Université de Sétif1 Faculté Des sciences Département MI 1ère Année MI (s1)

2018 / 2019

Pr A.MEROUANI

Module : Algèbre 1

Correction (EXAMEN DE RATTRAPAGE)

EXERCICE 1

1- Sur l'ensemble $\mathbb R$. On considère la relation binaire $\mathfrak R$ définie par :

$$\forall x, y \in \mathbb{R} : x \Re y \Leftrightarrow \cos^2 x + \sin^2 y = 1$$

1- \Re est Reflexive (ie $\forall x \in \mathbb{R} : x \mathcal{F} x$) (1)

On a $\forall x \in \mathbb{R}$: $\cos^2 x + \sin^2 x = 1$, $dou x \Re x$

2- \Re est symétrique (ie $\forall x, y \in \mathbb{R} : x \Re y \Rightarrow y \Re x$) (1)

$$\forall x, y \in \mathbb{R} : On \ a \ x \ \Re \ y \Leftrightarrow cos^2 \ x + sin^2 \ y = 1$$

On sait que $\cos^2 x + \sin^2 x = 1$ et $\cos^2 y + \sin^2 y = 1$ donc

$$\cos^2 x + \sin^2 x + \cos^2 y + \sin^2 y = 2$$

$$\Rightarrow \cos^2 x + \sin^2 y + \cos^2 y + \sin^2 x = 2$$

$$\Rightarrow 1 + \cos^2 y + \sin^2 x = 2$$

$$\Rightarrow \cos^2 v + \sin^2 x = 1$$

$$\Rightarrow y \Re x$$

3- \Re est transitive (ie $\forall x, y, z \in \mathbb{R} : x \Re y \text{ et } y \Re z \implies x \Re z$) (1)

$$x \Re y \Leftrightarrow \cos^2 x + \sin^2 y = 1..(a)$$

$$y \Re z \Leftrightarrow \cos^2 y + \sin^2 z = 1 \dots (b)$$

En additionnant ces deux égalité on trouve $\cos^2 x + \sin^2 y + \cos^2 y + \sin^2 z = 2$

donc
$$cos^2 x + sin^2 y + cos^2 y + sin^2 z = 2$$
 on $a sin^2 y + cos^2 y = 1$ donc

$$cos^2 x + sin^2 z = 2 - 1 \Rightarrow cos^2 x + sin^2 z = 1$$

finalement \Re est une relation d'équivalence sur $\mathbb R$

2-Soit \mathcal{F} une relation définie sur \mathbb{N}^* par

$$\forall a,b \in \mathbb{N}^* : a \mathcal{F}b \Leftrightarrow \exists k \in \mathbb{N}^* : b = a^k$$

1- \mathcal{F} est Reflexive (ie $\forall a \in \mathbb{N}^* : a \mathcal{F} a$) (1)

On a $\forall a \in \mathbb{N}^* : \exists k = 1 \in \mathbb{N}^* : a = a^k$, $a = a^1$, $dou \ a \mathcal{F} \ a$

2- \mathcal{F} est anti- symétrique (ie $\forall a, b \in \mathbb{N}^*$: $a \mathcal{F}b$ et $b \mathcal{F} a \Rightarrow a = b$) (1)

$$\begin{aligned} \forall a,b \in \mathbb{N}^* &: a\,\mathcal{F}b \Leftrightarrow \, \exists k_1 \in \mathbb{N}^*: \ b = \mathbf{a}^{k_1} \\ \left\{ a\,\mathcal{F}b \Leftrightarrow \, \exists k_1 \in \mathbb{N}^*: \ b = \mathbf{a}^{k_1} \ (i) \\ b\,\mathcal{F}a \Leftrightarrow \, \exists k_2 \in \mathbb{N}^*: \ a = \mathbf{b}^{k_2} (\mathrm{ii}) \right. \end{aligned}$$
 En remplacant (i) dans (ii) on obtient $a = \mathbf{a}^{k_1} = \mathbf{a}^{k_2} = \mathbf{a}^{k_2}$

 $\Rightarrow a = b$

3- \mathcal{F} est transitive (ie $\forall a, b \in \mathbb{N}^* : a \mathcal{F}b \quad et b \mathcal{F} c \Rightarrow a \mathcal{F}c$) (1)

$$\begin{cases} a \mathcal{F} b \Leftrightarrow \exists k_1 \in \mathbb{N}^* : b = \mathbf{a}^{k_1} \ (i) \\ b \mathcal{F} c \Leftrightarrow \exists k_2 \in \mathbb{N}^* : c = \mathbf{b}^{k_2} (\mathbf{i}\mathbf{i}) \end{cases}$$
$$a = \mathbf{c}^{k_1}^{k_2} = \mathbf{c}^{k_2} \mathbf{k}_1 \quad \text{donc } \exists k = k_2 k_1 \in \mathbb{N}^* : c = \mathbf{a}^k$$

d'où a Fc

finalement \mathcal{F} est une relation d'équivalence sur \mathbb{N}^*

on remarque que

$$\forall k \in \mathbb{N}^* : 2 \neq 3^k \text{ et } \forall k \in \mathbb{N}^* : 3 \neq 2^k \text{ donc } 2\mathfrak{F}3$$
 (1)
 $\exists a, b \in \mathbb{N}^* : a \mathcal{F}b \text{ etb } \mathcal{F}a \qquad (a = 2 \text{ et } b = 3) \text{ dou}$

L'ordre est partiel

EXERCICE 2 (13)

* est une L C I sur IR(1)

Soient $a,b \in \mathbb{R}$ donc $a+b-ab \in \mathbb{R}$ d'ou $a*b \in \mathbb{R}$

 $a \in \mathbb{R} \setminus \{1\}$ et $b \in \mathbb{R} \setminus \{1\} \Rightarrow a * b \in \mathbb{R} \setminus \{1\}$ (raisonnement par l'absurde)

en supposant que $a \ne 1$ et $b \ne 1$ et a*b=1

On a
$$a*b=1 \Rightarrow a+b-ab=1 \Rightarrow a+b(1-a)=1 \Rightarrow a-1+b(1-a)=0$$

$$\Rightarrow$$
 $(a-1)(1-b)=0 \Rightarrow a=1$ ou $b=1$ Nous obtains une contradiction.

