTH_TEST) ;

Ces deux opérations peuvent se faire a tout moment et permettent par exemple de rajouter des tracés
« par dessus » la représentation d’une scéne.

De méme que 1’on (re)définit la couleur du fond avec giclearcolor (r, v, b, a),on (re)définit

au moins une fois la distance maximum de représentation d’un pixel :
glClearDepth(10.0) ; /* distance max visible au point de vue */

On définit ainsi la position d’un plan arriére de clipping li¢ au point de vue (ce qui est derriére sera
occulté par ce plan).

Enfin, le dessin d’une scéne sera toujours débuté par une réinitialisation du Z-buffer a la profondeur

maximum ;
glClear (GL_DEPTH BUFFER BIT);

Cette opération est généralement associée a I’effacement de la fenétre avec la couleur du fond :
glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

Notre fonction d’affichage aura donc la forme suivante :

void afficheMaScene (void)

{
glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
/* on s’écarte de 5 dans la scéne */
glLoadIdentity () ;
gluLookat (0,0,5, 0,0,0, 0,1,0) ;
construire la scene
glutSwapBuffers(); /* ou glFlush() */

6. La face cachée d’OpenGL

6.1 Ordre des opérations de construction d’une scéne

Nous avons décrit I’ensemble des opérations qui permettent d’afficher une scéne 3D en suivant un
enchainement « naturel » de la construction : construction des objets, positionnement dans la scéne
3D, calcul des éclairages et des parties visibles, projection a 1I’écran.

Initiation a OpenGL — sept 2004 Rémy Bulot

Cette présentation pourrait laisser penser que la scéne 3D est mémorisée quelque part et que I’on
pourrait intervenir localement dessus avant d’effectuer une nouvelle projection. Il n’en est rien ! et
il aurait fallu pour cela une capacité mémoire phénoménale.

On remarquera que le contexte de visualisation d’une primitive doit toujours étre défini au
préalable. Dans la pratique, chaque fois qu’une instruction de tracé d’un point, segment ou triangle
est exécutée, son rendu et sa projection sont immédiatement déclenchés pour mettre a jour la
mémoire écran (seule information conservée !) .

Une petite modification dans une scéne implique donc un nouveau tracé complet de cette dernicre.
On pourra toutefois optimiser les calculs en découpant cette scéne en plusieurs plans de profondeur
que I’on mémorise. Par exemple, dans le cas d’une animation de personnage, on calcule et
mémorise 1’arriere-plan supposé ne pas évoluer ; la visualisation de la scéne consiste alors a afficher
I’arriére-plan (image 2D) et a superposer le personnage dans sa nouvelle position.

6.2 Détail du tracé d’une facette

On peut s’intéresser un peu plus au fonctionnement de la « boite noire » et étudier I’enchainement
des algorithmes implicitement mis en oeuvre par OpenGL lors du tracé d’une simple facette
triangulaire. On pourra ainsi mieux « apprécier » les performances des matériels actuels lorsque
I’on visualise des surfaces composées de plusieurs milliers de triangles...

Ainsi donc, la désignation de 3 sommets (glvertex) entre les deux instructions

glBegin (GL TRIANGLES) et glkEnd () a pour effet de déclencher la séquence d’opérations suivante :

- produit des sommets par la matrice de modélisation (GI. MODELVIEW)

- ¢évaluation de la couleur de chaque sommet en fonction du type de rendu (couleur brute ou
simulation d’un éclairage avec gestion des normales, des lumiéres et du point de vue)

S2

S3

S1

- ¢évaluation de la distance des sommets au point de vue (profondeur)

- projection des sommets sur le plan image

- calcul des pixels constituant les 3 arétes (algorithme de Bresenham) du triangle projeté

- extrapolation de la couleur et de la profondeur de chacun de ces pixels a partir des 3 sommets

Initiation a OpenGL — sept 2004

- pour chaque ligne horizontale reliant deux arétes

52’
@i
T\
53"
}s\m i\g i

S1°

o pour chaque pixel d’une ligne

extrapoler sa couleur
extrapoler sa profondeur

si sa profondeur est plus faible que son équivalent dans le z-buffer,
alors tracer le point et affecter sa profondeur dans le z-buffer

S2’

S3’

S1°

Rémy Bulot

Initiation a OpenGL — sept 2004 Rémy Bulot

VI. Amélioration du rendu

On parle de rendu réaliste lorsqu'une image contient la plupart des effets de lumiére en interaction
avec des objets physiques réels. Les travaux de recherche en ce domaine sont trés nombreux et les
solutions proposées sont parfois fort coliteuses suivant les effets recherchés.

Il ne faut toutefois pas perdre de vue que si le but principal est de communiquer une information,
alors une image simplifiée peut étre plus réussie qu'une image approchant la perfection d'une
photographie : I'information n'est pas noyée dans un contexte peu pertinent pour I'observateur.

La réalité peut méme parfois étre intentionnellement altérée, voire méme faussée, dans le but de
faire encore mieux émerger le message que I'on veut transmettre : les films de science-fiction en
sont un exemple flagrant lorsque les explosions dans l'espace sont accompagnées d'un effet sonore...

1. Le brouillard (fog)

La représentation 2D d’une scéne 3D géneére une perte d’information que 1’observateur doit pouvoir
reconstruire mentalement. Cette opération peut étre rendue quasiment inconsciente si on utilise
quelques « astuces » de rendu. La projection en perspective génére déja la sensation de profondeur ;
on peut renforcer cet effet en simulant un brouillard qui estompe les objets en fonction de leurs
distances respectives au point de vue.

Le brouillard est activé (respectivement désactivé) avec :
glEnable (GL_FOG)
glDesable (GL_FOG)

On lui associe une couleur vers laquelle tend un objet si on €éloigne ce dernier du point de vue.
GLfloat fogColor([4] = {0.5, 0.5, 0.3, 1.} ; /* brouillard type Sirocco */

Cette couleur sera généralement utilisée pour le fond de la scéne :
glClearColor (0.5, 0.5, 0.3, 1.) ;

OpenGL propose trois types de courbe de mélange entre la couleur de 1’objet et le brouillard :
GL LINEAR, GL EXP et GL EXP2

100% 100% 100%

GL_LIN GL_EXP2
GL_EXP

Pourcentage de la couleur d’origine d’apres la distance au point de vue.

Les caractéristiques du brouillard sont définies a I’aide de la fonction g1Fogtype() :
/* profil de la fonction brouillard */

glFogi (GL_FOG_MODE, GL_EXP2) ;

/* extrémités de la fonction brouillard */

glFogf (GL_FOG_START, 1.) ;

glFogf (GL_FOG_END, 5.) ;

/* coefficient de « cintrage » pour les profils EXP(2)*/

glFogf (GL_FOG_DENSITY, 0.35) ;

Initiation a OpenGL — sept 2004 Rémy Bulot

/* couleur du brouillard */
glFogfv (GL_FOG_COLOR, fogColor) ;

2. L’éclairage

OpenGL propose aussi un rendu plus réaliste avec un modele d’illumination qui permet de prendre
en compte 1'orientation des surfaces par rapport aux lumiéres (voir annexe sur la couleur).

Ce rendu dépendra de :

- laposition et des propriétés des éclairages,
- des propriétés optiques des matériaux employés pour la construction des objets,
- de I’orientation des surfaces vis-a-vis des éclairages et de I’observateur.

a) Un modele physique simplifié

La lumicre est représentée par la composition de trois valeurs : le rouge, le vert et le bleu. Les
proportions entre ces trois valeurs vont définir une couleur que 1’oeil est apte a percevoir. Nous
sommes habitués a vivre avec une lumicere blanche (fournie par le soleil), mais les sources peuvent
étre multiples (ex : éclairage d’un terrain de football générant 4 ombres sur chaque joueur) et de
couleurs variées (batterie de projecteurs pour un spectacle).

Lorsqu’un rayon lumineux frappe une surface, une partie est absorbée (filtrage), une autre est
réfléchie suivant les lois de la normale a la surface, le reste est restitué dans toutes les directions.
OpenGL simule ces propriétés a 1’aide de quatre composants (simulation d’aprés le modéle
Lambertien, 19°™ siécle) :

l'intensité ambiante L, simule une lumicre qui a été dispersée par I’environnement : elle n’a
pas de direction et sera réfléchie par une surface dans toutes les directions. Ainsi, une surface
dans une zone d’ombre n’apparaitra pas noire car éclairée par cette lumieére ambiante.

la réflexion diffuse L, caractérise les surfaces mats. Aussi, lorsqu’un rayon lumineux provenant
d’une direction particuliére frappe cette surface, il sera filtré et dispersé dans toutes les
directions avec une méme intensité¢ (L; = k; cos 0). L’effet sera donc lié a la position de la
source lumineuse.

la réflexion spéculaire L caractérise, quant a elle, le cone de réflexion de la lumiére pour les
surfaces brillantes. C’est elle qui va définir la brillance d’une surface lorsque ’oeil est dans
I’axe symétrique de celui de la source par rapport a la normale. L’effet sera donc lié a la fois a la
position de la source lumineuse et a la position de I’observateur.

Les objets peuvent avoir une lumiére émissive qui ajoute de I’intensité a 1’objet. Par
simplification, cette lumiére n’ajoute pas d’éclairage supplémentaire a la scéne.

rayon
incident

rayon
réfléchi

L=L, +kscos0+k,cos" a

Initiation a OpenGL — sept 2004 Rémy Bulot

Le terme n dans l'expression de la réflexion spéculaire est appelé "coefficient de surbrillance". C'est
lui qui va déterminer 1'étendue du reflet (saturation sur une portion de surface) que I'on peut
observer sur une surface brillante lorsque certains rayons réfléchis se rapprochent de 1'axe
d'observation (o proche de 0). Cette valeur caractérise les propriétés physiques de la surface
éclairée. Un miroir parfait sera caractérisé par une valeur de n égal a l'infini : 1'observateur n'est
¢bloui que si le rayon réfléchi coincide avec 1'axe d'observation.

b) Eclairage sous OpenGL

On passe du modele couleur « simple » (gicolor3f (r, v, b)au modele d’éclairage avec :
glEnable (GL_LIGHTING) ;
glDisable (GL LIGHTING) ;

Pour tracer une facette, il faudra définir :

* les propriétés des « lumicres » (au plus 8)

* les positions des lumicres

* Dinterrupteur des lumiéres (allumer/éteindre)

* les propriétés de réflexion des matériaux (brillant, mat, ...)
* le choix des faces « visibles » (avant, arriére, avant&arricre)

* le choix d’un rendu lisse ou a facettes
* lanormale pour chaque sommet

c) Les lumicres

On peut mettre en place jusqu'a 8 lumiéres (6L LIGHTO, ..., GL LIGHT7) dont on peut spécifier
de nombreux attributs par :

glLightfv (GL_LIGHTO, attribut, vecteur de float)

la position : GL_POSITION . Sous OpenGL, une lumiére est assimilée & un objet de la
scéne et subit les transformations géométriques définit pour GL MODELVIEW. On
peut donc la rendre fixe, la lier éventuellement a un objet, a la scene ou au
point de vue : tout dépend de 1l’instant ou on positionne cette lumiere.
GLfloat Lpositionl [4] = {-5.0, 0.0, 3.0, 0.0}; /* lumiére a 1'infini */
GLfloat Lposition2 [4] = {-5.0, 0.0, 3.0, 1.0}; /* position réelle */
glLightfv (GL LIGHTO, GL POSITION, Lpositionl);

On notera dans cet exemple qu'une lumiére peut étre positionnée a 1’infini (rayons parall¢les) en
mettant sa 4éme coordonnée a 0 (cf. les espaces projectifs). Les trois premieres coordonnées
définissent alors une direction et non plus une position.

la couleur : GI AMBIENT , GL DIFFUSE et GL SPECULAR . On donne séparément les composantes
ambiante, diffuse et spéculaire, ce qui permet de faire des choses peu physiques, comme des sources
qui ne génerent pas de reflets, ou que des reflets, ou qui ne contrdlent que la lumiére ambiante.

Chaque composante est un tableau de f1o0at définissant les 4 coefficients de base RVBA.
GLfloat Lambiant [4] = {0.4, 0.4, 0.4, 1.0};
GLfloat Lblanche [4] = {1.0, 1.0, 1.0, 1.0};

glLightfv (GL LIGHTO, GL AMBIENT, Lambiant);
glLightfv (GL_ LIGHTO, GL DIFFUSE, Lblanche);

Initiation a OpenGL — sept 2004 Rémy Bulot

glLightfv (GL LIGHTO, GL_SPECULAR, Lblanche);

Une lumiére est activée et désactivée (« interrupteur ») par :
glEnable (GL LIGHTO)
glDisable (GL LIGHTO)

d) Matériau d’un objet

Dans un modele d’éclairage, le rendu d’un objet n’est plus défini par une couleur brute
(glcolor3f(r, v, b), mais par un matériau avec des propriétés de réflexion de la lumiére qui
sont spécifiques (cuivre, argent, peinture brillante, ...). Sous OpenGL, les polygones qui seront
construits recevront des propriétés optiques définies pour les 4 composantes RVBA :

- I’émission (cas d’un objet lumineux),

- la diffusion,

- laréflexion spéculaire.

Pour cette derniere, on dispose d’un coefficient qui précise la taille du reflet et son intensité (étroit
et intense, ou faible et étalé).

GLfloat
GLfloat
GLfloat
GLfloat

Lnoire [4] =
mat diffuse
mat specular
mat shininess

{0.0,
(4] =
(4] =
(1] =

0.0, 0.0, 1.0};
{0.057, 0.441, 0.361,
{0.1, 0.1, 0.5, 1.0};

{50.0};

1.0},

glMaterialfv
glMaterialfv
glMaterialfv
glMaterialfv

(GL_FRONT_AND_BACK,
(GL_FRONT_AND_BACK,
(GL_FRONT_AND_BACK,
(GL_FRONT_AND_BACK,

GL_EMISSION, Lnoire);
GL_DIFFUSE, mat_diffuse);
GL_SPECULAR, mat_specular) ;
GL_SHININESS, mat_ shininess);

En pratique, on définit des fonctions qui définissent un matériau donné en regroupant ces

propriétés :
void bronze () ;
void argent () ;

void peintureMetallisée (int couleur([3]) ;

Ces fonctions sont appelées juste avant le dessin des surfaces (a la place de gi1color) pour définir la
« couleur » des facettes.

e) Lanormale aux sommets

Le dernier élément déterminant pour la perception visuelle d’une surface est son orientation vis a
vis de la source lumineuse et du point d’observation. Sous OpenGL, cette orientation est évaluée a
partir du vecteur normal qui doit étre de longueur 1 : cette derniére contrainte peut étre gérée
directement par le programmeur ou par OpenGL (généralement plus coliteux) en activant :

glEnable (GL_NORMALIZE) ;

La normale doit étre spécifiée avant le tracé d’un polygone au moyen de :
glNormal3f (x, y, z);
glNormal3fv (tab) ;

exemple :
glBegin (GL TRIANGLES)
glNormal3f (0., O.,
glvVertex3f (0., O.,
glvVertex3f (5., 0.,
glvertex3f (2.5, 5.,
glEnd() ;

1.)
0.);
0.);
0.);

Initiation a OpenGL — sept 2004 Rémy Bulot

Si la normale n’est pas explicitement connue au moment de la programmation, il faut la calculer. Si
on a pris soin de construire la liste des sommets dans 1’ordre trigonométrique, les trois premiers
sommets non alignés donnent deux vecteurs u et v dont le produit vectoriel donne la direction de la
normale (face avant).

