
1 

 

 

Processus 
 

 

 

 
 
 
 

 

• Un programme c‟est une description d‟un calcul à faire (c‟est-à-

dire un algorithme) 
  
• Un processus c‟est un programme en mémoire qui s’exécute. 
 
• Un processeur c‟est une machine qui exécute un processus 
 

• Par multiplexage du CPU il est donc possible d‟avoir plus 

d‟un processus qui évolue sur un même ordinateur 

(Multiprogrammation) 
 

• Chaque processus a l’illusion d’être sur un processeur qui 

lui est dédié 



2 

 

 

 

Processus = Automate 
 
 

 
 
 

 

• Pour représenter un processus, on peut se servir d‟un automate 

(fini ou infini) qui contient tous les états possibles du processus 
 
• Chaque état correspond à une configuration des données dans la 

mémoire du processus (précisément cela correspond aux variables 

globales, pile, et registres incluant le compteur ordinal) 
 

• L‟utilisation d‟automates permet de mieux comprendre 

et raisonner sur le fonctionnement du processus 

 

• À chaque processus est associé une structure dans laquelle est 

stocké l‟état du processus :Process Control Block (PCB). 



3 

 

 

 

Le Modèle de Processus UNIX 

 

 
 

 

• Les processus UNIX sont souvent appelés processus lourds 

(“process”) pour les distinguer des processus légers (“threads”) 

que nous verrons plus tard 
 

• Les processus (lourds) sont encapsulés, c‟est-à-dire que la 

mémoire principale accessible à un processus est seulement 

accessible de ce processus 
 

• Cela assure une certaine “protection” aux données du 

processus (il est impossible qu‟un autre processus les modifie)  
• Grâce à la mémoire virtuelle, chaque processus a l‟illusion 

d‟avoir accès à un espace d’adressage logique privé complet 

(232octets); deux processus peuvent avoir des données à la 

même adresse logique sans que cela cause un conflit. 



4 

 

 

 

Organisation en Mémoire (1) 

 
 
 

 

• Le kernel maintient une table (“process descriptor table”) qui 

contient pour chaque processus les attributs attachés à ce 

processus; en particulier le PID (“Process IDentifier”) qui est un 

entier qui identifie le processus (normalement entre 0 et 32767) et le 

PPID (“Parent PID”) qui est le PID du processus qui a créé ce 

processus 

• L‟espace mémoire accessible au processus contient 

• le code machine exécutable (“text”) 

• les variables globales initialisées (p.e. int n = 5;)  
• les variables globales non-initialisées (p.e. int x;) que le 

kernel initialise à zéro au chargement du programme (“bss”) 

• la pile et le tas (pour les allocations dynamiques)  



5 

 

 
 

Organisation en Mémoire (2) 
 
 
 

 
 
 
 

 
 
 



6 

 

 
 

 

Création de Processus (1) 
 
 

 
 
 

 

• L‟unique façon de créer un nouveau processus c‟est de faire 

appel à la fonction “fork” qui crée une copie du processus 

courant (le processus enfant) 
 
• La copie est conforme, incluant les descripteurs de fichier et le 

contenu de la pile (donc l‟enfant et le parent retournent tous 

deux de la fonction fork), sauf que 
  

• la fonction fork retourne le PID de l’enfant dans le parent 
et retourne 0 dans l‟enfant  

• les PIDs et PPIDs sont différents (PPID(enfant) = PID(parent)) 
 



7 

 

 

 

            Création de Processus (2) 
 

1.   #include <iostream> 
2.   #include <sys/types.h> // pour pid_t 
3.   #include <unistd.h> // pour getpid, getppid, fork et sleep 
4. 

5.   int main (int argc, char* argv[]) 
6.   { cout << "PID=" << getpid () << " PPID=" << getppid () << "\n"; 
7. 

8. pid_t p = fork (); 
9. 

10. cout << "PID=" << getpid () << " PPID=" << getppid () 
11. << " p=" << p << "\n"; 
12. 

13. sleep (1); 
14. return 0; 
15.   } 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.   % ps 
2. PID TTY TIME CMD 
3. 817 pts/0 00:00:00 bash 
4. 900 pts/0 00:00:00 ps 
5.   % echo $$ 

 
 
 
 
 
 
 

6.   817 
.
 

7.   % ./a.out  
.
 

8.   PID=901 PPID=817
9.   PID=901 PPID=817 p=902 
10.PID=902 PPID=901 p=0 
 

 

 

•Pourquoi „sleep (1)‟ ? Eviter que p soit orphelin..



8 

 

 
 

Exécution de Programmes 
 
 

• La relation parent-enfant qui lie les processus donne une 

structure hiérarchique à l‟ensemble des processus 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

• Tous les processus ont un parent, sauf celui à la racine 
 

• Quel processus est à la racine?  

