Processus

Un programme c’est une description d’'un calcul a faire (c'est-a-
dire un algorithme)

Un processus c’est un programme en mémoire qui s’exéecute.

Un processeur c’est une machine qui exécute un processus

Par multiplexage du CPU il est donc possible d'avoir plus
d'un processus qui évolue sur un méme ordinateur
(Multiprogrammation)

Chaque processus a l'illusion d’étre sur un processeur qui
lui est dedié

Processus = Automate

® Pour représenter un processus, on peut se servir d'un automate
(fini ou infini) qui contient tous les états possibles du processus

= Chaque état correspond a une configuration des données dans la
memoire du processus (précisément cela correspond aux variables
globales, pile, et registres incluant le compteur ordinal)

= Lutilisation d'automates permet de mieux comprendre
et raisonner sur le fonctionnement du processus

= A chaque processus est associé une structure dans laquelle est
stocké I'état du processus :Process Control Block (PCB).

Le Modeéele de Processus UNIX

® Les processus UNIX sont souvent appelés processus lourds
(“process”) pour les distinguer des processus legers (“threads”)
gue nous verrons plus tard

- Les processus (lourds) sont encapsulés, c’est-a-dire que la
memoire principale accessible a un processus est seulement
accessible de ce processus

* Cela assure une certaine “protection” aux données du
processus (il est impossible qu’un autre processus les modifie)

* Grace a la mémoire virtuelle, chaque processus a l'illusion
d'avoir acces a un espace d’adressage logique privé complet
(23200tets); deux processus peuvent avoir des données a la

méme adresse logique sans que cela cause un conflit.

Organisation en Mémoire (1)

® Le kernel maintient une table (“process descriptor table”) qui
contient pour chaque processus les attributs attachés a ce
processus; en particulier le PID (“Process |Dentifier’) qui est un
entier qui identifie le processus (normalement entre 0 et 32767) et le
PPID (“Parent PID"”) qui est le PID du processus qui a crée ce
processus

» Lespace memoire accessible au processus contient
° le code machine exécutable (“text”)

* les variables globales initialisées (p.e. int n = 5;)

° les variables globales non-initialisées (p.e. int x;) que le
kernel initialise a zéro au chargement du programme (“bss”)

* la pile et le tas (pour les allocations dynamiques)

Organisation en Mémoire (2)

physical memory PROCESSES swap disk
and kernel data/code (logical wview)

o e

process
descriptor <
table

Création de Processus (1)

“ Lunique facon de créer un nouveau processus c’'est de faire
appel a la fonction “fork” qui crée une copie du processus
courant (le processus enfant)

® La copie est conforme, incluant les descripteurs de fichier et le
contenu de la pile (donc I'enfant et le parent retournent tous
deux de la fonction fork), sauf que

* la fonction fork retourne le PID de I’enfant dans le parent
et retourne 0 dans I'enfant

* les PIDs et PPIDs sont differents (PPID(enfant) = PID(parent))

Création de Processus (2)

1. #include <iostream>

2. #include <sys/types.h> // pour pid t

3. #include <unistd.h> // pour getpid, getppid, fork et sleep

4.

5. int main (int argc, char* argv([])

6. { cout << "PID=" << getpid () << " PPID=" << getppid () << "\n";
7.

8. pid t p = fork ();

9.

10. cout << "PID=" << getpid () << " PPID=" << getppid ()

11. << " p=" << p << "\n";

12.

13. sleep (1) PID =901 PID =902
14. return 0; -

15. }

1. 5 pPs

2. PID TTY TIME CMD

3. 817 pts/0 00:00:00 bash 5 :
4. 900 pts/0 00:00:00 ps fork () fork ()
5. % echo $$; :
6. 817 ___::.'..

7. % ./a.out

8. PID=901 PPID=817

9. PID=901 PPID=817 p=902

10.PID=902 PPID=901 p=0

®Pourquoi ‘sleep (1) ? Eviter que p soit orphelin..

Exécution de Programmes

® La relation parent-enfant qui lie les processus donne une
structure hiérarchique a I'ensemble des processus

® Tous les processus ont un parent, sauf celui a la racine

® Quel processus est a la racine?