Rappel : u v =[(Yu Zv — Zy Yv), - (Xu Zy — Zy Xv), (Xu Yv — Yu Xv) |

Pl

P4

P2
P3

On peut vouloir (ou non) éclairer les deux faces d’un polygones, il faut alors activer :
glLightModeli (GL_LIGHT MODEL_TWO_SIDE,GL_TRUE)

glLightModeli (GL_LIGHT MODEL TWO_SIDE,GL_FALSE) (valeur par défaut)

Remarque : On se souvient que I’ordre dans lequel on dessine les sommets permet de définir la face
avant et la face arriére d’un polygone (cf. chapitre sur les primitives). On pourrait penser que cette
notion est redondante vis-a-vis de la normale. En fait, cela permet d’attribuer des propriétés
spécifiques a chaque face (face pleine, face vide, couleur, matériau) alors que la normale ne servira
qu’aux calculs d’éclairage comme le précise le paragraphe suivant.

f) Surfaces lisses ou « a facettes »

Bien que les surfaces « complexes » soient approximées par des données polygonales, OpenGL
permet de donner a celles-ci un aspect « lisse » (modele de Gouraud), méme avec une discrétisation
grossiere. Une variable d’état permet de préciser si I’on souhaite un modele de surface a facettes ou
avec dégradé de couleur (plus lourd en calcul !) :

glShadeModel (GL_FLAT) (plus rapide)
glShadeModel (GL_SMOOTH) (plus joli)

En fait , les normales sont affectées aux sommets et non pas au polygone. Dans 1’exemple ci-
dessous, les trois sommets du triangles recoivent la méme normale (0., 0., 1.) :le triangle aura
une couleur uniforme.

glBegin (GL_ TRIANGLES) ;

/* définitions de la normale pour tous les sommets qui suivent : */

glNormal3£f (0., 0., 1.) ;

glvVertex3f (0., 0., 0.);

glVertex3f (5., 0., 0.);

glVertex3f (2.5, 5., 0.);

glEnd() ;

Pour obtenir un aspect non facetté, on affecte a chaque sommet la moyenne des normales des
facettes voisines. OpenGL effectuera une extrapolation de la lumiére réfléchie pour chaque pixel a
partir des valeurs calculées aux sommets.

Initiation a OpenGL — sept 2004 Rémy Bulot

Eclairage d’un « cratere » avec et sans lissage

Schéma type du tracé d’une surface lissée a partir d’un maillage de points (g1Float Point3D[3]):
glBegin (GL TRIANGLES) ;
for (i=0 ; i<Longueur-1 ; i++)

for (j=0 ; j<Largeur-1 ; Jj++)

{ /* 1 carreau = 2 triangles */
glNormal3fv (Nsurfacel[i]l[j]);
glVertex3fv (Surfacel[i][]]):
glNormal3fv (Nsurfacel[i] [J+1]);
glvertex3fv(Surface[i][j+11);
glNormal3fv (Nsurface[i+1] [J+1]);
glVertex3fv (Surface[i+1] [J+1]);

glNormal3fv
glVertex3fv
glNormal3fv
glVertex3fv
glNormal3fv
glVertex3fv

Nsurface[i]
Surface[i] [
Nsurface[i+
Surface[i+1
Nsurface[i+
Surface[i+1

~ o~~~ —~ ~
e U —
— — — U

}
}
glEnd() ;

Remarques :

- Lorsqu’une surface est représentée par un treillis de points, les sommets et les normales sont
généralement rangés dans un tableau : cela facilite grandement 1’évaluation des normales
moyennes avant de dessiner la surface.

- Pour affiner le rendu, on pourra pondérer les normales de chaque facette par les secteurs
angulaires respectifs.

Initiation a OpenGL — sept 2004 Rémy Bulot

VII. Images 2D
1. L’initialisation du 2D

Une image 2D est un tableau rectangulaire de pixels ayant chacun une « valeur » spécifique. Son
affichage ne nécessitera pas de tampon de profondeur. Une initialisation courante se traduira dans la
fonction main par un des deux appels ci-dessous :

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB) ;
ou
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB) ;

Bien que I’affichage se fasse en mode RGB (tampon image), on pourra disposer de plusieurs types
de codage d’image en mémoire centrale. Nous nous limiterons ici aux :

- images RGB ou un pixel est codé sur 3 octets consécutifs,

- images en niveaux de gris ou un pixel est codé sur un octet.

On notera au passage que les données initiale d’une image peuvent avoir une dynamique bien
supérieure au capacité d’affichage d’une carte graphique. Par exemple, une image IRM en imagerie
médicale aura souvent des valeurs dans [-2048, 2047]. L’affichage d’une telle image demande un
rééchelonnage préalable des amplitudes entre [0, 255] .

2. Matrice de projection

Il peut paraitre étrange de définir une matrice de projection lorsque 1’on manipule uniquement du
2D. Cette opération est pourtant nécessaire pour que la position d’un pixel image coincide avec une
coordonnée écran (entiere). On utilise une matrice de projection spécifique au 2D :

gluOrtho2D (xmin, xmax, ymin, ymax)
Aussi, le cadrage d’une image aura la forme suivante :

void monCadrage (int large, int haut)
{ glviewport (0, 0, large, haut) ;
glMatrixMode (GL PROJECTION) ;
glLoadIdentity () ;
gluOrtho2D (0, large, 0, haut) ;
glMatrixMode (GLiMODELVIEW) ;

3. Affichage d’une image 2D

Le prochain dessin d’une image (matrice rectangulaire de pixel) sera positionné dans la fenétre en
définissant I’angle inférieur gauche (x0, yo0) :

glRasterPos2i (x0, y0) ;

Initiation a OpenGL — sept 2004 Rémy Bulot

OpenGL propose trois commandes de base pour manipuler des images :
- glbrawPixels qui recopie un tableau de pixels dans le tampon image (cf. glRasterPos21i),
- glReadPixels qui recopie une partie du tampon image dans un tableau,
- glcCopyPixels qui recopie une zone a I’intérieur du tampon image (sans passer par la
CPU !).

glDrawPixels (largeur, hauteur, format, type, tableau)
glReadPixels (largeur, hauteur, format, type, tableau)

largeur, hauteur : définissent la taille de I’image en terme de pixels,

format : format d’un pixel en mémoire centrale. On se limitera a GL_RGB ou GL_LUMINANCE,
type : on se limitera & GL_UNSIGNED_BYTE (un octet non signé),

tableau : adresse du tableau respectant le type précédemment définit.

Exemple :

#define hauteur 200

#define largeur 256

GLubyte imageRGB[hauteur] [largeur] [3] ;
GLubyte imageGRIS[hauteur] [largeur] ;

affichage de imagerce

glRasterPos2i (0, 0) ;

glDrawPixels (largeur, hauteur, GL RGB, GL UNSIGNED BYTE, imageRGB) ;
glutSwapBuffers () ;

affichage de imagecrs

glRasterPos2i (0, 0) ;

glDrawPixels (largeur, hauteur, GL LUMINANCE, GL UNSIGNED BYTE, imageGRIS) ;
glutSwapBuffers () ;

glCopyPixels (x0, y0, largeur, hauteur, GL_COLOR)

La recopie s’effectue a partir de la trame active (cf. glRasterPos21).

x0 et y0 : Précise le coin inférieur gauche du rectangle (1argeur, hauteur) de pixels a
recopier.

Le dernier argument précise le buffer sur lequel I’opération est effectuée. Nous nous limiterons
ici @ GL_COLOR.

4. Image et processeur...

a. Alignement des octets

Les processeurs sont performants pour manipuler des mots machines : Pentium et G4 sont des
processeurs 32 bits « grand public », mais nul doute sur 1’arrivée prochaine des 64 bits...

Les fonctions g1DrawPixels et glReadPixels tiennent compte de 1’architecture du processeur et
effectuent, par défaut, les transferts par paquets d’octets correspondants au mot machine. En
particulier, elles démarrent chaque ligne image a la premiére adresse multiple d’un mot machine qui
suit la fin de la précédente ligne. En conséquence, la largeur d’ une image doit occuper un nombre

Initiation a OpenGL — sept 2004 Rémy Bulot

d’octets multiple d’un mot machine, au risque d’obtenir un affichage avec une déformation latérale
de I’image parce que le début de chaque ligne aura été artificiellement décalé.

Le contrble des transferts se fait avec :
glPixelStorei (GL_UNPACK ALIGNMENT, taille) pOUr glDrawPixels
glPixelStorei (GL_PACK_ALIGNMENT, taille) pour glReadPixels

ou taille définit le nombre d’octets dans un paquet (1, 2, 4 ou 8).

Une solution siire mais peu efficace est de forcer la taille des paquets a 1 pour qu’une ligne image
contienne nécessairement un nombre entier de paquets d’octets.

Une autre solution consiste a définir une matrice image en mémoire dont la taille des lignes est un
multiple de 4 (taille d’un mot machine pour les processeurs actuels), quitte a ne pas remplir les
derniers octets de chaque ligne.

b. Ordre des octets

La encore, la diversité existe et on constate qu'un mot machine peut ordonner ses octets dans un
sens ou dans I’autre. Par exemple, I’octet de poids fort pour un G4 se trouve a la place de I’octet de
poids faible pour un Pentium et réciproquement. L’exploitation sur une machine d’une image
construite sur une autre machine peut demander au préalable quelques opérations de permutation.

5. Primitives graphiques 2D
Dans certaines applications graphiques, on peut souhaiter effectuer un tracé par dessus une image
que I’on vient d’afficher. Par exemple, on peut tracer en rouge une route sur une image satellitaire

pour la mettre en évidence.

Dans ce cas, on affichera I’image en premier et on utilisera ensuite les primitives de tracé 2D avec
le suffixe 2i, principalement glvertex2i (x, y)

Il sera aussi parfois plus commode de définir les couleurs de tracé en entier :
glColor3ub (rouge, vert, bleu)

Initiation a OpenGL — sept 2004 Rémy Bulot

Annexe : Couleurs et niveaux de gris

Sujet vaste et complexe : domaines de la physique, de la physiologie, de la psychologie, de I’art...

1. La lumiére
1.1 Généralités

La lumicre est composée de fréquences €lémentaires (séparable par un prisme). La lumiére visible
se situe entre 400 et 700nm. Elle est issue :

* soit d’une source active (lampe, soleil, ...),

* soit d’une source passive qui restitue une partie de la lumiére regue.

Un objet est miroir imparfait qui ne réfléchit qu'une partie de la lumiere regue :
- un objet blanc éclairé par de la lumiére verte apparait vert.
- un objet rouge apparaitra noir sous une lumicre verte.

La perception de la couleur d’un objet dépend :
* de la distribution des longueurs d’onde de la source lumineuse,
* des caractéristiques physiques de 1’objet (matériau, état de surface) :
* des positions relatives de la source, de I’objet et de I’observateur

rayon

Normale rayon \ incident

incident \

réflexion L
spéculaire 5 réflexion &
7 ~ diffuse
5 Plan -
tangent

P

Lumiére ambiante

Initiation a OpenGL — sept 2004 Rémy Bulot

1.2 Modéle d’éclairage simplifié

La lumicére réfléchie par une surface et regue par rayon
un observateur est décomposée en trois quantité : incident
* intensité ambiante,

e réflexion diffuse, ﬁ »»»»»

* réflexion spéculaire.

L=L, +kscos0+k,cos" a
Plan

tangent

2. Systeme achromatique
Littéralement « sans couleur ».

La seule information véhiculée : quantité de lumiére
* intensité ou luminance dans un cadre physique,
* luminosité d’un point de vue perceptif (cadre psychologique).

Notre systéme visuel permet d’analyser une scéne en niveaux de gris

Notre perception de la lumiére :

* incapable de faire une mesure ponctuelle de la lumiére

* intégre une quantité de lumicre (surface et durée)

* sensible a une échelle logarithmique de 1’énergie lumineuse
(100W-50W # 150W-100W).

Nuances de gris :

* niveaux d’énergie compris entre le noir (absence de lumicre)
* et le blanc (saturation de lumiére).

* en pratique : 256 niveaux de gris (un octet)

Deux types de matériels concernés :
* matériels pouvant représenter localement toute une échelle de luminance
* dispositifs bicolores (imprimante, ...). Possibilité d’approximation par demi-ton.

BN —]]

Initiation a OpenGL — sept 2004 Rémy Bulot
3. La couleur
3.1 Psychophysique

Cellules spécialisées de la rétine : les cellules a cone.

Jaune-vert
rouge
vert
Bleux 10
400 700 400 700
Sensibilté de I’ oeil Sensibilté des cellules a cones

C’est le couple ceil-cerveau qui interprete un phénomeéne physique qui procure la sensation de couleur.

3.2 Les systémes soustractifs et additifs

jaune
Construction d’une couleur percue a partir de
trois couleurs primaires.
vert rouge
=> mélange additif : le rouge, le vert et le
bleu (écran cathodique, projecteurs d’un
spectacle).
=> mélange soustractif : le cyan, le cyan magenta
magenta et le jaune (peinture,
imprimantes...).
bleu

Catégorisation des couleurs

w magenta

Systeme additif Systéme soustractif

Initiation a OpenGL — sept 2004 Rémy Bulot

bleu vert rouge

jaune magenta Cyan

Spectres des couleurs de base

3.3 Modeéles de couleurs

I1 existe trois modeéles de couleurs orientés vers les matériels :

Modéle RVB (rouge, vert, bleu)

* primaires additives

* J'oeil intégre la quantité de lumiere

* l'information couleur est codée par 3 scalaires

Modéle CMJ (Cyan, magenta et jaune)
- filtres sur de la lumiére blanche, ce sont des primaires soustractives.
- employé pour les imprimantes a jet d'encre.

On passe facilement d'un modéle RVB a un modele CMJ
(R, V, B) = (255, 255, 255) - (C, M, J)

Modéle YIQ

* TV couleur aux USA,

* Y représente la luminance (seule composante pour les postes noir et blanc)
* Laprojection de RVB dans YIQ est donnée par :

Y 0.299 0.587 0.114 R
I| =10.596 -0.275 -0.321 Y
Q 0.212 0.528 0.311 B

Initiation a OpenGL — sept 2004 Rémy Bulot

II. La librairie GLUT

Plan :

Structure d’une application GLUT
Initialisation d’une session GLUT

La boucle de traitement des événements
Gestion des fenétres

Gestion de menus

Inscription des fonctions de rappel
Quelques variables d’état de GLUT
Rendu des polices de caracteres

PRNAN PR PN

OpenGL a été congu pour étre indépendant du gestionnaire de fenétres qui est intimement lié¢ au systéme
d’exploitation. Il existe toutefois un systéme de fenétrage « élémentaire » qui permet de développer des
applications graphiques dans un cadre simple tout en garantissant une trés bonne portabilité sur de trés
nombreuses plate-formes : openGL Utility Toolkit (GLUT).

Les fonctionnalités de cette bibliothéque permettent principalement de :
- créer et gérer plusieurs fenétres d’affichage,
gérer les interruptions (click souris, touches clavier, ...),
disposer de menus déroulant,
connaitre la valeur d’un certain nombre de paramétres systémes,
Quelques fonctions supplémentaires permettent de créer simplement un certain nombre d’objets 3D
(cube, sphere, tore, ...).

Cette bibliothéque s’enrichie réguliérement d’outils simples et pratiques (on trouve maintenant sur les
sites OpenGL des boutons, des affichages de répertoires, ...) sans devenir un « monstre » dont la maitrise
demande une longue pratique.