 
 
 

 

 
 
 



9 

 

 
 
 
• La racine est le processus “init” (PID=1) qui est créé 

spécialement par le kernel au moment du boot 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 

• init se base sur un fichier de configuration pour démarrer les 
processus de service (/etc/inittab) 

 

• En particulier, des processus exécutant le programme getty et 

login qui permet à un usager de se brancher 
 

• Si le mot de passe fourni par l‟usager est conforme à la base de 
donnée /etc/passwd, login change l‟environnement, répertoire, 
UID, etc. du processus et fait un exec du shell de l‟usager 



10 

 

 
 
 

    
Processus Orphelins 

 
 
 
 
 

•  Que se passe-t‟il si le parent d’un processus P meurt avant 

P? 
  
•  Le processus P devient orphelin 
   
• Le processus init (PID=1) adopte automatiquement les 

processus orphelins, de sorte que le parent de tout processus 

soit toujours un processus vivant    
•  Le processus init ne meurt jamais 



11 

 

 
 

Processus Zombie 

• Que se passe-t‟il si un processus P meurt mais 

      
 

qu‟aucun processus n’a encore obtenu son statut de 

terminaison avec un appel à wait ou waitpid? 

• Le processus P est un zombie 

• Le problème c‟est que le kernel ne peut savoir si plus tard un 

processus voudra obtenir le statut de P 

• Le descripteur de processus de P doit être préservé par le 

kernel jusqu‟à ce que son statut soit consulté avec un appel 

à wait ou waitpid 
 

• Un zombie qui devient orphelin (i.e. son parent meurt) est 

éliminé de la table de descripteurs du kernel, car init 

exécute wait dans une boucle sans fin 



12 

 

 

 

Attente d’un Processus 

• Les fonctions wait et waitpid permettent à un processus 

d‟attendre la terminaison d‟un processus et d‟obtenir le statut 

de terminaison 
pid_t wait (int* status) 
pid_t waitpid (pidt pid, int* status, int options) 

• Cela est une forme simple de synchronisation 

• Synchronisation de type “fork-join”: on crée un 

sous-processus, on fait un travail concurrent, puis on attends 

que le sous-processus ait terminé 
1.   pid_t p = fork (); 
2. 

3.   if (p == 0) // enfant? 
4. { f1 (); 
5. _exit (0); 
6. } 
7. 

8.   f2 (); 
9. 

10.   int statut; 
11.   waitpid (p, &statut, 0); 

 
P
r
o
c
e
s
s
u
s
 
L
é 



13 

 

 

Processus legers :Threads 
 

 
 
 

 

• L‟ encapsulation offerte par les processus lourds est gênante lorsque 

les processus doivent partager et échanger des données 
 

• Avec les processus légers (“threads”), la mémoire est commune à tous 

les processus légers 
 

• Un processus peut écrire des données en mémoire et un autre processus 

peut immédiatement les lire 

• Normalement, à chaque processus lourd est attaché un ensemble de 

processus légers; ceux-ci doivent respecter l‟encapsulation du processus 

lourd 

• À la création d‟un processus lourd, il y a un processus léger qui est créé 

pour exécuter le code de ce processus lourd (thread “primordial”) 
 

 

 



14 

 

 

POSIX Threads (1) 
 

• Les processus (légers) peuvent être intégrés au langage de 

programmation ou bien être une librairie 
 
• Sous UNIX il y a plusieurs librairies de threads, “POSIX Threads” 

est une des librairies les plus portables 

• Pour créer et démarrer un nouveau thread on utilise 
 

int pthread_create(pthread_t* id, 
pthread_attr_t*attr, void* 
(*fn)(void*), void* arg) 

• id = descripteur de thread 

• attr = attributs de création, p.e. priorité (NULL = défauts) 

• fn = fonction que le thread exécutera 
• arg = paramètre qui sera passé à fn 
• résultat = code d‟erreur (0 = aucune erreur) 



15 

 

POSIX Threads (2) 
 
 

 
 
 

 

• Pour attendre la terminaison d’un thread on utilise 
 

int pthread_join (pthread_t id, void** r ́esultat) 

• résultat = valeur retournée par la fonction d‟exécution du thread (ou 

bien celle passée à pthread exit) 
 

void pthread_exit (void* r ́esultat) 
 

• Exemple 

 

1. #include <pthread.h> 
2. 

3. void* processus (void* param) 
4. { 
5. int i = (int)param; 
6. for (int j = 0; j<10000000; j++) ; 
7. cout << i << "\n"; 
8. return (void*)(i*i); 
9. } 

11. int main () 
12. { pthread_t tid[5]; 
13. void* resultats[5]; 
14. 

15. for (int i = 0; i<5; i++) 



16 

 

 
 

 

 

 

16. pthread_create (&tid[i], NULL, processus, (void*)i); 
17. 

18. for (int i = 0; i<5; i++) 
19. pthread_join (tid[i], &resultats[i]); 
20. 

21. for (int i = 0; i<5; i++) 
22. cout << "resultat du processus " << i << " = " 
23. << (int)resultats[i] << "\n"; 
24. 

25. return 0; 
26. } 

 
 