® Laracine est le processus “init” (PID=1) qui est créeé
spécialement par le kernel au moment du boot

init (PID=1)

bash
getty getty login

Xferm cITlacs

bash

® init se base sur un fichier de configuration pour démarrer les
processus de service (/etc/inittab)

® En particulier, des processus exécutant le programme getty et
login qui permet a un usager de se brancher

® Si le mot de passe fourni par l'usager est conforme a la base de
donnée /etc/passwd, login change I'environnement, répertoire,
UID, etc. du processus et fait un exec du shell de l'usager

Processus Orphelins
Que se passe-til si le parent d’un processus P meurt avant
P?

Le processus P devient orphelin

Le processus init (PID=1) adopte automatiquement les
processus orphelins, de sorte que le parent de tout processus
soit toujours un processus vivant

Le processus init ne meurt jamais

10

Processus Zombie

* Que se passe-t'il si un processus P meurt mais
gu'aucun processus n’a encore obtenu son statut de
terminaison avec un appel a wait ou waitpid?

* Le processus P est un zombie

* Le probleme c’est que le kernel ne peut savoir si plus tard un
processus voudra obtenir le statut de P

» Le descripteur de processus de P doit étre préserve par le
kernel jusqu’a ce que son statut soit consulte avec un appel
awailt ouwaitpid

* Un zombie qui devient orphelin (i.e. son parent meurt) est
éliminé de la table de descripteurs du kernel, car init
execute wait dans une boucle sans fin

11

Attente d’un Processus
® Les fonctions wait et waitpid permettent a un processus

d'attendre la terminaison d’'un processus et d'obtenir le statut

de terminaison
pid t wait (int* status)
pid t waitpid (pid pid, int* status, int options)

= Cela est une forme simple de synchronisation
= Synchronisation de type “fork-join”: on crée un
sous-processus, on fait un travail concurrent, puis on attends

gue le sous-processus ait terminée

; pid t p = fork ();
_if (p == 0) // enfant?
{ £1 (O
_exit (0);
}

8. £2 ()
9.

10. int statut;
11. waitpid (p, &statut, 0);

NO ok w

12

Processus legers :Threads

® L encapsulation offerte par les processus lourds est génante lorsque
les processus doivent partager et echanger des données

= Avec les processus légers (“threads”), la mémoire est commune a tous
les processus légers

= Un processus peut écrire des données en mémoire et un autre processus
peut immediatement les lire

= Normalement, a chaque processus lourd est attaché un ensemble de
processus legers; ceux-ci doivent respecter I'encapsulation du processus
lourd

= A la création d’un processus lourd, il y a un processus léger qui est créé
pour exécuter le code de ce processus lourd (thread “primordial”)

13

POSIX Threads (1)

® Les processus (légers) peuvent étre intégrés au langage de
programmation ou bien étre une librairie

* Sous UNIXil y a plusieurs librairies de threads, “POSIX Threads”
est une des librairies les plus portables
* Pour créer et démarrer un nouveau thread on utilise

int pthread_create(pthread t* id, _
pthread_attr_t*attr, void*
(*fn)(void®), void™ arg)

id = descripteur de thread

attr = attributs de création, p.e. priorité (NULL= défauts)
fn = fonction que le thread exécutera

= arg = parametre qui sera passé a fn

résultat = code d’erreur (0O = aucune erreur)

14

POSIX Threads (2)

® Pour attendre la terminaison d’un thread on utilise
int pthread join (pthread t Iid, void** reésultat)

 résultat = valeur retournée par la fonction d’exécution du thread (ou

bien celle passée a pthread exit)
void pthread exit (void* resultat)

- Exemple
#include <pthread.h>

void* processus (void* param)

. for (intj =0; J<1000OOOO j++) ;
. cout <<i<<™"n";
. r}eturn (void™)(i* |)

9.

1. int main ()

12. { pthread ttld[[5]]

13. void* resultats
14.

15. for (inti = 0; i<5; i++)

1
2
3
4.
5. inti = (int)param;
6
7
8

11;3. pthread_create (&tid[i], NULL, processus, (void*)i);
8. for (inti=0:i<5; i++)

;8. pthread_join (tid[i], &resultatsi]);

21, for (inti=0;i<5; i++)

22. cout << "resultat du processus " <<i<<" ="
23. << (int)resultatsi] << "\n":
24.

25, return O;
26. }