La philosophie générale de ce systéme de fenétrage est basée sur la « programmation événementielle »
(ce que I’on pourra regretter ...), ce qui impose une structuration assez particuliére de I’application.

10. Structure d’une application GLUT

Une application GLUT lance une session graphique qui ne sera plus controlée que par des interruptions
(click souris, touche clavier, ...). On trouve dans le « main » les actions suivantes :

- initialisation du fenétrage,

- désignation de la fonction d’affichage (1) dans la fenétre courante,

- désignation de la fonction (2) déclenchée par un redimensionnant la fenétre courante,

- association d’une fonction (3) a chaque type d’interruption,

- laboucle d’événements.

Avec les remarques suivantes :

- Toute opération de tracé est interdite en dehors de la fonction déclarée pour cette tiche (1).

- Laboucle d’événement est la derniére action du programme principal et échappe totalement au
contrdle du programmeur. Elle prend la main de fagcon définitive (jusqu’a la fin I’application) :
elle réactualise réguliérement 1’affichage d’une part et capte d’autre part les interruptions pour
déclencher les procédures associées (3).

- C’est le systéme qui déclenche la fonction d’affichage (1),

Initiation a OpenGL — sept 2004 Rémy Bulot

- Le programmeur peut demander au systéme 1’exécution de la fonction d’affichage au moyen de
I’instruction glutPostRedisplay ()

Cette gestion indépendante des différents processus impose 1’utilisation de variables globales d’état pour
contrdler ’affichage en fonction des interruptions (dialogue entre la fonction d’affichage et les fonctions
traitants les interruptions).

Boucle d’événements

Action traitant I’événement
glutPostRedisplay ()

\ 4

Evénement

Action associée

aux dimensions | ——p| Afficher la scéne
de la fenétre

A4

Exemple simplifi¢ de la structuration d’un programme GLUT :
#include <GLUT/glut.h>

void afficheMaScene (void)
{ « effacer 1’écran »
positionner la caméra
construction (tracé) de la scéne
glutSwapBuffers(); /* glFlush() */
}

void monCadrage (int largeur, int hauteur)

{ redéfinition du cadre d’affichage aprées redimensionnement de la fenétre
definition de la projection 3D->2D

}

void maFctClavier (unsigned char key, int x, int y)

{ modification du contexte d’affichage sur un événement clavier
glutPostRedisplay () ;

}

void maFctTouchesSpeciales (unsigned char key, int x, int y)

{ action déclenchée sur une touche F1, .., F10, fleches
glutPostRedisplay () ;

}

void maFctSouris (int bouton, int etat, int x, int y)

{ modification du contexte d’affichage sur un événement souris
glutPostRedisplay () ;

}

void monInitScéne ()
{ initialisation eventuelle de parametres propres a l’application (eclairages, ..)

}

int main (int argc, char **argv)

{ /* initialisation d’une session GLUT */
glutInit (argc, argv); /* initialise la bibliothéque GLUT */
glutInitDiSplayMode(GLUTiDOUBLE | GLUTiRGB | GLUTiDEPTH);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);

Initiation a OpenGL — sept 2004 Rémy Bulot

glutCreateWindow (argv [0]);

/* initialisation éventuelle de parametres
monInitScene () ;

/* ftcs définissant la scéne3D et sa projection */

glutDisplayFunc (afficheMaScene) ; /* (1) */
glutReshapeFunc (monCadrage) ; /* (2) */
/* ftcs liees aux iterruptions */

glutKeyboardFunc (maFctClavier) ; /* (3) */
glutSpecialFunc (maFctTouchesSpeciales) ; /* (3) */
glutMouseFunc (maFctSouris) ; /* (3) */

/* boucle d’événements */
glutMainLoop () ;
return 0;

11. Initialisation d’une session GLUT

void glutlnit (int *argcp, char **argv);

La fonction glutlnit initialise la bibliothéque GLUT et négocie une session avec le
systéeme de fenétrage. Elle traite également les lignes de commandes qui sont propres a
chaque systeme de fenétrage.

Parametres pour le systeme X

Les parametres de la ligne de commande qui sont compris par la bibliotheque GLUT sont
par exemple:

display DISPLAY Spécifie I'adresse du serveur X auquel se connecter. Si ce n'est spécifié,
la variable d'environnement est utilisée.

geometry WxH+X+Y Détermine la position de la fenétre sur I'écran. Le parametre de
geometry doit étre formaté selon la spécification standard de X.

gldebug Aprées le traitement des fonctions de rappel ou des événements, vérifier s'il y a des
erreurs d'OpenGL en appelant glGetError. S'il y a une erreur, imprimer un avertissement
obtenu par la fonction gluErrorString.

void glutInitWindowSize (int width, int height);

void glutInitWindowPosition (int x, int y);

Les fonctions glutInitWindowSize et glutInitWindowPosition permettent de créer une
fenétre, de la positionner sur I'écran et d'en spécifier la taille.

width Largeur de la fenétre en pixels.
height Hauteur de la fenétre en pixels.
x Position en x du coin gauche supérieur de la fenétre.

y Position en y du coin gauche supérieur de la fenétre.

void glutlnitDisplayMode (unsigned int mode);

Cette fonction spécifie le mode d'affichage de la fenétre. Le mode d'affichage est utilisé
pour créer les fenétres et les sous-fenétres. Le mode GLUT RGBA permet d'obtenir une

Initiation a OpenGL — sept 2004 Rémy Bulot

fenétre utilisant le modéle de couleur RGB avec une composante de transparence. C'est le
mode de base de la plupart des applications.

mode Mode d'affichage qui est en général une opération or bit a bit de masque de bits. Les
valeurs permises sont :

« GLUT_RGBA Masque de bits pour choisir une fenétre en mode RGBA. C'est la valeur par
défaut si GLUT _RGBA ou GLUT INDEX ne sont spécifiés.

e GLUT RGB Un alias de GLUT _RGBA.

« GLUT _INDEX Masque de bits pour choisir une fenétre en mode index de couleur. Ceci
I'emporte si GLUT RGBA est spécifié.

« GLUT SINGLE Masque de bits pour spécifier un tampon simple pour la fenétre. Ceci est
la valeur par défaut.

« GLUT DOUBLE Masque de bit pour spécifier une fenétre avec un double tampon. Cette
valeur I'emporte sur GLUT SINGLE.

« GLUT RGBA Masque de bits pour choisir une fenétre avec une composante alpha pour le
tampon de couleur.

« GLUT _DEPTH Masque de bits pour choisir une fenétre avec un tampon de profondeur.

12. La boucle de traitement des événements

void glutMainLoop (void);

Cette fonction permet d'entrer dans la boucle de GLUT de traitement des événements.
Cette fonction est appelée seulement une fois dans une application. Dans cette boucle, les
fonctions de rappel qui ont été enregistrées sont appelées a tour de rdle.

13. Gestion des fenétres

int glutCreateWindow (char * name);

Cette fonction crée une fenétre en utilisant le systéme de fenétrage du systéme. Le nom de
la fenétre dans la barre de titre de la fenétre prend la valeur de la chaine de caractéres
spécifiée par name. Cette fonction retourne un entier positif identifiant le numéro de la
fenétre. Cet entier peut par la suite étre utilisé par la fonction glutSetWindow.

Chaque fenétre possede un contexte unique d'OpenGL. Un changement d'état de la fenétre
associée au contexte d'OpenGL peut étre effectué une fois la fenétre créée. L'état
d'affichage de la fenétre a afficher n'est pas actualisé tant que 1'application n'est pas entrée
dans la fonction glutMainLoop. Ce qui signifie qu'aucun objet graphique ne peut étre
affiché dans la fenétre, parce que la fenétre n'est pas encore affichée.

void glutSetWindow (int win);

Initiation a OpenGL — sept 2004 Rémy Bulot

Cette fonction établit que la fenétre identifiée par win devient la fenétre courante.
int glutGetWindow (void);

Cette fonction retourne le numéro de la fenétre courante. Si la fenétre courante a été
détruite, alors le numéro retourné est 0.

void glutDestroyWindow (int win);

glutDestroyWindow détruit la fenétre identifiée par le parametre win. Elle détruit
¢galement le contexte OpenGL associée a la fenétre. Si win identifie la fenétre courante,
alors la fenétre courante devient invalide (glutGetWindow retourne la valeur 0).

void glutPostRedisplay (void);

Cette fonction indique que la fenétre courante doit étre réaffiché. Lors de la prochaine
itération dans la boucle principale de glutMainLoop, la fonction de rappel d'affichage est
appelée. Plusieurs appels a la fonction glutPostRedisplay n'engendrent qu'un seul
rafraichissement. Logiquement, une fenétre endommagée est marquée comme devant étre
rafraichie, ce qui est équivalent a faire appel la fonction glutPostRedisplay.

Cette fonction est principalement employée dans les procédures attachées a une
interruption. La modification du contexte demande généralement une réactualisation de
I’affichage.

void glutSwapBuffers (void);

Cette fonction échange les tampons de la couche en utilisation de la fenétre courante. En
fait, le contenu du tampon arri¢re de la couche en utilisation de la fenétre courante devient
le contenu du tampon avant.. Le contenu du tampon arriére devient indéfini.

La fonction glFlush est appelée implicitement par glutSwapBuffers. On peut exécuter des
commandes d'OpenGL immédiatement apres glutSwapBuffers, mais elles prennent effet
lorsque 1'échange de tampon est complété. Si le mode double tamponnage n'est pas active,
cette fonction n'a aucun effet.

void glutPositionWindow (int x, inty);

Demande un changement de position de la fenétre courante. Les coordonnées x et y sont
des décalages par rapport a l'origine de 1'écran. Le changement de position n'est pas
immédiatement effectué, mais le changement est effectué lorsque I'application retourne
dans la boucle principale

Pour une fenétre de base, le systéme de fenétrage est libre d'appliquer face a la requéte sa
propre politique pour le positionnement de la fenétre.

glutPositionWindow désactive le mode plein écran s'il est activé.
void glutReshapeWindow (int width, int height);

Demande un changement de dimensions de la fenétre courante. Les parametres width et
height sont les nouvelles dimensions de la fenétre et doivent étre des entiers positifs. Le
changement de dimension n'est pas immédiatement effectué, mais le changement est
effectué lorsque l'application retourne a la boucle principale.

Initiation a OpenGL — sept 2004 Rémy Bulot

Pour une fenétre de base, le systéme de fenétrage est libre d'appliquer face a la requéte sa
propre politique pour le dimensionnement de la fenétre.

glutReshapeWindow désactive le mode plein écran s'il est activé.
void glutFullScreen (void);

Demande que la fenétre courante soit en plein écran. La sémantique de plein écran peut
varier d'un systéme de fenétrage a 1'autre. Le but est d'obtenir la fenétre la plus grande
possible en la libérant des bordures et des barres de titre. Les dimensions de la fenétre ne
correspondent pas nécessairement aux dimensions de I'écran. Le changement de dimension
n'est pas immédiatement effectué, mais le changement est effectué¢ lorsque l'application
retourne a la boucle principale.

Les appels aux fonctions glutReshapeWindow et glutPositionWindow désactivent le
mode plein écran.

void glutPopWindow (void);
void glutPushWindow (void);

La fonction glutShowWindow affiche la fenétre courante (elle pourrait ne pas étre visible
si elle est occultée par une autre fenétre). La fonction glutHideWindow cache la fenétre
courante. Les actions de cacher ou afficher une fenétre ne sont pas effectués
immédiatement. Les requétes sont conservées pour exécution future lors du retour a la
boucle principale des événements. Les effets d'afficher ou masquer une fenétre dépendent
de la politique d'affichage du systéme de fenétrage.

void glutSetWindowTitle (char *name);

Cette fonction s'applique a la fenétre. Le nom d'une fenétre est établi lorsque de la création
de la fenétre par la fonction glutCreateWindow. Par la suite, le nom d'une fenétre peut
étre changé respectivement par un appel a la fonction glutSetWindowTitle.

void glutSetCursor (int cursor);
Change l'apparence du curseur pour la fenétre courante. Valeur du curseur :

o GLUT_CURSOR_RIGHT_ARROW Fleche pointant vers le haut et la
droite.

o GLUT_CURSOR_LEFT_ARROW Fleche pointant vers le haut et la
gauche.

o GLUT_CURSOR_INFO Main directionnelle.

o GLUT_CURSOR_DESTROY Crane et os (téte de mort).
o GLUT_CURSOR_HELP Point d'interrogation.

o GLUT_CURSOR_CYCLE Fleche tournant en cercle.

o GLUT_CURSOR_SPRAY Acérosol.

o GLUT_CURSOR_WAIT Montre bracelet.

Initiation a OpenGL — sept 2004 Rémy Bulot

14. Gestion de menus

GLUT_CURSOR_TEXT Point d'insertion pour le texte.
GLUT_CURSOR_CROSSHAIR Croix.

GLUT_CURSOR_UP_DOWN Curseur bidirectionnel pointant vers le
haut et le bas.

GLUT_CURSOR_LEFT_RIGHT Curseur bidirectionnel pointant vers la
gauche et la droite.

GLUT_CURSOR_TOP_SIDE Fleche pointant vers le coté supérieur.
GLUT_CURSOR _BOTTOM_SIDE Fleche pointant vers le coté inférieur.
GLUT_CURSOR_LEFT _SIDE Fleche pointant vers le coté gauche.
GLUT_CURSOR_RIGHT _SIDE Fleche pointant vers le coté droit.

GLUT_CURSOR _TOP_LEFT_CORNER Flé¢che pointant vers le coin
supérieur gauche.

GLUT_CURSOR _TOP_RIGHT_CORNER Flé¢che pointant vers le coin
supérieur droit.

GLUT_CURSOR BOTTOM_LEFT_ CORNER Fle¢che vers le coin
inférieur gauche.

GLUT_CURSOR BOTTOM_RIGHT CORNER Fléche vers le coin
inférieur droit .

GLUT_CURSOR_FULL_CROSSHAIR Grande croix.
GLUT_CURSOR_NONE Curseur invisible.

La bibliothéque GLUT supporte des menus déroulants en cascades. La fonctionnalité est
simple et minimale. La bibliotheque GLUT n'a pas la méme fonctionnalité que X-
Windows ou WindowsXX; mais elle a 1'avantage d'étre portable sur plusieurs plates-
formes. Il est illégal de créer ou éliminer des menus, ou de changer, ajouter ou retirer des
¢léments d'un menu pendant qu'il est en cours d'utilisation.

int glutCreateMenu (void (*func) (int value));

La fonction glutCreateMenu crée un nouveau menu déroulant et retourne un entier
identifiant ce menu. La plage du numéro de menu commence a 1. Implicitement, le menu
courant correspond au nouveau menu créé. L'identificateur de menu peut étre utilisé par la
suite par la fonction glutSetMenu. Lorsque la fonction de rappel est appelée parce qu'un
¢élément du menu a été sélectionné, la valeur du menu courant devient le menu sélectionné.
La valeur de la fonction de rappel correspond a 1'é1ément du menu sélectionné.