1- *commutative $\forall a,b \in \mathbb{R} \setminus \{1\}a*b=b*a(0.5)$

On a
$$a*b \Rightarrow a+b-ab \Rightarrow b+a-ba=b*a$$

2- * associative

$$(a*b)*c=a*(b*c)=a+b+c-ab-ac-cb+abc$$
 (1)

3- l'element neutre (e) $\forall a \in \mathbb{R} \setminus \{1\}$ a*e= e*a=a (1)

Soit
$$a \in \mathbb{R} \setminus \{1\}$$
 an $a * e = a \Rightarrow a + e - ae = a \Rightarrow a + e - ae - a = 0 \Rightarrow$

$$e - ae = 0 \Rightarrow e(1-a) = 0 \Rightarrow e = 0 \quad (a \neq 1)$$

4-1'élement symétrique $\forall a \in \mathbb{R} \setminus \{1\}, \exists a \in \mathbb{R} \setminus \{1\} \ a * \acute{a} = \acute{a} * a = e$ (1)

$$a * \acute{a} = e \Rightarrow a * \acute{a} = 0 \Rightarrow a + \acute{a} - a\acute{a} = 0 \Rightarrow \acute{a} - a\acute{a} = -a \Rightarrow \acute{a}(1 - a) = -a$$

$$\Rightarrow \acute{a} = \frac{-a}{1-a} \in \mathbb{R} \setminus \{1\},\$$

Finalement $(\mathbb{R} \setminus \{1\}.*)$ est un group commutatif

b- On munit $\mathbb R$ de la loi de composition interne $^\circ$ définie par :

$$\forall x, y \in \mathbb{R} : x \circ y = \sqrt[5]{x^5 + y^5}$$

°commutative $\forall x,y \in \mathbb{R} \ x^{\circ}y = y^{\circ}x$

$$\forall x, y \in \mathbb{R} : x \circ y = \sqrt[5]{x^5 + y^5} = \sqrt[5]{y^5 + x^5} = y \circ x$$
 (0.5)

° associative (1)

$$(x^{\circ}y)^{\circ}z = (\sqrt[5]{x^5 + y^5})^{\circ}z = \sqrt[5]{x^5 + y^5} + z^5 = \sqrt[5]{x^5 + y^5 + z^5}$$

$$x^{\circ}(y^{\circ}z) = x^{\circ}(\sqrt[5]{y^5 + z^5}) = \sqrt[5]{x^5 + \sqrt[5]{y^5 + z^5}} = \sqrt[5]{x^5 + y^5 + z^5}$$
 d'ou° associative

- l'element neutre (e) $\forall x \in \mathbb{R} \ x*e= e*x=x$ (1)

Soit
$$x \in \mathbb{R}$$
 an a $x*e=a$ $\Rightarrow \sqrt[5]{x^5 + e^5} = x \Rightarrow x^5 + e^5 = x^5 \Rightarrow e^5 = x^5$

 \Rightarrow e=0

l'élement symétrique $\forall x \in \mathbb{R}, \exists \acute{x} \in \mathbb{R} \ x * \acute{x} = \acute{x} * x = e$ (1)

$$x * \acute{x} = e \implies \sqrt[5]{x^5 + \acute{x}^5} = 0 \implies x^5 + \acute{x}^5 = 0 \implies x^5 = -\acute{x}^5 \implies (x)^5 = (-\acute{x})^5$$

$$\Rightarrow \acute{x} = -x \in \mathbb{R}$$

Finalement (\mathbb{R} .°) est un group commutatif

l'application $f(x) = x^5$ est un homomorphisme de (\mathbb{R}, \circ) dans $(\mathbb{R}, +)$ (2)

$$\forall x,y \in \mathbb{R} : f(x^{o}y) = f\left(\sqrt[5]{x^5 + y^5}\right) = (\sqrt[5]{x^5 + y^5})^5 = x^5 + y^5 = f(x) + f(y) \text{ d'où f est un}$$
 homomorphisme de (\mathbb{R}, \cdot^o) dans (\mathbb{R}, +)

c- f est injective \Rightarrow Ker $f = \{e\}$

Supposons que f soit injective, et montrons que $Ker f = \{e \}$ (1.5)

On a
$$\forall x \in \text{Ker } f$$
 $f(x) = \acute{e} \xrightarrow{\overbrace{f(e) = \acute{e}}} f(x) = f(e) \xrightarrow{\overbrace{finjective}} x = e \text{ donc Ker } f = \{e \}$

 $Ker f = \{e \} \Rightarrow f \text{ est injective } (1.5)$

$$\forall x, y \in E \ f(x) = f(y) \Rightarrow f(x)^{0} f(y)^{-1} = e^{i \frac{1}{f(y^{-1}) = f(y)^{-1}}} f(x)^{0} f(y^{-1}) = e^{i \frac{1}{f \text{ hom}}} f(x \square y^{-1}) = e^{$$

$$x\square y^{-1}\in \operatorname{Ker} f\xrightarrow{\overline{\operatorname{Ker} f=\{e\}}} x\square y^{-1}=e \Rightarrow x=y \Rightarrow f \text{ est injective}$$