Initiation a OpenGL — sept 2004 Rémy Bulot

void glutSetMenu (int menu);
int glutGetMenu (void);

La fonction glutSetMenu permet d'établir le menu courant; la fonction glutGetMenu
retourne la valeur du menu courant. Si le menu n'existe pas, ou si le menu courant
précédent a été détruit, glutGetMenu retourne la valeur 0.

void glutDestroyMenu (int menu);

La fonction glutDestroyMenu détruit le menu identifi¢ par menu. Si menu identifie le
menu courant, la valeur du menu courant devient invalide ou 0.

void glutAddMenuEntry (char * name, int value);

La fonction glutAddMenuEntry ajoute un élément au bas du menu courant. La chaine de
caracteres est affichée dans le menu déroulant. Si un élément du menu est sélectionné par
un utilisateur, la valeur value est la valeur transmise a la fonction de rappel correspondant
au menu courant.

void glutAddSubMenu (char * name, int menu);

La fonction glutAddSubMenu ajoute un sous-menu pour cet élément de menu. Lors de la
sélection de cet élément, un sous-menu menu est ouvert en cascade pour le menu courant.
Un élément de ce sous-menu peut étre par la suite sélectionné.

void glutChangeToMenuEntry (int entry, char *name, int value);

La fonction glutChangeToMenuEntry permet de changer un élément du menu courant en
une entrée du menu. Le paramétre entry indique quel est 1'élément du menu qui doit étre
changé; 1 correspond a I1'élément du haut et entry doit étre entre 1 et
glutGet(GLUT_MENU_NUM_ITEMS) inclusivement. La chaine de caractéres name
est affichée pour l'entrée du menu modifiée. Si un élément du menu est sélectionné par un
utilisateur, la valeur value est la valeur transmise a la fonction de rappel correspondant au
menu courant.

void glutChangeToSubMenu (int entry, char *name, int menu);

La fonction glutChangeToSubMenu permet de changer 1'¢lément du menu du menu
courant en un élément déclenchant un sous-menu. Le paramétre entry indique quel est
I'élément du menu qui doit étre changé; 1 correspond a I'é1ément du haut et entry doit étre
entre 1 et glutGet(GLUT_MENU_NUM_ITEMS) inclusivement. L'identificateur menu
nomme le menu qui est ouvert en cascade lorsque cet ¢lément est sélectionné.

void glutRemoveMenultem (int entry);

La fonction glutRemoveMenultem ¢limine un ¢lément du menu. Le paramétre entry
indique quel est I'élément du menu qui doit étre éliminé; 1 correspond a 1'é1ément du haut
et entry doit étre entre 1 et glutGet(GLUT_MENU_NUM _ITEMS) inclusivement. Les
¢léments du menu en dessous sont renumérotés.

void glutAttachMenu (int button);

void glutDetachMenu (int button);

Initiation a OpenGL — sept 2004 Rémy Bulot

Ces fonctions attachent ou détachent respectivement le menu courant a un des boutons de
la souris.

15. Inscription des fonctions de rappel

La bibliotheque GLUT supporte un certain nombre de fonctions de rappel dont le but est
d’attacher une réponse (une fonction programmeur) a différents types d’événement. [l y a
trois types de fonctions de rappel:

o fenétre : les fonctions de rappel concernant les fenétres indiquent quand réafficher
ou redimensionner la fenétre, quand la visibilité de la fenétre change et quand une
entrée est disponible pour la fenétre;

o menu : une fonction de rappel concernant un menu indique la fonction a rappeler
lorsqu'un ¢lément du menu est sélectionné;

o globale : les fonctions de rappel globales gére le temps et 'utilisation des menus

Les fonctions de rappel attachées a des événements d'entrée doivent étre traitées pour les
fenétres pour lesquelles 1'événement a été effectué.

void glutDisplayFunc (void (*func) (void));

La fonction glutDisplayFunc établit la fonction de rappel pour la fenétre courante. Quand
GLUT détermine que la fenétre doit étre réafficher, la fonction de rappel d'affichage est
appelée.

GLUT détermine quand la fonction de rappel doit étre déclenchée en se basant sur 1'état
d'affichage de la fenétre. L'état d'affichage peut étre modifié explicitement en faisant appel
a la fonction glutPostRedisplay ou lorsque le systéme de fenétrage rapporte des
dommages a la fenétre. Si plusieurs requétes d'affichage en différé ont été enregistrées,
elles sont regroupées afin de minimiser le nombre d'appel aux fonctions de rappel
d'affichage.

Chaque fenétre doit avoir une fonction de rappel inscrite. Une erreur fatale se produit si
une tentative d'affichage d'une fenétre est effectuée sans qu'une fonction de rappel n'ait été
inscrite. C'est donc une erreur de faire appel a la fonction glutDisplayFunc avec le
parametre NULL.

void glutReshapeFunc (void (*func) (int width, int height));

La fonction glutReshapeFunc établit la fonction de rappel de redimensionnement de la
fenétre courante. La fonction de rappel de redimensionnement est déclenchée lorsque la
fenétre est refaconnée. La fonction de rappel est aussi déclenchée immédiatement avant le
premier appel a la fonction de rappel d'affichage aprés la création de la fenétre. Les
parametres width et height de la fonction de rappel de redimensionnement spécifient les
dimensions en pixels de la nouvelle fenétre.

Si aucune fonction de rappel de redimensionnement n'est inscrite ou qu'on fait appel a la
fonction glutReshapeFunc avec la valeur NULL, la fonction de rappel de
redimensionnement implicite est appelée. Cette fonction implicite fait simplement appel a
la fonction glViewport(0, 0, width, height) pour le plan normal de la fenétre courante.

Initiation a OpenGL — sept 2004 Rémy Bulot

void glutKeyboardFunc (void (*func) (unsigned char key, int x, inty);

La fonction glutKeyboardFunc établit la fonction de rappel du clavier pour la fenétre
courante. Lorsqu'un utilisateur tape au clavier (dans une fenétre), chaque touche génére un
appel a la fonction de rappel du clavier. Le paramétre key est le code ASCII de la touche.
L'état d'une touche modificatrice telle majuscule [Shift] ne peut étre connu directement;
son effet se refléte cependant sur le caractére ASCII.

Les paramétres x et y indiquent les coordonnées relatives de la souris par rapport a la
fenétre en pixels lors du déclenchement de I'événement (frappe d'une touche).

Lors de la création dune nouvelle fenétre, aucun fonction de rappel du clavier n'est
enregistrée implicitement et les touches du clavier sont ignorées. La valeur NULL pour la
fonction glutKeyboardFunc désactive la génération de fonction de rappel pour le clavier.

Pendant le traitement d'un événement clavier, on peut faire appel a la fonction
glutGetModifiers pour connaitre 1'état des touches modificatrices (par exemple, la touche
majuscule ou Ctrl ou Alt) lors du déclenchement d'un événement au clavier. Il faut se
référer a la fonction glutSpecialFunc pour le traitement de caractéres non-ASCII, par
exemple les touches de fonction ou les touches fléchées.

void glutMouseFunc (void (*func) (int button, int state, int x, inty);

La fonction glutMouseFunc établit la fonction de rappel de la souris pour la fenétre
courante. Lorsqu'un utilisateur appuie ou relache un des boutons de la souris, chaque
action (appui ou relachement d'un bouton) engendre un appel a la fonction de rappel de la
souris.

Le paramétre button peut prendre les valeurs : GLUT _LEFT _BUTTON,
GLUT _MIDDLE BUTTON, ou GLUT _RIGHT _BUTTON.

Le parametre state indique si la fonction de rappel a été rappelée suite a 1'appui ou au
relachement d'un bouton de la souris et les valeurs permises sont : GLUT_UP et
GLUT_DOWN.

Les paramétres x ety indiquent les coordonnées relatives de la souris par rapport a la
fenétre en pixels lors du déclenchement de 1'événement.

Si un menu est attaché a un bouton de la souris, aucun rappel de la fonction de la souris
n'est effectué¢ pour ce bouton.

Pendant le traitement d'un événement de la souris, on peut faire appel a la fonction
glutGetModifiers pour connaitre I'état des touches modificatrices (Shift ou Ctrl ou Alt).

La valeur NULL pour la fonction glutMouseFunc désactive la génération de fonction de
rappel pour la souris.

void glutMotionFunc (void (*func) (int x, int y));
void glutPassiveMotionFunc (void (*func) (int x, int y));

Les fonctions glutMotionFunc et glutPassiveMotionFunc établissent les fonctions de
rappel pour la fenétre courante pour un déplacement de la souris. La fonction de rappel
spécifiée par glutMotionFunc est appelée lors du déplacement de la souris avec un ou

Initiation a OpenGL — sept 2004 Rémy Bulot

plusieurs boutons appuyés. La fonction de rappel spécifiée par glutPassiveMotionFunc
est appelée lors du déplacement de la souris dans la fenétre avec aucun bouton appuyé.

Les paramétres x ety indiquent les coordonnées relatives de la souris par rapport a la
fenétre en pixels.

La valeur NULL pour les fonctions glutMotionFunc ou glutPassiveMotionFunc
désactive la génération de fonction de rappel lors du déplacement de la souris.

void glutVisibilityFunc (void (*func) (int state));

La fonction glutVisibilityFunc établit la fonction de rappel de visibilité pour la fenétre
courante . Cette fonction de rappel est appelée lorsque la visibilité de la fenétre change. Le
parameétre state peut prendre les valeurs GLUT_VISIBLE ou GLUT_NOT_VISIBLE
selon la visibilité¢ de la fenétre. L'état GLUT_VISIBLE est valable pour une fenétre
partiellement ou totalement visible, i.e. a moins que la visibilit¢é ne change, aucun
rafraichissement de la fenétre n'est effectué. GLUT_NOT_VISIBLE signifie donc
qu'aucun pixel de la fenétre n'est visible.

La valeur NULL pour les fonctions glutVisibilityFunc désactive la fonction de rappel de
visibilité. Si la fonction de rappel de visibilité est désactivée, I'état de la fenétre devient
indéfinie. Tout changement a la visibilité de la fenétre est rapporté. Donc la réactivation de
la fonction de rappel de visibilité garantit qu'un changement de visibilité est rapporté.

void glutSpecialFunc (void (*func) (int key, int x, int y));

La fonction glutSpecialFunc établit la fonction de rappel du clavier pour les caractéres
non-ASCII pour la fenétre courante. Des caracteéres non-ASCII sont générés du clavier
lorsqu'une des touches de fonction (F1 a F12) ou une des touches de direction est utilisée.
Le parameétre key est une constante correspondant a une touche spéciale (GLUT_KEY_¥*).
Les parameétres x et y indiquent les coordonnées relatives de la souris par rapport a la
fenétre en pixels lors du déclenchement d'un événement clavier. Pendant le traitement d'un
événement du clavier, on peut faire appel a la fonction glutGetModifiers pour connaitre
1'état des touches modificatrices (Shift ou Ctrl ou Alt).

La valeur NULL pour la fonction glutSpecialFunc désactive la génération de fonction de
rappel pour le clavier (touches spéciales).

Les valeurs correspondant aux touches spéciales sont les suivantes:
o GLUT_KEY_F1 Touche F1.
o GLUT_KEY_F2 Touche F2.
o GLUT_KEY_F3 Touche F3.
o GLUT_KEY_F4 Touche F4.

o GLUT_KEY_LEFT Touche fléchée vers la gauche.
o GLUT_KEY_UP Touche fléchée vers le haut.

o GLUT_KEY_RIGHT Touche fléchée vers la droite.

Initiation a OpenGL — sept 2004 Rémy Bulot

o GLUT_KEY_DOWN Touche fléchée vers le bas.

o GLUT_KEY_PAGE_UP Touche page précédente (Page up).

o GLUT _KEY_PAGE_DOWN Touche page suivante (Page down).
o GLUT_KEY_HOME Touche Home.

o GLUT_KEY_END Touche End.

o GLUT_KEY_INSERT Touche d'insertion (ins)

Il est a noter que les touches d'échappement [Escape], de recul [Backspace] et
d'élimination [delete] générent des caractéres ASCIIL. Voici quelques valeurs importantes
de caracteres ASCII:

Backspace *

Tabulation °

Return 13

Escape %

Delete 127

void glutMenuStatusFunc (void (*func) (int status, int x, int y));

La fonction glutMenuStatusFunc établit une fonction de rappel pour I'état du menu de
sorte qu'une application utilisant GLUT puisse déterminer si le menu est en utilisation ou
non. Quand une fonction de rappel d'état du menu est inscrite, un appel est effectu¢ avec la
valeur GLUT _MENU _IN_USE pour le paramétre status quand les menus déroulants sont
utilisés; la valeur GLUT_MENU_NOT _IN_USE pour le parametre status est utilisée
lorsque les menus ne sont pas en utilisation. Les paramétres x et y indique la position, en
coordonnées de fenétre, lorsque le menu a été déclenché par un bouton de la souris. Le
parametre func représente la fonction de rappel.

Les autres fonctions de rappel (excepté les fonctions de rappel pour le déplacement de la
souris) continuent a étre actives pendant l'utilisation des menus, de sorte que la fonction de
rappel pour 1'état du menu peut suspendre une animation ou d'autres taches lorsque le
menu est en cours d'utilisation. Une cascade de sous-menus pour un menu initial déroulant
ne génére pas d'appel a la fonction de rappel pour 1'état du menu. Il y a une seule fonction
de rappel pour I'état du menu dans GLUT.

La valeur NULL pour la fonction glutMenuStatusFunc désactive la génération de
fonction de rappel pour 1'état du menu.

void glutldleFunc (void (*func) (void));

La fonction glutldleFunc établit la fonction de rappel au repos de telle sorte que GLUT
peut effectuer des taches de traitement a l'arriére plan ou effectuer une animation continue
lorsque aucun événement n'est re¢u. La fonction de rappel n'a aucun parametre. Cette
fonction est continuellement appelé lorsque aucun événement n'est recu. La fenétre
courante et le menu courant ne sont pas changés avant I'appel a la fonction de rappel. Les
applications utilisant plusieurs fenétres ou menus doivent explicitement établir fenétre
courante et le menu courant, et ne pas se fier a 1'état courant.

Initiation a OpenGL — sept 2004 Rémy Bulot

On doit éviter les calculs dans une fonction de rappel pour le repos afin de minimiser les
effets sur le temps de réponse interactif.

void glutTimerFunc (unsigned int msecs, void (*func) (int value), value);

La fonction glutTimerFunc établit une fonction de rappel de minuterie qui est appelée
dans un nombre déterminé de millisecondes. La valeur du paramétre value de la fonction
de rappel est la valeur du paramétre de la fonction glutTimerFunc. Plusieurs appels de la
fonction de rappel a la méme heure ou a des heures différentes peuvent étre inscrits
simultanément.

Le nombre de millisecondes constitue une borne inférieure avant qu'un appel a la fonction
de rappel soit effectué. GLUT essaie d'effectuer 1'appel a la fonction de rappel aussitot que
possible aprés l'expiration du délai. Il n'y a aucun moyen pour annuler une inscription
d'une fonction de rappel de minuterie. Il faut plutdt ignorer 1'appel en se basant sur la
valeur du paramétre value.

16. Quelques variables d’état de GLUT

La bibliothéque GLUT contient un grand nombre de variables d'état dont un certain
nombre (pas tous) peut étre interrogé directement.

int glutGet (GLenum state);

Les principaux états de GLUT sont (il y en a un bon nombre) :

O

GLUT_WINDOW_X Position en x en pixels relative a l'origine de la
fenétre courante.

GLUT_WINDOW _Y Position en y en pixels relative a 1'origine de la
fenétre courante.

GLUT_WINDOW_WIDTH Largeur en pixels de la fenétre courante.
GLUT_WINDOW_HEIGHT Hauteur en pixels de la fenétre courante.

GLUT_WINDOW_DEPTH_SIZE Nombre total de bits du tampon de
profondeur de la fenétre courante.

GLUT_WINDOW_CURSOR Le curseur courante de la fenétre courante.

GLUT_SCREEN_WIDTH Indique la largeur de 1'écran en pixels; 0
indique que la largeur est inconnue ou non disponible.

GLUT_SCREEN_HEIGHT Indique la hauteur de 1'écran en pixels; 0
indique que la hauteur est inconnue ou non disponible.

GLUT_INIT_WINDOW_X Position initiale en x en pixels relative a
l'origine de la fenétre courante.

GLUT_INIT_WINDOW_Y Position initiale en y en pixels relative a
l'origine de la fenétre courante.

Initiation a OpenGL — sept 2004 Rémy Bulot

o GLUT_INIT_WINDOW_WIDTH Largeur initiale en pixels de la fenétre
courante.

o GLUT_INIT_WINDOW_HEIGHT Hauteur initiale en pixels de la fenétre
courante.

o GLUT_ELPASED TIME Nombre de millisecondes depuis l'appel a
glutlinit ou depuis le premier appel a glutGet(GLUT_ELAPSED TIME).

La fonction glutGet interroge les variables d'état représenté par des entiers de la
bibliothéque GLUT. Le paramétre state détermine quel état doit étre retourné. Les
variables d'état dont le nom commence par GLUT_WINDOW retournent des valeurs
correspondant a la fenétre courante. Les variables d'état dont le nom commence par
GLUT_MENU retourne des valeurs concernant le menu courant. Les autres variables
correspondent a des états globaux. Si une requéte est incorrecte, la valeur -1 est retournée.

int glutGetModifiers (void);
Les valeurs retournées par cette fonction sont:

o GLUT_ACTIVE_SHIFT Une des touches modificatrices Shift ou
CapsLock.

o GLUT_ACTIVE_CTRL La touche modificatrice Ctrl.
o GLUT_ACTIVE_ALT La touche modificatrice Alt.

La fonction glutGetModifiers retourne la valeur d'une des touches modificatrices
lorsqu'un événement d'entrée est généré a partir du clavier, d'une touche spéciale ou de la
souris. On ne doit faire appel a cette fonction que lors du traitement dune fonction de
rappel du clavier, des touches spéciales ou de la souris. Le systéme de fenétrage peut
intercepter certaines touches modificatrices; dans ce cas, aucun appel a des fonctions de
rappel n'est effectué.

17. Rendu des polices de caractéres

La bibliothéque GLUT supporte deux types de polices de caractéres: les polices haute
qualité [stroke fonts] pour lesquelles chaque caractére est construit a I'aide de segments
de lignes et les polices de basse qualité [bitmap fonts] qui sont formées d'un ensemble de
pixels et affichées avec la fonction glbitmap. Les polices haute qualité ont l'avantage de
pouvoir étre mises a I'échelle. Les polices basse qualité sont moins flexibles mais
habituellement plus rapide a afficher.

void glutBitmapCharacter (void *font, int character);

Sans aucune liste d'affichage, la fonction glutBitmapCharacter affiche le caractére
character selon la police de caractéres font. Les polices de caractéres disponibles sont:

GLUT BITMAP 8 BY 13, GLUT BITMAP 9 BY 15,
GLUT BITMAP TIMES ROMAN 10, GLUT BITMAP TIMES ROMAN 24,
GLUT BITMAP HELVETICA 10, GLUT BITMAP HELVETICA 12,
GLUT BITMAP HELVETICA 18

Initiation a OpenGL — sept 2004 Rémy Bulot

Pour une chaine de caractéres, on utilise la fonction glutBitmapCharacter dans une
boucle pour la longueur de la chaine. Pour se positionner pour le premier caracteére de la
chaine, on utilise la fonction glRasterPos2f.

int glutBitmapWidth (GLUTbitmapFont font, int character);

La fonction glutBitmapWidth retourne en pixels, la largeur d'un caractére dans une police
de caracteres supportée. Pendant que la largeur d'une police de caractéres peut varier (la
largeur d'une police fixe ne varie pas), la taille maximum d'une police est toujours fixe.

void glutStrokeCharacter (void * font, int character);

En n'utilisant aucune liste d'affichage, le caractére character est affiché selon la police de
caracteres font. Les polices de caractéres sont: GLUT_STROKE ROMAN et
GLUT_STROKE_MONO_ROMAN (pour les caracteres ASCII de 32 a 127).

La fonction glTranslatef est utilisée pour positionner le premier caractére dune chaine de
texte.

void glutStrokeWidth (GLUTstrokeFont font, int character);

La fonction glutStrokeWidth retourne en pixels, la largeur d'un caractére dans une police
de caractéres supportée. Pendant que la largeur d'une police de caractéres peut varier (la
largeur d'une police fixe ne varie pas), la taille maximum d'une police est toujours fixe.

Initiation a OpenGL — sept 2004 Rémy Bulot

18. Rendu d'objets géométriques

Bien que cela ne soit pas le réle principal de GLUT, il existe quelques fonctions permettant de
construire des objets géométriques 3D de base.

void glutSolidSphere (GLdouble radius, GLint slices, GLint stacks);
void glutWireSphere (GLdouble radius, GLint slices, GLint stacks);

Affichent une sphére centrée a l'origine de rayon radius. La sphére est subdivisée en
tranches et en pile autour et le long de I'axe des z.

void glutSolidCube (GLdouble size);
void glutWireCube (GLdouble size);

Affichent un cube plein ou en fil de fer centré a 'origine. La largeur du c6té est donnée par
Size.

void glutSolidCone (GLdouble base, GLdouble height, GLint slices, GLint stacks);
void glutWireCone (GLdouble base, GLdouble height, GLint slices, GLint stacks);

Affichent un cone plein ou en fil de fer. La base est a z=0 et le sommet du cone est a
z=height. Le cone est subdivisé en tranches autour de I'axe des z et en pile le long de 1'axe
des z.

void glutSolidTorus (GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint rings);
void glutWireTorus (GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint rings);

Affichent un tore plein ou en fil de fer. Le rayon intérieur innerRadius est utilisé pour
calculer une section de cercle qui tourne autour du rayon extérieur outerRadius. Le tore
est composé de rings anneaux subdivisées en nsides cotés.

void glutSolidDodecahedron (void);
void glutWireDodecahedron (void);

Affichent un dodécaedre (12 cotés réguliers) plein ou en fil de fer centré a l'origine de
rayon 3 en coordonnées de modélisation.

void glutSolidOctahedron (void);
void glutWireOctahedron (void);

Affichent un octaédre plein ou en fil de fer centré a 1'origine de rayon 1 en coordonnées de
modélisation.

void glutSolidTetrahedron (void);
void glutWireTetrahedron (void);

Affichent un tétra¢dre plein ou en file de fer centré a l'origine de rayon 3 en coordonnées
de modélisation.

void glutSolidIcosahedron (void);

Initiation a OpenGL — sept 2004 Rémy Bulot

void glutWirelcosahedron (void);

Affichent un icosaédre plein ou en file de fer centré a l'origine de rayon 1.0 en
coordonnées de modélisation.

void glutSolidTeapot (void);
void glutWireTeapot (void);

Les fonctions glutSolidTeapot et glutWireTeapot affichent une théiére pleine ou en fil de
fer.

Initiation a OpenGL — sept 2004 Rémy Bulot
III. Les primitives graphiques

Toute primitive surfacique 3D est décomposée en triangles par OpenGL.

Le triangle, la ligne et le point sont donc les seules primitives géométriques traitées par le hardware, ce
qui permet de ramener toutes les interpolations au cas linéaire (facile a traiter de fagon incrémentale au
niveau hardware).

Bien que cela ne rentre pas dans la catégorie des primitives, nous allons tout d’abord présenter comment
définir la couleur (voir annexe) qui sera employée pour le tracé (on choisit en quelque sorte son crayon
avant de dessiner) . Cette couleur est mémorisée au moyen d’une variable d’état que 1’on peut modifier a
tout moment. Les primitives qui seront tracées par la suite recevront cette couleur jusqu’a la prochaine
modification de cette variable.

6. La couleur

Une couleur est généralement caractérisée par 3 valeurs réelles (dans I’ordre : le rouge, le vert et le bleu)
ou chaque composante doit varier dans (0.0, 1.0]. Cette représentation flottante est privilégiée au
niveau hardware, notamment pour les calculs de rendu.

Une quatrieme valeur, dite composante alpha, peut étre spécifiée. Il s’agit d’un coefficient d opacité qui
vaut 1 par défaut. Une valeur plus faible permettra de définir une certaine transparence pour une face et
de « voir » les objets qui se trouvent derriere. La gestion de ce coefficient pose un certain nombre de
problémes que nous préférons ne pas aborder pour une initiation & OpenGL. La composante alpha sera
forcée a 1 lorsqu’une fonction OpenGL la réclame.

7. La couleur du fond

Un dessin commence sur une feuille dont il faut définir la couleur (le fond). Cette opération pourrait
consister a tracer un rectangle de cette couleur, mais :

- ce fond n’est pas simple a définir dans le cas d’une scéne 3D projetée dans la fenétre,

- il est plus efficace d’utiliser une commande spéciale (cablée),
Il est a noter que colorier le fond consiste aussi a effacer ce qu’il y avait dans la fenétre de visualisation en
passant une nouvelle couche de « peinture ».

glClearColor (0.0, 0.0, 0.0, 1.0) ; /* définit la couleur d’effacement, ici noire */

La couleur du fond est affectée a une variable d’état et sera utilisée pour chaque appel de
glClear (GL_COLOR BUFFER BIT) ; /* effacement du contenu de la fenétre */

GL_COLOR BUFFER BIT est une constante GL qui désigne les pixels de la fenétre d’affichage.

Remarque : on spécifie la composante alpha qui vaut généralement 1.0 (fond opaque !).

8. La couleur des primitives

glColor3f (rouge, vert, bleu) permet de spécifier la couleur pour toutes les primitives graphiques
qui vont suivre. Il est possible de rajouter un quatriéme parameétre pour caractériser 1’opacité (parameétre
alpha) mais sa gestion n’est pas simple sous OpenGL et nous préférerons 1’ignorer ici.

Quelques exemples de couleurs :

Initiation a OpenGL — sept 2004 Rémy Bulot

glColor3f (0.,) ; /* noir */
glColor3f (1.,) ; /* blanc */
glColor3f (0.5, 0.5, 0.5) ; /* gris moyen */
glColor3f (1.,) ; /* rouge */

On peut aussi utiliser la notation vectorielle :
GLfloat rouge[3] = {1., 0., 0.};
GLfloat jaune[3] = {1., 1., 0.};
glColor3fv (rouge) ;

On conseille de séparer, quand on le peut, I’affectation d’une couleur de la construction géométrique d’un
objet. On favorise ainsi la conception modulaire. Cela permet par exemple de construire plusieurs
« clones » de couleurs différentes :

glColor3fv (rouge) ;

dessineBicyclette (position, direction);
glColor3fv (jaune) ;

dessineBicyclette (autrePosition, autreDirection);

Une couleur peut étre employée « brutalement » sans faire référence a aucun modele de lissage ou

d’éclairage. On spécifie simplement une fois avant le tracé :
glShadeModel (GL_FLAT)

OpenGL propose aussi des rendus plus « sophistiqués » avec 1’option glshadeModel (GL_ SMOOTH) qui
permet d’obtenir des dégradés de couleur ou de prendre en compte I'orientation des faces par rapport aux
éclairages (cette partie sera développée dans la partie V1. Amélioration du rendu de ce cours).

9. Primitives graphiques

Les fonctions glBegin(..) et glEnd () délimitent la suite de sommets associés au tracé.
Cette suite de sommets pourra aussi bien définir des lignes brisées (contours) que des polygones
(éléments surfaciques). Un polygone doit étre obligatoirement plan.

Un sommet est défini par la fonction glvertex* (..)

Par exemple, on dessine un triangle « plein » de la fagon suivante:
glColor3f(l., 0., 0.) ; /* crayon rouge */
glBegin (GL_ TRIANGLES) ;

/* un triangle */
glVertex3f (x1,yl,z1l);
glVertex3f (x2,y2,22)
glVertex3f (x3,vy3,23);
/* un autre triangle */
glVertex3f (x4,vy4,z4);
glVertex3f (x5,y5,25);
glVertex3f (x6,y6,26);
/* etc. */

glEnd() ;

’

Ifaqynnentdengegin spécifie le type de primitive (OpenGL en propose 10), notamment
des plus complexes (qui seront décomposées en triangles...) :

- des quadrilateres (convexes et plans) avec GL_ QUADS,

- des polygones (convexes et plans) avec GL_ POLYGON.

Initiation a OpenGL — sept 2004 Rémy Bulot

On peut également ne tracer que les sommets :
glBegin (GL_POINTS) ;
glVertex2i (x1,vy1l);
glVertex2i (x2,v2);
glVertex2i (x3,vy3);
glVertex2i (x4,v4)
glEnd() ;

’

On notera au passage que glvertex est polymorphe :

* on peut fournir 2 a 4 composantes (on peut se passer de la 3iéme coordonnée si I'on fait des tracés 2D,
le 4iéme parametre correspond a la coordonnée homogene...);

* on peut utiliser des GLfloat, des GLdouble, des GLshort, des GLint pour les coordonnées (suffixe

f,d,soui);
* on peut citer explicitement les coordonnées, ou passer par un vecteur (sur-suffixe v).
GLfloat P1[3] = {0, 0, 0} ;
GLfloat P2[3] = {4, 0, 0} ;
GLfloat P3[3] = {0, 2, 0} ;
) 4

glBegin (GL_LINE LOOP) ;
glVertex3fv (P1l);
glVertex3fv (P2) ;
glVertex3fv (P3);
glEnd() ;

Valeurs du paramétre de g1Begin :

glBegin (GL primitive);
glVertex3fv (P1l);
glVertex3fv (
glVertex3fv (
glVertex3fv (
glVertex3fv (
glVertex3fv (

glEnd () ;

P2 e ®P5

L]
P1 P6

GL_POINTS

Initiation a OpenGL — sept 2004

P6 P5
oe———————*©

N

P2 P3

GL_LINES

P3 P6
P1 ' ! » P5
P2 P4

GL TRIANGLES

P3 P8 P7
P4
P5
P1 P P6
GL _QUADS

Remarques sur I’optimisation du code GL :

Rémy Bulot
P6 PS5
Pl P4
P2 P3

GL_LINE_LOOP

PS5

P6 P3

P1 P2

GL_TRIANGLE_FAN

P6 P5
Pl P4
P2 P3
GL_LINE STRIP
P3 P5
P1 P6
P2 P4
GL_TRIANGLE_STRIP
P3 P5 P7
P1
P2 P6 P8

P4

GL_QUAD _STRIP

P6 P5
P1 P4
P P3
GL_POLYGON

- GL_TRIANGLES est plus rapide que GL POLYGON
- Il est plus efficace de regrouper le maximum de primitives entre g1Begin () et glEnd ().
- Lanotation vectorielle (suffixe v) est généralement plus rapide.

10. Faces avant et arriére

L’orientation d’un polygone est définie par 1’ordre dans lequel on parcourt ses sommets lorsqu’on le
dessine : traditionnellement, on définit sa face avant vers nous lorsque 1I’on parcourt ses sommets dans le
sens trigonométrique. C’est cette régle qui est aussi appliquée par OpenGL pour définir I’avant et 1’arri¢re

d’une face.

OpenGL permet de traiter différemment les faces avant et arriére d’un polygone, soit par un rendu

différent pour mieux les distinguer, soit pour optimiser les calculs en « oubliant » de dessiner un coté

d’une face (par exemple la face intérieure du coté d’un cube). Cette distinction s’opere a 1’aide de :
GL_FRONT, GL_BACK, GL_FRONT AND BACK.

On peut obtenir des polygones pleins, ou seulement leurs contours :

glPolygonMode (GL_FRONT, GL FILL); /* faces */

glPolygonMode (GL_BACK, GL_LINE) ;

/* contours */

Initiation a OpenGL — sept 2004 Rémy Bulot

Ou encore, supprimer une des deux faces (gain de temps !) :
glCullFace (GL_BACK) ;
glEnable (GL_CULL FACE) ;

Dans le cas d’une scéne éclairée, il faudra préciser:
glLightModeli (GL_LIGHT MODEL_TWO_SIDE,GL_TRUE)

si I’on veut éclairer les deux cotés d’une face.

’

Initiation a OpenGL — sept 2004 Rémy Bulot

IV Construction d’une scene 3D

Il s’agit de définir ici les différents objets qui composent une scene, et de les positionner dans 1’espace a
I’aide de transformations géométriques 3D.

Sous GLUT, la scéne est construite dans la fonction déclarée par glutbisplayFunc avant de lancer la
boucle d’événement (glutMainLoop). On rappelle que cette fonction d’affichage est déclenchée par le
systeme :

- soit parce que la fenétre a été modifiée (redimensionnement),

- soit parce que le programmeur I’a demand¢ par I’intermédiaire de la fonction glutPostRedisplay ()
OpenGL appliquera automatiquement la matrice de projection aux objets que I’on a construit pour obtenir
une image 2D qui sera affichée dans la fenétre.

6. Transformations géométriques de bases
La construction d’un objet et son positionnement dans la scéne vont se faire a partir de trois
transformations géométriques de bases :

* la translation,

* larotation (en degré) autour d’un axe porté par un vecteur,
* [’homothétie suivant les trois axes X, Y et Z.

Ces transformations sont représentées par des matrices de dimension 4 dans 1’espace projectif. Appliquer
une de ces transformations consiste a opérer sa matrice sur les coordonnées des différents sommets de
I’objet considéré.
7. Préliminaire : les Espaces Projectifs
a. Rappel sur les transformations 2D

a) Translation 2D
Soit un vecteur T(dx, dy) et un point P(x, y), alors le translaté P’(x’, y’) de P par T est donné par :

PP=P+T
b) Homothétie 2D

elle se fait par rapport a ’origine.
Ix" | lh O] x|
[= [
ly" | 10 kI Iyl

I’homothétie est dite uniforme si h.x = k.y et différentielle sinon

¢) Rotation 2D

Initiation a OpenGL — sept 2004 Rémy Bulot

Une rotation d’angle 0 autour de I’origine est définie par :
[x" | lcos B8 -sin 0| | x|
I = [
[y’ | |sin O cos 0] |yl

b. Coordonnées homogénes en 2D

Si I’enchainement d’homothétie et de rotation s’exprime sous la forme d’un produit matriciel, la
translation est une opération de nature différente. Celle-ci peut toutefois étre aussi définie comme un
produit matriciel si les objets sont exprimés en coordonnées homogeénes.

Les coordonnées homogenes d’un point sont obtenues en ajoutant une coordonnée supplémentaire égale a
1. On considere que tout point (X, y, w) dans I’espace projectif est un représentant du point (x/w, y/w)
dans I’image initiale.

On remarquera que :

- un point image est associé a une droite dans I’espace projectif,

- les points pour lesquels w=0 sont des points a I’infini,

- I’enchainement des trois transformations précédentes s’expriment sous la forme d’un produit

matriciel.

x’ 1 0 dx X x' hx 0 0 X b:44 cosB® -sinB O X
y' =10 1 dyl|.|y y'|=10 hy O y vy’ |=|sinB cosO 0 |. |y
1 0O 0 1 1 1 0O 0 1 1 1 0 0 1 1

c. Composition de transformations 2D
Rappel : le produit matriciel est associatif mais non commutatif.

Etudions la rotation autour d’un point C (cx, cy). Cette opération se décompose en trois transformations
¢lémentaires :

- une translation de C vers O

- larotation de 6 autour de O

- une translation de O vers C

et qui se traduit par une formule de la forme : P = T(cx,cy) . R(0) . T(-cx,-cy) . P

Initiation a OpenGL — sept 2004 Rémy Bulot

Cette opération étant effectuée sur tout les points P de ’image, on peut précalculer la composition des
transformations :

1 0 cx cosO -sinB O 1 0 -cx
0 1 cy sinB® cosO O 0 1 -cy
0 0 1 0 0 1 0 0 1
1 0 cx cosO -sinB -cosB.cx+sinb.cy
0 1 cy sin® cosB -sinB.cx-cosO.cy
0O 0 1 0 0 1
cos® -sinB (l-cosB) .cx+sinB.cy
sinB® cosB -sinB.cx+(1l-cosB) .cy
0 0 1

On démontre que la combinaison de ces trois transformations géométriques de base donne toujours une
matrice de la forme :

a b c
d e f
0O 0 1

d. Extension au 3D

Nous nous plagons dans un repére orthonormé direct ou les rotations positives s’effectuent dans le « sens
inverse des aiguilles d’'une montre », a savoir :

Axes de rotation Direction d’une rotation positive
X yaz
y zax
z xXay

L’utilisation de coordonnées homogenes est naturellement applicable au 3D et les transformations
géométriques de bases sont représentées par des matrices 4x4.

Un point image (X, y, z) est représenté par (X.w, y.w, z.w, W), (X, y, z, 1) étant les coordonnées
homogenes.

Les matrices associées aux translations et aux homothéties sont respectivement de la forme :

Initiation a OpenGL — sept 2004 Rémy Bulot

1 0 0 dx hx 0 0 O
0O 1 0 dy 0 hy 0 O
10 1 dz 00 hz 0
O 0 0 1 O 0 0 1

Les rotations se décomposent facilement suivant les axes du repére.
Les rotations autour de Oz, Ox, et Oy sont respectivement de la forme :

cosB -sinB 0 0 1 0 0 0 cosB O sinB O
sin® cosO 0 0 0 cosB -sinb 0 0 1 0 0
0 0 1 0 0 sinB cosB 0 -sinB O cosB O
0 0 0 1 0 0 0 1 0 0 0 1

8. Transformations géométriques sous OpenGL

OpenGL dispose d’une matrice de transformation courante pour la modélisation, matrice qui est rendue
active par la fonction :
glMatrixMode (GL_MODELVIEW)

Cette matrice de modélisation est appliquée automatiquement a tous les objets qui vont étre tracés.

Le positionnement d’un objet dans une scéne est décomposé comme une succession de transformations de
base qu’OpenGL traduit par un produit matriciel (cf les espaces projectifs). La matrice de transformation
courante est construite :

« apartir de la matrice identité,

* et par produits successifs avec des matrices d’opérations de base.

La matrice de modélisation est initialisée avec 1’identité en appelant la fonction :
glLoadIdentity ()

Il est possible de gérer soit méme les opérations de base mais OpenGL propose des fonctions simples ou

le produit matriciel avec la matrice de transformation courante est implicite :
glTranslatef (GLfloat x, GLfloat y, GLfloat z) ;
glRotatef (GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
glScalef (GLfloat x, GLfloat y, GLfloat z) ;

Les appels successifs de ces fonctions composent donc une seule transformation.

Remarque : il faut lire les opérations effectuées sur 1’objet dans I’ordre inverse de leur apparition dans le
code.

’

Initiation a OpenGL — sept 2004 Rémy Bulot

/* matrice de transformation A */ /* matrice de transformation B */
glLoadIdentity () ; /* 1 */ glLoadIdentity () ; /* 1 */
glTranslatef (0, 5, 0); /* 2 */ glRotatef (45, 1, 0, 0); /* 2 */
glRotatef (45, 1, 0, 0); /* 3 */ glTranslatef (0, 5, 0); /* 3 */
/* objet qui subira la transformation*/ /* objet qui subira la transformation*/
dessineBoite () ; dessineBoite () ;
1000 1000
o 100 o 100
010 010
0 O 01 0 O 01
| |
Evolution de la matrice de modélisation (A) Evolution de la matrice de modélisation (B)
VA Z
=0~ B
T
X X

9. Gestion des transformations

OpenGL dispose en fait d’une pile de matrices de modélisation qui va faciliter la description
hiérarchique d’un objet complexe. La matrice courante (la seule active) est celle se trouvant au
sommet de pile, mais les jeux d’empilage et dépilage permettront d’appliquer la méme
transformation a plusieurs assemblages ayant eux mémes nécessité des transformations spécifiques
pour leur construction.

glLoadIdentity() : mettre 1’identité au sommet de pile
glPushMatrix () : empiler
glPopMatrix () : dépiler

Si ’opération de dépilage ne présente pas de difficulté particuliére (on retrouve la transformation
précédente), I’opération d’empilage réclame quelques précisions : il s’agit en fait d’une duplication
de la matrice se trouvant au sommet de pile. Toutes les opérations qui seront effectuées par la suite
seront combinées a la transformation initiale (dupliquée dans le sommet de pile) de sorte que le
sous-objet que I’on est en train de construire « hérite » de la transformation appliquée globalement a
I’objet.

Bien s, il est toujours possible de faire suivre un glPushMatrix () par glLoadIdentity () pour

oublier temporairement une matrice de modélisation.

Par exemple, pour dessiner une voiture, on définira ce qu’est la construction d’une roue dans le
repere absolu, et on se positionnera successivement aux quatre coins de la voiture (repére voiture)
avant d’appeler cette procédure. Si la voiture a été positionnée a un endroit spécifique de la scéne,
ses roues subiront aussi cette transformation « globale ».

Initiation a OpenGL — sept 2004 Rémy Bulot

void dessineRoueEtBoulons ()
{ int 1 ;

dessineRoue () ;

for (1i=0; 1<3; i++)

{ glPushMatrix() ;
glRotatef (120*i, 0, 0, 1) ;
glTranslatef (2, 0, 0) ;
dessineBoulon () ;

glPopMatrix () ;

}

}

void dessineVoiture ()
{ int i, posx[4]={20, 20, -20, -20}, posz[4]={8, -8, 8, -8};
dessineCarrosserie() ;
for (1i=0; 1i<4; i++)
{ glPushMatrix() ;
glTranslatef (posx[i], 5, posz[i]) ;
dessineRoueEtBoulons () ;
glPopMatrix () ;
}

V : matrice positionnant la voiture dans la scéne (repére « scéne »)
Ag : matrice définissant la roue avant gauche de la voiture dans le référentiel « voiture »
Ad : matrice définissant la roue avant droite de la voiture dans le référentiel « voiture »

/ / Construction d’une roue
Y Y

glPushMatrix avant gauche
>
Construction d’une roue
glPopMatrix glPushMatrix avant droit
>

Evolution de la pile de modélisation dans la construction hiérarchique d’une voiture

Remarques :
a. Lapile est initialisée par OpenGL avec la matrice identité.
b. Il est intéressant de conserver la matrice identité en bas de pile pour éviter de
rappeler systématiquement glLoadIdentity() (=> une construction débute
toujours par un push)

Initiation a OpenGL — sept 2004 Rémy Bulot

10. Listes d’affichage

Il est possible de stocker une suite de routines OpenGL (a I’exception de quelques fonctions...) dans
une liste qui pourra étre réutilisée plusieurs fois. Il y a alors une précompilation des instructions GL
et cette opération sera particuliérement rentable lorsqu’un objet « définitif » est dessiné plusieurs
fois, soit parce qu’il constitue une primitive employée a plusieurs reprises (roue d’une voiture), soit
parce qu’il se déplace dans la scéne (animation).

f.

g.

une liste est identifiée par un numéro (GLint) strictement positif,

la création et la suppression des listes est gérée par OpenGL
glGenLists (nbIndex) attribue nbIndex numéros de listes consécutifs, le premier
numéro est retourné par cette fonction (0 si échec d’allocation),

glDeleteLists (numListe, nbre) restitue au systéme le nbre de listes indiqué a
partir de numListe.

glNewlList (numListe, mode) €t glEndList () permettent de créer une liste,
glcalllList (numListe) exécute une liste d’affichage,

Par exemple, pour dessiner un tricycle, on pourra stocker la construction d’une roue dans une liste
et appeler 3 fois cette liste apres avoir définie les spécificités de chaque roue (position, taille).

int listeRoue ;

listeRoue = glGenLists(l);

glNewList (listeRoue, GL COMPILE) ; // ou encore GL COMPILE AND EXECUTE
suite d’instructions pour dessiner une roue de tricycle
glEndList () ;

void dessinerTricycle ()

{

transformations pour positionner la roue arriére gauche

glCalllist (listeRoue) ;

transformations pour positionner la roue arriere droite

glCalllist (listeRoue) ;

transformations pour positionner la roue avant

glScalef (1.2, 1.2, 1.) ; // roue avant 20% plus grande mais méme largeur
glCalllist (listeRoue) ;

Remarque : Une liste peut-Etre construite avant de déclencher la boucle d’événements dans le
main () (glutMainLoop ()). Il faut toutefois que le processus graphique soit déja initialisé (i.e.
aprés glutInit () et glutInitDisplayMode ()) et que I’on choisisse I’option GL_ COMPILE .

Initiation a OpenGL — sept 2004 Rémy Bulot

V. Visualisation d’une scéne

7. Cadrage

Il ne faut pas confondre la fenétre d’affichage (définie par le systeme de fenétrage qui est
indépendant d’OpenGL) et le cadre (partie de fenétre) dans lequel on veut visualiser la scéne. De
méme que 1’on colle une photo sur un poster, on va positionner I’image de la scéne dans la fenétre
en la déformant éventuellement pour la faire rentrer dans un cadre (il faut conserver le ratio
largeur/hauteur pour obtenir une image non « déformée »). C’est le role de la fonction g1viewport .

glViewport (GLint x0, GLint y0, GLint largeur, GLint hauteur)
x0 et yo précisent le coin inférieur gauche du cadre
largeur et hauteur précisent ses dimensions en pixels

20X
Ma fenétre

hauteur

yo||--==--------

largeur

GLUT envoie un événement pour dire que la fenétre courante a été créée, déplacée
ou redimensionnée. Cet événement est intercepté par la fonction désignée dans le
main par glutReshapeFunc (monCadrage dans notre exemple) et 1l’affichage de la
scéne est automatiquement relancée. Le programmeur pourra, a cette occasion,
décider d’adapter ou non la projection de la scene aux dimensions de la fenétre.
Exemple

void monCadrage (int large, int haut)
/* les arguments sont fournis par GLUT : nouvelle taille de la fenétre */
{ /* taille du cadre d’affichage dans la fenetre */
glvViewport (0, 0, large, haut) ;
/* On peut a cette occasion redéfinir la projection de la scene */
glMatrixMode (GL PROJECTION) ;
glLoadIdentity () ;
gluPerspective (90., (float)large/ (float)haut, 5, 20) ;
glMatrixMode (GL_MODELVIEW) ;
/* la fonction afficheMaScene () va etre automatiquement
declenchee par le systeme */

Initiation a OpenGL — sept 2004 Rémy Bulot
8. Le mode projection

Lorsqu’une sceéne est construite, sa visualisation nécessite deux types de transformation :
- des transformations dans I’espace 3D qui permettent de positionner le point de vue et les
éventuels éclairages si I’on veut obtenir un rendu réaliste,
- la transformation qui consiste a projeter cette scéne 3D sur une fenétre 2D et qui caractérise
les propriétés de la prise de vue.

Pour le premier type de transformation, on utilise encore la matrice de modélisation
(cL_MoDELVIEW) : les lumiéres et le point de vue sont positionnés comme les autres acteurs de la
scene.

Pour la projection 2D, openGL dispose d’une autre matrice spécifique : la matrice de projection .

Une seule de ces deux matrices est active & un moment donné et 1’on bascule de I’une a I’autre

avee |
glMatrixMode (GL_PROJECTION)

ou bien
glMatrixMode (GL_MODELVIEW)

Dans la pratique, on pourra définir la projection soit :
- dans la fonction de cadrage (cf la fonction cadrage ci-dessus),
- dans la fonction d’affichage déclarée par glutDisplayFunc (afficheMaScene).

Dans ce deuxiéme cas, la fonction afficheMaScene a la structure suivante :

void afficheMaScene (void)
{ glMatrixMode (GL PROJECTION) ;
definir la projection
glMatriXMode(GLiMODELVIEW) ;
glClear (GL_COLOR BUFFER BIT); /* définit le fond de la scéne */
construire la scene
glutSwapBuffers(); /* ou glFlush() */

int main (int argc, char **argv)

{

glutReshapeFunc (monCadrage) ;
glutDisplayFunc (afficheMaScene) ;

glutMainLoop ();
return 0;

Remarque : dans les exemples de ce document, le cadrage et la projection sont definis dans la méme
fonction monCadrage (int 1, int h)

9. Caractéristiques de I’appareil photo

OpenGL propose deux types de projection : la projection en perspective et la projection paralléle.

Initiation a OpenGL — sept 2004 Rémy Bulot

\ \ |
Fenétre
de vue
plan de |
projection N.
centre de Mde
projection projection

Pour un volume visionné en perspective conique :
gluPerspective (GLdouble focale, GLdouble aspect, GLdouble devant, GLdouble fond)

focale : angle du champ de vision (dans [0°, 180°])
aspect : rapport largeur/hauteur du plan de devant
devant, fond : distances (valeurs positives) du point de vue aux plans de clipping.

N\ \

argeu
fond hauteur

devant
focale
centre de

projection

Pour un volume visionné en perspective cavaliére (projection parallele) :
glOrtho (GLdouble gauche, GLdouble droite, GLdouble bas, GLdouble haut,
GLdouble devant, GLdouble fond)

définit la « boite » de visualisation ou (gauche, bas, devant) sont les coordonnées du point
avant-inférieur-gauche et (droite, haut, fond) sontles coordonnées du point arriere-
supérieur-droit.

Remarques :

- Bien que cela soit possible, on ne compose généralement pas les projections.

- Il est important de minimiser au mieux la distance entre le plan de clipping avant et le plan de
clipping arriere. En effet, OpenGL dispose d’une précision limitée pour représenter I’intervalle
des profondeurs et une mauvaise gestion peut positionner des sommets artificiellement dans le
méme plan par effet d’arrondi, au risque de créer des artefacts de rendu. Ce phénomeéne peut se
manifester occasionnellement lorsque 1’on fait tourner un objet.

Initiation a OpenGL — sept 2004 Rémy Bulot
10. Positionnement de I’appareil photo

Le point de vue se situe par défaut a I’origine en regardant vers 1’axe des z négatifs. Pour visualiser
une scene, on peut

- soit la reculer pour la mettre dans le champ de vision,

- soit déplacer le point de vue avec gluLookAt

Bien que le positionnement du point de vue soit déterminant pour effectuer la projection, on
comprend pourquoi celui-ci doit étre défini en mode GL_MODELVIEW : c’est un déplacement relatif
de la scene.

glulLookAt (GLdouble Px, GLdouble Py, GLdouble Pz, // position de 1’appareil
GLdouble Cx, GLdouble Cy, GLdouble Cz, // point visé dans la scéne
GLdouble Hx, GLdouble Hy, GLdouble Hz) // haut de 1’appareil
Cas

On peut maintenant donner un schéma un peu plus précis de la fonction d’affichage :

void afficheMaScene (void)

{ /* on recule de 5 dans la scéne */
glClear (GL_COLOR _BUFFER BIT);
glLoadIdentity () ;
gluLookaAt (0,0,5, 0,0,0, 0,1,0) ;
construlre la scene
glutSwapBuffers(); /* ou glFlush() */

11. Z-buffer

Lorsque deux objets sont positionnés dans une scéne, il est possible que I’un des deux soit
partiellement ou totalement caché par I’autre en fonction de la position de 1I’observateur. Or, en
pratique, le dernier dessiné écrase une partie du premier, et ceci indépendamment du point de vue
qui peut changer.

L’algorithme du peintre est une solution qui n’est plus guere utilisée. Il consiste a trier les objets
suivant 1’ordre décroissant de leur distance au point de vue et a les dessiner dans cet ordre. Les
objets en premier plan seront dessinés en dernier et « écraseront » les parties cachées des objets en
arriére plan.

(/\ O
\J

Découpage d’objets pour disposer d’'une relation d’ordre totale.

Initiation a OpenGL — sept 2004 Rémy Bulot

Bien qu’un peu plus coliteux en espace mémoire, on préfére maintenant utiliser un tampon de
profondeur (distance au point de vue) qui permet de s’affranchir de I’ordre de construction des
objets : le Z-buffer. Le Z-buffer a la taille de la fenétre de projection et est initialisé¢ avec la plus
grande profondeur possible (généralement le plan de clipping arriére). Lorsqu’un objet est dessingé,
les pixels qui lui correspondent dans le plan de projection ont une valeur de profondeur qui est
comparée a celle stockée dans le Z-buffer. Si un pixel est plus éloigné, il est abandonné. Sinon, le
Z-buffer regoit sa profondeur et la fenétre recoit ses valeurs chromatiques.

Mise en ceuvre :

On déclare 1’utilisation du Z-buffer a ’initialisation avant de rentrer dans la boucle d’événements

avec la constante GLUT_DEPTH :
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH) ;

On active ou désactive le mode Z-buffer avec :
glEnable (GL_DEPTH_TEST) ;
glDisable (GL_DEPTH_TEST) ;

Ces deux opérations peuvent se faire a tout moment et permettent par exemple de rajouter des tracés
« par dessus » la représentation d’une scéne.

De méme que 1’on (re)définit la couleur du fond avec giclearcolor (r, v, b, a),on (re)définit

au moins une fois la distance maximum de représentation d’un pixel :
glClearDepth(10.0) ; /* distance max visible au point de vue */

On définit ainsi la position d’un plan arriére de clipping li¢ au point de vue (ce qui est derriére sera
occulté par ce plan).

Enfin, le dessin d’une scéne sera toujours débuté par une réinitialisation du Z-buffer a la profondeur
maximum :
glClear (GL_DEPTH BUFFER_BIT) ;

Cette opération est généralement associée a I’effacement de la fenétre avec la couleur du fond :
glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

Notre fonction d’affichage aura donc la forme suivante :

void afficheMaScene (void)

{
glClear (GL_COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
/* on s’écarte de 5 dans la scéne */
glLoadIdentity () ;
gluLookat (0,0,5, 0,0,0, 0,1,0) ;
construire la scene
glutSwapBuffers(); /* ou glFlush() */

12. La face cachée d’OpenGL

12.1 Ordre des opérations de construction d’une sceéne

Nous avons décrit I’ensemble des opérations qui permettent d’afficher une scéne 3D en suivant un
enchainement « naturel » de la construction : construction des objets, positionnement dans la scéne
3D, calcul des éclairages et des parties visibles, projection a 1I’écran.

Initiation a OpenGL — sept 2004 Rémy Bulot

Cette présentation pourrait laisser penser que la scéne 3D est mémorisée quelque part et que I’on
pourrait intervenir localement dessus avant d’effectuer une nouvelle projection. Il n’en est rien ! et
il aurait fallu pour cela une capacité mémoire phénoménale.

On remarquera que le contexte de visualisation d’une primitive doit toujours étre défini au
préalable. Dans la pratique, chaque fois qu’une instruction de tracé d’un point, segment ou triangle
est exécutée, son rendu et sa projection sont immédiatement déclenchés pour mettre a jour la
mémoire écran (seule information conservée !) .

Une petite modification dans une scéne implique donc un nouveau tracé complet de cette dernicre.
On pourra toutefois optimiser les calculs en découpant cette scéne en plusieurs plans de profondeur
que I’on mémorise. Par exemple, dans le cas d’une animation de personnage, on calcule et
mémorise 1’arriere-plan supposé ne pas évoluer ; la visualisation de la scéne consiste alors a afficher
I’arriére-plan (image 2D) et a superposer le personnage dans sa nouvelle position.

12.2 Détail du tracé d’une facette

On peut s’intéresser un peu plus au fonctionnement de la « boite noire » et étudier I’enchainement
des algorithmes implicitement mis en oeuvre par OpenGL lors du tracé d’une simple facette
triangulaire. On pourra ainsi mieux « apprécier » les performances des matériels actuels lorsque
I’on visualise des surfaces composées de plusieurs milliers de triangles...

Ainsi donc, la désignation de 3 sommets (g1lvertex) entre les deux instructions

glBegin (GL TRIANGLES) et glkEnd () a pour effet de déclencher la séquence d’opérations suivante :

- produit des sommets par la matrice de modélisation (GI. MODELVIEW)

- ¢évaluation de la couleur de chaque sommet en fonction du type de rendu (couleur brute ou
simulation d’un éclairage avec gestion des normales, des lumiéres et du point de vue)

S2

S3

S1

- ¢évaluation de la distance des sommets au point de vue (profondeur)

- projection des sommets sur le plan image

- calcul des pixels constituant les 3 arétes (algorithme de Bresenham) du triangle projeté

- extrapolation de la couleur et de la profondeur de chacun de ces pixels a partir des 3 sommets

Initiation a OpenGL — sept 2004

- pour chaque ligne horizontale reliant deux arétes

52’
@i
T\
53"
}s\m i\g i

S1’

o pour chaque pixel d’une ligne

extrapoler sa couleur
extrapoler sa profondeur

si sa profondeur est plus faible que son équivalent dans le z-buffer,
alors tracer le point et affecter sa profondeur dans le z-buffer

S2’

S3’

S1’

Rémy Bulot

Initiation a OpenGL — sept 2004 Rémy Bulot

VI. Amélioration du rendu

On parle de rendu réaliste lorsqu'une image contient la plupart des effets de lumiére en interaction
avec des objets physiques réels. Les travaux de recherche en ce domaine sont trés nombreux et les
solutions proposées sont parfois fort coliteuses suivant les effets recherchés.

Il ne faut toutefois pas perdre de vue que si le but principal est de communiquer une information,
alors une image simplifiée peut étre plus réussie qu'une image approchant la perfection d'une
photographie : I'information n'est pas noyée dans un contexte peu pertinent pour I'observateur.

La réalité peut méme parfois étre intentionnellement altérée, voire méme faussée, dans le but de
faire encore mieux émerger le message que I'on veut transmettre : les films de science-fiction en
sont un exemple flagrant lorsque les explosions dans l'espace sont accompagnées d'un effet sonore...

3. Le brouillard (fog)

La représentation 2D d’une scéne 3D géneére une perte d’information que 1’observateur doit pouvoir
reconstruire mentalement. Cette opération peut étre rendue quasiment inconsciente si on utilise
quelques « astuces » de rendu. La projection en perspective génére déja la sensation de profondeur ;
on peut renforcer cet effet en simulant un brouillard qui estompe les objets en fonction de leurs
distances respectives au point de vue.

Le brouillard est activé (respectivement désactivé) avec :
glEnable (GL_FOG)
glDesable (GL_FOG)

On lui associe une couleur vers laquelle tend un objet si on €éloigne ce dernier du point de vue.
GLfloat fogColor([4] = {0.5, 0.5, 0.3, 1.} ; /* brouillard type Sirocco */

Cette couleur sera généralement utilisée pour le fond de la scéne :
glClearColor (0.5, 0.5, 0.3, 1.) ;

OpenGL propose trois types de courbe de mélange entre la couleur de 1’objet et le brouillard :
GL LINEAR, GL EXP et GL EXP2

100% 100% 100%

GL_LIN GL_EXP2
GL_EXP

Pourcentage de la couleur d’origine d’apres la distance au point de vue.

Les caractéristiques du brouillard sont définies a I’aide de la fonction g1Fogtype() :
/* profil de la fonction brouillard */

glFogi (GL_FOG_MODE, GL_EXP2) ;

/* extrémités de la fonction brouillard */

glFogf (GL_FOG_START, 1.) ;

glFogf (GL_FOG_END, 5.) ;

/* coefficient de « cintrage » pour les profils EXP(2)*/

glFogf (GL_FOG_DENSITY, 0.35) ;

Initiation a OpenGL — sept 2004 Rémy Bulot

/* couleur du brouillard */
glFogfv (GL_FOG_COLOR, fogColor) ;

4. L’éclairage

OpenGL propose aussi un rendu plus réaliste avec un modele d’illumination qui permet de prendre
en compte 'orientation des surfaces par rapport aux lumiéres (voir annexe sur la couleur).

Ce rendu dépendra de :

- laposition et des propriétés des éclairages,
- des propriétés optiques des matériaux employés pour la construction des objets,
- de I’orientation des surfaces vis-a-vis des éclairages et de I’observateur.

g) Un modele physique simplifié

La lumicre est représentée par la composition de trois valeurs : le rouge, le vert et le bleu. Les
proportions entre ces trois valeurs vont définir une couleur que 1’oeil est apte a percevoir. Nous
sommes habitués a vivre avec une lumiere blanche (fournie par le soleil), mais les sources peuvent
étre multiples (ex : éclairage d’un terrain de football générant 4 ombres sur chaque joueur) et de
couleurs variées (batterie de projecteurs pour un spectacle).

Lorsqu’un rayon lumineux frappe une surface, une partie est absorbée (filtrage), une autre est
réfléchie suivant les lois de la normale a la surface, le reste est restitué dans toutes les directions.
OpenGL simule ces propri¢tés a I’aide de quatre composants (simulation d’aprés le modéle
Lambertien, 19°™ siécle) :

l'intensité ambiante L, simule une lumicre qui a été dispersée par I’environnement : elle n’a
pas de direction et sera réfléchie par une surface dans toutes les directions. Ainsi, une surface
dans une zone d’ombre n’apparaitra pas noire car éclairée par cette lumicére ambiante.

la réflexion diffuse L, caractérise les surfaces mats. Aussi, lorsqu’un rayon lumineux provenant
d’une direction particuliére frappe cette surface, il sera filtré et dispersé dans toutes les
directions avec une méme intensité¢ (L; = ky cos 0). L’effet sera donc 1i¢ a la position de la
source lumineuse.

la réflexion spéculaire L caractérise, quant a elle, le cone de réflexion de la lumiére pour les
surfaces brillantes. C’est elle qui va définir la brillance d’une surface lorsque I’oeil est dans
I’axe symétrique de celui de la source par rapport a la normale. L’effet sera donc lié a la fois a la
position de la source lumineuse et a la position de I’observateur.

Les objets peuvent avoir une lumiére émissive qui ajoute de I’intensité a 1’objet. Par
simplification, cette lumiére n’ajoute pas d’éclairage supplémentaire a la scéne.

rayon
incident

rayon
réfléchi

L=L, +kscos0+k,cos" a

Initiation a OpenGL — sept 2004 Rémy Bulot

Le terme n dans l'expression de la réflexion spéculaire est appelé "coefficient de surbrillance". C'est
lui qui va déterminer 1'étendue du reflet (saturation sur une portion de surface) que I'on peut
observer sur une surface brillante lorsque certains rayons réfléchis se rapprochent de 1'axe
d'observation (o proche de 0). Cette valeur caractérise les propriétés physiques de la surface
éclairée. Un miroir parfait sera caractérisé par une valeur de n égal a 1'infini : 1'observateur n'est
¢bloui que si le rayon réfléchi coincide avec 1'axe d'observation.

h) Eclairage sous OpenGL

On passe du modele couleur « simple » (gicolor3f (r, v, b)au modele d’éclairage avec :
glEnable (GL_ LIGHTING) ;
glDisable (GL LIGHTING) ;

Pour tracer une facette, il faudra définir :

* les propriétés des « lumicres » (au plus 8)

* les positions des lumicres

* Dinterrupteur des lumiéres (allumer/éteindre)

* les propriétés de réflexion des matériaux (brillant, mat, ...)
* le choix des faces « visibles » (avant, arriére, avant&arricre)

* le choix d’un rendu lisse ou a facettes
* lanormale pour chaque sommet

1) Les lumiéres

On peut mettre en place jusqu'a 8 lumiéres (6L LIGHTO, ..., GL LIGHT7) dont on peut spécifier
de nombreux attributs par :

glLightfv (GL_LIGHTO, attribut, vecteur de float)

la position : GL_POSITION . Sous OpenGL, une lumiére est assimilée & un objet de la
scéne et subit les transformations géométriques définit pour GL MODELVIEW. On
peut donc la rendre fixe, la lier éventuellement a un objet, a la scene ou au
point de vue : tout dépend de 1l’instant ou on positionne cette lumiere.
GLfloat Lpositionl [4] = {-5.0, 0.0, 3.0, 0.0}; /* lumiére a 1’infini */
GLfloat Lposition2 [4] = {-5.0, 0.0, 3.0, 1.0}; /* position réelle */
glLightfv (GL LIGHTO, GL POSITION, Lpositionl);

On notera dans cet exemple qu'une lumiére peut étre positionnée a 1’infini (rayons parall¢les) en
mettant sa 4éme coordonnée a 0 (cf. les espaces projectifs). Les trois premieres coordonnées
définissent alors une direction et non plus une position.

la couleur : GI AMBIENT , GL DIFFUSE et GL SPECULAR . On donne séparément les composantes
ambiante, diffuse et spéculaire, ce qui permet de faire des choses peu physiques, comme des sources
qui ne génerent pas de reflets, ou que des reflets, ou qui ne contrdlent que la lumiére ambiante.

Chaque composante est un tableau de f1o0at définissant les 4 coefficients de base RVBA.
GLfloat Lambiant [4] = {0.4, 0.4, 0.4, 1.0};
GLfloat Lblanche [4] = {1.0, 1.0, 1.0, 1.0};

glLightfv (GL LIGHTO, GL AMBIENT, Lambiant);
glLightfv (GL_ LIGHTO, GL DIFFUSE, Lblanche);

Initiation a OpenGL — sept 2004 Rémy Bulot

glLightfv (GL LIGHTO, GL_SPECULAR, Lblanche);

Une lumiére est activée et désactivée (« interrupteur ») par :
glEnable (GL LIGHTO)
glDisable (GL LIGHTO)

j) Matériau d’un objet

Dans un modele d’éclairage, le rendu d’un objet n’est plus défini par une couleur brute
(glcolor3f(r, v, b), mais par un matériau avec des propriétés de réflexion de la lumiére qui
sont spécifiques (cuivre, argent, peinture brillante, ...). Sous OpenGL, les polygones qui seront
construits recevront des propriétés optiques définies pour les 4 composantes RVBA :

I’émission (cas d’un objet lumineux),
- la diffusion,
- laréflexion spéculaire.
Pour cette derniere, on dispose d’un coefficient qui précise la taille du reflet et son intensité (étroit
et intense, ou faible et étalé).

GLfloat
GLfloat
GLfloat
GLfloat

Lnoire [4] =
mat diffuse
mat specular
mat shininess

{0.0,
(4] =
(4] =

(1] =

0.0, 0.0, 1.0};
{0.057, 0.441, 0.361,
{0.1, 0.1, 0.5, 1.0};

{50.0};

1.0},

glMaterialfv
glMaterialfv
glMaterialfv
glMaterialfv

(GL_FRONT_AND_BACK,
(GL_FRONT_AND_BACK,
(GL_FRONT_AND_BACK,
(GL_FRONT_AND_BACK,

GL_EMISSION, Lnoire);
GL_DIFFUSE, mat_diffuse);
GL_SPECULAR, mat_specular) ;
GL_SHININESS, mat_ shininess);

En pratique, on définit des fonctions qui définissent un matériau donné en regroupant ces

propriétés :
void bronze () ;
void argent () ;

void peintureMetallisée (int couleur([3]) ;

Ces fonctions sont appelées juste avant le dessin des surfaces (a la place de gicolor) pour définir la
« couleur » des facettes.

k) Lanormale aux sommets

Le dernier élément déterminant pour la perception visuelle d’une surface est son orientation vis a
vis de la source lumineuse et du point d’observation. Sous OpenGL, cette orientation est évaluée a
partir du vecteur normal qui doit étre de longueur 1 : cette derniére contrainte peut étre gérée
directement par le programmeur ou par OpenGL (généralement plus coliteux) en activant :

glEnable (GL_NORMALIZE) ;

La normale doit étre spécifiée avant le tracé d’un polygone au moyen de :
glNormal3f (x, y, z);
glNormal3fv (tab) ;

exemple :
glBegin (GL TRIANGLES)
glNormal3f (0., O.,
glvVertex3f (0., O.,
glvertex3f (5., 0.,
glvertex3f (2.5, 5.,
glEnd() ;

1.)
0.);
0.);
0.);

Initiation a OpenGL — sept 2004 Rémy Bulot

Si la normale n’est pas explicitement connue au moment de la programmation, il faut la calculer. Si
on a pris soin de construire la liste des sommets dans 1’ordre trigonométrique, les trois premiers
sommets non alignés donnent deux vecteurs u et v dont le produit vectoriel donne la direction de la
normale (face avant).

Rappel : u v = [(Yu Zy — Zu Yv), - (Xu Zv — Zu Xv), (Xu Yv — Yu Xy)]

Pl
P4

P2
P3

On peut vouloir (ou non) éclairer les deux faces d’un polygones, il faut alors activer :
glLightModeli (GL_LIGHT MODEL_TWO_SIDE,GL_TRUE)

glLightModeli (GL_LIGHT MODEL TWO_SIDE,GL_FALSE) (valeur par défaut)

Remarque : On se souvient que I’ordre dans lequel on dessine les sommets permet de définir la face
avant et la face arriére d’un polygone (cf. chapitre sur les primitives). On pourrait penser que cette
notion est redondante vis-a-vis de la normale. En fait, cela permet d’attribuer des propriétés
spécifiques a chaque face (face pleine, face vide, couleur, matériau) alors que la normale ne servira
qu’aux calculs d’éclairage comme le précise le paragraphe suivant.

1) Surfaces lisses ou « a facettes »

Bien que les surfaces « complexes » soient approximées par des données polygonales, OpenGL
permet de donner a celles-ci un aspect « lisse » (mod¢ele de Gouraud), méme avec une discrétisation
grossiere. Une variable d’état permet de préciser si I’on souhaite un modele de surface a facettes ou
avec dégradé de couleur (plus lourd en calcul !) :

glShadeModel (GL_FLAT) (plus rapide)
glShadeModel (GL_SMOOTH) (plus joli)

En fait , les normales sont affectées aux sommets et non pas au polygone. Dans 1’exemple ci-
dessous, les trois sommets du triangles recoivent la méme normale (0., 0., 1.) :le triangle aura
une couleur uniforme.

glBegin (GL_ TRIANGLES) ;

/* définitions de la normale pour tous les sommets qui suivent : */
glNormal3f (0., 0., 1.) ;
glvertex3f (0., 0., 0.);
glvertex3f (5., 0., 0.);
glvertex3f (2.5, 5., 0.);
glEnd() ;

Pour obtenir un aspect non facetté, on affecte a chaque sommet la moyenne des normales des
facettes voisines. OpenGL effectuera une extrapolation de la lumiére réfléchie pour chaque pixel a
partir des valeurs calculées aux sommets.

Initiation a OpenGL — sept 2004 Rémy Bulot

Eclairage d’un « cratere » avec et sans lissage

Schéma type du tracé d’une surface lissée a partir d’un maillage de points (g1Float Point3D[3]):
glBegin (GL_ TRIANGLES) ;
for (i=0 ; i<Longueur-1 ; i++)

for (j=0 ; j<Largeur-1 ; Jj++)

{ /* 1 carreau = 2 triangles */
glNormal3fv (Nsurfacel[i]l[j]);
glVertex3fv (Surfacel[i][]])
glNormal3fv (Nsurface[1] [j+1]);
glvertex3fv(Surface[i][j+11);
glNormal3fv (Nsurface[i+1] [J+1]);
glVertex3fv(Surface[i+1] [j+1]);

glNormal3fv (Nsurface[i] []]);
glVertex3fv (Surfacel[i][j]);
glNormal3fv (Nsurface[i+1][3]);
glvertex3fv (Surface[i+1][3]);
glNormal3fv (Nsurface[i+1] [j+1]);
glVertex3fv (Surface[i+1] [§+1]);
}
}
glEnd () ;
Remarques :

- Lorsqu’une surface est représentée par un treillis de points, les sommets et les normales sont
généralement rangés dans un tableau : cela facilite grandement 1’évaluation des normales
moyennes avant de dessiner la surface.

- Pour affiner le rendu, on pourra pondérer les normales de chaque facette par les secteurs
angulaires respectifs.

Initiation a OpenGL — sept 2004 Rémy Bulot

VII. Images 2D
19. L’initialisation du 2D

Une image 2D est un tableau rectangulaire de pixels ayant chacun une « valeur » spécifique. Son
affichage ne nécessitera pas de tampon de profondeur. Une initialisation courante se traduira dans la
fonction main par un des deux appels ci-dessous :

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB) ;
ou
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB) ;

Bien que I’affichage se fasse en mode RGB (tampon image), on pourra disposer de plusieurs types
de codage d’image en mémoire centrale. Nous nous limiterons ici aux :

- images RGB ou un pixel est codé sur 3 octets consécutifs,

- images en niveaux de gris ou un pixel est codé sur un octet.

On notera au passage que les données initiale d’une image peuvent avoir une dynamique bien
supérieure au capacité d’affichage d’une carte graphique. Par exemple, une image IRM en imagerie
médicale aura souvent des valeurs dans [-2048, 2047]. L’affichage d’une telle image demande un
rééchelonnage préalable des amplitudes entre [0, 255] .

20. Matrice de projection

Il peut paraitre étrange de définir une matrice de projection lorsque 1’on manipule uniquement du
2D. Cette opération est pourtant nécessaire pour que la position d’un pixel image coincide avec une
coordonnée écran (entiere). On utilise une matrice de projection spécifique au 2D :

gluOrtho2D (xmin, xmax, ymin, ymax)

Aussi, le cadrage d’une image aura la forme suivante :

void monCadrage (int large, int haut)
{ glviewport (0, 0, large, haut) ;
glMatrixMode (GL PROJECTION) ;
glLoadIdentity () ;
gluOrtho2D (0, large, 0, haut) ;
glMatrixMode (GLiMODELVIEW) ;

21. Affichage d’une image 2D

Le prochain dessin d’une image (matrice rectangulaire de pixel) sera positionné dans la fenétre en
définissant I’angle inférieur gauche (x0, yo0) :

glRasterPos2i (x0, y0) ;

Initiation a OpenGL — sept 2004 Rémy Bulot

OpenGL propose trois commandes de base pour manipuler des images :
- glbrawPixels qui recopie un tableau de pixels dans le tampon image (cf. glRasterPos21i),
- glReadPixels qui recopie une partie du tampon image dans un tableau,
- glcopyPixels qui recopie une zone a I’intérieur du tampon image (sans passer par la
CPU !).

glDrawPixels (largeur, hauteur, format, type, tableau)
glReadPixels (largeur, hauteur, format, type, tableau)

largeur, hauteur : définissent la taille de I’image en terme de pixels,

format : format d’un pixel en mémoire centrale. On se limitera a GL_RGB ou GL_LUMINANCE,
type : on se limitera & GL_UNSIGNED_BYTE (un octet non signé),

tableau : adresse du tableau respectant le type précédemment définit.

Exemple :

#define hauteur 200

#define largeur 256

GLubyte imageRGB[hauteur] [largeur] [3] -
GLubyte imageGRIS[hauteur] [largeur] ;

affichage de imagerce

glRasterPos2i (0, 0) ;

glDrawPixels (largeur, hauteur, GL RGB, GL UNSIGNED BYTE, imageRGB) ;
glutSwapBuffers () ;

affichage de imagecrrs

glRasterPos2i (0, 0) ;

glDrawPixels (largeur, hauteur, GL LUMINANCE, GL UNSIGNED BYTE, imageGRIS) ;
glutSwapBuffers () ;

glCopyPixels (x0, y0, largeur, hauteur, GL_COLOR)

La recopie s’effectue a partir de la trame active (cf. glRasterPos21).

x0 et y0 : Précise le coin inférieur gauche du rectangle (1argeur, hauteur) de pixels a
recopier.

Le dernier argument précise le buffer sur lequel I’opération est effectuée. Nous nous limiterons
ici @ GL_COLOR.

22. Image et processeur...
a. Alignement des octets

Les processeurs sont performants pour manipuler des mots machines : Pentium et G4 sont des
processeurs 32 bits « grand public », mais nul doute sur 1’arrivée prochaine des 64 bits...

Les fonctions g1DrawPixels et glReadPixels tiennent compte de I’architecture du processeur et
effectuent, par défaut, les transferts par paquets d’octets correspondants au mot machine. En
particulier, elles démarrent chaque ligne image a la premiére adresse multiple d’un mot machine qui
suit la fin de la précédente ligne. En conséquence, la largeur d’une image doit occuper un nombre
d’octets multiple d’un mot machine, au risque d’obtenir un affichage avec une déformation latérale
de I’image parce que le début de chaque ligne aura été artificiellement décalé.

Initiation a OpenGL — sept 2004 Rémy Bulot

Le contrble des transferts se fait avec :
glPixelStorei (GL_UNPACK ALIGNMENT, taille) pOUIr glDrawPixels
glPixelStorei (GL_PACK_ALIGNMENT, taille) pour glReadPixels

ou taille définit le nombre d’octets dans un paquet (1, 2, 4 ou 8).

Une solution siire mais peu efficace est de forcer la taille des paquets a 1 pour qu’une ligne image
contienne nécessairement un nombre entier de paquets d’octets.

Une autre solution consiste a définir une matrice image en mémoire dont la taille des lignes est un
multiple de 4 (taille d’un mot machine pour les processeurs actuels), quitte a ne pas remplir les
derniers octets de chaque ligne.

b. Ordre des octets

La encore, la diversité existe et on constate qu’un mot machine peut ordonner ses octets dans un
sens ou dans I’autre. Par exemple, I’octet de poids fort pour un G4 se trouve a la place de I’octet de
poids faible pour un Pentium et réciproquement. L’exploitation sur une machine d’une image
construite sur une autre machine peut demander au préalable quelques opérations de permutation.

23. Primitives graphiques 2D
Dans certaines applications graphiques, on peut souhaiter effectuer un tracé par dessus une image
que I’on vient d’afficher. Par exemple, on peut tracer en rouge une route sur une image satellitaire

pour la mettre en évidence.

Dans ce cas, on affichera I’image en premier et on utilisera ensuite les primitives de tracé 2D avec
le suffixe 2i, principalement glvertex2i (x, y)

Il sera aussi parfois plus commode de définir les couleurs de tracé en entier :
glColor3ub (rouge, vert, bleu)

